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Abstract
In this paper, we use importance sampling simulation to estimate the probability that
the number of customers in a d-node GI |GI |1 tandem queue reaches some high level
N in a busy cycle of the system. We present a state-dependent change of measure
for a d-node GI |GI |1 tandem queue based on the subsolution approach, and we
prove, under a mild conjecture, that this state-dependent change of measure gives an
asymptotically efficient estimator for the probability of interest when all supports are
bounded.

Keywords GI |GI |1 queues · Tandem queues · Rare event simulation · Importance
sampling
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1 Introduction

In this paper, we will develop a simulation scheme to estimate the probability that
the total number of customers in a d-node GI |GI |1 tandem queue exceeds some
high level N in a busy cycle of the system. Two of the main methods used for rare
event simulation are importance sampling and splitting: in this paper, we consider
importance sampling. In importance sampling, we make the event of interest less rare
by changing the underlying probability distribution.
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Importance sampling for queueing networks has been studied since 1989, when a
state-independent change of measure for general queueing networks was proposed
by Parekh and Walrand [11]. Sadowsky [12] showed that for the single queue this
change of measure gives a so-called asymptotically efficient estimator. Afterwards,
in [10], it has been shown that the change of measure that was proposed by Parekh
and Walrand does not necessarily give an asymptotically efficient estimator for the
two-node Markovian tandem queue. In [3,10], necessary and sufficient conditions for
asymptotic efficiency have been provided; thus, an extension to a state-dependent
change of measure is required in order to get an asymptotically efficient estimator for
all input parameters.

The subsolution approach is a method, developed by Dupuis and Wang [7], which
can be used to construct a state-dependent change of measure. For the two-node
Markovian tandem queue [6] and Jackson networks [8], this method has been applied
to develop a state-dependent change of measure that gives an asymptotically effi-
cient estimator for the probability of interest. Note that the subsolution approach is
not limited in its use to importance sampling. It can also be used for splitting, see,
for example, [5], but for this paper we choose not to address splitting and focus on
importance sampling instead.

In [2], it has been shown that also for non-Markovian tandem queues an extension
to a state-dependent change of measure is required in order to get an asymptoti-
cally efficient estimator. In that paper, necessary conditions for asymptotic efficiency
have been provided. In this paper, we extend the existing work on d-node Marko-
vian tandem queues to d-node non-Markovian tandem queues. This extension is
important, because in many practical applications the Markov assumption is not real-
istic.

To construct a state-dependent change of measure for non-Markovian tandem
queues using the subsolution approach, we extend the state description for Marko-
vian tandem queues—consisting of the number of customers in each queue—with the
residual inter-arrival and service times of all queues. By doing so, we have complete
knowledge on the state of the system and it turns out that this is sufficient information
to construct a state-dependent change of measure.

Firstly, wewill analyse how the subsolution approachworks for the singleGI |GI |1
queue.Using this approach,wefind the same change ofmeasure as in [12],with amuch
shorter proof of asymptotic efficiency than the proof in [12]. Secondly, we consider the
two-node GI |GI |1 tandem queue. In that case, the state description is relatively small
and therefore the proofs are still quite clean. We end with statements for the d-node
GI |GI |1 tandem queue, where we present the results but omit the proofs (which are
natural extensions of the proofs for the two-node tandem queue).

The contribution of this paper is threefold. Firstly, we extend the subsolution
approach from Markovian tandem queues to non-Markovian tandem queues and we
present a state-(in)dependent change of measure that may give an asymptotically effi-
cient estimator. Secondly,we prove asymptotic efficiency of the estimator for the single
queuewhen the change ofmeasure is based on this subsolution. For the d-node tandem
queue,we prove that—when all supports are bounded and some conjecture holds—this
state-dependent change of measure indeed gives an asymptotically efficient estimator.
Lastly, we provide numerical examples to support our results.
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This paper is structured as follows: In Sect. 2, we introduce the model and notation
and we provide some background knowledge about the subsolution approach and
importance sampling. Then, in Sect. 3 we present a state-dependent change ofmeasure
and we prove that this change of measure gives an asymptotically efficient estimator
for the probability of interest. Section 4 concludes the paper with some numerical
results.

2 Model and preliminaries

2.1 Themodel

In this paper, we consider a d-node GI |GI |1 tandem queue; see Fig. 1 for a graph-
ical illustration. The inter-arrival times are i.i.d. and distributed according to some
distribution A and the service times of queue j are i.i.d. and distributed according to
some distribution B( j). All processes are assumed to be independent, and services at
all queues follow a first-come first-served (FCFS) discipline. For notational conve-
nience, we will denote the cumulative distribution function of any random variable X
by FX (x), its moment generating function by MX (t) and the log-moment generating
function by ΛX (t).

We are interested in the probability of the event that the total number of customers
in the system reaches some high level N in a busy cycle of the system.
Throughout this paper, we make the following assumptions with respect to the distri-
butions of the inter-arrival time and service times.

Assumption 1 (1) The moment generating functions for all service time distributions
exist, i.e., for all j , MB( j) (t) > 0 for some t > 0;

(2) The system is stable, i.e., for all j , E[B( j)] < E[A];
(3) The probability of interest is non-trivial, i.e., for at least one queue j we have

P(B( j) > A) > 0 and P(A >
∑d

j=1 B
( j)) > 0.

In addition, when considering the d-node tandem queue for d > 1, we make the
following assumption.

Assumption 2 The supports of all distributions are bounded, i.e., there exist constants
Q( j) < ∞ ∀ j = 0, . . . , d such that P(Ak < Q(0)) = 1, P(B( j)

k < Q( j)) = 1.

When a Markovian system was studied in [6], the state description consisted of the
number of customers in each queue. For a non-Markovian queue, we extend this state
description by adding the residual inter-arrival time and the residual service times.
Therefore, for the d-node tandem queue the state description is a vector with 2d + 1

A B(1) . . . B(d)

Fig. 1 The d-node tandem queue
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components. As in [6], we define all processes embedded at a transition for the number
of customers in a queue. For any vector y with 2d + 1 components y1, . . . , y2d+1, we
introduce shorthand notation ȳ j = yd+1+ j , j = 0, . . . , d. Using this, we let

Zi = (Z1,i , . . . , Zd,i , Z̄0,i , . . . , Z̄d,i )

denote the state of the system after i transitions. Here, Z j,i , j = 1, . . . , d, is the
number of customers in queue j after i transitions, Z̄0,i is the residual inter-arrival
time after i transitions and Z̄ j,i , j = 1, . . . , d, is the residual service time at queue j
after i transitions. If Z j,i = 0 for some j , then we set Z̄ j,i = 0. Throughout this
paper, we let Z0 = (1, 0, . . . , 0), i.e., we start with one customer in queue 1. We
have Zi+1 = Zi + VZ (Zi ), where VZ (Zi ) denotes the next transition when the state
of the system after the i th transition is Zi . For i > 0, we define VZ (Zi ) in terms of
the shortest residual time Z(Zi ) = mink∈{0}∪{ j :Z j,i>0}{Z̄k,i }, i.e., the minimum of the
residual inter-arrival time and the residual service times of all customers in service.
In other words, Z(Zi ) is the time until the next transition. In Remark 1, we make a
convention about what happens when Z(Zi ) is not uniquely defined.

The possible transitions when the current state is Zi , corresponding to the cases
in (1), are an arrival at queue 1, a customer going from queue j to queue j + 1,
j ∈ {1, . . . , d − 1} and a departure from queue d, which is a departure from the
system. As the process starts at (1, 0, . . . , 0), we need a different transition for Z0. It
will become clear in Remarks 6 and 7 why this technicality is needed.

Let e j denote the j th unit vector. Then, for all i > 0 we have

VZ (Zi ) = −Z(Zi )

(

ē0 +
d∑

k=1

ēk1{Zk,i > 0}
)

+

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

e1 + Ai ē0 + B(1)
i ē11{Z1,i = 0} if Z(Zi ) = Z̄0,i ,

e j+1 − e j + B( j)
i ē j1{Z j,i > 1}

+B( j+1)
i ē j+11{Z j+1,i = 0} if Z(Zi ) = Z̄ j,i , j = 1, . . . , d − 1,

−ed + B(d)
i ēd1{Zd,i > 1} if Z(Zi ) = Z̄d,i ,

(1)

and

VZ (Z0) = A0ē0 + B(1)
0 ē1,

where Ai is the inter-arrival time if the i th transition is an arrival. If the i th transition
is not an arrival, then Ai = 0. Similarly, we have that B( j)

i is the service time of a
customer at queue j if a service is starting at queue j at the i th transition. If the i th
transition is not a service at queue j , then B( j)

i = 0. This means that, depending on
the current state of the system, it is known which type of transition to take and each
of them can have infinitely many possibilities in terms of the residuals (depending on
the distribution).

We note that in (1) we consider 1{Z j,i > 1} and not 1{Z j,i > 0}, since we do not
need a new service time for queue j when queue j is empty after the transition. We
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do need a new service time for queue j when a customer departs from queue j − 1
and queue j was empty before, i.e., Z j,i = 0.

Remark 1 IfZ(Zi ) is not uniquely defined, it is not clear in which order the transitions
should happen. However, inmost cases it is not important for our probability of interest
which of the transitions happens first. Only if Z(Zi ) = Z̄0,i = Z̄d,i , i.e., an arrival
happens at the same time as a departure from the system, the order does matter, and
we use the convention that the departure occurs first, i.e., Z(Zi ) = Z̄d,i .

As for theMarkovian system in [6,8], we will work with the scaled process. Therefore,
we define

Xi = (X1,i , . . . , Xd,i , X̄0,i , . . . , X̄d,i ) = 1

N
Zi ,

and we have

Xi+1 = Xi + 1

N
VX (Xi ),

where VX (Xi ) = VZ (Xi N ) is the (i + 1)th transition when the state of the scaled
system is Xi . The advantage of the scaled system is that the first d elements of the
state description are always in [0, 1], which does not increase as N increases. Note
that for the scaled system we will use a similar convention as in Remark 1. Similarly
to the unscaled system, we define X (Xi ) = Z(Xi )

N . Hence, for i > 0, we have that

VX (Xi ) = −X (Xi )N

(

ē0 +
d∑

k=1

ēk1{Xk,i > 0}
)

+

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

e1 + Ai ē0 + B(1)
i ē11{X1,i = 0} if X (Xi ) = X̄0,i ,

e j+1 − e j + B( j)
i ē j1

{
X j,i > 1

N

}

+B( j+1)
i ē j+11{X j+1,i = 0} if X (Xi ) = X̄ j,i , j = 1, . . . , d − 1,

−ed + B(d)
i ēd1

{
Xd,i > 1

N

}
if X (Xi ) = X̄d,i ,

(2)

and

VX (X0) = A0ē0 + B(1)
0 ē1,

where X0 = ( 1
N , 0, . . . , 0).

