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The UAVid Dataset for Video Semantic Segmentation
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Abstract— Video semantic segmentation has been one of
the research focus in computer vision recently. It serves as
a perception foundation for many fields such as robotics
and autonomous driving. The fast development of semantic
segmentation attributes enormously to the large scale datasets,
especially for the deep learning related methods. Currently,
there already exist several semantic segmentation datasets for
complex urban scenes, such as the Cityscapes and CamVid
datasets. They have been the standard datasets for comparison
among semantic segmentation methods. In this paper, we intro-
duce a new high resolution UAV video semantic segmentation
dataset as complement, UAVid. Our UAV dataset consists of 30
video sequences capturing high resolution images. In total, 300
images have been densely labelled with 8 classes for urban scene
understanding task. Our dataset brings out new challenges. We
provide several deep learning baseline methods, among which
the proposed novel Multi-Scale-Dilation net performs the best
via multi-scale feature extraction. We have also explored the
usability of sequence data by leveraging on CRF model in both
spatial and temporal domain.

I. INTRODUCTION

Visual scene understanding has been advancing in recent
years, which serves as a perception foundation for many
fields such as robotics and autonomous driving. The most
effective and successful methods for scene understanding
tasks adopt deep learning as their cornerstone, as it can
distil high level semantic knowledge from the training
data. However, the drawback is that deep learning requires
tremendous number of samples for training to make it
learn useful knowledge instead of noise, especially for real
world applications. Semantic segmentation, as part of scene
understanding, is to assign labels for each pixel in the image.
To make the best of deep learning method, a large number
of densely labelled images are required. At present, there are
only several public semantic segmentation datasets available,
which focus only on certain applications. MS COCO [1]
provides semantic segmentation dataset containing common
objects recognition in common scenes, and its semantic
labelling task focuses on person, car, animal and different
stuffs. Pascal VOC dataset [2] also provides objects like
bus, car, cow, dog for semantic segmentation task. Other
semantic segmentation datasets are designed for street scene
objects recognition. Their target objects include pedestrians,
cars, roads, lanes, traffic lights, trees and other street scene
related objects. Specially, CamVid [3] provides continuously
labelled driving frames, which can be used for temporal
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consistency evaluation. Highway Driving dataset [4] provides
30Hz labels that are even denser in temporal domain, and
it is designed for semantic video segmentation for driving
scenes. Daimler Urban Segmentation dataset [5] is also a
video dataset for street scene understanding, but its labels are
sparser in temporal domain. Cityscapes dataset [6] focuses
more on data variation as it is much larger in the number of
labelled frames, which are collected from 50 cities, making
it closer to real world complexity. Each frame is much
larger in size compared with CamVid. The newly published
Berkeley Deep Drive dataset [7] has even more image labels
with medium image size across multiple street scenes. The
KITTI Vision Benchmark Suite [8] also provides images
of medium size for the task. To help learning models to
generalize well across different scenes, ADE20K dataset [9]
contributes as it spans more diverse scenes, and objects from
much more different categories are labelled. ADE20K dataset
brings more variability and complexity for general object
representations in images. For remote sensing community,
aerial image dataset is provided for ISPRS 2D semantic
labelling contest [10]. All datasets above have had great im-
pacts on the development of current state-of-the-art semantic
segmentation methods.

Dynamic scene understanding is another interesting topic.
There are several video datasets for moving foreground
objects segmentation, such as Video Segmentation Bench-
mark(VSB100) [11], [12], Freiburg-Berkeley Motion Seg-
mentation dataset(MoSeg) [13], [14] and Densely Annotated
VIdeo Segmentation dataset(DAVIS) [15]. In these datasets,
foreground objects are labelled densely in both spatial and
temporal domain. The challenge for continuous foreground
segmentation is that the prediction across highly correlated
frames should be consistent. Segmenting foreground objects
of interest with consistency is difficult, but useful for surveil-
lance and monitoring.

