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Abstract:Westudynonparametric estimators of conditionalKendall’s tau, ameasure of concordancebetween
two random variables given some covariates. We prove non-asymptotic pointwise and uniform bounds, that
hold with high probabilities. We provide “direct proofs” of the consistency and the asymptotic law of con-
ditional Kendall’s tau. A simulation study evaluates the numerical performance of such nonparametric es-
timators. An application to the dependence between energy consumption and temperature conditionally to
calendar days is �nally provided.
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1 Introduction
In the �eld of dependence modeling, it is common to work with dependence measures. Contrary to usual lin-
ear correlations,most of themhave the advantage of being de�nedwithout any condition onmoments, and of
being invariant to changes in the underlyingmarginal distributions. Such summaries of information are very
popular and canbe explicitlywritten as functionals of the underlying copulas: Kendall’s tau, Spearman’s rho,
Blomqvist’s coe�cient... See Nelsen [30] for an introduction. In particular, for more than a century (Spear-
man (1904), Kendall (1938)), Kendall’s tau has become a popular dependencemeasure in [−1, 1]. It quanti�es
the positive or negative dependence between two random variables X1 and X2. Denoting by C1,2 the unique
underlying copula of (X1, X2) that is assumed to be continuous, their Kendall’s tau can be directly de�ned as

τ1,2 := 4
∫

[0,1]2

C1,2(u1, u2) C1,2(du1, du2) − 1 (1)

= IP
(

(X1,1 − X2,1)(X1,2 − X2,2) > 0
)
− IP
(

(X1,1 − X2,1)(X1,2 − X2,2) < 0
)
,

where (X
i,1, Xi,2)

i=1,2 are two independent versions of X := (X1, X2). This measure is then interpreted as the
probability of observing a concordant pair minus the probability of observing a discordant pair. See [22] for
an historical perspective on Kendall’s tau. Its inference is discussed in many textbooks (see [18] or [24], e.g.).
Its links with copulas and other dependence measures can be found in [30] or [20].

Similar dependencemeasures can be introduced in a conditional setup, when a p-dimensional covariate
Z is available. When hundreds of papers refer to Kendall’s tau, only a few of them have considered condi-
tional Kendall’s tau (as de�ned below) until now. The goal is now to model the dependence between the two
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components X1 and X2, given the vector of covariates Z. Logically, we can invoke the conditional copula¹
C1,2|Z=z of (X1, X2) given Z = z for any point z ∈ Rp, and the corresponding conditional Kendall’s tau would
be simply de�ned as

τ1,2|Z=z := 4
∫

[0,1]2

C1,2|Z=z(u1, u2) C1,2|Z=z(du1, du2) − 1

= IP
(

(X1,1 − X2,1)(X1,2 − X2,2) > 0
∣∣Z1 = Z2 = z

)
− IP
(

(X1,1 − X2,1)(X1,2 − X2,2) < 0
∣∣Z1 = Z2 = z

)
,

where (X
i,1, Xi,2, Zi)i=1,2 are two independent versions of (X1, X2, Z). As above, this is the probability of ob-

serving a concordant pair minus the probability of observing a discordant pair, conditionally on Z1 and Z2
being both equal to z. Note that, as conditional copulas themselves, conditional Kendall’s taus are invariant
w.r.t. increasing transformations of the conditional margins X1 and X2, given Z. Of course, if Z is indepen-
dent of (X1, X2) then, for every z ∈ Rp, the conditional Kendall’s tau τ1,2|Z=z is equal to the (unconditional)
Kendall’s tau τ1,2.

Conditional Kendall’s tau, and more generally conditional dependence measures, are of interest per se
because they allow to summarize the evolution of the dependence between X1 and X2, when the covariate
Z is changing. Surprisingly, their nonparametric estimates have been introduced in the literature only a few
years ago ([15],[40],[13]) and their properties have not yet been fully studied in depth. Indeed, until now and
to the best of our knowledge, the theoretical properties of nonparametric conditional Kendall’s tau estimates
have been obtained “in passing” in the literature, as a sub-product of the weak-convergence of conditional
copula processes ([40]) or as intermediate quantities that will be “plugged-in” ([12]). Therefore, such prop-
erties have been stated under too demanding assumptions. In particular, some assumptions were related to
the estimation of conditional margins, while this is not required because Kendall’s tau are based on ranks.
In this paper, we directly study nonparametric estimates τ̂1,2|z without relying on the theory/inference of
copulas. Therefore, we will state their main usual statistical properties: exponential bounds in probability,
consistency, asymptotic normality.

Our τ1,2|Z=z has not to be confused with the so-called “conditional Kendall’s tau” in the case of truncated
data ([39], [28]), in the case of semi-competing riskmodels ([23], [19]), or for other partial information schemes
([6], [21], among others). Indeed, particularly in biostatistics or reliability, the inference of dependence mod-
els under truncation/censoring can be led by considering some types of conditional Kendall’s tau, given some
algebraic relationships among the underlying random variables. This would induce conditioning by subsets.
At the opposite, we will consider only pointwise conditioning events in this paper, under a nonparametric
point-of-view. Nonetheless, such pointwise events can be found in the literature, but in some parametric or
semi-parametric particular frameworks, as for the identi�ability of frailty distributions in bivariate propor-
tional models ([31], [27]). Other related papers are [3] or [25], that are dealing with extreme co-movements
(bivariate extreme-value theory). There, the tail conditioning events of Kendall’s tau have probabilities that
go to zero with the sample size.

In Section 2, di�erent kernel-based estimators of the conditional Kendall’s tau are discussed. Moreover,
we propose a cross-validation criterion to select the associated bandwidth. In Section 3, numerous original
theoretical properties of the latter estimators are proved: at �rst, �nite distance exponential bounds in prob-
ability (pointwise and uniformly w.r.t. z); then, under an asymptotic point-of-view, pointwise and uniform
consistency; and �nally the asymptotic normality of conditional Kendall’s tau under unrestrictive assump-
tions (see below) and with an explicit limiting law. A short simulation study is provided in Section 4. Proofs
are postponed into the appendix.

1 The conditional copula of X1 and X2 given Z = z can be de�ned almost surely as the unique copula of the conditional c.d.f.
F
X1 ,X2|Z=z by Sklar’s theorem. It was introduced by Patton [33, 34].
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2 De�nition of several kernel-based estimators of τ1,2|z
Let (X

i,1, Xi,2, Zi), i = 1, . . . , n be an i.i.d. sample distributed as (X1, X2, Z), and n ≥ 2. Assuming continuous
underlying distributions, there are several equivalent ways of de�ning the conditional Kendall’s tau:

τ1,2|Z=z = 4 IP
(
X1,1 > X2,1, X1,2 > X2,2

∣∣Z1 = Z2 = z
)
− 1

= 1 − 4 IP
(
X1,1 > X2,1, X1,2 < X2,2

∣∣Z1 = Z2 = z
)

= IP
(

(X1,1 − X2,1)(X1,2 − X2,2) > 0
∣∣Z1 = Z2 = z

)
− IP
(

(X1,1 − X2,1)(X1,2 − X2,2) < 0
∣∣Z1 = Z2 = z

)
.