Now that we have defined the full state description, we define the goal set δe and
taboo set δ0 in the following way:

δe =
{

x :
d∑

k=1

xk = 1 − 1

N
,X (x) = x̄0

}

,

δ0 = {x : xk = x̄k = 0 ∀k ∈ {1, . . . , d}} , (3)
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where the goal set is reached if there are N − 1 customers in the system and the
next event is an arrival to the system, and the taboo set is reached when there are no
customers in the system.

Using the definitions above, we define the time to reach δe before δ0 as

τN = inf{i > 0 : Xi ∈ δe,Xk /∈ δ0 ∀k = 1, . . . , i − 1},
and we set τN = ∞ when δ0 is reached before δe. Now we can write our probability
of interest, pN , in terms of τN as

pN = P (τN < ∞) .

Remark 2 Note that we could define δe and δ0 differently, i.e., there are more states
for which we know that the total number of customers will reach N or that the system
will be empty. However, the current definitions are easy to use and it turns out that
these definitions are sufficient for our proofs; see Remarks 8 and 12.

From [1,12], we know that the decay rate of pN equals

γ = − lim
N→∞

1

N
log pN = −ΛA(−θ∗), (4)

where θ∗ = min j {θ j } with

θ j = sup{θ : ΛA(−θ) + ΛB( j) (θ) ≤ 0}, (5)

or equivalently θ j = sup{θ : MA(−θ)MB( j) (θ) ≤ 1}. Note that as a result of the
stability and non-triviality assumption, 0 < θ∗ < ∞; see [2] for a formal proof of
P(B( j) > A) ⇔ θ∗ = ∞. This gives rise to the following definition.

Definition 1 Queue j is a bottleneck queue when θ j = θ∗.

Which queue is the bottleneck also determines the form of the so-called most likely
path to overflow: if the overflow level is reached, this is most likely done along a
specific path (that dominates the probability of reaching the overflow level and hence
determines the decay rate). When queue j is the bottleneck queue, it is therefore
expected that along the most likely path x j > 0.

2.2 Preliminaries

In order to estimate the probability of interest using simulation, we use importance
sampling tomake our event of interest less rare by changing the underlying probability
distribution. In the current work, we make the change of measure state-dependent by
using the subsolution approach.

2.2.1 Subsolution approach

The subsolution approach for importance sampling has been introduced in [7]. Later,
in [6,8], it has been used to find a state-dependent change of measure that results in
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an asymptotically efficient estimator for pN in the context of a Markovian tandem
queue [6] and Jackson networks [8]. The definition of a classical subsolution is as
follows.

Definition 2 A real-valued function W (x) is called a classical subsolution if

1. W (x) is continuously differentiable,
2. H(x,DW(x)) ≥ 0 for every x,
3. W (x) ≤ 0 for x ∈ δe,

where

H(x,DW(x)) = − log
(
E

[
e−〈DW(x),VX (x)〉]) . (6)

In addition to this definition, in order to use the subsolution as a basis for a change of
measure we require that

4. W (( 1
N , 0, . . . , 0)) = γ ,

so that the change of measure can be useful (i.e., asymptotically efficient; see Def-
inition 3). This means that along the most likely path to reach the overflow level,
subsolution properties 2 and 3 are satisfied with equality; see also [8].

In [6], there is an additional condition in the definition of a classical subsolution for
the boundaries, when at least one of the queues is empty, and in [8] there are dedicated
boundary functions for H(x,DW(x)), which are used when one of the queues is
empty.Wewill include the boundaries inH(x,DW(x)), as the boundaries are included
in VX (x) by means of indicator functions.

Remark 3 The function W (x) that we will construct in the sequel consists of (a com-
bination of) affine functions so that for all these affine functions its derivative DW(x)
is a constant. Whenever we consider an affine function, we will denote the derivative
by α.

2.2.2 Importance sampling simulation

In this paper, we will propose a particular change of measure and prove that it results
in an asymptotically efficient estimator for pN ; see Definition 3. In order to define the
change of measure, we first introduce some notation for the probability measure. With
some abuse of notation, we let dFVX (x)(v) be the probability measure for some random
vector VX (x). Typically, the vector VX (x) contains one random variable, see (2), but
it may result in zero or two random variables as well, for example, when a customer
moves from queue j to j +1 and queue j +1 is empty, there are two random variables
in VX (x). For example, we can interpret dFVX (x)(v) as dFA(a) if X (x) = x̄0 and
x1 > 0.

Remark 4 The probability measure of VX (x) can be written in a more formal way,
which we illustrate by considering the arrival transition in a single queue. Thus, con-
sider a state x = (x1, x̄0, x̄1) for which x1 > 0 and X (x) = x̄0. Then, we have

FVX (x)(v|x : x̄0 < x̄1, x1 > 0) = 1{v1 ≥ 1} · FA(v̄0 + x̄0N ) · 1{v̄1 ≥ −x̄0N },
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and thus the density

∂3FVX (x)(v|x : x̄0 < x̄1, x1 > 0)

∂v1∂v̄0∂v̄1
= δ(v1 − 1) · dFA(v̄0 + x̄0N ) · δ(v̄1 + x̄0N ).

We remark that two of the three components of the transition VX (x) are deterministic,
while the remaining component consists of a random sample from the inter-arrival
time distribution FA, added to the deterministic value −x̄0N . Also, in larger models,
most components of the transition are deterministic (cf. (2)); therefore, we prefer the
shorter but less precise notation in which only the random component(s) are written
down.

Let W (x) be a classical subsolution; see Sect. 2.2.1. Then, we define the change of
measure as

dF̄VX (x)(v|x) = e〈−DW(x),v〉eH(x,DW(x))dFVX (x)(v), (7)

where F̄VX (x)(v|x) is the distribution functionunder the newmeasure andH(x,DW(x))
is defined in (6). Note that the latter quantity can be interpreted as a normalization
constant. In fact, (7) means that we apply an exponential tilt to a random variable (that
depends on the random vector VX (x)), for example, when X (x) = x̄0 and x1 > 0 we
are tilting the inter-arrival times exponentially with some parameter.

While performing a simulation run and changing the underlying probability distri-
butions at every step, we keep track of the likelihood ratio. The likelihood ratio for a
successful path P = (Xi , i = 0, . . . , τN ) is

L(P) =
τN−1∏

i=0

dFVX (Xi )(VX (Xi ))

dF̄VX (Xi )(VX (Xi )|Xi )
=

τN−1∏

i=0

e〈DW(Xi ),VX (Xi )〉e−H(Xi ,DW(Xi )), (8)

where the second equality follows by using (7).
We now define the estimator of pN to be L(P)I (P), where I (P) indicates whether

we have reached level N or not, i.e., I (P) = 1{τN < ∞}. This estimator is unbiased
under the new measure, denoted by Q, since

pN = E [I (P)] = E
Q [L(P)I (P)] .

We use the following definition for asymptotic efficiency.

Definition 3 The estimator for pN is asymptotically efficient if and only if

lim inf
N→∞

logEQ
[
L(P)2 I (P)

]

log pN
≥ 2.

Using the decay rate of pN , see (4), we find that Definition 3 is equivalent to the
following definition.
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Corollary 1 The estimator for pN is asymptotically efficient if and only if

lim sup
N→∞

1

N
logEQ

[
L(P)2 I (P)

]
≤ −2γ.

3 Asymptotically efficient change of measure

In this section, we present our main result. For readability, we present it for three
cases separately. In Sect. 3.1, we start with d = 1, i.e., the single queue, where the
subsolution approach results in a state-independent change of measure. Although this
change of measure has been proven to be asymptotically efficient in [12], we present
an alternative proof using themethod that will be extended to a state-dependent change
of measure for the d-node tandem queue. Secondly, we consider d = 2 in Sect. 3.2
in detail, as in this case the state vector consists of five dimensions only. Lastly, in
Sect. 3.3, we present the result for the d-node tandem queue, but we omit the proofs
since they are very similar to the two-node case.

The approach of the subsolution method, as developed in [7], is the same in all
cases defined above and is as follows:

1. For all possible x, we find solutions α to H(x,α) ≥ 0.
2. We construct a functionW (x) that both is continuously differentiable and satisfies

properties 3 and 4 in and below Definition 2, as N → ∞. The function W (x) will
be as indicated in Remark 3; more precisely, for each x we will have DW(x) ≈ α,
where α is a solution corresponding to x as found in Step 1.

3. We then use the function W (x) to define a change of measure as in (7).

After we have proposed the change of measure, we will prove asymptotic efficiency
of this change of measure.

3.1 The single GI|GI|1 queue

For the single queue, the model, as presented in Sect. 2.1, simplifies significantly. We
will highlight the most important simplifications. To start with, the state description
reduces to x = (x1, x̄0, x̄1). Furthermore, queue 1 is never empty during a busy cycle
of the system and so X (x) = min{x̄0, x̄1}. Due to the same reason, we always have
1{x1 = 0} = 0 and, when there is a departure from the system, 1{x1 > 1

N } = 1
(otherwise, x ∈ δ0, i.e., the system will become empty after the transition). In view of
Remark 6, we do not yet substitute 1{x1 = 0} = 0 in the remainder. Thus, (2) in the
case d = 1 becomes

VX (x) = − X (x)N (ē0 + ē11{x1 > 0})

+
{
e1 + Ai ē0 + B(1)

i ē11{x1 = 0} if X (x) = x̄0,

−e1 + B(1)
i ē11

{
x1 > 1

N

}
if X (x) = x̄1.
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In the next sections, we will follow the subsolution approach step by step and
conclude with a proof of asymptotic efficiency of the change of measure based on the
developed subsolution.

3.1.1 Solution toH(x,˛) ≥ 0 for all x

We have, for all possible x �= ( 1
N , 0, 0), from (6) and the above, that

H(x,α) = − log
(
E

[
e−〈α,VX (x)〉])

= − X (x)N (ᾱ0 + ᾱ1)

+
{
α1 − ΛA(−ᾱ0) − ΛB(1) (−ᾱ11{x1 = 0}) if X (x) = x̄0,
− α1 − ΛB(1) (−ᾱ1) if X (x) = x̄1,

and

H
(( 1

N , 0, 0
)
,α
) = −ΛA(−ᾱ0) − ΛB(1) (−ᾱ1).

Then, using that 1{x1 = 0} = 0, a solution to H(x,α) ≥ 0 for all x during a busy
cycle of the system is

α = (α1, ᾱ0, ᾱ1) = (−γ, θ∗,−θ∗),

where θ∗ equals θ1 in (5).

Remark 5 Another solution to H(x,α) ≥ 0 is α = (0, 0, 0). As this is equivalent to
no change of measure, we will not use this solution.

Remark 6 To justify the necessity of X0 �= (0, 0, 0), we note that when X0 would be
equal to (0, 0, 0) our proposed solution does not satisfy H(x,α) ≥ 0 for X (x) = x̄0.
Using X0 solves this issue. We will justify our specific choice of X0 = ( 1

N , 0, 0) in
Remark 7.