As present, most of the modern visual semantic seg-
mentation tasks use information acquired on the ground.
However, another data acquisition platform is more and
more utilized, which is the unmanned aerial vehicle(UAV).
Compact and light weighted UAVs are a trend for future data
acquisition. The UAVs make image retrieval in large area
cheaper and more convenient, which allows quick access to
useful information around certain area. Distinguished from
collecting images by satellites, UAVs capture images from
the sky with flexible flying schedule and higher resolution,
bringing the possibility to monitor and analyze landscape at
specific location and time swiftly. These abilities make UAVs
an effective data collection means for various applications.

The inherently fundamental applications for UAVs are



Fig. 1.

Example images and labels from UAVid dataset. First row shows the images captured by UAV. Second row shows the corresponding ground

truth labels. Third row shows the prediction results of MS-Dilation net+PRT+FSO model as in Tab. m

surveillance [16], [17] and monitoring [18] in the target
area. They have already been used for smart farming [19],
precision agriculture [20] and weed monitoring [21]. To
make the system more intelligent, it could rely on techniques
like semantic segmentation and video object segmentation.
In this aspect, UAV is a great platform to combine both
of the two tasks. These two visual understanding tasks
could also be the main foundations for higher level smart
applications. As the data from UAVs has its own specialties,
semantic segmentation and video object segmentation tasks
using UAV data deserve more attentions. There are existing
UAV datasets for detection and behaviour analysis [22], but
to the best of our knowledge, public datasets for UAV video
semantic segmentation do not exist.

In this paper, a new high resolution UAV video semantic
segmentation dataset, UAVid, is brought out, which covers
semantic segmentation and video object segmentation as a
video semantic segmentation task. In total, 300 images from
30 video sequences are densely labelled with 8 object classes.
All the labels are acquired with our in-house video labeller
tool. To test the usability of our dataset, several typical
deep neural networks(DNNs) designed for image semantic
segmentation together with CRF based video semantic seg-
mentation methods are evaluated as baselines. In addition,
we also show that our novel multi-scale-dilation net model
is useful to deal with multi-scale problems for UAV images.

II. DATASET

Designing an UAV video dataset requires careful thought
about the data acquisition strategy, UAV flying protocol and
object classes selection for annotation. The whole process
is designed considering the usefulness and effectiveness for
UAV video semantic segmentation research.

A. Data Specification

Our data acquisition and annotation methodology is de-
signed for UAV video semantic segmentation in complex
scenes, featuring on both static and moving object recog-
nition. To capture data that contributes the most towards re-
searches on UAV scene understanding, the following features
for the dataset are taken into consideration.

o High resolution. We adopt 4K resolution video record-
ing mode with safe flying height of 30 to 50 meters. In
this setting, it is visually clear enough to differentiate
most of the objects, and objects that are horizontally
far away could also be detected. In addition, it is even
possible to detect humans that are not too far away.

« Consecutive labelling. Our dataset is designed for video
semantic segmentation, it is preferred to label images in
sequence, where prediction stability could be evaluated.
As it is too expensive to label densely in temporal space,
we label 10 images with 5 seconds interval for each
sequence.

e Complex and dynamic scenes with diverse objects.
Our dataset aims at achieving real world complex-
ity, where there are both static and moving objects.
Scenes near streets are chosen for the UAVid dataset
as they are complex enough with more dynamic human
activities. A variety of objects appear in the scene
such as cars, pedestrians, buildings, roads, vegetation,
billboards, light poles, traffic lights and so on. We
fly UAVs with slant view along the streets or across
different street blocks to acquire such scenes.

o Data variation. In total, 30 small UAV video sequences
are captured in 30 different places to bring variance
to the dataset, preventing learning algorithms from
overfitting. Data acquisition is done in good weather
condition with sufficient illumination. We believe that
data acquired in dark environment or other weather



conditions like snowing or raining require special pro-
cessing techniques, which are not the focus of our
dataset.

B. Class Definition and Statistical Analysis

To fully label all types of objects in the street scene in a
4K UAV image is very expensive. As a result, only the most
common and representative types of objects are labelled for
our current version dataset. In total, 8 classes are deliberately
selected for video semantic segmentation, they are building,
road, tree, low vegetation, static car, moving car, human and
clutter. Example instances from different classes are shown
in Fig. [2| We deliberately divide the car class into moving

Fig. 2. Example instances from different classes. The first row shows the
cropped instances. The second row shows the corresponding labels. From
left to right, the instances are building, road, static car, tree, low vegetation,
human and moving car respectively.

car and static car classes. Moving car is such special class
designed for moving object segmentation. Other classes can
be inferred from their appearance and context, while moving
car class may need additional temporal information in order
to be separated properly from static car class. Achieving
high accuracy for both static and moving car classes is one
possible research goal for our dataset.
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Fig. 3. Pixel number histogram.

