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Abstract. Automatic subject prediction is a desirable feature for mod-
ern digital library systems, as manual indexing can no longer cope with
the rapid growth of digital collections. This is an “extreme multi-label
classification” problem, where the objective is to assign a small subset of
the most relevant subjects from an extremely large label set. Data spar-
sity and model scalability are the major challenges we need to address to
solve it automatically. In this paper, we describe an efficient and effective
embedding method that embeds terms, subjects and documents into the
same semantic space, where similarity can be computed easily. We then
propose a novel Non-Parametric Subject Prediction (NPSP) method and
show how effectively it predicts even very specialised subjects, which are
associated with few documents in the training set and are not predicted
by state-of-the-art classifiers.

Keywords: Random projection · Subject prediction ·
Non-parametric method · Semantic embedding

1 Introduction

Because of the ever-increasing number of documents that information systems
deal with, automatic subject indexing, i.e., identifying and describing the sub-
ject(s) of documents to increase their findability, is one of the most desirable
features for many such systems. Subject index terms are normally taken from
knowledge organization systems (e.g., thesauri, subject headings systems) and
classification systems (e.g., dewey decimal classification) which easily contain
tens or hundreds of thousands terms or codes. Automatically assigning a small
set of most relevant subjects from the huge label space – the Extreme Multi-label
Text Classification (XMTC) problem – is therefore very difficult. Data sparsity
and scalability are the major challenges.

In this paper, we solve this in two steps. First, we propose a novel embedding
method which extends random projection by weighting and projecting raw term
embeddings orthogonally to an average language vector, thus improving the
discriminating power of resulting term embeddings, and build more meaning-
ful document embeddings by assigning appropriate weights to individual terms.
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Subjects are treated as special terms which get embedded into the same seman-
tic space where terms and documents live. Secondly, we propose a novel Non-
Parametric Subject Prediction (NPSP) method to predict subjects for unseen
documents. We compare this method with the state-of-the-art deep learning
method and the direct subject-document-similarity based method.

2 Related Work

Automatic Subject Indexing. According to [9], there are three groups of
approaches: text categorisation, where supervised machine learning is used to
predict subjects from features extracted from documents [24]; document cluster-
ing, where unsupervised machine learning is used to group documents and the
resulting groups are then associated with certain topics [6]; and document classi-
fication, where no training data is (necessarily) used but string matching relates
the subjects to the documents [2,7,8]. In this paper, we focus on data-driven
text categorisation, and it is still an open research question how this problem
should best be approached.

Extreme Multi-label Text Classification. The goal of automatic subject predic-
tion is to assign a small subset of relevant subject labels (subjects) to a doc-
ument, taken from tens or hundreds of thousands target labels. This remains
a difficult problem and is a form of Extreme Multi-label Text Classification
(XMTC) [3,17,23], where the prediction space often consists of hundreds of
thousands to millions of labels. Data sparsity and scalability are the major
challenges. Unlike traditional binary or multi-class classification problems, in
multi-label classification the target labels are neither independent nor mutually
exclusive, thus making the modelling of the relationship between the documents
and the labels challenging.

There are four categories of solutions: (1) 1-vs-All classification [22], (2)
Embedding-based [3,25], (3) Tree-based [23], and (4) Deep learning meth-
ods [12,17].1. Each of these approaches has pros and cons. In 1-vs-all classi-
fication, a separate classifier is trained for each subject and is used to decide
whether that particular subject is applicable for a given document: such an app-
roach ignores the correlation between subjects and does, therefore, not make
optimal use of the available data. Furthermore, this is not practical for extreme
multi-label classification, because of the number of classifiers that need to be
trained and evaluated for prediction is too high. Tree-based methods and Deep-
learning methods can model the correlation between labels and can be extremely
powerful given enough training data, but they are hard to interpret and suffer
from the inevitable lack of data for the rare labels that make up so much of the
heavy tail of the label distribution.