3.1.2 Construction ofW(x)

To use the subsolution approach, we want to choose the function W (x) such that
W (x) ≤ 0 for x ∈ δe and W (( 1

N , 0, 0)) = γ ; see properties 3 and 4 in and below
Definition 2. For the single queue, we have δe = {x : x1 = 1 − 1

N ,X (x) = x̄0};
see (3). Combining these, together with DW(x) = α = (−γ, θ∗,−θ∗), we find

W (x) = −γ x1 + θ∗(x̄0 − x̄1) + γ,

satisfying all the requirements when N → ∞: indeed,W (x) = −γ (1− 1
N )+θ∗(x̄0−

x̄1)+γ ≤ γ
N for all x ∈ δe, andW (( 1

N , 0, 0)) = γ
(
1 − 1

N

)
, and so when N → ∞ the

boundary conditions for W (x) are satisfied. In Fig. 2, the function W (x) is displayed
as a function of x1 and x̄0 − x̄1.
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x̄0 − x̄1

W (x)

x1

−γ
θ∗

γ

1

Fig. 2 The classical subsolution W (x) for the single queue as a function of x1 and x̄0 − x̄1

Remark 7 To justify the specific choice of x̄0 = x̄1 = 0 in X0 = ( 1
N , 0, 0), we note

that any other choice does not satisfy W (( 1
N , x̄0, x̄1)) = γ when N → ∞. For the

choice x1 = 1
N , we note that this is equivalent to starting with 1 customer in the

system, and hence this is a natural choice.

3.1.3 The change of measure

We now find that, using (7), the change of measure is, for x �= ( 1
N , 0, 0),

dF̄VX (x)(v|x) =
⎧
⎨

⎩

e−aθ∗
MA(−θ∗)dFA(a) if X (x) = x̄0,
eb1θ∗

MB(1) (θ
∗)dFB(1) (b1) if X (x) = x̄1,

(9)

and

dF̄
VX ((

1
N ,0,0))

(v|( 1
N , 0, 0)) = e−aθ∗+b1θ∗

MA(−θ∗)MB(1) (θ∗)
dFA(a)dFB(1) (b1). (10)

Proposition 1 The change of measure provided in (9) and (10) is the same change of
measure as the state-independent change of measure from [12].

Proof The proof is straightforward by noting that the inter-arrival times are exponen-
tially tilted with parameter −θ∗ and the service times are exponentially tilted with
parameter θ∗. ��

3.1.4 Asymptotic efficiency

In [12], it has been shown that the change of measure as mentioned above is asymptot-
ically efficient under the condition that P(B(1)

k < M) = 1 for some finite constant M .
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This restriction to bounded service times is said to be a technicality, but the paper is
not clear about how to remove it. Instead, we will give a different proof without the
need for this condition.

Theorem 1 Under Assumption 1, the state-independent change of measure based on
DW(x) = (−γ, θ∗,−θ∗), see (9) and (10), is asymptotically efficient for the single
G I |GI |1 queue.
Proof We start with the log likelihood, log L(P), of any pathP = (Xi , i = 0, . . . , τN )

such that τN < ∞. By using (8), we find

log L(P) = N
τN−1∑

i=0

〈DW(Xi ),Xi+1 − Xi 〉 −
τN−1∑

i=0

H(Xi ,DW(Xi ))

≤ N
τN−1∑

i=0

〈DW(Xi ),Xi+1 − Xi 〉

= N 〈DW(X0),XτN − X0〉
= N

(

−γ

(

1 − 1

N
− 1

N

)

+ θ∗(X̄0,τN − X̄0,0) − θ∗(X̄1,τN − X̄1,0)

)

= N

(

−γ

(

1 − 2

N

)

+ θ∗(X̄0,τN − X̄1,τN )

)

< −(N − 2)γ, (11)

where we note thatX0 = ( 1
N , 0, 0),XτN = (1− 1

N , X̄0,τN , X̄1,τN ) and X̄0,τN < X̄1,τN
by the definition of τN and δe. So we have

lim
N→∞

1

N
logE [L(P)I (P)] = lim

N→∞
1

N
log (E [L(P)I (P)|I (P) = 1]P(I (P) = 1))

≤ lim
N→∞

1

N
log

(
E

[
e−(N−2)γ

]
pN
)

= −2γ,

where the inequality follows from (11) and by the definition of pN , and the second
equality follows by using (4). ��
Remark 8 In the proof of Theorem 1, we see why we defined δe as in (3), and not
simply δe = {x : x1 = 1}; this allows for the second (strict) inequality to hold.

3.2 The two-node GI|GI|1 tandem queue

Although the subsolution approach for the single queue results in a state-independent
and asymptotically efficient change of measure, it is known from both [2] (general
distributions) and [3,10] (Markovian distribution) that a state-independent change of
measure for theGI |GI |1 tandem queue cannot be asymptotically efficient for all input
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parameters. We will see that the subsolution method, as it did for the Markovian case
in [6,8], results in a state-dependent change of measure.

In this section, we will use the same approach as in Sect. 3.1 and we conclude by
proving asymptotic efficiency of the constructed change of measure.

3.2.1 Solutions toHHH(x,˛) ≥ 0 for all possible x

We start the method by finding a solution toH(x,α) ≥ 0 for all possible x. As before,
we let DW(x) = (α1, α2, ᾱ0, ᾱ1, ᾱ2) and recall that X (x) = mink∈{0}∪{ j :x j>0}{x̄k}.
Then, we have from (6), for all possible x �= ( 1

N , 0, 0, 0, 0),

H(x,α) = − X (x)N (ᾱ0 + ᾱ11{x1 > 0} + ᾱ21{x2 > 0})

+

⎧
⎪⎪⎨

⎪⎪⎩

− log
(
e−α1MA(−ᾱ0)MB(1) (−ᾱ11{x1 = 0})) if X (x) = x̄0,

− log
(
eα1−α2MB(1)

(−ᾱ11
{
x1 > 1

N

})
MB(2) (−ᾱ21{x2 = 0}))

if X (x) = x̄1,
− log

(
eα2MB(2)

(−ᾱ21
{
x2 > 1

N

}))
if X (x) = x̄2,

= − X (x)N (ᾱ0 + ᾱ11{x1 > 0} + ᾱ21{x2 > 0})

+

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

α1 − ΛA(−ᾱ0) − 1{x1 = 0}ΛB(1) (−ᾱ1) if X (x) = x̄0,

−α1 + α2 − 1
{
x1 > 1

N

}
ΛB(1) (−ᾱ1)

−1{x2 = 0}ΛB(2) (−ᾱ2) if X (x) = x̄1,

−α2 − 1
{
x2 > 1

N

}
ΛB(2) (−ᾱ2) if X (x) = x̄2,

(12)

and

H(( 1
N , 0, 0, 0, 0),α) = −ΛA(−ᾱ0) − ΛB(1) (−ᾱ1).

The solutions toH(x,α) ≥ 0 that we describe depend on the number of customers
in queue 1 and the number of customers in queue 2. Note that there may be more
solutions possible, but in order to find a state-dependent change of measure the current
solutions turn out to be sufficient. Clearly, α = 0 is always a solution to H(x,α) ≥ 0
and is equivalent to no change of measure. However, using DW(x) = α = 0 does not
give a subsolution, since in that case it is impossible to satisfy properties 3 and 4 in
Definition 2.

In Table 1, θ̃ (1) = sup{θ : ΛA(−θ∗) + ΛB(1) (θ) ≤ 0} and θ̃ (2) = sup{θ :
ΛA(−θ∗) + ΛB(2) (θ) ≤ 0}; see Figs. 3 and 4 for a graphical illustration of θ1, θ2, θ̃ (1)

Table 1 Some solutions to H(x, α) ≥ 0 for all possible x

Region of validity α1 α2 ᾱ0 ᾱ1 ᾱ2

x1 > 0, x2 > 0 ΛA(−θ∗) 0 θ∗ [−θ̃ (1), −θ∗] [0, −ᾱ1 − θ∗]
ΛA(−θ∗) ΛA(−θ∗) θ∗ [0, −ᾱ2 − θ∗] [−θ̃ (2), −θ∗]

x1 > 0, x2 = 0 ΛA(−θ∗) 0 θ∗ [−θ̃ (1), −θ∗] [0, −ᾱ1 − θ∗]
x1 = 0, x2 > 0 ΛA(−θ∗) ΛA(−θ∗) θ∗ [0, −ᾱ2 − θ∗] [−θ̃ (2), −θ∗]
x1 ≥ 0, x2 ≥ 0 0 0 0 0 0
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t

−ΛA(−t)

ΛB(2)(t)ΛB(1)(t)

θ2θ∗ = θ1 = θ(1) θ(2)

Fig. 3 Illustration of θ1, θ2, θ̃ (1) and θ̃ (2) when queue 1 is the bottleneck queue

t

−ΛA(−t)

ΛB(1)(t)ΛB(2)(t)

θ1θ∗ = θ2 = θ(2) θ(1)

Fig. 4 Similar to Fig. 3, but when queue 2 is the bottleneck queue

and θ̃ (2). Note that for all solutions proposed in Table 1 we have

H
(( 1

N , 0, 0, 0, 0
)
,α
) = −ΛA(−ᾱ0) − ΛB(1) (−ᾱ1) ≥ 0.

Remark 9 All solutions presented in Table 1 satisfy subsolution property 2 along the
most likely path (as defined below Definition 1) with equality. Recall that, along the
most likely path, x j > 0 when queue j is the bottleneck queue. Note that the only
solutions that do not necessarily satisfy H(x,α) = 0 are those along the boundary
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x j = 0 when queue j is the bottleneck queue (except for α = 0, which is always
possible).

Remark 10 We see fromTable 1 that in some cases there is a possibility to choose ᾱ j >

0. It is not obvious to do so, because then the service times of queue j are tilted in
the ‘wrong’ way, since it would imply that on average the service times of queue j
are even shorter than under the original measure. Nevertheless, it is a solution that
satisfies H(x,α) ≥ 0.

3.2.2 Construction ofW(x)

Since there is no non-trivial solution forH(x,α) ≥ 0 that holds for all x, that is, there
is not a single affine function W (x) such that for its derivative α this condition holds
for all x, it turns out that a different change of measure needs to be applied in different
‘regions’ of the state space that are specified precisely later.

From Table 1, we can extract two non-trivial solutions that are dependent on the
bottleneck queue: one which we can use for x1 > 0 (and any x2) and one which we
can use for x2 > 0 (and any x1). These solutions, along with the trivial solution, can
be found in Table 2 and are sufficient to obtain an asymptotically efficient estimator
(as we will prove in Sect. 3.2.4; see Theorem 2). In the construction that is explained
below, we will also see that cases in which both x j > 0 can be handled using these
subsolutions; see Eq. (14). As it turns out, when both x j > 0, either the solution for
x1 > 0 or the solution for x2 > 0 will be used.

Remark 11 The other solutions that are described in Table 1 can also be used to find a
state-dependent change of measure that is proven to be asymptotically efficient using
the same method that is described below; see Theorem 3.

