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ABSTRACT

Hyperspectral imaging has become an emerging imaging
modality for medical applications. In this work, we propose
to combine both the spectral and structural information in the
hyperspectral data cube for tumor detection in tongue tissue.
A dual stream network is designed, with a spectral and a
structural branch. Hyperspectral data (480 to 920 nm) is col-
lected from 7 patients with tongue squamous cell carcinoma.
Histopathological analysis provided ground truth labels. The
proposed dual stream model outperforms the pure spectral
and structural approaches with areas under the ROC-curve of
0.90, 0.87 and 0.85, respectively.

Index Terms— Hyperspectral imaging, machine learning,
neural networks, tongue tumor

1. INTRODUCTION

Patients suffering from tumors in tongue tissue are generally
treated by removing the tumor tissue surgically. Removal of
the complete tumor is challenging. Currently there is no reli-
able way to provide real-time feedback to the surgeon during
the tumor removal procedures.

Hyperspectral imaging (HSI) was originally developed
for remote sensing by NASA/JPL [1] and has been suc-
cessfully used in multiple fields such as food quality and
safety, vegetation and resource control, archaeology and
biomedicine [2]. With advancements in hardware and com-
putational power, it has become an emerging imaging modal-
ity for medical applications. HSI has the potential advantages
of low cost, relatively simple hardware and ease of use. This
makes HSI a candidate for intra-operative support of a sur-
geon. Compared to regular RGB data it is challenging to
process the HSI data due to the size of the data: hundreds of
color bands in a multi-megapixel image results in large files
with varying amounts of redundant information.

Fei et al. [3] have evaluated the use of HSI on specimen
from patients with head and neck cancer. Multiple specimens
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have been taken from each of the 16 patients, and the spec-
imen have been scanned with wavelengths from 450 to 900
nm. Specimen from 10 of the 16 patients are verified to be
squamous cell carcinoma (SCCa). They achieved an area un-
der the ROC-curve (AUC) of 0.94 for tumor classification
with a linear discriminant analysis. However, their testing
is done on specimens from the same patient as the classifi-
cation was trained on. Halicek et al. [4] acquired multiple
specimen from 50 head and neck cancer patients in 450-900
nm spectral range. 29 of the patients had SCCa tumors. Us-
ing patient held-out external validation, they applied a deep
convolutional network and achieved an accuracy of 77%. An
animal study by Ma et al. [5] achieved an accuracy of 91.36%
using convolutional neural networks in a leave-one-out cross-
validation. The specimen were taken from mice with induced
tumors. In all three mentioned studies the focus lies entirely
on spectral information.

In this paper a combination of both the spectral and
structural information in the HSI data cube is explored. Par-
ticularly a dual stream model is proposed, with a spectral
and a structural branch. Data is collected from 7 patients
with tongue SCCa using a HSI system (480 to 920 nm).
Histopathological analysis provided ground truth labels. The
proposed method is compared with pure spectral and struc-
tural approaches.

2. METHODS

The HSI scan results in a data cube for each tissue sample.
Using small patches spanning all bands the spectral informa-
tion can be considered. By selecting bigger patches, structural
information becomes available. By combining both inputs,
the full spectral and some structural information is available
for the network. Figure 1 shows the architecture of the dual
stream network.

2.1. Spectral and structural branch

To exploit the full extent of the spectral information, a net-
work is designed for using small patches including the full
spectrum of the HSI data. To filter out noise, the average
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Fig. 1. From the HSI data a 1x1x163 spectral signature is
fed into the spectral branch of the combined network. After
applying PCA, resulting in three channels, 31x31 patches are
used for the structural branch. Branches have been trained
and tested individually.

spectrum of 5x5 pixels is calculated and the resulting vector
is used as input for a neural network. The network has two
hidden layers of 163 and 80 units and finally a softmax out-
put layer. During training a dropout layer with rate 0.5 is used
before the final softmax layer. This results in 40,014 trainable
parameters. To be able to compare the dual stream network
with just a spectral method, the spectral network is separately
trained and tested.