Embedding-based approaches [3,25] aim to address the data sparsity issue by
projecting the high-dimensional label vectors to their low-dimensional embed-
dings during training. When classifying a new sample, a decompression process
1 http://manikvarma.org/downloads/XC/XMLRepository.html.

http://manikvarma.org/downloads/XC/XMLRepository.html


314 S. Wang et al.

is used to map the predicted embedding back to the original high-dimensional
space. These methods are powerful, relatively fast and well understood, but they
either rely on low-rank assumptions on the inter-subject distance matrix [27] or
require clustering of the data which, in turn, depends on an arbitrarily chosen
number of clusters and their initial cluster parameters [3].

In contrast, our approach does not make any assumptions on the rank of the
inter-subject distance matrix. Instead, we use random projection to embed the
co-occurrence matrix of the terms that constitute the documents and the sub-
jects we try to predict. By modeling terms in function of their relationship with
subjects, we obtain a very flexible embedding that also allows us to embed single
documents (by considering which terms occur in them), directly incorporate the
statistical relationship between terms and subjects and avoid needing to arbi-
trarily cluster the documents to resolve the high rank of the global inter-subject
distance matrix.

3 Method

We propose to apply a Random Projection based embedding method to embed
both terms and subjects in a semantic space as described in Sect. 3.1. This allows
us to compute a vector representation of any document, seen or unseen. When
classifying an unseen document, we propose two methods: first to compute its
vector representation and compute that vector’s similarity to the vector repre-
sentations of all subjects, thus allowing us to rank subject candidates in order
of decreasing similarity, to find the most appropriate ones for that document,
as described in Sect. 3.2. Second, we propose computing similarities between the
query document and documents from the training set: these are annotated with
subjects and provide us with a way to better assess the validity of a subject to
the query document, as explained in Sect. 3.3.

3.1 Ariadne Semantic Embedding

Let a document be a set of words for which term co-occurrence is relevant2 and
which can be meaningfully annotated with a subject. Let nD be the total number
of documents in the training set, nS the number of subjects, nV the number of
frequent terms,3. A term is considered frequent when it occurs in more than k
documents in the corpus, where K is flexible depending on the size of the corpus.
In addition, let nE be the total number of entities we want to embed (in our
case nE = nS +nV ) and D the chosen dimensionality of the embedding vectors.

Building on our previous work [13–15], we embed the relevant entities by
Random Projection [1,11] of their weighted co-occurrence:

C′
[nE×D] = C[nE×nS ]R[nS×D] (1)

2 In general, a document could therefore be a sentence, a paragraph, a fixed-size win-
dow, a bibliographic record, etc.; in our case, documents are scientific publications.

3 Terms could be words, n-grams or phrases. In our work, common phrases are auto-
matically detected using the method described in [19].
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where C′ is the matrix of embedding vectors, C is the weighted co-occurrence
matrix of different terms and R is a random matrix. In this work, we focus
on subjects, and in this particular use case we observe that it is useful to use
co-occurrence of the entities with the subject labels only. In general, term-term
co-occurrences are more common and well-suited, in which case we would have
nV columns to the matrix C and nV rows to R.

Weighted Co-occurrence Counts. To improve the robustness of the app-
roach, we weight the co-occurrence matrix C to reduce the effect of terms that
are extremely common in certain documents and of terms that occur in the vast
majority of documents. We use the terms’ average TFIDF score in the training
documents, modified as follows. Let each element cti,sj of C be the weighted
co-occurrence count of entity ti and subject sj . For notational simplicity, we will
use s ∈ d to indicate that document d is annotated with subject s and t ∈ d
to indicate the document contains word t. Further, let dt be the total number
of documents that term t occurs in; rs a D-dimensional “random vector” for
subject s, i.e., rs is a row of R (In our implementation, this vector is binary
and contains an equal number of +1 and −1, thus making computations very
efficient [13]). Experimentally, we verified that the traditional IDF weighting
factor of log N

dt
suppresses frequent terms too much, and replace it by a factor

of
√
N/dt, which has a similar effect but a longer tail and can also be seen as

the normalisation constant of the t-test statistic [18]. For the TF factor, we use
a factor of 1 + log ct(d), where ct(d) is the term count of term t in document d,
and ignore the constant N which cancels out in the subsequent normalisation.
The co-occurrence counts ct,s are, therefore, replaced with weighed counts so
that the elements of C become:

ct,s =
∑

d

I(t ∈ d) I(s ∈ d)
1 + log ct(d)√

dt
(2)

where I(t ∈ d) is an indicator function which is 1 if entity t occurs in document d,
and zero otherwise. After projection, each row of C′, denoted vt in the remainder
of this document, is a vector embedding of term t.