Remember that γ = −ΛA(−θ∗), and so we define

α1 = (−γ,−γ, θ∗, 0,−θ∗),
α2 = (−γ, 0, θ∗,−θ∗, 0),
α3 = (0, 0, 0, 0, 0),

which are used to determine the different changes of measure in each of the ‘regions’
of the state space. Thus, ‘region’ 1—corresponding to α1—has to cover x1 = 0,
‘region’ 2—corresponding to α2—has to cover x2 = 0 and, finally, ‘region’ 3—
corresponding to α3—has to cover x1 = x2 = 0. Note that αk is the notation for a

Table 2 Solutions extracted from Table 1 that are used for the state-dependent change of measure

Region of validity α1 α2 ᾱ0 ᾱ1 ᾱ2

x2 > 0 ΛA(−θ∗) ΛA(−θ∗) θ∗ 0 −θ∗
x1 > 0 ΛA(−θ∗) 0 θ∗ −θ∗ 0

x1 ≥ 0, x2 ≥ 0 0 0 0 0 0
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solution toH(x,α) ≥ 0, whereas αk is the notation for a component of some vector α.
From these solutions αk , we define three functions

W δ
k (x) = 〈αk, x〉 + γ − kδ, for k = 1, 2, 3, (13)

for some δ > 0, and their minimum

W δ(x) = W δ
1 (x) ∧ W δ

2 (x) ∧ W δ
3 (x). (14)

The idea of this construction, as in [6–8], and in particular subtracting kδ, is that the
minimum function W δ(x) has gradient α1 near x1 = 0, gradient α2 near x2 = 0 and
gradient α3 near x1 = x2 = 0, as desired.

In Figs. 5 and 6, we give a rough illustration of the behaviour of the functionW δ(x),
considering the dependence on the scaled queue lengths x1 and x2 while neglecting
the dependence on the scaled residuals x̄0, x̄1 and x̄2. For large N , these can indeed be
neglecteddue to scaling, in particular in the case of bounded supports of the inter-arrival
time and service times. However, for unbounded supports there can be exceptions to
this idea due to a very large residual inter-arrival time or a very large residual service
time. For example, at x1 = 0 we have W δ

3 (x) < min{W δ
1 (x),W δ

2 (x)} if and only if

x2 <
2δ+θ∗(x̄0−x̄2)

γ
. When x̄0 − x̄2 is large,W δ

3 (x) is the minimum function even when
x2 is not near 0. Indeed, in this case it is very likely that the system empties before
the next arriving customer, and hence it makes sense that W δ(x) = W δ

3 (x) (and no
change of measure will be applied).

Note thatW δ(x) satisfies properties 2–4 in and below Definition 2 by construction.
As we have different functions for different regions, W δ(x) is not a continuously
differentiable function, which is the first property of a classical subsolution. Therefore,
we apply a similar mollification procedure as in previous work onMarkovian systems;

x1

x2

α1

α3 α2

Fig. 5 Main dimensions (x1, x2) (the scaled queue sizes) of the state space, neglecting x̄0, x̄1, x̄2 (the
scaled residuals) by setting them equal to 0. The figure shows the three regions where the different W δ

k (x),
k = 1, 2, 3, are the minimum function
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x2

W δ(x)

x1

1 − 2δ/γ

γ − 3δ

1
−

δ/γ

δ/γ

δ/γ

1 − δ/γ

2δ
/γ

δ

1

δ

1

2δ

Fig. 6 Illustration of the dependence ofW δ(x) on (x1, x2), neglecting the scaled residuals as in Fig. 5. The
figure here shows how for x in region k we have W δ(x) = W δ

k (x), and hence DWδ(x) = αk

see [6,8]. This mollification ensures that a derivative exists throughout the whole
parameter space. We let

W ε,δ(x) = −ε log
3∑

k=1

e−W δ
k (x)/ε. (15)

When ε → 0, W ε,δ(x) converges to W δ(x). Another result of this choice of W ε,δ(x)
is that

DWε,δ(x) =
3∑

k=1

ρk(x)αk

= (−(ρ1(x) + ρ2(x))γ,−ρ1(x)γ, (ρ1(x) + ρ2(x))θ∗,
− ρ2(x)θ∗,−ρ1(x)θ∗), (16)

with

ρk(x) = e−W δ
k (x)/ε

∑
j e

−W δ
j (x)/ε

. (17)

Throughout this paper, we make the following assumptions on ε and δ, as in [6]. We
remark that we let ε and δ depend on N , though for brevity we do not explicitly write
this dependence.

Assumption 3 We choose ε and δ dependent on N, such that

• lim
N→∞ ε = 0,
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• lim
N→∞ δ = 0,

• lim
N→∞ εN = ∞,

• lim
N→∞

ε

δ
= 0.

As a result,W ε,δ(x) satisfies properties 3 and 4 in and below Definition 2 as N → ∞,
which follows immediately from the following lemma.

Lemma 1 Under Assumption 1, we have, for the two-node GI |GI |1 tandem queue,
that W ε,δ(x) ≤ γ

N −δ for x ∈ δe and γ (1− 1
N )−3δ−ε log(3) ≤ W ε,δ(X0) ≤ γ −3δ.

Proof We have, for x ∈ δe, by (15),

W ε,δ(x) ≤ W δ
1 (x) = −γ (x1 + x2) + θ∗(x̄0 − x̄2) + γ − δ ≤ γ

N
− δ,

where the final inequality follows as x1 + x2 = 1 − 1
N and x̄0 − x̄2 ≤ 0 for x ∈ δe.

For W ε,δ(X0), we note that X0 = ( 1
N , 0, 0, 0, 0). By (15), we have

W ε,δ(X0) ≤W δ
3 (X0) = γ − 3δ,

W ε,δ(X0) = − ε log

(

e

(
−γ

(
1− 1

N

)
+δ

)
/ε + e

(
−γ

(
1− 1

N

)
+2δ

)
/ε + e(−γ+3δ)/ε

)

≥ − ε log
(
3e(−γ+ γ

N +3δ)/ε
)

= γ

(

1 − 1

N

)

− 3δ − ε log(3). ��

Remark 12 The proof of Lemma 1 again explains our choice of δe: it is chosen such
that W ε,δ(x) can be upper bounded for x ∈ δe.

Note that, by construction, we expect that also the second property of a classical
subsolution is satisfied for W ε,δ(x), i.e., H(x,DWε,δ(x)) ≥ 0 when N → ∞, which
we will prove in Lemma 2.

3.2.3 The change of measure

In this section, we will give examples of the change of measure based on W δ
k (x),

see (13), for some parts of the state description. This gives some insight into the change
of measure that is applied in the mollified function W ε,δ(x) and how the change of
measure that we use in the current paper relates to previous work. When choosing
DWδ

k(x) in (7) as a constant vector α = (α1, α2, ᾱ0, ᾱ1, ᾱ2), the change of measure
can be written in terms of ᾱ0, ᾱ1 and ᾱ2 as
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dF̄VX (x)(v|x) =
e−aᾱ0−b1ᾱ11 {x1=0}

MA(−ᾱ0)MB(1) (−ᾱ11{x1=0})dFA(a)dFB(1) (b1) if X (x) = x̄0,

e
−b1ᾱ11

{
x1> 1

N

}
−b2 ᾱ21 {x2=0}

MB(1)

(
−ᾱ11

{
x1>

1
N

})
MB(2) (−ᾱ21{x2=0})dFB(1) (b1)dFB(2) (b2) if X (x) = x̄1,

e
−b2 ᾱ21

{
x2> 1

N

}

MB(2)

(
−ᾱ21

{
x2>

1
N

})dFB(2) (b2) if X (x) = x̄2,

(18)

for x �= X0 and

dF̄VX (X0)(v|X0) = e−aᾱ0−b1ᾱ1

MA(−ᾱ0)MB(1) (−ᾱ1)
dFA(a)dFB(1) (b1). (19)

In each of the examples below, we consider the cases where our change of measure
based on W ε,δ(x) gets close, as N → ∞, to an ‘affine’ change of measure as above,
that is, based on someW δ

k (x)with constant gradientα. It is two of these latter ‘limiting’
change of measures that we consider in the following.

Examples of the change of measure

Example 1 Where W ε,δ(x) gets close to W δ
2 (x), we let α = DWδ

2(x) = (−γ, 0, θ∗,
−θ∗, 0). Then (18) and (19) reduce to

dF̄VX (x)(v|x)

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

e−aθ∗+b1θ∗
MA(−θ∗)MB(1) (θ

∗)dFA(a)dFB(1) (b1) if X (x) = x̄0 and x1 = 0,

e−aθ∗
MA(−θ∗)dFA(a) if X (x) = x̄0 and x1 > 0,

e
b1θ∗1

{
x1> 1

N

}

MB(1)

(
θ∗1

{
x1>

1
N

})dFB(1) (b1)dFB(2) (b2) if X (x) = x̄1 and x2 = 0,

e
b1θ∗1

{
x1> 1

N

}

MB(1)

(
θ∗1

{
x1>

1
N

})dFB(1) (b1) if X (x) = x̄1 and x2 > 0,

dFB(2) (b2) if X (x) = x̄2,

for x �= X0 and

dF̄VX (X0)(v|X0) = e−aθ∗+b1θ∗

MA(−θ∗)MB(1) (θ∗)
dFA(a)dFB(1) (b1).

Whenqueue1 is the bottleneckqueue, this corresponds to the state-independent change
of measure that has been studied in [2,9,11]. On the other hand, when queue 2 is the
bottleneck queue, the inter-arrival times are still exponentially tilted with parameter
−θ∗ = −θ2 and so it also corresponds to the state-independent change of measure
studied in those papers. However, it is not the service times of queue 2 that are expo-
nentially tilted, but the service times of queue 1 that are exponentially tilted with
parameter θ∗ = θ2.
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Remark 13 We note that the change of measure used here along the horizontal
boundary is different from the one in [6] for a two-node Markovian tandem queue.
Let λ, μ1 and μ2 be the exponential rates for the inter-arrival times, and service
times of queue 1 and queue 2 under the original measure. If we would consider
DWδ

2(x) ≡ α2 = (−γ, 0, θ∗,−θ̃ (1), 0), which is a solution to H(x,α) ≥ 0 according
to Table 1, then we find that under the change of measure the service times of queue 1
have an exponential distribution with rate μ1λ

μ2
. This does correspond with the results

from [6], although they consider the embedded discrete-time Markov chain, while we
consider the continuous-time Markov chain.