By increasing the patch size, morphological features in
the HSI data can be used to classify the tissue. Due to the
high number of parameters in the network needed for those
patches, the number of channels has been reduced using a
principle component analysis (PCA). With 3 channels ap-
proximately 92% of variance is contained in the resulting
31x31x3 patches. Larger numbers of channels have been
considered in the same network architecture, but did not in-
crease performance significantly. The neural network used
for the structural method flattens the input and has three
fully connected layers of 1024, 128 and 64 units, a dropout
layer during training and a final softmax layer. This gives
3,084,674 trainable parameters.

2.2. Dual stream network

When combining the spectral and structural information, the
classifier has many features available, without the need of a

31x31x163 data cube. To use 1x1x163 and 31x31x3 patches
the previous networks have been combined into a dual stream
network. The spectral and structural branches are unchanged
in both architecture and weights using transfer learning. In-
stead of the softmax output layers, the second fully connected
layer of both networks is concatenated and fed into two new
dense layers of 128 and 64 units. These are connected to a
dropout layer and softmax for the output. The combined net-
work has 26,946 trainable parameters.

3. EXPERIMENTS

3.1. Clinical data set

Tissue of 7 patients with tongue squamous cell carcinoma has
been resected by the surgeon. Directly after resection, the
specimen was brought to the pathology department, where it
is processed according to standard pathological protocol. The
pathologist localized the tumor by palpation and cut the spec-
imen in two parts, right trough the middle of the tumor. Im-
ages are then taken from these new surfaces. All processes
performed at the hospital follow the ethical guidelines for ex
vivo human studies. An RGB picture of the tissue is taken to
function as an intermediate step in the registration process.

Fig. 2. The imaging system used to collect the HSI data. Tis-
sue is placed on the Table in the bottom. The Table shifts the
tissue under the sensor.

To get a hyperspectral image of the tissue, an imaging sys-
tem with a line-scan sensor manufactured by IMEC (Leuven,
Belgium) is used to capture the diffuse reflectance with wave-
lengths ranging from 480 to 920 nm in 163 channels. The
imaging system is shown in Figure 2 The image is recorded
line-by-line with 2048 samples per line while shifting the tis-
sue. The system has been calibrated using a light reference
image before use and after scanning the data was cropped to
a region of interest.

In order to label the HSI data, a histopatological slide
is taken from the surface that has been scanned. The slide
is digitized and delineated to mark the tumor (red), healthy
muscle (green) and epithelium (blue). This is the first step
shown in Figure 3. From the delineation a mask is created.
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During histopathological processing the specimen was de-
formed and to correct this, a non-rigid registration algorithm
is used. Obvious matching points in the histopathological
and RGB images were visually selected. Using these points,
the mask is transformed to match the RGB picture. This is
depicted in Figure 3 in middle row as transformation T1. The
point-selection is done again on the RGB and HSI data to ac-
quire transformation T2, which is used to transform the mask
again to match the HSI data. Using the mask the data can
be explored. Table 1 shows the number of pixels for patients
and classes in the mask. Figure 4 shows the mean spectra
of patients 2 and 4 for the tumor and muscle classes. At a
wavelength of 630 nm is a clear drop in reflectance, which
is present in all HSI images and caused by the hardware.
Generally the muscle mean is lower then the tumor mean,
but there is a clear overlap of the two classes. To work with
the limited data set, leave-one-patient-out cross validation is
used during training. To have a balanced training process a
50/50 balance for the tumor and healthy classes has been set
for the patch selection. To evaluate the experiments, the area
under the ROC-curve (AUC) is used. This gives a reasonable
indication of performance, without choosing a threshold for
the classification.

Fig. 3. Annotation of the hyperspectral data: tumor (red),
healthy tongue muscle (green) and healthy epithelium (blue).