Motivated by each of the latter expressions, we introduce several kernel-based estimators of τ1,2|Z=z:

τ̂

(1)
1,2|Z=z := 4

n∑
i=1

n∑
j=1

w
i,n(z)w

j,n(z)1
{
X
i,1 < X

j,1, Xi,2 < X
j,2
}
− 1,

τ̂

(2)
1,2|Z=z :=

n∑
i=1

n∑
j=1

w
i,n(z)w

j,n(z)
(
1

{
(X
i,1 − Xj,1)(X

i,2 − Xj,2) > 0
}
− 1
{

(X
i,1 − Xj,1)(X

i,2 − Xj,2) < 0
})

,

τ̂

(3)
1,2|Z=z := 1 − 4

n∑
i=1

n∑
j=1

w
i,n(z)w

j,n(z)1
{
X
i,1 < X

j,1, Xi,2 > X
j,2
}
,

where 1 denotes the indicator function, w
i,n is a sequence of weights given by

w
i,n(z) = K

h
(Z
i
− z)∑

n

j=1 Kh(Z
j
− z)

, (2)

with K
h

(·) := h−pK(·/h) for some kernel K onRp, and h = h(n)denotes a usual bandwidth sequence that tends
to zero when n → ∞. In this paper, we have chosen usual Nadaraya-Watson weights. Obviously, there are
alternatives (local linear, Priestley-Chao, Gasser-Müller, etc., weight), that would lead to di�erent theoretical
results.

The estimators τ̂(1)
1,2|Z=z, τ̂

(2)
1,2|Z=z and τ̂

(3)
1,2|Z=z look similar, but they are nevertheless di�erent, as shown in

Proposition 1. These di�erences are due to the fact that all the τ̂(k)
1,2|Z=z, k = 1, 2, 3 are a�ne transformations

of a double-indexed sum, on every pair (i, j), including the diagonal terms where i = j. The treatment of these
diagonal terms is di�erent for each of the three estimators de�ned above. Indeed, setting s

n
:= ∑n

i=1 w
2
i,n(z),

it can be easily proved that τ̂(1)
1,2|Z=z takes values in the interval [−1 , 1−2s

n
], τ̂(2)

1,2|Z=z in [−1 + s
n
, 1− s

n
], and

τ̂

(3)
1,2|Z=z in [−1 + 2s

n
, 1]. Moreover, there exists a direct relationship between these estimators, given by the

following proposition.

Proposition 1. Almost surely, τ̂

(1)
1,2|Z=z + s

n
= τ̂(2)

1,2|Z=z = τ̂(3)
1,2|Z=z − sn, where s

n
:= ∑n

i=1 w
2
i,n(z).

This proposition is proved in A.2. As a consequence, we can easily rescale the previous estimators so that the
new estimator will take values in the whole interval [−1, 1]. This would yield

τ̃1,2|Z=z :=
τ̂

(1)
1,2|Z=z

1 − s
n

+ s
n

1 − s
n

=
τ̂

(2)
1,2|Z=z

1 − s
n

=
τ̂

(3)
1,2|Z=z

1 − s
n

− s
n

1 − s
n

·

Note that none of the latter estimators depends on any estimation of conditional marginal distributions.
In otherwords, we only have to conveniently choose theweightsw

i,n to obtain an estimator of the conditional
Kendall’s tau. This is coherent with the fact that conditional Kendall’s taus are invariant with respect to con-
ditional marginal distributions. Moreover, note that, in the de�nition of our estimators, the inequalities are
strict (there are no terms corresponding to the cases i = j). This is inline with the de�nition of (conditional)
Kendall’s tau itself through concordant/discordant pairs of observations.
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The de�nition of τ̂(1)
1,2|Z=z can be motivated as follows. For j = 1, 2, let F̂

j|Z(·|Z = z) be an estimator of the
conditional cdf of X

j
given Z = z. Then, a usual estimator of the conditional copula of X1 and X2 given Z = z

is
Ĉ1,2|Z(u1, u2|Z = z) :=

n∑
i=1

w
i,n(z)1

{
F̂1|Z(X

i,1|Z = z) ≤ u1 , F̂2|Z(X
i,2|Z = z) ≤ u2

}
.

See [40] or [13], e.g. The latter estimator of the conditional copula canbeplugged into (1) to de�ne an estimator
of the conditional Kendall’s tau itself:

τ̂1,2|Z=z := 4
∫
Ĉ1,2|Z(u1, u2|Z = z) Ĉ1,2|Z(du1, du2|Z = z) − 1 (3)

= 4
n∑
j=1

w
j,n(z)Ĉ1,2|Z

(
F̂1|Z(X

j,1|Z = z), F̂2|Z(X
j,2|Z = z)

∣∣Z = z
)
− 1.

Since the functions F̂
j|Z(·|Z = z) are non-decreasing, this reduces to

τ̂1,2|Z=z = 4
n∑
i=1

n∑
j=1

w
i,n(z)w

j,n(z)1
{
X
i,1 ≤ Xj,1, Xi,2 ≤ Xj,2

}
− 1

= 4
n∑
i=1

n∑
j=1

w
i,n(z)w

j,n(z)1
{
X
i,1 < X

j,1, Xi,2 < X
j,2
}
− 1 + o

P
(1) = τ̂(1)

1,2|Z=z + o
P

(1).

Veraverbeke et al. [40], Subsection 3.2, introduced their estimator of τ1,2|Z=z by (3) for a univariate condition-
ing variable. Note that this estimator is the same as the one studied in [15, p.4], i.e. τ̂1,2|Z=z. By the functional
Delta-Method, they deduced its asymptotic normality as a sub-product of theweak convergence of the process√
nh

(
Ĉ1,2|Z(·, ·|z)− C1,2|Z(·, ·|z)

)
when Z is univariate. In our case, we will obtain more and stronger theoreti-

cal properties of τ̂(1)
1,2|Z=z under weaker conditions by a more direct analysis based on ranks. In particular, we

will not require any regularity condition on the conditional marginal distributions, contrary to [40]. Indeed,
in the latter paper, it is required that F

j|Z(·|Z = z) has to be two times continuously di�erentiable (assumption
(R̃3)) and its inverse has to be continuous (assumption (R1)). This is not satis�ed for some simple univariate
cdf as F

j
(t) = t1(t ∈ [0, 1])/2 + 1(t ∈ (1, 2])/2 + t1(t ∈ (2, 4])/4 + 1(t > 4), for instance. Note that we could

justify τ̂(3)
1,2|Z=z in a similar way by considering conditional survival copulas.