Example 2 Where W ε,δ(x) gets close to W δ
1 (x), we let α = DWδ

1(x) = (−γ,

−γ, θ∗, 0,−θ∗). Then, (18) and (19) reduce to

dF̄VX (x)(v|x) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

e−aθ∗
MA(−θ∗)dFA(a)dFB(1) (b1) if X (x) = x̄0 and x1 = 0,
e−aθ∗

MA(−θ∗)dFA(a) if X (x) = x̄0 and x1 > 0,

dFB(1) (b1)dFB(2) (b2) if X (x) = x̄1 and x2 = 0,

dFB(1) (b1) if X (x) = x̄1 and x2 > 0,

e
b2θ∗1

{
x2> 1

N

}

MB(2)

(
θ∗1

{
x2>

1
N

})dFB(2) (b2) if X (x) = x̄2,

for x �= X0 and

dF̄VX (X0)(v|X0) = e−aθ∗

MA(−θ∗)
dFA(a)dFB(1) (b1).

When queue 1 is the bottleneck queue, this change ofmeasure corresponds to the state-
independent change of measure studied in [2,9,11] in the sense that the inter-arrival
times are exponentially tiltedwith parameter−θ∗ = −θ1. In contrast to an exponential
tilt for the service times of queue 1, which happens for the state-independent change
of measure, here we exponentially tilt the service times of queue 2 with parameter
θ∗ = θ1. When queue 2 is the bottleneck queue, the change of measure described
above corresponds to the state-independent change of measure that has been studied
in [2,9,11].

3.2.4 Asymptotic efficiency

Using (16), we can find a lower bound on H(x,DWε,δ(x)) which goes to 0 when
N → ∞.

Remark 14 Since we assume bounded supports of the various service time distribu-
tions, we note that equality is achieved in (5) for all queues j . That is, we have
ΛA(−θ( j)) + ΛB( j) (θ ( j)) = 0 for all queues j . In particular, equality holds for the
bottleneck queue. Similarly, equality in the definition of θ̃ (1) and θ̃ (2) also holds.
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Lemma 2 Under Assumptions 1 and 2, we have, for the two-node GI |GI |1 tandem
queue, for all possible x,

H(x,DWε,δ(x)) ≥ −(θ∗ max{Q(0), Q(1), Q(2)} + γ )e−δ/ε.

Proof We substitute (16) in (12) to find H(x,DWε,δ(x)) for x �= X0 equal to

− X (x)N ((ρ1(x) + ρ2(x))θ∗ − ρ2(x)θ∗1{x1 > 0} − ρ1(x)θ∗1{x2 > 0})

+

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

−(ρ1(x) + ρ2(x))γ − ΛA(−(ρ1(x) + ρ2(x))θ∗)
−1{x1 = 0}ΛB(1) (ρ2(x)θ∗) if X (x) = x̄0,

(ρ1(x) + ρ2(x))γ − ρ1(x)γ − 1
{
x1 > 1

N

}
ΛB(1) (ρ2(x)θ∗)

−1{x2 = 0}ΛB(2) (ρ1(x)θ∗) if X (x) = x̄1,

ρ1(x)γ − 1
{
x2 > 1

N

}
ΛB(2) (ρ1(x)θ∗) if X (x) = x̄2,

≥ −X (x)N (ρ1(x)θ∗1{x2 = 0} + ρ2(x)θ∗1{x1 = 0})

+

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

−ρ2(x)1{x1 = 0}ΛB(1) (θ∗) if X (x) = x̄0,

ρ2(x)γ − ρ2(x)1
{
x1 > 1

N

}
ΛB(1) (θ∗)

−ρ1(x)1{x2 = 0}ΛB(2) (θ∗) if X (x) = x̄1,

ρ1(x)γ − ρ1(x)1
{
x2 > 1

N

}
ΛB(2) (θ∗) if X (x) = x̄2,

(20)

where the inequality follows from convexity of the log-moment generating functions,
ρk(x) ∈ [0, 1] and by the definition of γ = −ΛA(−θ∗) ≥ 0. By using1{xk > 1

N } ≤ 1
for k = 1, 2, ΛA(−θ∗) + ΛB( j) (θ∗) ≤ 0 for all queues j by the definition of θ∗, γ

and the bounded supports (and hence bounded X (x)), we find that (20) is greater than
or equal to

− max{Q(0), Q(1), Q(2)}(ρ1(x)θ∗1{x2 = 0} + ρ2(x)θ∗1{x1 = 0})

+

⎧
⎪⎨

⎪⎩

−ρ2(x)1{x1 = 0}ΛB(1) (θ∗) if X (x) = x̄0,

−ρ1(x)1{x2 = 0}ΛB(2) (θ∗) if X (x) = x̄1,

0 if X (x) = x̄2.

(21)

For any x with x2 = x̄2 = 0, we have, from (17),

ρ1(x) = e−W δ
1 (x)/ε

∑
j e

−W δ
j (x)/ε

≤ e−(〈α1,x〉+γ−δ)/ε

e−(〈α2,x〉+γ−2δ)/ε
= e−(x̄1θ∗+δ)/ε ≤ e−δ/ε, (22)

and, for any x with x1 = x̄1 = 0,

ρ2(x) = e−W δ
2 (x)/ε

∑
j e

−W δ
j (x)/ε

≤ e−(〈α2,x〉+γ−2δ)/ε

e−(〈α3,x〉+γ−3δ)/ε
= e−(x̄0θ∗+δ)/ε ≤ e−δ/ε. (23)
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Substituting (22) and (23) in (21), we find, for x �= X0, that

H(x,DWε,δ(x))

≥ − max{Q(0), Q(1), Q(2)}(ρ1(x)θ∗1{x2 = 0} + ρ2(x)θ∗1{x1 = 0})
− ρ2(x)1{x1 = 0}ΛB(1) (θ

∗)1{X (x) = x̄0}
− ρ1(x)1{x2 = 0}ΛB(2) (θ

∗)1{X (x) = x̄1}
≥ − e−δ/ε

(
θ∗ max{Q(0), Q(1), Q(2)}
+ ΛB(1) (θ

∗)1{X (x) = x̄0} + ΛB(2) (θ
∗)1{X (x) = x̄1}

)

≥ − e−δ/ε
(
θ∗ max{Q(0), Q(1), Q(2)} + max

(
ΛB(1) (θ

∗),ΛB(2) (θ
∗)
))

= −
(
θ∗ max{Q(0), Q(1), Q(2)} + γ

)
e−δ/ε,

where the second and the third inequalities follow as at most one of the indicators
equals 1 at any time during a busy cycle of the system and the final equality follows
by the definition of θ∗. To conclude the proof, we write for the initial state that

H(X0,DW
ε,δ(X0)) = − ΛA(−(ρ1(X0) + ρ2(X0))θ

∗) − ΛB(1) (ρ2(X0)θ
∗)

≥ − (ρ1(X0) + ρ2(X0))ΛA(−θ∗) − ρ2(X0)ΛB(1) (θ
∗) ≥ 0.

��

Next we show that
∑τN−1

i=0 〈DWε,δ(Xi ),Xi+1 − Xi 〉 approximates W ε,δ(XτN ) −
W ε,δ(X0) and provide an upper bound for the error term, similar to Lemma 2 in [4].

Lemma 3 Consider a two-node GI |GI |1 tandem queue satisfying Assumptions 1
and 2. Then, for any successful path Xi , i = 0, . . . , τN , it holds that

∣
∣
∣
∣
∣
N

τN−1∑

i=0

〈DWε,δ(Xi ),Xi+1 − Xi 〉 − N (W ε,δ(XτN ) − W ε,δ(X0))

∣
∣
∣
∣
∣
≤ 2C2

1

εN
τN ,

where C1 = √
2(γ + θ∗)(

√
2 + √

3max j {Q( j)}) < ∞.

Proof We can bound |〈DWε,δ(Xi ),Xi+1 −Xi 〉− (W ε,δ(Xi+1)−W ε,δ(Xi ))| for each
step i by using the mean value theorem. Let x = Xi and y = Xi+1 − Xi . By the
mean value theorem, we have W ε,δ(x + y) − W ε,δ(x) = 〈DWε,δ(x + ηy), y〉 for
some η ∈ [0, 1]. For convenience, we denote Rk(x) = e−W δ

k (x)/ε, so that ρk(x) =
Rk (x)∑3
j=1 R j (x)

, and Rk(x+ηy) = Rk(x)e−〈αk ,y〉η/ε, which implies that DWε,δ(x+ηy) =
∑

k ρk(x + ηy)αk = ∑
k

Rk (x+ηy)
∑3

j=1 R j (x+ηy)
αk . Thus,
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|〈DWε,δ(x), y〉 − (
W ε,δ(x + y) − W ε,δ(x)

)|

=
∣
∣
∣
∣
∣

∑3
k=1 Rk(x)〈αk, y〉
∑3

j=1 R j (x)
−
∑3

k=1 Rk(x + ηy)〈αk, y〉
∑3

j=1 R j (x + ηy)

∣
∣
∣
∣
∣

=
∣
∣
∣
∣
∣

3∑

k=1

Rk(x)〈αk, y〉
∑3

j=1 R j (x)

(

1 − e−〈αk ,y〉η/ε

∑3
j=1 R j (x)

∑3
j=1 R j (x + ηy)

)∣
∣
∣
∣
∣

≤ ∣
∣〈DWε,δ(x), y〉∣∣ ·
∣
∣
∣max{1 − e(mink 〈αk ,y〉−maxk 〈αk ,y〉)η/ε, e(maxk 〈αk ,y〉−mink 〈αk ,y〉)η/ε − 1}

∣
∣
∣ , (24)

where the inequality follows by the definition of DWε,δ(x), see (16), ρ(x) and R j (x+
ηy), and by bounding 〈αk, y〉 by the minimum or maximum over k (whichever is
appropriate). We use the crude bounds

|DWε,δ(x)| ≤max
k

|αk | ≤
√

2γ 2 + 2(θ∗)2 ≤ √
2(γ + θ∗),

|y| ≤ 1

N
max

{√

1 + 2(Q(0))2 + (max{Q(0), Q(1)})2,
√

2 + 2(Q(1))2 + (max{Q(1), Q(2)})2,
√
1 + 3(Q(2))2

}

≤ 1

N

√
2 + 3max

j
{(Q( j))2} ≤

√
2 + √

3max j {Q( j)}
N

,

where the second inequality follows by considering all possible transitions. For exam-
ple, in the case of an arrival the number of customers in the system changes by 1, the
residual inter-arrival time and the residual service time at queue 2 change by at most
Q(0) and the residual service time at queue 1 changes by at most max{Q(0), Q(1)}.
Letting C1 = √

2(γ + θ∗)(
√
2 + √

3max j {Q( j)}), we find |〈αk, y〉| ≤ C1 for all
k = 1, 2, 3, and so we can upper bound (24) by

C1

N

∣
∣
∣max

{
1 − e−2 C1η

εN , e2
C1η

εN − 1
}∣
∣
∣ = C1

N

(
e2

C1η

εN − 1
)

= C1

N

(
C1η

εN
+ O

(
C2
1η

2

ε2N 2

))

≤ 2C2
1

εN 2 ,

where the inequality holds for sufficiently large εN , and hence we have found

∣
∣
∣
∣
∣
N

τN−1∑

i=0

〈DWε,δ(Xi ),Xi+1 − Xi 〉 − N (W ε,δ(XτN ) − W ε,δ(X0))

∣
∣
∣
∣
∣
≤ 2C2

1

εN
τN .