Number of pixels for each class is reported in Fig. [3] It
clearly shows the unbalanced pixel number distribution of
different classes. Most of the pixels are from classes like
building, tree, clutter, road and low vegetation, and fewer
pixels are from moving car and static car classes, which are
both fewer than 2% of the total pixels. For human class, it is
almost zero, fewer than 0.2% of the total pixels. Smaller pixel
number is not necessarily resulted by fewer instances, but the
size of each instance. A single building can take more than
10k pixels while a human instance in the image may only
take fewer than 100 pixels. Normally, classes with too small
pixel numbers are ignored in both training and evaluation
for semantic segmentation task [6]. But we believe humans

and cars are important classes that should be kept in street
scenes rather than being ignored.

C. Annotation Method

We provide densely labelled fine annotations for high
resolution UAV images. All the labels are acquired with our
own video labeller tool. Pixel level, super-pixel level and
polygon level annotation methods are provided for users.
For super-pixel annotation, we adopt SLIC method [23] to
achieve super-pixel segmentation with 4 different scales,
which can be useful for objects with fuzzy boundaries
like trees. Polygon annotation is used for regular shape
annotation like buildings, while pixel level annotation serves
as a basic annotation method. Our tool also provides video
play functionality around certain frames to help inspecting
whether certain objects are moving or not. As there might
be overlapping objects, we label the overlapping pixels to be
the class that is closer to the camera.

D. Dataset Splits

The whole 30 densely labelled video sequences are divided
into training, validation and test splits. We do not split the
data completely randomly, but in a way that makes each split
to be representative enough for the variability of different
scenes. All three splits should contain all classes. Our data
is split at sequence level, and each sequence comes from
a different scene place. Following this scheme, we get 15
training sequences(150 labelled images) and 5 validation
sequences(50 labelled images) for training and validation
splits respectively, whose annotations will be made publicly
available. The test split consists of the left 10 sequences(100
labelled images), whose labels are withheld for benchmark-
ing purposes. The ratios among training, validation and test
splits are 3:1:2.

III. VIDEO SEMANTIC LABELLING

The task for UAVid dataset is to predict per-pixel semantic
labelling for the UAV video sequences. The original video
file for each sequence is provided together with the labelled
images.

A. Tasks and Metrics

The semantic labelling performance is assessed based on
the standard IoU metric [2]. The goal for this task is to
achieve as high IoU score as possible. For UAVid dataset,
clutter class has a relatively large pixel number ratio and
consists of meaningful objects, which is taken as one class
for both training and evaluation rather than being ignored.

B. Networks for Baselines

To test the usability of our UAVid dataset for semantic
labelling task, we have evaluated the performance of several
deep learning models for single image prediction. Although
static car and moving car cannot be differentiated by their
appearance from only one image, it is still possible to
predict based on their context. We start with 3 typical deep
fully convolutional neural networks, they are FCN-8s [24],
Dilation net [25] and U-Net [26].



FCN-8s [24] has been a good baseline candidate for
semantic segmentation. It is a giant model with strong and
effective feature extraction ability, but yet simple in structure.
It takes a series of simple 3x3 convolutional layers to form
the main parts for high level semantic information extraction.
This simplicity in structure also makes FCN-8s popular and
widely used for semantic segmentation.

Dilation net [25] has similar front end structure with FCN-
8s, but it removes last two pooling layers in VGG16. Instead,
convolutions in all following layers from conv5 block are
dilated by a factor of 2 due to the ablated pooling layers.
Dilation net also applies a multi-scale context aggregation
module in the end, which expands the receptive field to boost
the performance for prediction. The module is achieved by
using a series of dilated convolutional layers, whose dilation
rate gradually expands as the layer goes deeper.