Let us de�ne g1, g2, g3 by

g1(X
i
,X

j
) := 41

{
X
i,1 < X

j,1, Xi,2 < X
j,2
}
− 1,

g2(X
i
,X

j
) := 1

{
(X
i,1 − Xj,1) × (X

i,2 − Xj,2) > 0
}
− 1
{

(X
i,1 − Xj,1) × (X

i,2 − Xj,2) < 0
}
,

g3(X
i
,X

j
) := 1 − 41

{
X
i,1 < X

j,1, Xi,2 > X
j,2
}
,

where, for i = 1, . . . , n, we set X
i

:= (X
i,1, Xi,2). Clearly, τ̂(k)

1,2|z is a smoothed estimator of E[g
k
(X1,X2)|Z1 =

Z2 = z], k = 1, 2, 3.

Note that such dependence measures are of interest for the purpose of estimating (conditional or uncon-
ditional) copulamodels too. Indeed, several popular parametric families of copulas have a simple one-to-one
mapping between their parameter and the associated Kendall’s tau (or Spearman’s rho): Gaussian, Student
with a �xed degree of freedom, Clayton, Gumbel and Frank copulas, etc. Then, assume for instance that the
conditional copula C1,2|Z=z is a Gaussian copula with a parameter ρ(z). Then, by estimating its conditional
Kendall’s tau τ1,2|Z=z, we get an estimate of the corresponding parameter ρ(z), and �nally of the conditional
copula itself. See [36], e.g.

The choice of the bandwidth h could be done in a data-driven way, following the general conditional
U-statistics framework detailed in Dony and Mason [10, Section 2]. Indeed, for any k ∈ {1, 2, 3} and z ∈ Rp,
denote by τ̂(h, k)

−(i,j), 1,2|Z=z the estimator τ̂(k)
1,2|Z=z that is made with the smoothing parameter h and our dataset,

when the i-th and j-th observations have been removed. As a consequence, the random function τ̂(h, k)
−(i,j), 1,2|Z=·
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is independent of
(

(X
i
, Z

i
), (X

j
, Z

j
)
)
. As usual with kernel methods, it would be tempting to propose h as the

minimizer of the cross-validation criterion

CV
DM

(h) := 2
n(n − 1)

n∑
i,j=1

(
g
k
(X

i
,X

j
) − τ̂(h, k)

−(i,j), 1,2|Z=(Z
i
+Z

j
)/2

)2
K
h

(Z
i
− Z

j
),

for k = 1, 2, 3 or for τ̃1,2|Z=·. The latter criterion would be a “naively localized” version of the usual cross-
validation method. Unfortunately, we observe that the function h 7→ CV

DM
(h) is most often decreasing in

the range of realistic bandwidth values. If we remove the weight K
h

(Z
i
− Z

j
), then there is no reason why

g
k
(X

i
,X

j
) should be equal to τ̂(k)

−(i,j), 1,2|Z=(Z
i
+Z

j
)/2 (on average), and we are not interested in the prediction of

concordance/discordance pairs for which the Z
i
and Z

j
are far apart. Therefore, a modi�cation of this criteria

is necessary. We propose to separate the choice of h for the terms g
k
(X

i
,X

j
) − τ̂(h, k)

−(i,j), 1,2|Z=(Z
i
+Z

j
)/2 and the

selection of the “convenient pairs” of observations (i, j). This leads to the new criterion

CV

h̃

(h) := 2
n(n − 1)

n∑
i,j=1

(
g
k
(X

i
,X

j
) − τ̂(h, k)

−(i,j), 1,2|Z=(Z
i
+Z

j
)/2

)2
K̃

h̃

(Z
i
− Z

j
), (4)

with a potentially di�erent kernel K̃ and a new �xed tuning parameter h̃. Even if more complex procedures
are possible, we suggest to simply choose K̃(z) := 1{|z|∞ ≤ 1} and to calibrate h̃ so that only a fraction of the
pairs (i, j) has non-zero weights. In practice, set h̃ as the empirical quantile of

(
{|Z

i
− Z

j
|∞ : 1 ≤ i < j ≠ n} of

order 2N
pairs

/(n(n − 1)), where N
pairs

is the number of pairs we want to keep.

3 Theoretical results

3.1 Finite distance bounds

Hereafter, we will consider the behavior of conditional Kendall’s tau estimates given Z = z belongs to some
�xed open and bounded subset Z inRp. For the moment, let us state an instrumental result that is of interest
per se. Let f̂Z(z) := n

−1∑n

j=1 Kh(Z
j
− z) be the usual kernel estimator of the density fZ of the conditioning

variable Z. Note that the estimators τ̂(k)
1,2|Z=z, k = 1, . . . , 3 are well-behaved only whenever f̂Z(z) > 0. Denote

the joint density of (X, Z) by fX,Z. In our study, we need some usual conditions of regularity.

Assumption 3.1. (a) The kernel K is bounded, and set ‖K‖∞ =: C
K
. (b) It is symmetrical in the sense that

K(u) = K(−u) for every u ∈ Rp and satis�es

∫
K = 1,

∫
|K| < ∞,

∫
K

2 < ∞. (c) This kernel is of order α for some

integer α > 1: for all j = 1, . . . , α − 1 and every indices i1, . . . , ij in {1, . . . , p},
∫
K(u)u

i1 . . . uij du = 0. (d)
Moreover, E[K

h
(Z − z)] > 0 for every z ∈ Z and h > 0. Set K̃(·) := K2(·)/

∫
K

2
and ‖K̃‖∞ =: C

K̃

.

Assumption 3.2. fZ is α-times continuously di�erentiable on Z ² and there exists a constant C
K,α > 0 s.t., for

all z ∈ Z, ∫
|K|(u)

p∑
i1 ,...,iα=1

|u
i1 . . . uiα | sup

t∈[0,1]

∣∣∣ ∂

α

fZ
∂z

i1 . . . ∂ziα
(z + thu)

∣∣∣ du ≤ C
K,α .

Moreover, C
K̃,2 denotes a similar constant replacing K by K̃ and α by two.

Assumption 3.3. There exist two positive constants fZ,min and fZ,max such that, for every z ∈ Z, fZ,min ≤ fZ(z) ≤
fZ,max.

2 This means that the partial derivatives ∂k f
Z

(z)/∂z
i1 · · · ∂zik exist and are continuous for every z ∈ Z and every k-uplet

(i1 , . . . , ik) of integers in {1, . . . , p}, k ≤ α.
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Since Z is bounded, Assumption 3.3 is most often satis�ed with the commonly met continuous distribution.

Proposition 2. Under Assumptions 3.1-3.3 and if C
K,αh

α/α! < fZ,min, for any z ∈ Z, the estimator f̂Z(z) is

strictly positive with a probability larger than

1 − 2 exp
(
− nhp

(
fZ,min − CK,αhα/α!