Table 1. Pixel counts of the data, in thousands

Patient 1 2 3 4 5 6 7 %
Total 498 148 861 247 181 176 146 100
Tumor 40 6 116 32 13 5 13 9.4
Muscle 34 48 71 45 56 70 42 17.1

Fig. 4. Reflectance mean and standard error (vertical) versus
wavelength in nm for patients 2 (left) and 4.

3.2. Experiment results

The results of our proposed method are shown in Table 2. The
combination of spectral and structural streams gives a mean
AUC of 0.904±0.053. A comparison with the individual fea-
tures is summarized in Figure 5, showing the AUC for the
three methods applied to all patients. Using the spectral in-
put, a relatively small network achieves a mean AUC of 0.872
± 0.050 after training for 10 epochs. Predictions of full HSI
images are shown in the second row in Figure 6. The color
intensities are direct representations of the predictions. This
means that when colors are shown with their maximal inten-
sity, the model makes a clear distinction. The model cannot
make a strong distinction between classes in significant areas
of the predictions of patients 4 and 7. The model performs
the worst on patient 2, leaving much of the tumor undetected.
With the structural network, using larger patches but fewer
spectral bands, results are similar compared to the spectral
network. The AUC is 0.850±0.077. In patient 2 large ar-
eas are misclassified as tumor but overall the result is some-
what smoother, suggesting the structural context is used by
the model. The dual stream model, shown on the last row,
generates the best predictions. It can clearly be seen in Figure
6 that the model makes confident decisions, despite misclas-
sified regions. For patient 4, it is verified that most of the
misclassified area is epithelia, which might have similar fea-
tures as tumor.

Fig. 5. Plot with the AUC in bars for all patients
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Table 2. Results of the dual stream experiment

Patient AUC Accuracy Sensitivity Specificity
1 0.933 0.789 0.974 0.605
2 0.787 0.746 0.615 0.876
3 0.891 0.636 0.938 0.335
4 0.926 0.840 0.922 0.758
5 0.913 0.843 0.924 0.763
6 0.910 0.807 0.733 0.880
7 0.970 0.922 0.941 0.903

Mean 0.904 0.798 0.864 0.731
Stdev 0.053 0.083 0.125 0.188

Fig. 6. The ground truth and predictions of the spectral, struc-
tural and dual stream approach of patients 2 (left), 4 (middle)
and 7 (right). Tumor (red), healthy (green). Best viewed in
color.

3.3. Discussion

In this work, for the first time, we make explicit use of both
the structural and spectrum information by applying a dual
stream neural network. Considering a small-size dataset, we
strategically train our model by two steps. First, we train each
stream of our model separately. Second, we add fully con-
nected layers (FCN) to the streams and only the parameters
of FCNs need to be trained. In the future, we will investi-
gate the possibility of applying other network types such as
a Long short-term memory (LSTM) model for the spectrum
domain stream and convolutional networks for the structural
stream. All models have been trained for 10 epochs, but per-
formance barely increased over the epochs. This indicates

that the model reaches the full capacity in an early stage. That
might be caused by the limited data set, or by the fact that the
network is very shallow. In the future, more data will be col-
lected to improve the effectiveness of the model. Many of the
false positives are found at the edge of the samples. This can
be explained by the fact that these tumors often originate in
the epithelia, and therefore the spectral features can have a re-
semblance. The imaging system uses a line-by-line scanning
method, which makes real time applications difficult. In the
future, channel selection can be performed instead of PCA to
enable the manufacturer to construct a sensor with only spec-
ified wavelengths to reduce imaging time.

4. CONCLUSION

Given the limited data, it is possible to train networks that
combine spectral and structural information and have a good
performance on the classification of healthy and tumor tissue.
From the data processing perspective, this opens the possi-
bility of intra-operative feedback to surgeons. More elabo-
rate networks can be studied to increase performance and ef-
ficiency.
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