Orthogonal Projection. Traditional models discard both very infrequent
words (because they are too rare for the model to be able to capture their seman-
tics from the training data) and very frequent words (so-called “stop words”
because they do not provide any semantically useful information). In our app-
roach, we give a continuous weight to terms based on how frequently they occur
and compute the average “language vector” of the corpus, va, the sum of all the
rows of C′. Unsurprisingly, this vector is very similar to the average vector of
stop words. Intuitively, words are increasingly more informative as they differ
more from the average vector. By this reasoning, we project4 word vectors on the
4 We use projection rather than subtracting va to prevent orthogonal vectors from

gaining undue importance.
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orthogonal hyperplane to va: v∗
t = vt − (vt ·va)va, resulting in a representation

where the uninformative component of terms is eliminated, and normalise the
vectors to have unit length. When computing document vectors, we down-weight
terms according to their similarity to va (see Eq. 3). This step is crucial to get
distinctive document embeddings.

As a nice side effect, projection makes it possible to handle multilingual
corpora. The vocabulary of one language tends to be largely orthogonal to that of
other languages (since words of one language tend to co-occur almost exclusively
with words of the same language), so that projection using one language’s average
vector does not have much effect on the terms in other languages. This makes it
possible to handle different languages effectively, within the same vector space.

Term Weight Assignment and Document Embedding. Using the projec-
tion described above, the component that differentiates a term from the average
vector is kept as its final embedding. Similarly, how different a term is from va

also indicates how much that term contributes to the semantics of a document it
is part of. In fact, we can interpret the cosine similarity as a lower bound on the
mutual information (MI) between the two vectors [5]. In order to give a higher
weight to the most informative terms, we assign a higher weight to words with
lower MI to va by setting the final weight of each term to be wt = 1−cos(vt,va).

With the frequent terms’ embedding vectors and their proper weights, we
can compute document embedding as the weighted average of its component
terms’ embeddings. For a document d, we obtain a set of normalised vectors
v∗
t1 , . . . ,v

∗
tn , where n is the number of terms in document d and v∗

ti is the final
embedding vector for term ti. The embedding of document d is calculated as
follows:

vd =
∑n

i=1 wti · v∗
ti∑n

i=1 wti

. (3)

where wti is the weight for term ti and out-of-vocabulary words are ignored.
Note how term and document vectors all have unit length, making similarity
computations elegant and effective.

3.2 Prediction by Subject-Document Similarity

Once subjects and documents are embedded in the same semantic space, it is
straightforward to calculate the similarity between any subject and any doc-
ument. Notice how we can interpret wti/

∑
t wt, as the document-conditional

probability distribution over the terms, and vd as the expectation of the embed-
ding of the query document by marginalising out its component terms, while the
subject embedding corresponds to the empirical mean of the training documents
that were annotated by that subject. If we assume an isotropic distribution for
documents annotated by a given subject, then the most related subjects to a
document are simply the ones closest to the document, i.e., the subjects with
the highest cosine similarities to the document itself.
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Algorithm 1. Non-Parametric Subject Prediction (NPSP)
1: function Subject prediction(training documents D, unseen document u, k)

2: D ← sortS(vd,vu)(D) � Order the document embeddings by decreasing similarity to
the unseen document u

3: ∀s : ws ← S(vs, vu) � Initialise the weight ws with the similarity between the subjects
and u

4: for all documents d ∈ D1...k do � For the k documents closest to u

5: for all subjects s of document d do
6: ws ← ws + S(vd, vu) � Add the similarity of the documents to ws

7: return sortws ({s}) � Return a ranked list of subjects according to their weights

3.3 NPSP: Non-Parametric Subject Prediction

In practice, the distribution of documents annotated by a subject is quite com-
plex, and we can discard the assumption we made in Sect. 3.2 by computing
similarities between the query document and training documents only, and using
these as supporting evidence for their subjects.