��
Remark 15 The bound in Lemma 3 is very crude and better bounds can be obtained by
considering all possible transitions separately. However, in order to show asymptotic
efficiency the current bound is sufficient.
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Remark 16 Some solutions to H(x,α) ≥ 0 in Table 1 use different values rather
than θ∗, for example, θ̃ (1). It is easy to verify that for these different values, similar
bounds as in Lemmas 2 and 3 can be obtained by using their definition. The only
additional requirement is that the value replacing θ∗ is finite. Note that θ∗ is finite by
Assumption 1.

In order to show asymptotic efficiency, we need an asymptotic result involving τN ,
the total number of steps to reach level N (given that level N is reached before the
system is empty). This is the subject of the following conjecture.

Conjecture 1 If σN is a sequence of real numbers such that σN → 0 when N → ∞,
then

lim sup
N→∞

1

N
logEQ

[
eτNσN |τN < ∞] = 0. (25)

Intuition We note that we can upper bound τN by 3KN , where KN is the index
of the first customer who reaches the overflow level N . Along the major part of
the most likely path to reach the overflow level, the change of measure is very
close to the state-independent change of measure as discussed in [2] (see also
Examples 1 and 2). In Lemmas 3.2 and 4.1 of that same paper, it is shown that
under this state-independent change of measure the system is unstable and KN

N →
C < ∞ with probability 1. This means that the left-hand side of (25) would
be upper bounded by lim supN→∞ 1

N logEQ
[
e3KNσN |τN < ∞]

, which behaves as
lim supN→∞ 1

N logEQ
[
e3CNσN

] = limN→∞ 3CσN = 0. Also, suppose that (25)
does not hold, i.e. lim supN→∞ 1

N logEQ [eτNσN |τN < ∞] > 0. This means that the
random variable τN , and also the random variable KN , would growmuch faster than N
as N → ∞, which does not seem plausible.

For a mathematical proof of the conjecture, two problems remain. The first one
is to show that the difference between the actual change of measure and the state-
independent change of measure (which is small along the most likely path) does
not influence the validity of (25). The second problem is to show that for the state-
independent change ofmeasure we indeed have lim supN→∞ 1

N logEQ
[
e3KNσN |τN <

∞] = 0. Even if the change of measure were equal to the state-independent change
of measure along the whole state space, we could not show this relation. Of course,
there may be other possibilities to show that (25) holds.

We can now prove the main theorem of this section.

Theorem 2 Suppose we have a two-node GI |GI |1 tandem queue satisfying Assump-
tions 1 and 2. Then, under Conjecture 1 and Assumption 3, the change of measure
based on DWε,δ(x) in Eq. (16) is asymptotically efficient.

Proof For a successful path P , we have

log L(P) = N
τN−1∑

i=0

〈DWε,δ(Xi ),Xi+1 − Xi 〉 −
τN−1∑

i=0

H(Xi ,DW
ε,δ(Xi ))
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≤ 2C2
1

εN
τN + NW ε,δ(XτN ) − NW ε,δ(X0)

+ (θ∗ max{Q(0), Q(1), Q(2)} + γ )e−δ/ετN ,

where the second step follows from Lemmas 2 and 3. Define σN = 2C2
1

εN +
(θ∗ max{Q(0), Q(1), Q(2)} + γ )e−δ/ε. Then it follows that

log L(P) ≤ τNσN + NW ε,δ(XτN ) − NW ε,δ(X0).

Since XτN ∈ δe for the successful path P , we find, by using Lemma 1,

log L(P) ≤ τNσN + N
( γ

N
− δ

)
− N

(

γ

(

1 − 1

N

)

− 3δ − ε log(3)

)

= τNσN + 2Nδ − γ (N − 2) + εN log(3),

and so we have

lim sup
N→∞

1

N
logEQ

[
L(P)2 I (P)

]

≤ lim sup
N→∞

1

N
logEQ

[
e2τNσN+4Nδ−2γ (N−2)+2εN log(3) I (P)

]

= −2γ + lim sup
N→∞

1

N
log

(
E
Q

[
e2τNσN |I (P) = 1

]
P
Q(I (P) = 1)

)

≤ −2γ + lim sup
N→∞

1

N
logEQ

[
e2τNσN |τN < ∞

]
,

where the equality follows by Assumption 3 and the last step follows by noting
that PQ(I (P) = 1) ≤ 1. Using Conjecture 1 concludes the proof. ��
Remark 17 In the proof of Theorem 2, we bounded N

∑τN−1
i=0 〈DWε,δ(Xi ),Xi+1−Xi 〉

and
∑τN−1

i=0 H(Xi ,DWε,δ(Xi )) separately, resulting in bounds involving themaximum
support of the various distributions. Looking at Eqs. (18) and (19), we see, for example,
that the new probability density functions themselves do not depend on X (Xi )N , and
thus the likelihood ratio in (8) does not depend on X (Xi )N , even though X (Xi ) is
needed in order to determine which probability density function is used. However, to
use the mean value theorem in Lemma 3 we do need to keep this quantity throughout
the proofs.

We can extend Theorem 2 to the following set of changes of measure; see also
Remarks 11 and 16. We restrict ourselves to three regions only, since this is the easiest
from an implementation perspective. Let

DWε,δ(x) = (−(ρ1(x) + ρ2(x))γ,−ρ1(x)γ, (ρ1(x) + ρ2(x))θ∗,
− ρ1(x)ᾱ1,1 − ρ2(x)ᾱ1,2,−ρ1(x)ᾱ2,1 − ρ2(x)ᾱ2,2), (26)
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where

ᾱ1,1 ∈ [0,−ᾱ2,1 − θ∗],
ᾱ2,1 ∈ [−θ̃ (2),−θ∗],
ᾱ1,2 ∈ [−θ̃ (1),−θ∗],
ᾱ2,2 ∈ [0,−ᾱ1,2 − θ∗].

Note that when queue j is the bottleneck queue, θ̃ ( j) = θ∗ and hence along the most
likely path still the state-independent change of measure studied in [2,9,11] is used.

We leave the proof of the following theorem to the reader, as this only requires
some small modifications in the proofs of Lemmas 2, 3 and Theorem 2.

Theorem 3 Suppose we have a two-node GI |GI |1 tandem queue satisfying Assump-
tions 1 and 2. Then, under Conjecture 1 and Assumption 3, the change of measure
based on DWε,δ(x) in Eq. (26) is asymptotically efficient.

3.3 The d-node GI|GI|1 tandem queue

In this section, we present the steps to follow in order to find a state-dependent change
of measure for the d-node GI |GI |1 tandem queue. As we needed a conjecture for the
case d = 2, we also need a conjecture for the more general case. We will formulate
similar lemmas as in Sect. 3.2 but omit the proofs, as these are just extensions of the
proofs for the two-node tandem queue and therefore do not require any additional
techniques.

3.3.1 Solutions toHHH(x,˛) ≥ 0 for all possible x

For the d-node tandem queue we have, for x �= X0,

H(x,α) = −X (x)N

(

ᾱ0 +
d∑

k=1

ᾱk1{xk > 0}
)

+

⎧
⎪⎪⎨

⎪⎪⎩

α1 − ΛA(−ᾱ0) − ΛB(1) (−ᾱ11{x1 = 0}) if X (x) = x̄0,
α j+1 − α j − ΛB( j)

(−ᾱ j1
{
x j > 1

N

})

−ΛB( j+1)

(−ᾱ j+11
{
x j+1 = 0

})
if X (x) = x̄ j , j = 1, ..., d − 1,

−αd − ΛB(d)

(−ᾱd1
{
xd > 1

N

})
if X (x) = x̄d ,

and for x = X0

H(X0,α) = −ΛA(−ᾱ0) − ΛB(1) (−ᾱ1).

Some possible solutions toH(x,α) ≥ 0, similar to the solutions presented in Table 2,
can be found in Table 3 (including the trivial solution α = 0). Similarly to Table 2, the
solutions presented consider cases where some x j > 0. Due to the construction that
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Table 3 Some solutions to H(x, α) ≥ 0 for all x

Region of validity Nonzero αi ’s Nonzero ᾱi ’s

x1 > 0 α1 = ΛA(−θ∗) ᾱ0 = −ᾱ1 = θ∗
.
.
.

.

.

.
.
.
.

x j > 0 α1 = · · · = α j = ΛA(−θ∗) ᾱ0 = −ᾱ j = θ∗
.
.
.

.

.

.
.
.
.

xd > 0 α1 = · · · = αd = ΛA(−θ∗) ᾱ0 = −ᾱd = θ∗
All x

All αi ’s and ᾱi ’s that are not explicitly mentioned in this table are equal to 0 in that particular case

is used, using the minimum of all subsolutions, these solutions also cover the interior
of the state space.

Clearly, solutions similar to the other solutions presented in Table 1 also exist. For
example, define θ̃ (1) = sup{θ : ΛA(−θ∗) + ΛB(1) (θ) ≤ 0}. When x1 > 0, another
possibility would be ᾱ1 ∈ [−θ̃ (1),−θ∗] and ᾱ j ∈ [0,−∑

i �= j ᾱi ], j > 1. Thus, when

x j > 0, we define θ̃ ( j) = sup{θ : ΛA(−θ∗) + ΛB( j) (θ) ≤ 0} and another possibility
would be ᾱ j ∈ [−θ̃ ( j),−θ∗] and, for k > 0, ᾱk ∈ [0,−∑

i �=k ᾱi ], k �= j .

3.3.2 Construction ofW(x)

As for the two-node tandem queue, there is no solution for H(x,α) ≥ 0 that holds
for all x. Therefore, a different change of measure needs to be applied in different
‘regions’. In this case, the following vectors are used to specify the different changes
of measure in each of the ‘regions’:

α1 = −γ (e1 + · · · + ed) + θ∗(ē0 − ēd),
...

α j = −γ (e1 + · · · + ed−( j−1)) + θ∗(ē0 − ēd−( j−1)),

...

αd = −γ e1 + θ∗(ē0 − ē1),

αd+1 = (0, . . . , 0). (27)

From this, we find d + 1 functions W δ
k (x) = 〈αk, x〉 + γ − kδ, for k = 1, . . . , d + 1,

for δ > 0, and their minimum

W δ(x) = W δ
1 (x) ∧ · · · ∧ W δ

d+1(x),

which again is a piecewise affine function that equals W δ
k (x) in ‘region’ k. The con-

stant γ in W δ
k (x) is included to satisfy the properties of the subsolution, and the
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subtraction of kδ is needed so that the minimum function W δ(x) is uniquely attained
at each of the boundaries.