U-Net [26] is a typical symmetric encoder-decoder net-
work originally designed for segmentation on medical im-
ages. The encoder extracts features, which are gradually
decoded through the decoder. The features from each con-
volutional block in the encoder are concatenated to the
corresponding convolutional block in the decoder to grad-
ually acquire features of higher and higher resolution for
prediction. U-Net is also simple in structure but good at
preserving object boundaries.

C. Multi-Scale-Dilation Net

For a high resolution image captured by UAV in slant
view, size of objects in different horizontal distances can
dramatically vary. Such large scale variation in an UAV
image can affect the accuracy for prediction. In a network,
each output pixel in the final prediction layer has a fixed
receptive field, which is formed by pixels in the original
image that can affect the final prediction of that output pixel.
When the objects are too small, the neural network may learn
the noise from the background. When the objects are too big,
the model may not acquire enough information to infer the
label correctly. This is a long standing notorious problem in
computer vision. To reduce such large scale variation effect, a
novel multi-scale-dilation net (MS-Dilation net) is proposed
in this paper.

One way to expand the receptive field of a network
is to use dilated convolution. Dilated convolution can be
implemented through different ways, one of which is to
leverage on space to batch operation(S2B) and batch to space
operation(B2S), which is provided in Tensorflow API. Space
to batch operation outputs a copy of the input tensor where
values from the height and width dimensions are moved
to the batch dimension. Batch to space operation does the
inverse. Applying a standard 2D convolution on the image
after S2B is the same as a dilated convolution on the original
image. A single dilated convolution can be performed as
S2B— > convolution— > B2S. This implementation
for dilated convolution is efficient when there is a cascade
of dilated convolutions, where intermediate S2B and B2S
cancel out. For instance, 2 consecutive dilated convolution

with the same dilation rate can be performed as S2B— >
convolution— > convolution— > B2S.

By utilizing space to batch operation and batch to space
operation, semantic segmentation can be done in different
scales. In total, three streams are created for three scales as
shown in Fig. E} For each stream, a modified FCN-8s is used
as the main structure, where the depth for each convolutional
block is reduced due to the memory limitation. Here, filter
depth is sacrificed for more scales. To reduce detail loss in
feature extraction, the pooling layer in the fifth convolutional
block is removed to keep a smaller receptive field. Instead,
features with larger receptive field from other streams are
concatenated to higher resolution features through skip con-
nection in conv7 layers. Note that these skip connections
need batch to space operation to retain spatial and batch
number alignment. In this way, each stream handles feature
extraction in its own scale and features from larger scales are
aggregated to boost prediction for higher resolution streams.

Multiple scales may also be achieved by down sampling
images directly [27]. However, there are 3 advantages for our
multi-scale processing. First, every pixel is assigned to one
batch in space to batch operation and all the labelled pixels
shall be used for each scale with no waste. Second, there is
strict alignment between image and label pairs in each scale
as there is no mixture of image pixels or mixture of label
pixels. Finally, the concatenated features in the conv7 layer
are also strictly aligned.

For each scale, corresponding ground truth labels can also
be generated through space to batch operation in the same
way as the generation for input images in different streams.
With ground truth labels for each scale, deeply supervised
training can be done. The losses in three scales are all cross
entropy loss. The loss in stream1 is the target loss while the
losses in stream2 and stream3 are auxiliary losses, which
we call the deep supervision losses. The final loss to be
optimized is the weighted mean of the three losses, shown
in the equation below. m1,m2, m3 are numbers of pixels
of an image in each stream. n is batch index and ¢ is pixel
index. p is target probability distribution of a pixel, while ¢
is the predicted probability distribution.
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w1 + wo + ws
It is also interesting to note that every layer becomes a
dilated version for stream2 and stream3, especially for pool-
ing layer and transposed convolutional layer, which turn into
dilated pooling layer and dilated transposed convolutional
layer respectively. Compared to layers in streaml, layers in
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Fig. 4. Structure of the proposed Multi-Scale-Dilation network. Three scales of images are achieved by Space to Batch operation with rate 2. Standard
convolutions in stream2 and stream3 are equivalent to dilated convolutions in streaml1. The main structure for each stream is FCN-8s [24], which could
be replaced by any other networks. Features are aggregated at conv7 layer for better prediction on finer scales.

stream?2 are dilated by rate of 2 and layers in stream3 are
dilated by rate of 4. Theses 3 streams together form the MS-
Dilation net.