Algorithm 1 describes how we rank the subjects for a given new document
u. The algorithm returns a ranked list of subjects, where the subjects are sorted
according to a summation of (1) the similarity of each subject to the document
and (2) the similarity of those of the k most similar documents from the training
set which are annotated with the subject. This combination provides us with a
robust ranking measure, which combines the direct embedding of the subject
in the semantic space where the documents also live and an extra component
which lets the k nearest neighbour documents of the new document vouch for
the validity of the subject. The idea is that the embedding of each document
is more precise than the embedding of the subjects (since that is done based
on a combination of many documents), making the similarity computation more
trustworthy and the subjects those documents are annotated with reflect more
likely to fit the target document.

4 Datasets and Experiments

Our experiments were carried out on a subset of the MEDLINE database (106

articles for training and 104 for testing), randomly selected from WorldCat.5

Written in English and published between 1984 and 2012, each article has a
title and an abstract, to ensure sufficient textual information for computing the
word embeddings. This dataset is interesting as it contains an above-average
proportion of technical terms and jargon. Very rare terms carry critical meaning
and make the task of word and document embedding particularly challenging.

There are in total 324,619 unique MeSH subjects in the training set, and
in average each article is indexed by 16 subjects. These subjects are used in
an extremely unbalanced way. On one hand, 222,135 subjects are used to index
less than 10 articles, among which 95,218 subjects are used to index only one
5 http://www.worldcat.org/.

http://www.worldcat.org/
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single article. On the other hand, 7 subjects are each used to index more than
100K articles, and the most frequently used subject “Humans” indexes nearly
58% of the whole corpus (see Table 1). Similar statistics of the subject headings
in the testing set is shown in Fig. 2.

We first computed embeddings for frequent terms6 and MeSH subjects using
the training set. For each article in the training set, we computed its document
embedding based on the terms in its title and abstract. When classifying an
unseed article in the testing set, we first computed its document embedding and
then either looked for the most similar subjects directly or applied the NPSP
method to predict the subjects (here, we took the top 25 closest neighbours, i.e.,
k = 25 in Algorithm 1). The actual MeSH subjects of this article were used as
the target subjects for the evaluation.

We also applied fastText [12] which is a state-of-the-art multi-label text clas-
sifier to our dataset, and compared our predictions with those from fastText.

5 Evaluation Metrics

The goal of subject prediction is to provide a shortlist of potentially relevant
subjects to describe the document at hand. It is important to present a ranked
shortlist of candidate subjects and to evaluate the quality of the prediction with
an emphasis on the relevance of the top portion of such lists. Therefore, we use
rank-based evaluation metrics against the existing human annotations.

For a test document, let y ∈ {0, 1}L be its annotated ground truth label
vector and ŷ ∈ RL be the predict score vector. Traditionally, we compute the
precision, recall and the normalised Discounted Cumulative Gain (nDCG) up to
the top n predictions

P@n =
1
n

∑

l∈rn(ŷ)

yl, (4)

R@n =
1

‖y‖0
∑

l∈rn(ŷ)

yl, (5)

DCG@n =
∑

l∈rk(ŷ)

yl

log(l + 1)
, (6)

nDCG@n =
DCG@k

∑min(k,‖y‖0)
l=1

1
log(l+1)

(7)

where rn(ŷ) is the set of rank indices of the annotated relevant labels among the
top-n portion of the predicted ranked list for a document, and ‖y‖0 counts the
number of labels in the annotated ground truth label vector y. P@n, R@n and
nDCG@n are calculated for each test document and then averaged over all the
documents.
6 We extracted terms from titles and abstracts and removed those that occurred in

less than 10 articles.
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However, the complete set of ground truth labels is not obtainable, and infre-
quently occurring tail labels might be more informative and rewarding, Jain et
al. proposed to use propensity scored measures to avoid the popularity bias and
in favour rare/novel labels [10]:

PSP@n =
1
n

∑

l∈rn(ŷ)

yl

pl
, (8)

PSR@n =
1

1Ty∗
∑

l∈rn(ŷ)

yl

pl
, (9)