)2 /
(

2fZ,max
∫
K

2 + (2/3)C
K

(fZ,min − CK,αhα/α!)
))
.

The latter proposition is proved in A.3. It guarantees that our estimators τ̂(k)
1,2|z, k = 1, . . . , 3, are well-behaved

with a probability close to one. The next regularity assumption is necessary to explicitly control the bias of
τ̂1,2|Z=z.

Assumption 3.4. For every x ∈ R2
, z 7→ fX,Z(x, z) is di�erentiable on Z almost everywhere up to the order α.

For every 0 ≤ k ≤ α and every 1 ≤ i1, . . . , iα ≤ p, let

H
k,~ι(u, v, x1, x2, z) := sup

t∈[0,1]

∣∣∣∣ ∂

k

fX,Z
∂z

i1 . . . ∂zik

(
x1, z + thu

)
∂

α−k
fX,Z

∂z
i
k+1 . . . ∂ziα

(
x2, z + thv

)∣∣∣∣,
denoting~ι = (i1, . . . , iα). Assume thatH

k,~ι(u, v, x1, x2, z) is integrable and there exists a �nite constant CXZ,α >
0 such that, for every z ∈ Z and every h < 1,∫

|K|(u)|K|(v)
α∑
k=0

(
α

k

)
p∑

i1 ,...,iα=1
H
k,~ι(u, v, x1, x2, z)|u

i1 . . . uik vik+1 . . . viα | du dv dx1 dx2

is less than CXZ,α.

Assumptions 3.2 and 3.4 are satis�edwhen the density of Z is α-times continuously di�erentiable in a (strictly
larger) neighborhood of Z and K is compactly supported, for n su�ciently large. Indeed, the vectors thu and
thv will then be arbitrary small uniformly w.r.t. t ∈ [0, 1] and u (resp. v) in the support of K ³. If K is not
compactly supported, these assumptions are most often satis�ed when the tails of fZ and its derivatives do
not exhibit pathological patterns. For instance, if fZ is a Gaussian density, this is the case because this density
and its derivatives are bounded on Rp.

The next three propositions state pointwise and uniform exponential inequalities for the estimators
τ̂

(k)
1,2|Z=z, when k = 1, 2, 3. They are proved in Sections A.4, A.5 and A.6. We will denote c1 := c3 := 4 and
c2 := 2.

Proposition 3 (Exponential bound with explicit constants). Under Assumptions 3.1-3.4, for every t > 0 such

that C
K,αh

α/α! + t ≤ fZ,min/2 and every t

′ > 0, if C
K̃,2h

2 < fz(z), we have

IP
(
|τ̂(k)

1,2|Z=z − τ1,2|Z=z| >
c
k

f
2
z (z)

(
CXZ,αh

α

α! + 3fz(z)
∫
K

2

2nhp + t′
)
×
(

1 + 16f 2
Z (z)

f

3
Z,min

(
C
K,αh

α

α! + t
)))

≤ 2 exp
(
− nh

p

t

2

2fZ,max
∫
K

2 + (2/3)C
K
t

)
+ 2 exp

(
− (n − 1)h2p

t

′2

4f 2
Z,max(

∫
K

2)2 + (8/3)C2
K

t
′

)
+ 2 exp

(
−

nh

p(fz(z) − C
K̃,2h

2)2

8fZ,max
∫
K̃

2 + 4C
K̃

(fz(z) − C
K̃,2h

2)/3

)
,

for any z ∈ Z and every k = 1, 2, 3.

Alternatively, we can apply Theorem 1 in Major [26] instead of the Bernstein-type inequality that has been
used in the proof of Proposition 3.

3 Then, all the terms that involve fZ and its derivatives are uniformly bounded. And invoke the α-order property of K to check the
validity of such assumptions.
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Proposition 4 (Alternative exponential bound without explicit constants). Under Assumptions 3.1-3.4, for

every t > 0 such that C
K,αh

α/α! + t ≤ fZ,min/2 and every t

′ > 0 s.t. t

′ ≤ 2hp(
∫
K

2)3
f

3
Z,max/C4

K

, there exist

some universal constants C2 and α2 s.t.

IP
(
|τ̂(k)

1,2|Z=z − τ1,2|Z=z| >
c
k

f
2
z (z)

(
CXZ,αh

α

α! + 3fz(z)
∫
K

2

2nhp + t′
)
×
(

1 + 16f 2
Z (z)

f

3
Z,min

(
C
K,αh

α

α! + t
)))

≤ 2 exp
(
− nh

p

t

2

2fZ,max
∫
K

2 + (2/3)C
K
t

)
+ 2 exp

(
−

nh

p(fz(z) − C
K̃,2h

2)2

8fZ,max
∫
K̃

2 + 4C
K̃

(fz(z) − C
K̃,2h

2)/3

)
+ 2 exp

(
nh

p

t

2

32
∫
K

2(
∫
|K|)2

f

3
Z,max + 8C

K

∫
|K|fZ,max t/3

)
+ C2 exp

(
− α2nh

p

t

′

8fZ,max(
∫
K

2)

)
,

for any z ∈ Z and every k = 1, 2, 3, if C
K̃,2h

2 < fZ(z) and 6hp
( ∫
|K|
)2
fz,max <

∫
K

2
.

Remark 5. In Propositions 2, 3 and 4, when the support of K is included in [−c, c]p for some c > 0, fZ,max can be

replaced by a local bound supz̃∈V(z,ϵ) fZ(z̃), denoting by V(z, ϵ) a closed ball of center z and any radius ϵ > 0,
when h c < ϵ.

Propositions 3 and 4 look similar. Nonetheless, only the upper bound in the former case can be explicitly
calculated because this bound involves constants that can be numerically evaluated. But, on the other side,
Proposition 4 provides better rates of convergence. Indeed, by choosing t′ of the order hp, the latter result can
be summarized as IP

(
|τ̂(k)

1,2|Z=z − τ1,2|Z=z| > ϵhp
)
� exp

(
−Cnh2p

ϵ

)
, for some constants ϵ > 0 and C > 0. At the

opposite, the bound obtained in Proposition 3 is of the type IP
(
|τ̂(k)

1,2|Z=z − τ1,2|Z=z| > ϵ
)
� exp

(
− C′nh2p

ϵ

)
,

C

′ > 0, what is clearly weaker.

As a corollary, the two latter results yield theweak consistency of τ̂(k)
1,2|Z=z for every z ∈ Z, when nh2p →∞

(choose the constants t and t′ ∼ hp su�ciently small, in Proposition 4, e.g.).

It is possible to obtain uniform bounds, by slightly strengthening our assumptions. Note that this next
result will be true if n is su�ciently large, when Proposition 4 was true for every n.