To make the minimum function a continuously differentiable function, we apply
a similar mollification procedure as for the two-node GI |GI |1 tandem queue. This
mollification ‘removes’ the regions and ensures that a derivative exists throughout the
whole parameter space. We let

W ε,δ(x) = −ε log
d+1∑

k=1

e−W δ
k (x)/ε. (28)

When ε → 0, W ε,δ(x) → W δ
1 (x) ∧ · · · ∧ W δ

d+1(x). The assumptions on ε and δ

can be found in Assumption 3. Similarly to Lemma 1, we see that W ε,δ(x) satisfies
properties 3 and 4 in and below Definition 2.

Lemma 4 Under Assumption 1, we have, for the d-node GI |GI |1 tandem queue, that
W ε,δ(x) ≤ γ

N − δ for x ∈ δe and γ (1− 1
N ) − (d + 1)δ − ε log(d + 1) ≤ W ε,δ(X0) ≤

γ − (d + 1)δ.

The change of measure will be based on the gradient ofW ε,δ(x). From (28), it follows
that

DWε,δ(x) =
d+1∑

k=1

ρk(x)αk, (29)

where ρk(x) is defined similarly to in (17).

3.3.3 The change of measure

As for the 2-node tandem queue, we show that the change of measure based onW δ
k (x)

results in the state-independent change of measure studied in [2,9,11] in some partic-
ular cases. This gives some insight into the change of measure that is applied in the
mollified function W ε,δ(x).

Choosing DW(x) in (7) as a constant vector α = (α1, . . . , αd , ᾱ0, . . . , ᾱd), the
change of measure can be written in terms of ᾱ0, . . . , ᾱd as

dF̄VX (x)(v|x)

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

e−aᾱ0−b1 ᾱ11{x1=0}
MA(−ᾱ0)MB(1) (−ᾱ11 {x1=0}) dFA(a)dFB(1) (b1) if X (x) = x̄0,

e
−b j ᾱ11

{
x j>

1
N

}
−b j+1 ᾱ j+11{x j+1=0}

MB( j)

(
−ᾱ j1

{
x j>

1
N

})
MB( j+1) (−ᾱ j+11 {x j+1=0}) dFB( j) (b j )dFB( j+1) (b j+1) if X (x) = x̄ j , j = 1, . . . d − 1,

e
−bd ᾱd1

{
xd> 1

N

}

MB(d)

(
−ᾱd1

{
xd> 1

N

}) dFB(d) (bd ) if X (x) = x̄d ,

(30)
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for x �= X0 and

dF̄VX (X0)(v|X0) = e−aᾱ0−b1ᾱ1

MA(−ᾱ0)MB(1) (−ᾱ1)
dFA(a)dFB(1) (b1). (31)

We now consider the cases where our change of measure based onW ε,δ(x) gets close,
as N → ∞, to an ‘affine’ change of measure as above, that is, based on some W δ

k (x)
with constant gradient. Then, if we let α = W δ

d−( j−1)(x) = αd−( j−1), see (27),
it follows that indeed the resulting change of measure equals the state-independent
change of measure studied in [2,9,11] if queue j is the bottleneck queue.

3.3.4 Asymptotic efficiency

To show that asymptotic efficiency also holds for the d-node GI |GI |1 tandem queue,
assuming that Conjecture 1 is correct, we need the following two lemmas.

Lemma 5 Under Assumptions 1 and 2, we have, for the d-node GI |GI |1 tandem
queue, for all possible x,

H(x,DWε,δ(x)) ≥ −(θ∗ max{Q(0), . . . , Q(d)} + γ )e−δ/ε.

Lemma 6 Supposewe have a d-nodeGI |GI |1 tandemqueue satisfyingAssumptions 1
and 2. Then, for any successful path Xi , i = 0, . . . , τN , it holds for all XτN that

∣
∣
∣
∣
∣
N

τN−1∑

i=0

〈DWε,δ(Xi ),Xi+1 − Xi 〉 − N (W ε,δ(XτN ) − W ε,δ(X0))

∣
∣
∣
∣
∣
≤ 2C2

2

εN
τN ,

where C2 = √
2(γ + θ∗)(

√
2 + √

3max j {Q( j)}) < ∞.

Using Lemmas 4–6, we can prove the following result.

Theorem 4 Suppose we have a d-node GI |GI |1 tandem queue satisfying Assump-
tions 1 and 2. Then, under Conjecture 1 and Assumption 3, the change of measure
based on DWε,δ(x) in Eq. (29) is asymptotically efficient.

Remark 18 We could also extend Theorem 4, as we did for the two-node tandem queue
in Theorem 3, and we claim that asymptotic efficiency also holds in that case under
the same conditions as in Theorem 4.

4 Numerical results for the two-node tandem queue

In this section,we present numerical results for the two-node tandemqueue to illustrate
that the proposed method indeed works. In each of the examples below, we use (16)
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for the change of measure. We recall that the estimator for pN is L(P)I (P) and hence
we will define the following estimator, which is obtained via simulation,

p̂N = 1

S

S∑

i=1

L(i)I (i),

where S is the total number of simulation runs, L(i) is the likelihood ratio in simula-
tion i and I (i) indicates whether level N has been reached in simulation i or not.

In all tables given below, RE is the relative error, i.e., the standard deviation of the
estimator divided by its mean,

RE =
√

1
S−1

∑S
i=1(L(i)I (i) − p̂N )2

√
S p̂N

,

and AE denotes

AE = log 1
S

∑S
i=1 L

2(i)I (i)

log 1
S

∑S
i=1 L(i)I (i)

.

Thus, if the change of measure is asymptotically efficient, AE should converge to 2
when N tends to infinity; see Definition 3. Furthermore, in our tables we will include
the number of times the overflow level has been reached (out of a total of S = 106

simulation runs) and the (rounded) simulation time in seconds. Note that the latter
quantity is only there for reference and does not indicate if the estimator is asymptot-
ically efficient or not.

To use the change of measure based on (16), we need to choose ε and δ so that
they satisfy Assumption 3. It is not trivial to find suitable ε and δ that satisfy all
requirements; we only explored several possibilities, while many more exist. In all the
examples below, we set ε proportional to 1√

N
and δ = −ε log ε, unless the condition

in Remark 19 is not satisfied.

Remark 19 For the choice δ = −ε log ε, it may happen for small values of N
that W δ(x) does not attain W δ

k (x) for some k in the ‘region’ where it is supposed
to be attained. For example, consider W δ

2 (x) < W δ
1 (x), which is equivalent to

x2 <
θ∗(x̄1 − x̄2)

γ
+ δ

γ
.

Taking into account that W δ
2 (x) is designed for the case x2 = 0, the right-hand side

of this equation should be positive. Thus, we need δ >
Q(2)

N θ∗ (recall that Q(2) is an
upper bound on the support of the service times at queue 2). When we also consider
W δ

1 (x) < W δ
3 (x) and W δ

2 (x) < W δ
3 (x), it turns out that we actually need

δ >
max{Q(1), Q(2)}θ∗

N
. (32)
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Table 4 D|U |1 − ·|U |1 tandem queue when both queues are the bottleneck queue. We choose A = 1.1,
B(1) ∼ U [0, 2], B(2) ∼ U [0, 2] and ε = 0.06√

N
. We find θ∗ = θ1 = θ2 = 0.6073. The number of

simulations is 106

N p̂N RE AE #Overflow Time (s)

20 1.3448e−03 0.0877 0.6465 680 910 93

60 1.7785e−14 0.0536 1.7485 580 520 307

100 8.7767e−26 0.0290 1.8833 455 950 451

140 3.2087e−37 0.0112 1.9424 339 723 520

180 1.0567e−48 0.0048 1.9711 242 793 533

220 3.1997e−60 0.0037 1.9803 169 426 512

260 9.4889e−72 0.0038 1.9833 118 241 478

300 2.7188e−83 0.0044 1.9843 81 788 440

340 7.6193e−95 0.0053 1.9844 57 009 405

380 2.1168e−106 0.0067 1.9843 40 519 376

420 5.9068e−118 0.0084 1.9842 29 311 354

460 1.5638e−129 0.0110 1.9838 20 811 333

500 4.2998e−141 0.0140 1.9836 15 300 317

Therefore, when δ = −ε log ε does not satisfy (32), in our numerical experiments,

we actually set δ = max{Q(1),Q(2)}θ∗
N0.95 . We choose the denominator to be N 0.95, but

of course other choices are possible to obtain the strict inequality in (32). Unless
mentioned otherwise, only for N = 20 this different value for δ is used. (Note that for

a d-node tandem queue, a similar condition exists; δ >
max{Q(1),...,Q(d)}θ∗

N .)
We consider two types of tandem queues, a D|U |1 − ·|U |1 tandem queue and a

M |U |1−·|U |1 tandem queue, and in both cases we vary the bottleneck queue. Starting
with a D|U |1−·|U |1 tandem queue, we first consider the case where the θ -bottleneck
queue is not unique, i.e., the service times at both queues have the same distribution
with the same parameters. In our case, both service times have a uniform distribution
on the interval [0, 2]. Similar cases are known to fail when using a state-independent
change of measure, see [2,3], and thus this is an interesting case to consider. The
results can be found in Table 4. In this table, we see results that clearly support the
theoretical results of the estimator being asymptotically efficient; at first the relative
error is decreasing, after which it slowly increases. We also see that the number of
times the overflow level N is reached is decreasing with N . This behaviour may seem
strange, but it can be seen in all of the results in this section.Given our assumptions on ε

and δ, we note that δN → ∞ and hence ‘region’ 3—where no change of measure is
applied—is increasing in size. Therefore, we can expect that as N increases it becomes
increasinglymore difficult to reach the overflow level, even thoughwe have asymptotic
efficiency. In particular, we observed that when a system has small server utilizations,
it may be hard to escape the ‘region’ of the state space where (almost) no change of
measure is applied.