D. Fine-tune Pre-trained Networks

Due to the limited size of our UAVid dataset, training from
scratch may not be enough for the networks to learn diverse
features for better label prediction. Pre-training a network has
been proved to be very useful for various benchmarks [28],
[29], [30], [31], which boosts the performance by utiliz-
ing more data from other dataset. To reduce the effect of
limited training samples, we also explore how much pre-
training a network can boost the score for UAVid semantic
labelling task. We pre-train all the networks with cityscapes
dataset [6], which comprises many more images for training.

E. Video Semantic Segmentation

For video semantic labelling task, it is ideal to output pre-
diction consistently for the same objects observed in multiple
different images. Taking advantage of temporal information
effectively is valuable for video sequence label prediction.
Normally, deep neural networks trained on individual images
cannot provide completely consistent predictions spanning
several frames. However, different frames provide obser-
vations from different viewing positions, through which
multiple clues can be collected for object prediction. To
utilize temporal information in UAVid dataset, we adopt
feature space optimization(FSO) [32] method for sequence
data prediction. It smooths the final label prediction for the
whole sequence by applying 3D CRF covering both spatial

and temporal domain. It is the optical flows and tracks in the
method that link the images in temporal domain.

IV. EXPERIMENTS

Our experiments are divided into 3 parts. Firstly, we
compare semantic segmentation results by training deep
neural networks from scratch. These results serve as the basic
baselines. Secondly, we analyse how pre-trained models can
be useful for UAVid semantic labelling task, and we fine-
tune deep neural networks that are pre-trained on cityscapes
dataset [6]. Finally, we explore the influence of spatial tem-
poral regulation by using video sequence data for semantic
video segmentation.

It should be noted that the resolution of our UAV images
is quite high. The size of each image is 4096x2160 or
3840x2160, which requires too much GPU memory for
intermediate feature storage in deep neural networks. As a
result, we clip each UAV image into 9 evenly distributed
smaller overlapped images that cover the whole image for
training. Each clipped image is of size 2048 x 1024. We keep
such a moderate image size in order to reduce the ratio
between zero padding area and valid image area. Bigger
image size also resembles larger batch size if each pixel is
taken as a training sample.

A. Train from Scratch

To have a fair comparison among different deep neural
networks, we re-implement all the networks with Tensor-
flow [33], and all networks are trained with a Nvidia Titan X
GPU. To accommodate the networks into 12G GPU memory,



TABLE I
I0oU SCORES FOR DIFFERENT MODELS. PRT STANDS FOR PRE-TRAIN AND FSO STANDS FOR FEATURE SPACE OPTIMIZATION [32]. IoU SCORES ARE
REPORTED IN PERCENTAGE AND BEST RESULTS ARE SHOWN IN BOLD.

Model Building | Tree | Clutter | Road | Low Vegetation | Static Car | Moving Car | Human | Mean IoU
FCN-8s 64.3 63.8 335 57.6 28.1 8.4 29.1 0.0 35.6
Dilation Net 72.8 66.9 38.5 62.4 34.4 1.2 36.8 0.0 39.1
U-Net 70.7 67.2 36.1 61.9 32.8 11.2 47.5 0.0 40.9
MS-Dilation Net(ours) 74.3 68.1 40.3 63.5 35.5 11.9 42.6 0.0 42.0
FCN-8s+PRT 77.4 72.7 44.0 63.8 45.0 19.1 49.5 0.6 46.5
Dilation Net+PRT 79.8 73.6 44.5 64.4 44.6 24.1 53.6 0.0 48.1
U-Net+PRT 77.5 73.3 44.8 64.2 423 25.8 57.8 0.0 48.2
MS-Dilation Net(ours)+PRT 79.7 74.6 44.9 65.9 46.1 21.8 57.2 8.0 49.8
FCN-85+PRT+FSO 78.6 73.3 453 64.7 46.0 19.7 49.8 0.1 472
Dilation Net+PRT+FSO 80.7 74.0 45.4 65.1 455 24.5 53.6 0.0 48.6
U-Net+PRT+FSO 79.0 73.8 46.4 65.3 435 26.8 56.6 0.0 48.9
MS-Dilation Net(ours)+PRT+FSO 80.9 75.5 46.3 66.7 47.9 22.3 56.9 4.2 50.1
TABLE II
I0U SCORES FOR DIFFERENT DEEP SUPERVISION PLANS. W STANDS FOR WITH AND W/O STANDS FOR WITHOUT.
Method Building | Tree | Clutter | Road | Low Vegetation | Static Car | Moving Car | Human | Mean IoU
fine-tune w/o deep supervision 78.5 72.2 44.0 65.3 43.5 17.4 51.5 1.2 46.7
fine-tune w deep supervision 79.2 72.5 44.8 64.6 443 17.0 52.8 34 47.3
fine-tune w+w/o deep supervision 79.4 73.1 43.7 65.5 45.3 21.3 55.8 6.3 48.8