Assumption 3.5. The kernel K is Lipschitz on (Z, ‖ · ‖∞), with a constant λ
K
and Z is a subset of an hypercube

in Rp whose volume is denoted by V. Moreover, K and K

2
are regular in the sense of [16] or [11].

Proposition 6 (Uniform exponential bound). Under the assumptions 3.1-3.5, there exist some constants L
K

and C
K
(resp. L

K̃

and C
K̃

) that depend only on the VC characteristics of K (resp. K̃), s.t., for every µ ∈ (0, 1) such
that µfz,min < CXZ,αhα/α! + b

K

∫
K

2
fZ,max/CK , if fZ,max < C̃XZ,2h2/2 + b

K̃

∫
K̃

2
fZ,max/C

K̃

,

IP
(

sup
z∈Z
|τ̂(k)

1,2|Z=z − τ1,2|Z=z| >
c
k

f
2
z,min(1 − µ)2

(
CXZ,αh

α

α! + 3fz,max
∫
K

2

2nhp + t
))

≤ L
K

exp
(
− C

f ,Knh
p

(
µfz,min −

CXZ,αh
α

α!
)2)

+ C2D exp
(
− α2nth

p

8fZ,max(
∫
K

2)

)
+ L

K̃

exp
(
− C

f ,K̃nh
p

(
fz,max − C̃XZ,2h2)2/4

)
+ 2 exp

(
− A2nh

p

t

2
C

−4
K

162
A

2
1
∫
K

2
f

3
z,max(

∫
|K|)2

)
+ 2 exp

(
− A2nh

p

t

16C2
K

A1

)
,

for n su�ciently large, k = 1, 2, 3, and for every t > 0 s.t. t ≤ 2hp(
∫
K

2)3
f

3
Z,max/C4

K

,

−16A1C
2
K
A
g

∫
K

2
f

3
z,max(

∫
|K|)2 ln(hp

∫
K

2
f

3
z,max(

∫
|K|)2) < n1/2

h

p/2
t, and

nh

p

t ≥
( ∫

K

2)
fz,maxM2(p + β)3/2 log

( 4C2
K

h
p

fz,max
∫
K

2

)
, β = max

(
0, logD

log n
)
, D := dV

(4C
K
λ
K

h

)
pe,

for some universal constants C2, α2,M2, A1, A2 and a constant A
g
that depends on K and fz,max.
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We have denoted C
f ,K := log(1 + b

K
/(4L

K
))/(L

K
b
K
fz,max

∫
K

2), for any arbitrarily chosen constant b
K
≥ C

K
.

Similarly, C
f ,K̃ := log(1 + b

K̃

/(4L
K̃

))/(L
K̃

b
K̃

fz,max
∫
K̃

2), b
K̃

≥ C
K̃

.

3.2 Asymptotic behavior

The previous exponential inequalities are not optimal to prove usual asymptotic results. Indeed, they directly
or indirectly rely on upper bounds of estimates, as in Hoe�ding or Bernstein-type inequalities. In the case of
kernel estimates, this implies the necessary condition nh2p →∞, at least. By a direct approach, it is possible
to state the consistency of τ̂(k)

1,2|Z=z, k = 1, 2, 3, and then of τ̃1,2|Z=z, under the weaker condition nhp →∞.

Proposition 7 (Consistency). Under Assumption 3.1, if nh

p

n
→ ∞, lim K(t)|t|p = 0 when |t| → ∞, fZ and

z 7→ τ1,2|Z=z are continuous on Z, then τ̂(k)
1,2|Z=z tends to τ1,2|Z=z in probability, when n →∞ for any k = 1, 2, 3.

This property is proved in A.7. Moreover, Proposition 6 does not allow to state the strong uniform consistency
of τ̂(k)

1,2|Z=z because the threshold t has to be of order hp at most. Here again, a direct approach is possible,
nonetheless.

Proposition 8 (Uniform consistency). Under Assumption 3.1, assume that nh

2p
n
/ log n → ∞, lim K(t)|t|p = 0

when |t| → ∞, K is Lipschitz, fZ and z 7→ τ1,2|Z=z are continuous on a bounded set Z, and there exists a lower

bound fZ,min s.t. fZ,min ≤ fZ(z) for any z ∈ Z. Then supz∈Z
∣∣
τ̂

(k)
1,2|Z=z − τ1,2|Z=z

∣∣→ 0 almost surely, when n → ∞
for any k = 1, 2, 3.

This property is proved in A.8. To derive the asymptotic law of this estimator, we will assume:

Assumption 3.6. (i) nh

p

n
→∞ and nh

p+2α
n

→ 0; (ii) K( · ) is compactly supported.

Proposition 9 (Joint asymptotic normality at di�erent points). Let z′1, . . . , z′n′ be �xed points in a setZ ⊂ Rp.
Assume 3.1, 3.4, 3.6, that the z′

i

are distinct and that fZ and z 7→ fX,Z(x, z) are continuous onZ, for every x. Then,
as n →∞,

(nhp
n

)1/2
(
τ̂1,2|Z=z′

i

− τ1,2|Z=z′
i

)
i=1,...,n′

D−→ N(0,H(k)), k = 1, 2, 3,

where τ̂1,2|Z=z denotes any of the estimators τ̂

(k)
1,2|Z=z, k = 1, 2, 3 or τ̃1,2|Z=z, and H is the n

′ × n′ diagonal real
matrix de�ned by

[H(k)]
i,j =

4
∫
K

2
1{i=j}

fZ(z′
i

)
{
E[g

k
(X1,X)g

k
(X2,X)|Z = Z1 = Z2 = z′

i
] − τ2

1,2|Z=z′
i

}
,

for every 1 ≤ i, j ≤ n′, and (X, Z), (X1, Z1), (X2, Z2) are independent versions.

This proposition is proved in A.9.

Remark 10. The latter results will provide some simple tests of the constancy of the function z 7→ τ1,2|z, and

thenof the constancy of theassociated conditional copula itself. Thiswould test the famous “simplifyingassump-

tion” (“H0 : C1,2|Z=z does not depend on the choice of z”), a key assumption for vine modeling in particular:

see [1] or [17] for a discussion, [8] for a review and a presentation of formal tests for this hypothesis.

4 Simulation study
In this simulation study, we draw i.i.d. random samples (X

i,1, Xi,2, Zi), i = 1, . . . , n, with univariate explana-
tory variables (p = 1). We consider two settings, that correspond to bounded and/or unbounded explanatory
variables respectively:
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1. Z =]0, 1[ and the law of Z is uniform on ]0, 1[. Conditionally on Z = z, X1|Z = z and X2|Z = z both follow
a Gaussian distribution N(z, 1). Their associated conditional copula is Gaussian and their conditional
Kendall’s tau is given by τ1,2|Z=z = 2z − 1.