PSDCG@n =
∑

l∈rn(ŷ)

yl

pl log(l + 1)
(10)

PSnDCG@n =
PSDCG@n

∑n
l=1

1
log(l+1)

(11)

where pl is the propensity score for label l, which could be modelled as a sig-
moidal function of the frequency of label l:

pl = P (yl = 1|y∗
l = 1) =

1
1 + Ce−A log(dl+B)

(12)

where dl is the number of documents that are indexed with the label l in
the training set of size N . A and B depend on the specific dataset and
C = (log(N) − 1)(B + 1)A. Jain et al. suggested A = 0.55 and B = 1.5. y∗

is the complete (but unobtainable) ground truth label vectors and 1Ty∗ can be
approximated as the sum of the propensity of the labels in the annotated ground
truth, that is,

∑
l∈y

yl

pl
.

6 Evaluation Results

Previous studies [13,26] have shown that Ariadne semantic embedding is highly
efficient and competitive with the state-of-the-art word and document embed-
ding methods, such as Word2Vec [19], Doc2Vec [16], GloVe [21], fastText [4]
and Sent2Vec [20]. Figure 1 shows the comparison of our two subject prediction
methods to the state-of-the-art fastText method in terms of Precision, Recall
and nDCG for varying values of n. In these graphs, Ariadne represents the
straightforward predictions based on subject-document similarities. If we look
at the standard precision, recall and nDCG (leftmost graphs), we can see that the
quality of the predicted subjects from our similarity-based prediction are compa-
rable with those generated by fastText. The precision of fastText is higher than
our Ariadne method for low values of n while it quickly decreases to be worse
than ours. Up to top 20 candidates, the recall for both Ariadne and fastText are
more or less the same, but our method is able to predict more actual subjects
at lower ranks, where the recall outperforms fastText. This is reflected in the
propensity-weighted metrics (rightmost graphs), where even the basic Ariadne
method outperforms fastText for all but the lowest values of n.
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Fig. 1. Precision, Recall, nDCG comparison with and without propensity

The clear winner is the NPSP method. The precision and recall are both
consistently higher than the other two methods. At n = 100, the recall is nearly
20% higher than the fastText predictions. More correct subjects are predicted at
lower ranks, which explains the much slower decrease of precision with increasing
rank.

Overall, we can note how well our method performs in the tail of the dis-
tribution of the subjects. This is somewhat reflected in the propensity-weighted
metrics, but can also be observed directly. Figure 2 shows a histogram of sub-
jects, binned according to the number of documents they are assigned to in the
training set. For example, there were 849 unique subjects in the training data
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Fig. 2. Predictions vs subjects’ document frequencies

that were assigned to exactly one (that is, 20) document, 1464 subjects that were
assigned to two documents, etc. We then made label predictions for the docu-
ments in the test set, and report the true positive predictions (positive bars) and
false positive predictions (negative bars) grouped by the assignment frequency
of those subjects in the training set. The total number of documents of the test
set that were annotated with each category of subjects (the annotated ground
truth) are indicated by the grey bars, while the predictions are indicated by the
coloured bars: the number of true positive predictions as positive bars and the
number of false positive predictions as negative bars, so that the false negatives
are indicated by the difference between the grey and the positive coloured bars.

As we can see from this graph, the subjects that are infrequently assigned
are harder to predict (since there is less training data to train the model on). It
is also noteworthy that commonly assigned subjects are broad terms that cover
many documents and very much at the forefront of the annotators’ mind, and
so we can be confident that these subjects are correctly assigned: their presence
may not be very informative but should be trusted. Their absence, on the other
hand, is much more meaningful and should also be treated as trustworthy. In
other words: for these subjects, false negatives are rare and have little practical
relevance, while false positives are much more problematic. Conversely, when
they are present, very rare subjects are much more informative and should be
treated as both important and trustworthy, but predicting them is much harder:
the true positives of rare subjects are very valuable. At the same time, when they
are absent, we should allow for the fact that these subjects are often overlooked
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by the annotators even when they are relevant: the false negatives for these
subjects should be considered with suspicion. With this in mind, we can see how
much better our method performs when compared to FastText: it has far fewer
false positives for the common subjects, far more true positives for the uncommon
subjects, and although it does have more false positives for uncommon subjects,
these may well still be relevant subjects.