Next, we let one of the queues be the bottleneck queue. In Tables 5 and 6, queue 1
and queue 2 are the bottleneck queue, respectively. Here, we changed one of the service
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Table 5 D|U |1− ·|U |1 tandem queue when queue 1 is the bottleneck queue. We choose A = 1.1, B(1) ∼
U [0, 2], B(2) ∼ U [0.5, 1.5] and ε = 0.07√

N
. We find θ∗ = θ1 = 0.6073, θ2 = 2.5215. The number of

simulations is 106

N p̂N RE AE #Overflow Time (s)

20 7.1456e−04 0.4771 0.2971 854 566 838

60 2.2719e−15 0.0852 1.7363 802 889 1761

100 1.0067e−26 0.0977 1.8469 764 219 1781

140 3.4432e−38 0.0811 1.8981 708 956 1952

180 9.0425e−50 0.0322 1.9385 632 963 2235

220 2.2366e−61 0.0088 1.9688 540 583 2566

260 5.6593e−73 0.0111 1.9711 441 182 2838

300 1.3905e−84 0.0043 1.9847 346 529 3059

340 3.4348e−96 0.0046 1.9859 262 769 3219

380 8.6114e−108 0.0052 1.9865 195 534 3316

420 2.1157e−119 0.0056 1.9873 142 657 3382

460 5.3385e−131 0.0128 1.9830 103 512 3408

500 1.3122e−142 0.0086 1.9868 75 186 3374

Table 6 D|U |1− ·|U |1 tandem queue when queue 2 is the bottleneck queue. We choose A = 1.1, B(1) ∼
U [0.5, 1.5], B(2) ∼ U [0, 2] and ε = 0.01√

N
. We find θ∗ = θ2 = 0.6073, θ1 = 2.5215. The number of

simulations is 106

N p̂N RE AE #Overflow Time (s)

20 7.8819e−05 0.0125 1.4655 478 564 87

60 2.0245e−16 0.0138 1.8546 443 297 245

100 5.0153e−28 0.0102 1.9250 426 668 390

140 1.2576e−39 0.0117 1.9449 416 708 550

180 3.1214e−51 0.0106 1.9593 408 285 679

220 7.8784e−63 0.0129 1.9642 403 760 808

260 1.9570e−74 0.0092 1.9738 398 371 931

300 4.7882e−86 0.0237 1.9678 548 146 1433

340 1.2159e−97 0.0227 1.9720 505 585 1495

380 2.9018e−109 0.0074 1.9840 462 204 1526

420 7.4330e−121 0.0107 1.9828 422 362 1541

460 1.8204e−132 0.0061 1.9880 385 678 1540

500 4.6143e−144 0.0107 1.9856 350 976 1525

time distributions of the previous example from U [0, 2] to U [0.5, 1.5] so that there
is a unique θ -bottleneck queue, but the server utilizations of both queues remain the
same. When queue 1 is the bottleneck queue, we see that the relative error is still very
large for N = 20, but for larger values of N the theoretical results are supported. Note
that in this case δ = −ε log ε for all values of N . We also see from this table that the
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simulation time is increasing, even though the number of times the overflow level is
reached is decreasing. This is due to the fact that we have to reach a higher overflow
level N . When queue 2 is the bottleneck queue, we have considered a much smaller
value for ε, and thus δ differs from being −ε log ε for N = 20, . . . , 260. This can also
be seen from the table, by noting that both the number of times the overflow is reached
and the simulation time increase at N = 300. Besides this difference, the results in
the table clearly support the theoretical results.

Lastly, we consider a M |U |1 − ·|U |1 tandem queue in Tables 7, 8 and 9. We
emphasize that the inter-arrival times are exponentially distributed, which means an
unbounded support, and, hence, this is not covered by our theoretical results. Again,
we start with the case where there is no unique bottleneck queue in Table 7. We see
from this table that the relative error remains roughly constant, suggesting asymptotic
efficiency. In Table 8, when queue 1 is the bottleneck queue, and in Table 9, when
queue 2 is the bottleneck queue, we see that the relative error is slightly increasing,
but still suggesting asymptotic efficiency. We remark that in Table 9 δ does not equal
−ε log ε for N = 20, . . . , 100, which can be seen by an increasing number of times
level N is reached for N = 140.

Even though we do not have a proof of asymptotic efficiency for unbounded sup-
ports, which is the case for the inter-arrival times in Tables 7, 8 and 9, all these tables
showgood results that suggest asymptotic efficiency of the estimator.We also did some
experiments with exponentially distributed service times, where, regardless of (32) in
Remark 19, we set δ = −ε log ε, but we did not obtain good results there. This is most
likely due to the fact that for Markovian service times (and unbounded service times
in general), the condition on δ, see (32), cannot hold. As a result, it could happen that,
for example, W δ

2 (x) > W δ
1 (x) when x2 = 0, see also Remark 19, leading for x2 = 0

Table 7 M |U |1−·|U |1 tandemqueuewhen both queues are the bottleneck queue.We choose A ∼ exp(0.5),
B(1) ∼ U [0, 3], B(2) ∼ U [0, 3] and ε = 0.025√

N
. We find θ∗ = θ1 = θ2 = 0.2690. The number of

simulations is 106

N p̂N RE AE #Overflow Time (s)

20 1.9166e−03 0.0065 1.3957 362 952 16

60 1.8257e−10 0.0087 1.8067 322 186 53

100 1.0024e−17 0.0088 1.8885 231 546 68

140 4.5750e−25 0.0082 1.9247 175 071 74

180 1.9576e−32 0.0096 1.9379 137 692 76

220 7.9868e−40 0.0080 1.9537 109 868 76

260 3.1289e−47 0.0080 1.9611 89 605 74

300 1.2203e−54 0.0106 1.9620 74 172 71

340 4.5110e−62 0.0080 1.9704 61 372 68

380 1.6843e−69 0.0083 1.9731 51 929 65

420 6.0889e−77 0.0081 1.9761 43 639 62

460 2.2324e−84 0.0083 1.9779 37 347 59

500 8.1358e−92 0.0087 1.9793 32 318 56
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Table 8 M |U |1 − ·|U |1 tandem queue when queue 1 is the bottleneck queue. We choose A ∼ exp(0.5),
B(1) ∼ U [0, 3], B(2) ∼ U [0, 2] and ε = 0.025√

N
. We find θ∗ = θ1 = 0.2690, θ2 = 0.8966. The number of

simulations is 106

N p̂N RE AE #Overflow Time (s)

20 3.3042e−04 0.0024 1.7592 249 800 13

60 1.1016e−11 0.0027 1.9160 217 878 39

100 3.6616e−19 0.0032 1.9435 150 647 46

140 1.2177e−26 0.0037 1.9550 111 215 48

180 4.0285e−34 0.0041 1.9628 84 826 48

220 1.3518e−41 0.0046 1.9671 67 284 47

260 4.5013e−49 0.0050 1.9706 54 098 45

300 1.4843e−56 0.0055 1.9731 43 870 43

340 4.9227e−64 0.0060 1.9751 36 140 40

380 1.6372e−71 0.0069 1.9762 30 178 38

420 5.4779e−79 0.0072 1.9780 25 657 36

460 1.8101e−86 0.0077 1.9793 21 731 34

500 6.0619e−94 0.0084 1.9802 18 566 32

Table 9 M |U |1 − ·|U |1 tandem queue when queue 2 is the bottleneck queue. We choose A ∼ exp(0.5),
B(1) ∼ U [0, 2], B(2) ∼ U [0, 3] and ε = 0.01√

N
. We find θ∗ = θ2 = 0.2690, θ1 = 0.8966. The number of

simulations is 106

N p̂N RE AE #Overflow Time (s)

20 3.2750e−04 0.0038 1.6617 157 082 9

60 1.0824e−11 0.0039 1.8891 144 253 27

100 3.6318e−19 0.0039 1.9349 140 723 43

140 1.2032e−26 0.0026 1.9656 199 660 84

180 4.0069e−34 0.0032 1.9688 159 602 88

220 1.3319e−41 0.0036 1.9723 129 196 87

260 4.4494e−49 0.0041 1.9742 106 298 86

300 1.4765e−56 0.0044 1.9767 88 192 84

340 4.8887e−64 0.0047 1.9784 73 833 82

380 1.6223e−71 0.0053 1.9792 62 571 77

420 5.5025e−79 0.0059 1.9801 53 472 73

460 1.8175e−86 0.0064 1.9811 45 541 68

500 5.9896e−94 0.0066 1.9823 39 072 64

to H(x,DWε,δ(x)) ≈ H(x,α1), which is negative for x2 = 0 (and hence violates
property 2 in Definition 2).

Acknowledgements This work is supported by the Netherlands Organization for Scientific Research
(NWO), Project Number 613.001.105.

123



Queueing Systems (2019) 93:31–65 65

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if changes were made.

References

1. Buijsrogge, A., de Boer, P.T., Rosen, K., Scheinhardt, W.R.W.: Large deviations for the total queue
size in non-Markovian tandemqueues. Queueing Syst. 85(3), 305–312 (2017). https://doi.org/10.1007/
s11134-016-9512-z

2. Buijsrogge, A., de Boer, P.T., Scheinhardt, W.R.W.: On state-independent importance sampling for the
GI |GI |1 tandem queue. Probab. Eng. Inf. Sci. https://doi.org/10.1017/S0269964818000426

3. de Boer, P.T.: Analysis of state-independent importance-sampling measures for the two-node tandem
queue. ACM Trans. Model. Comput. Simul. 16(3), 225–250 (2006)

4. de Boer, P.T., Scheinhardt, W.R.W.: Alternative proof and interpretations for a recent state-dependent
importance sampling scheme. Queueing Syst. 57(2–3), 61–69 (2007)

5. Dean, T., Dupuis, P.: Splitting for rare event simulation: a large deviation approach to design and
analysis. Stoch. Process. Their Appl. 119(2), 562–587 (2009)

6. Dupuis, P., Sezer, A.D., Wang, H.: Dynamic importance sampling for queueing networks. Ann. Appl.
Probab. 17(4), 1306–1346 (2007)

7. Dupuis, P.,Wang,H.: Subsolutions of an Isaacs equation and efficient schemes for importance sampling.
Math. Oper. Res. 32(3), 723–757 (2007)

8. Dupuis, P., Wang, H.: Importance sampling for Jackson networks. Queueing Syst. 62(1), 113–157
(2009)

9. Frater, M.R., Anderson, B.D.O.: Fast simulation of buffer overflows in tandem networks of GI |GI |1
queues. Ann. Oper. Res. 49, 207–220 (1994)

10. Glasserman, P., Kou, S.G.: Analysis of an importance sampling estimator for tandem queues. ACM
Trans. Model. Comput. Simul. 5(1), 22–42 (1995)

11. Parekh, S., Walrand, J.: A quick simulation method for excessive backlogs in networks of queues.
IEEE Trans. Autom. Control 34(1), 54–66 (1989)

12. Sadowsky, J.S.: Large deviations theory and efficient simulation of excessive backlogs in a GI |GI |m
queue. IEEE Trans. Autom. Control 36(12), 1383–1394 (1991)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1007/s11134-016-9512-z
https://doi.org/10.1007/s11134-016-9512-z
https://doi.org/10.1017/S0269964818000426

	Importance sampling for non-Markovian tandem queues using subsolutions
	Abstract
	1 Introduction
	2 Model and preliminaries
	2.1 The model
	2.2 Preliminaries
	2.2.1 Subsolution approach
	2.2.2 Importance sampling simulation


	3 Asymptotically efficient change of measure
	3.1 The single GI|GI|1 queue
	3.1.1 Solution to π for all x
	3.1.2 Construction of W(x)
	3.1.3 The change of measure
	3.1.4 Asymptotic efficiency

	3.2 The two-node GI|GI|1 tandem queue
	3.2.1 Solutions to π for all possible x
	3.2.2 Construction of W(x)
	3.2.3 The change of measure
	3.2.4 Asymptotic efficiency

	3.3 The d-node GI|GI|1 tandem queue
	3.3.1 Solutions to π for all possible x
	3.3.2 Construction of W(x)
	3.3.3 The change of measure
	3.3.4 Asymptotic efficiency


	4 Numerical results for the two-node tandem queue
	Acknowledgements
	References