2. Z =]−2, 2[ and the law of Z is N(0, 1). Conditionally on Z = z, X1|Z = z and X2|Z = z both follow a
Gaussian distribution N(Φ(z), 1), where Φ(·) is the cdf of the Z. Their associated conditional copula is
Gaussian and their conditional Kendall’s tau is given by τ1,2|Z=z = 2Φ(z) − 1.

These simple frameworks allow us to compare the numerical properties of our di�erent estimators in
di�erent parts of the space, in particularwhen Z is close to zero or one, i.e. when the conditional Kendall’s tau
is close to −1 or to 1. Note that these distributions are continuous, with in�nitely di�erentiable densities. We
will use the Epanechnikov kernel. Therefore, they will satisfy Assumptions 3.1-3.6. We compute the di�erent
estimators τ̂(k)

1,2|Z=z for k = 1, 2, 3, and the symmetrically rescaled version τ̃1,2|z. The bandwidth h is chosen
as proportional to the usual “rule-of-thumb” for kernel density estimation, i.e. h = α

h
σ̂(Z)n−1/5 with α

h
∈

{0.5, 0.75, 1, 1.5, 2} and n ∈ {100, 500, 1000, 2000}. For each setting, we consider three local measures
of goodness-of-�t: for a given z and for any Kendall’s tau estimate (say τ̂1,2|Z=z), let

• the (local) bias: Bias(z) := E[τ̂1,2|Z=z] − τ1,2|Z=z,

• the (local) standard deviation: Sd(z) := E
[(
τ̂1,2|Z=z − E[τ̂1,2|Z=z]

)2]1/2
,

• the (local) mean square-error: MSE(z) := E
[(
τ̂1,2|Z=z − τ1,2|Z=z

)2].
We also consider their integrated version w.r.t the usual Lebesgue measure on the whole support of z, re-
spectively denoted by IBias, ISd and IMSE. Some results concerning these integrated measures are given in
Table 1 (resp. Table 2) for Setting 1 (resp. Setting 2), and for di�erent choices of α

h
and n. For the sake of e�ec-

tive calculations of these measures, all the theoretical previous expectations are replaced by their empirical
counterparts based on 500 simulations.

For every n, the best results seem to be obtained with α
h

= 1.5 and the fourth (rescaled) estimator,
particularly in terms of bias. This is not so surprising, because the estimators τ̂(k), k = 1, 2, 3, do not have the
right support at a �nite distance. Note that this comparative advantage of τ̃ in terms of bias decreases with
n, as expected. In terms of integrated variance, all the considered estimators behave more or less similarly,
particularly when n ≥ 500.

To illustrate our results for Setting 1 (resp. Setting 2), the functions z 7→ Bias(z), Sd(z) and MSE(z) have
been plotted on Figures 1-2 (resp. Figures 3-4), bothwith our empirically optimal choice α

h
= 1.5.We can note

that, considering the bias, the estimator τ̃ behaves similarly as τ̂(1) when the true τ is close to−1, and similarly
as τ̂(3) when the true Kendall’s tau is close to 1. But globally, the best pointwise estimator is clearly obtained
with the rescaled version τ̃1,2|Z=·, after a quick inspection of MSE levels, and even if the di�erences between
our four estimators weaken for large sample sizes. The comparative advantage of τ̃1,2|z more clearly appears
with Setting 2 than with Setting 1. Indeed, in the former case, the support of Z’s distribution is the whole
line. Then f̂Z does not su�er anymore from the boundary bias phenomenon, contrary to what happenedwith
Setting 1. As a consequence, the biases induced by the de�nitions of τ̂(k)

1,2|z, k = 1, 3, appear more strikingly
in Figure 3, for instance: when z is close to (−1) (resp. 1), the biases of τ̂(1)

1,2|z (resp. τ̂
(3)
1,2|z) and τ̃1,2|z are close,

when the bias τ̂(3)
1,2|z (resp. τ̂

(1)
1,2|z) is a lot larger. Since the squared biases are here signi�cantly larger than the

variances in the tails, τ̃1,2|z provides the best estimator globally considering “both sides” together. But even
in the center of Z’s distribution, the latter estimator behaves very well.

In Setting 2 where there is no boundary problem, we also try to estimate the conditional Kendall’s tau
using our cross-validation criterion (4), with N

pairs
= 1000. More precisely, denoting by hCV the minimizer of

the cross-validation criterion,we trydi�erent choices h = α
h
×hCV with α

h
∈ {0.5, 0.75, 1, 1.5, 2}. The results

in terms of integrated bias, standard deviation and MSE are given in Table 3. We do not �nd any substantial
improvements compared to the previous Table 2, where the bandwidth was chosen “roughly”. In Table 4,
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we compare the average hCV with the previous choice of h. The expectation of hCV is always higher than
the “rule-of-thumb” href , but the di�erence between both decreases when the sample size n increases. The
standard deviation of hCV is quite high for low values of n, but decreases as a function of n. This may be seen
as quite surprising given the fact that the number of pairs N

pairs
used in the computation of the criterion

stays constant. Nevertheless, when the sample size increases, the selected pairs are better in the sense that
the di�erences |Z

i
− Z

j
| can become smaller as more replications of Z

i
are available.

Table 1: Results of the simulation in Setting 1. All values have been multiplied by 1000. Bold values indicate optimal choices
for the chosen measure of performance. These results are integrated measures of performance over the whole space Z; the
corresponding local measures of performance are displayed in Figures 1 and 2.

n = 100 n = 500 n = 1000 n = 2000

IBias ISd IMSE IBias ISd IMSE IBias ISd IMSE IBias ISd IMSE

α
h

=
0.

5

τ̂

(1)
1,2|Z=· -133 197 66.5 -34.5 84.9 9.86 -18.2 61.6 4.85 -10.9 46 2.65

τ̂

(2)
1,2|Z=· -12.9 187 43.7 -4.08 84.4 8.58 -0.9 61.5 4.49 -1.07 46 2.53

τ̂

(3)
1,2|Z=· 107 190 56.6 26.4 84.5 9.26 16.4 61.5 4.76 8.8 46 2.6

τ̃1,2|Z=· -0.91 213 48.2 -1.18 86.9 8.55 0.733 62.4 4.46 -0.149 46.4 2.5

α
h

=
0.

75

τ̂

(1)
1,2|Z=· -88 150 35.8 -26.3 68 6.32 -13.9 50.7 3.33 -7.98 37.6 1.8

τ̂

(2)
1,2|Z=· -10.4 145 26.3 -5.97 67.9 5.6 -2.33 50.6 3.12 -1.39 37.5 1.74

τ̂

(3)
1,2|Z=· 67.2 146 30.6 14.3 67.9 5.75 9.2 50.6 3.19 5.2 37.5 1.76

τ̃1,2|Z=· -2.06 157 26.7 -3.99 69.2 5.49 -1.21 51.2 3.05 -0.76 37.8 1.69

α
h

=
1

τ̂

(1)
1,2|Z=· -67.8 123 24.5 -19.2 58.7 4.8 -11 43.1 2.52 -6.34 33 1.44

τ̂

(2)
1,2|Z=· -9.99 121 19 -3.95 58.6 4.39 -2.35 43.1 2.39 -1.39 33 1.4

τ̂

(3)
1,2|Z=· 47.8 122 20.9 11.3 58.7 4.47 6.34 43.1 2.41 3.57 33 1.41

τ̃1,2|Z=· -3.48 128 18.1 -2.34 59.5 4.18 -1.46 43.4 2.29 -0.897 33.2 1.35

α
h

=
1.