Notice how, unlike in retrieval where recall is of limited interest in practice
because only the few most relevant documents would be actually looked at,
in the case of XMTC recall is the more important metric, especially for the
more obscure subjects for which lack of training data makes it hard to build
comprehensive models. A high recall is important as it would greatly reduce the
search space and also provides opportunities for cataloguers to find more suitable
subjects which they may otherwise not have considered.

Also notice how, by the same token, higher values of n are also important.
Highly ranked subjects tend to be very frequent terms: at best, they are relatively
uninformative, at worst they are incorrect. Lower-ranked subjects which tend to
be less frequently used terms, by contrast, are at best informative, at worst
incorrect and more likely relevant but unannotated.

A Closer Look. To illustrate these points, Table 1 lists the 23 actual MeSH
subjects for an arbitrary article, titled “Cumulative probability of neodymium:
YAG laser posterior capsulotomy after phacoemulsification.”, which is about
laser-based eye surgery.7 The MeSH terms that reflect the major subjects of this
article, as annotated by the indexers, are marked with an asterisk (*). The 25
most relevant MeSH subjects predicted by our two methods and fastText are
also listed.

It is not surprising that subjects such as “Humans” and “Female” are pre-
dicted first by fastText, because they are the most frequent in the dataset. In
fact, many of the subjects predicted by fastText are very common (see their doc-
ument counts in Table 1), which leads to higher precision and recall at the low
values of n. However, as argued above, a P@5 of 100% is actually uninformative
about the real topic of this article, therefore, less valuable. FastText has trouble
finding subjects which describe the articles more precisely (also illustrated in
Fig. 2).

The raw subject-document similarity is able to rank infrequent actual sub-
jects such as “Phacoemulsification,” “Lens Capsule, Crystalline/Surgery” high in
the list. We believe these infrequent subjects are more informative and valuable
in terms of subject indexing. Common subjects such as “Female” and “Male”
tend to be ranked lower though. The NPSP method effectively boosts these
common subjects to the front (such as “Human” is recovered and ranked at the
top), while the correct specific subjects still stay relatively high in the list. The
previously-missed subjects such as “Acrylic Resins” and “Silicone Elastomers”
get into the top 25. Unfortunately the highly relevant but extremely infrequent
subject “Capsulorhexis” drops out of the top 25 list now.

7 https://www.ncbi.nlm.nih.gov/pubmed/14670424.

https://www.ncbi.nlm.nih.gov/pubmed/14670424
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We realise that this evaluation has its limitations. As shown in Table 1, highly
related MeSH subjects such as “Lenses Intraocular” and “Phacoemulsification
Methods” are predicted as good candidates for this article, both of which are rea-
sonable and potentially useful, but since they are not the subject headings that
the professional taxonomists have chosen, their value cannot be easily assessed.
As discussed previously, such false negatives should be treated critically.

That being said, we believe our predictions are useful in practice and can
be presented to cataloger as candidate subjects to choose from. Consider, for
example, “Cataract Extraction,” “Intraocular Pressure,” etc. in our example.
Again, we need to get subject specialists involved to conduct such qualitative
evaluations.

7 Conclusion

In this paper, we have shown that a similarity-based subject prediction based
on a suitable semantic space that allows for the embedding of both subjects
and documents is very competitive with the state-of-the-art subject-prediction
method based on a classifier. We have described such an embedding and have
shown how effective this specific semantic space really is, both with quanti-
tative and with qualitative evaluations. In addition, we have shown how our
embedding-based method is particularly effective at correctly predicting very
specialised subjects, which are associated with few documents in the training set
and are more problematic for a classifier, as is reflected in our method’s much
slower decrease of precision with increasing rank. In addition, we proposed a
novel, non-parametric, similarity-based method with the documents instead of
the subjects. We have shown that this method substantially improves the quality
of the predictions, both in comparison to the state-of-the-art and to the bare
similarity-based method.
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