depth of some layers in Dilation net, U-Net and MS-Dilation
net are reduced to maximally fit into the memory. The model
configuration detail of different networks is shown in Fig. 3]
in appendix.

The neural networks share similar hyper-parameters for
training from scratch. All models are trained with Adam
optimizer for 27K iterations(20 epochs). The base learning
rate is set to 10™# exponentially decaying to 10~7. Weight
decay for all weights in convolutional kernels is set to
10~°. Training is done with one image per batch. For data
augmentation in training, we apply random left and right
flip. We also apply a series of color augmentation, including
random hue operation, random contrast operation, random
brightness operation, random saturation operation.

Deep supervision losses are used for our MS-Dilation net.
The loss weights for three streams are 1.8, 0.8 and 0.4
respectively. The loss weights for stream2 and stream3 are
set smaller than streaml as the main goal is to minimize the
loss in streaml. For Dilation net, basic context aggregation
module is used and initialized as it is in [25]. All networks
are trained end-to-end and their mean IoU scores are reported
in percentage as shown in Tab.

For the four networks, they are all better at discriminating
building, road and tree classes, achieving IoU scores higher
than 50%. The scores for car, vegetation and clutter classes
are relatively lower. All four networks completely fail to
discriminate human class. Normally, classes with larger pixel
number have relatively higher IoU scores. However, IoU
score for moving car class is much higher than static car class
even though the two classes have similar pixel number. The
reason may be that static cars may appear in various context
like parking lot, garage, side walk or partially blocked under
the trees, while moving cars are normally running in the
middle of road with very clear view.

Our model achieves the best mean IoU score and the best

IoU score for most of the classes among the four networks.
It shows the effectiveness of multi-scale feature extraction.

B. Fine-tune Pre-trained Models

For fine-tuning pre-trained networks, all the networks are
pre-trained with cityscapes dataset [6]. Finely annotated data
from both training and validation splits are used, that is 3,450
densely labelled images in total. Hyper-parameters and data
augmentation are set the same as they are in section
except that the iteration is set to 52K. Next, all the networks
are fine-tuned with data from UAVid dataset. As there is still
large heterogeneity between these two datasets, all layers are
trained for all networks. We only initialize feature extraction
parts of the networks with pre-trained models, while the
prediction parts are initialized the same as training from
scratch. The learning rate is set to 10~° exponentially decay-
ing to 10~7 for FCN-8s, and 10~ exponentially decaying
to 10~7 for other 3 networks as they are easily stuck at
local minimum with initial learning rate to be 10~° during
training. The rest of the hyper-parameters are set the same
as training from scratch. The performance is also shown in
Tab. [

To find out whether deep supervision losses are important,
we have fine-tuned MS-Dilation net with 3 different deep
supervision plans. For the first plan, we fine-tune MS-
Dilation net without deep supervision losses for 30 epochs
by setting loss weights to 0 in stream2 and stream3. For
the second plan, we fine-tune MS-Dilation net with deep
supervision losses for 30 epochs. For the final plan, we fine-
tune MS-Dilation net with deep supervision losses for 20
epochs and without deep supervision losses for another 10
epochs. The IoU scores for three plans are shown in Tab.
As it is shown, the best mean IoU score is achieved by the
third plan. The better result for MS-Dilation net+PRT in
Tab. [I| is achieved by fine-tuning 20 epochs without deep



supervision losses after fine-tuning 20 epochs with deep
supervision losses.