5

τ̂

(1)
1,2|Z=· -44.6 101 17.5 -15.9 50.4 4.12 -9.7 35.9 2.13 -5.52 27.6 1.28

τ̂

(2)
1,2|Z=· -5.81 100 14.9 -5.68 50.3 3.84 -3.84 35.9 2.02 -2.18 27.6 1.24

τ̂

(3)
1,2|Z=· 33 101 15.5 4.58 50.3 3.77 2.01 35.9 1.99 1.15 27.6 1.23

τ̃1,2|Z=· -1.09 104 13.4 -4.55 50.8 3.57 -3.19 36.1 1.9 -1.83 27.7 1.18

α
h

=
2

τ̂

(1)
1,2|Z=· -37.8 91.4 17.3 -11.8 43.8 4.14 -7.2 31.2 2.35 -5.97 23.7 1.43

τ̂

(2)
1,2|Z=· -8.03 91.4 15.4 -3.93 43.8 3.94 -2.75 31.2 2.28 -3.44 23.7 1.39

τ̂

(3)
1,2|Z=· 21.7 91.7 15.4 3.91 43.8 3.87 1.7 31.2 2.24 -0.912 23.7 1.37

τ̃1,2|Z=· -4.5 94.2 13.5 -3.01 44.1 3.62 -2.24 31.3 2.12 -3.16 23.8 1.32

5 Application to real data
In this section, we present an application of this methodology to the dependence between electricity con-
sumption and temperature. The �rst paper on this topic dates back to 1958 ([7]). Using UK data, they show
that a decrease in temperature increases the electricity demand.Moreover, they show that themarginal e�ect
of temperature levels on electricity consumption di�ers depending on the time of the day. Numerous other
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Figure 1: Local bias, standard deviation and MSE for the estimators τ̂(1) (red) , τ̂(2) (blue), τ̂(3) (green), τ̃ (orange), with n = 100
and α

h
= 1.5 in Setting 1. The dotted line on the �rst �gure is the reference at 0.
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Figure 2: Local bias, standard deviation and MSE for the estimators τ̂(1) (red) , τ̂(2) (blue), τ̂(3) (green), τ̃ (orange), with n = 500
and α

h
= 1.5 in Setting 1. The dotted line on the �rst �gure is the reference at 0.
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Figure 3: Local bias, standard deviation and MSE for the estimators τ̂(1) (red) , τ̂(2) (blue), τ̂(3) (green), τ̃ (orange), with n = 100
and α

h
= 1.5 in Setting 2. The dotted line on the �rst �gure is the reference at 0.
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Figure 4: Local bias, standard deviation and MSE for the estimators τ̂(1) (red) , τ̂(2) (blue), τ̂(3) (green), τ̃ (orange), with n = 500
and α

h
= 1.5 in Setting 2. The dotted line on the �rst �gure is the reference at 0.
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Table 2: Results of the simulation in Setting 2. All values have been multiplied by 1000. Bold values indicate optimal choices
for the chosen measure of performance. These results are integrated measures of performance over the whole space Z; the
corresponding local measures of performance are displayed in Figures 3 and 4.

n = 100 n = 500 n = 1000 n = 2000

IBias ISd IMSE IBias ISd IMSE IBias ISd IMSE IBias ISd IMSE

α
h

=
0.

5

τ̂

(1)
1,2|Z=· -207 227 180 -54.1 83.9 16.9 -29.6 55.3 5.81 -16.9 38.9 2.49

τ̂

(2)
1,2|Z=· 1.15 207 97 0.845 80.5 10.8 0.557 54.4 4.35 0.145 38.6 2.04

τ̂

(3)
1,2|Z=· 210 228 181 55.7 83.2 16.4 30.7 55.4 5.9 17.2 38.9 2.5

τ̃1,2|Z=· 1.4 225 51.9 0.987 81.4 6.86 0.456 55 3.22 0.175 38.9 1.66

α
h

=
0.

75

τ̂

(1)
1,2|Z=· -144 175 98.6 -33.3 60.6 7.5 -19.8 41.9 3.12 -10.6 30.5 1.42

τ̂

(2)
1,2|Z=· -2.33 163 56.2 1.73 59.4 5.56 -0.0619 41.7 2.51 0.665 30.4 1.24

τ̂

(3)
1,2|Z=· 140 176 99.2 36.8 60.7 7.73 19.7 42.1 3.12 11.9 30.5 1.45

τ̃1,2|Z=· -3.15 170 30.3 1.69 60.2 3.85 -0.093 42.1 1.95 0.645 30.5 1.05

α
h

=
1

τ̂

(1)
1,2|Z=· -99.8 143 57.7 -24.9 50.9 5.06 -13.5 36.6 2.28 -6.92 26.6 1.09

τ̂

(2)
1,2|Z=· 1.17 132 34.6 0.903 50.4 4.02 1.16 36.5 1.97 1.46 26.6 0.994

τ̂

(3)
1,2|Z=· 102 139 54.4 26.7 51 5.13 15.8 36.6 2.33 9.83 26.6 1.11

τ̃1,2|Z=· 2.51 138 20.1 0.897 50.9 2.89 1.16 36.7 1.56 1.48 26.7 0.847

α
h

=
1.

5

τ̂

(1)
1,2|Z=· -59.1 104 28.1 -14.7 42.3 3.87 -7.56 29.7 1.86 -4.17 21.8 0.932

τ̂

(2)
1,2|Z=· 4.34 99.7 21.4 2.05 42.1 3.48 2.07 29.6 1.75 1.35 21.8 0.899

τ̂

(3)
1,2|Z=· 67.8 103 29.6 18.8 42.3 3.96 11.7 29.6 1.92 6.87 21.8 0.957

τ̃1,2|Z=· 3.34 103 13.4 2.08 42.5 2.6 2.08 29.7 1.39 1.35 21.8 0.755

α
h

=
2

τ̂

(1)
1,2|Z=· -37.2 88.2 23.9 -9.57 38.2 4.6 -3.75 26.2 2.34 -1.09 19.8 1.32

τ̂

(2)
1,2|Z=· 8.17 85.9 21.2 2.69 38 4.45 3.32 26.1 2.3 2.99 19.8 1.32

τ̂

(3)
1,2|Z=· 53.5 87.4 25.3 14.9 38.1 4.74 10.4 26.2 2.41 7.08 19.8 1.36

τ̃1,2|Z=· 8.47 88.5 15 2.69 38.4 3.59 3.33 26.3 1.93 3 19.9 1.15

articles have studied the dependence between these two variables, see for instance [4, 29, 32]. Generally,
in winter, electricity consumption increases when temperature decreases, because of the demand for heat-
ing. On the contrary, high temperatures in summer would cause an increased electricity demand for cooling
homes, o�ces and so on.