Clearly, deep supervision losses are very important for
MS-Dilation net. However, neither purely fine-tuning the
MS-Dilation net with deep supervision losses nor without
achieves the best score. It is the combination of these
two fine-tuning processes that brings the best score. Deep
supervision losses are important as they can guide the multi-
scale feature learning process, but the network needs to be
further fine-tuned without deep supervision losses to get the
best multi-scale filters for prediction.

By fine-tuning the pre-trained models, the performance
boost is huge for all networks across all classes except human
class. The networks still struggle to differentiate human class.
Nevertheless, the improvement is evident for MS-Dilation net
with 8% improvement. Decoupling the filters with different
scales can be very beneficial when objects appear in large
scale difference.

C. Video Semantic Segmentation

For video semantic segmentation, we apply methods used
in feature space optimization (FSO) [32]. As FSO process
a block of images simultaneously, 5 consecutive frames
with 15 frames interval (0.5s-0.7s gap) are extracted from
provided video files, which form a block spanning 2s to 3s,
and the test image is located at the center in each block. The
gap between consecutive frames is not set too big so as to
get good flow extraction. It is better to have longer sequence
to gain longer temporal regularization, but due to memory
limitation, it is not possible to support more than 5 images
in a 30G memory without sacrificing the image size.

FSO process in each block requires several ingredients.
Contour strength for each image is calculated according to
[34]. The unary for each image is set as the softmax layer
output from each fine-tuned network. Forward flows and
backward flows are calculated according to [35], [36]. As the
computation speed for optical flow at original image scale
is extremely low, the images to be processed are downsized
by 8 times for both width and height, and the final flows
at original scale are got through bicubic interpolation and
magnification. Then, points trajectories can be calculated
according to [37] with the forward and backward flows.
Finally, a dense 3D CRF is applied after feature space
optimization as described in [32].

The IoU scores for FSO results with unaries from different
fine-tuned networks are reported in Tab. E} For each model,
there is improvement in mean IoU score and IoU score
for each individual class except for human and moving car
classes. FSO favors more for class whose instance covers
more image pixels, and IoU score improves less for class
with smaller instance like static car and it drops for moving
car and human classes. The human class IoU score for MS-
Dilation net drops by a large margin, nearly 4%.

V. CONCLUSION AND OUTLOOK

In this paper, we present a new UAVid dataset to advance
the development of video semantic segmentation. It captures

complex street scenes in slant view style with very high
resolution videos. Classes for the video semantic labelling
task have been defined and labelled. The usability of our
UAVid dataset has also been proved with several deep
convolutional neural networks, among which the proposed
Multi-Scale-Dilation net performs the best via multi-scale
feature extraction. It has also been shown that pre-training
the network is beneficial for all classes in UAVid semantic
labelling task. In the future, we will continually collect new
UAV video data, which will be labelled densely in temporal
space. We will extend labelling from current classes to more
classes including window, door, balcony, etc. The benchmark
together with our labelling tool will be published online.
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A. Network Details for Experiment
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Fig. 5. Network specifications. Structures of 4 different networks are presented in 4 columns. Dropout layers, pooling layers and softmax layers are
removed for simplicity. Digits beside the blocks present the number of filters for each convolution kernel in the block. As Dilation net, U-Net and MS-
Dilation net cannot fit into a 12G GPU memory during training when image is of size 2048 x 1024, number of filters are reduced for some layers. During
fine-tuning, blocks in blue colour are initialized with pre-trained model, while blocks in orange colour are initialized the same as training from scratch.

B. Big Image Clipping

2048x1024

Fig. 6. Image clipping illustrator. The original images are of size 4096x2160 or 3840x2160, which are too big for training deep neural networks.
Instead, the whole image is clipped into 9 evenly distributed smaller overlapped images for training, each of size 2048 x 1024.
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