Formally, we study the dependence between the following two variables:

• Power
t
, the French electricity consumption⁴ in MW at time t;

• Temp
t
, the temperature in Celsius degree at the Orly Airport weather station (France)⁵.

These two variables are observed every 30 minutes from 01/01/1996 to 31/03/2019. The �nal dataset has got
n = 329, 756 rows. The unconditional Kendall’s tau between these two variables is −0.397, computed using
the fast Kendall’s tau algorithm [14]. In other words, on average, lower temperatures are associated to higher
electricity consumption.

4 downloaded from http://clients.rte-france.com/lang/an/visiteurs/vie/vie_stats_conso_inst.jsp
5 downloaded from https://gis.ncdc.noaa.gov/maps/ncei/cdo/hourly
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Table 3: Results of the simulation in Setting 2 using h = α
h
× hCV where hCV has been chosen by cross-validation. All values

have been multiplied by 1000. Bold values indicate optimal choices for the chosen measure of performance.

n = 100 n = 500 n = 1000 n = 2000

IBias ISd IMSE IBias ISd IMSE IBias ISd IMSE IBias ISd IMSE

α
h

=
0.

5

τ̂

(1)
1,2|Z=· -111 154 66.2 -36.9 66.8 9.01 -22.4 48.2 4.06 -12.9 36.1 2.04

τ̂

(2)
1,2|Z=· 0.0488 137 36.3 0.236 64.2 6.45 0.546 46.8 3.14 1.29 35.7 1.78

τ̂

(3)
1,2|Z=· 111 151 60.6 37.4 66.3 8.88 23.5 47.2 4.07 15.5 36.2 2.18

τ̃1,2|Z=· 1.38 132 18.3 0.27 64.5 4.49 0.61 46.8 2.36 1.29 35.6 1.49

α
h

=
0.

75

τ̂

(1)
1,2|Z=· -67.4 117 35.7 -23.3 52.1 5.27 -13.9 37.8 2.4 -7.6 29 1.3

τ̂

(2)
1,2|Z=· 4.32 108 23.5 0.809 50.7 4.21 1.03 37.2 2.07 1.78 28.8 1.21

τ̂

(3)
1,2|Z=· 76.1 119 35.4 24.9 51.6 5.12 16 37.6 2.49 11.2 29.1 1.39

τ̃1,2|Z=· 4.98 106 13.3 0.86 51.6 3.13 1.03 37.5 1.63 1.81 28.9 1.02

α
h

=
1

τ̂

(1)
1,2|Z=· -43 101 28 -15.8 45.7 4.44 -9.51 33.1 2.04 -4.68 25.1 1.07

τ̂

(2)
1,2|Z=· 7.87 93.1 22.4 2.01 44.8 3.91 1.57 32.7 1.87 2.29 24.9 1.03

τ̂

(3)
1,2|Z=· 58.8 97.6 27.2 19.8 45.3 4.41 12.7 32.9 2.1 9.27 25.1 1.14

τ̃1,2|Z=· 8.51 98 15.7 2.05 46 3.01 1.57 33.1 1.5 2.33 25.1 0.871

α
h

=
1.

5

τ̂

(1)
1,2|Z=· -16.1 95.6 41.7 -6.36 43 6.35 -4.04 30.6 2.87 -1.11 22.1 1.34

τ̂

(2)
1,2|Z=· 14.9 92.6 40.4 5.08 42.6 6.2 3.17 30.4 2.83 3.47 22 1.34

τ̂

(3)
1,2|Z=· 46 92.8 42.2 16.5 42.6 6.45 10.4 30.4 2.94 8.06 22.1 1.4

τ̃1,2|Z=· 15.6 100 35.2 5.11 44 5.31 3.17 31 2.45 3.5 22.4 1.17

Table 4: Expectation and standard deviation of the bandwidth selected by cross-validation as a function of the sample size n,
and comparison with bandwidth href chosen by the rule-of-thumb.

n 100 500 1000 2000
E[hCV ] 0.77 0.43 0.34 0.27
Sd[hCV ] 0.17 0.091 0.060 0.057

h

ref = n−1/5 0.40 0.29 0.25 0.22

To have a more precise investigation about the dependence between these two variables, we decided to
use a usual “detrending method”: we �t a linear trend on both variables and consider only the dependence
between the two series of residuals. Formally, our model assumption is

Power
t

= a0, power + a1, power × t + ε1,t , (5)
Temp

t
= a0, temp + a1, temp × t + ε2,t , (6)

where t is the the number of half-hours since 01/01/1996, for some unknown coe�cients a0, power , a1, power ,
a0, temp , a1, temp. And the couple of series (ε1,t , ε2,t) is assumed to be stationary. We estimate these two lin-
ear regressions separately using ordinary least squares (OLS). The results are reported in Table 5. All the
coe�cients are signi�cant. Indeed, because of economic and technological growth, the electricity consump-
tion increases on average by 0.0044 MW each hour. At the same time, temperature increases on average by
1.6 × 10−6 Celsius degree per hour, which corresponds to a Global Warming of 0.014 degree per year. Even
if this is a very simple model, with a linear growth, it correspond to the right order of magnitude commonly
found.
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Table 5: Statistics for the OLS estimators of (5) and (6).

Estimate Std. Error t-value p-value
a0, power 4.976e+04 3.933e+01 1265.1 <2e-16
a1, power 2.205e-02 2.066e-04 106.8 <2e-16
a0, temp 1.187e+01 2.526e-02 469.902 <2e-16
a1, temp 8.014e-07 1.327e-07 6.041 1.54e-09
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Figure 5: Conditional Kendall’s tau between the detrended
electricity consumption ε̂1,t and the detrended temperature
ε̂2,t, given the day of the year and estimated using h

CV
= 5

days.
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Figure 6: Conditional Kendall’s tau between the detrended
electricity consumption ε̂1,t and the detrended temperature
ε̂2,t, given the day of the year and estimated using h* = 12
days.

Our goal is to estimate whether the dependence between electricity consumption and temperature is
varying as a function of the day of the year (month, season...). The lack of stationarity on the original series
had an in�uence on the conditional Kendall’s tau. Indeed, a part of positive dependence between the original
variables is due to the fact that they both increase on average over time. We consider this as a spurious e�ect
caused by the non-stationarity. For this reason, we have studied the (conditional) dependence between the
estimated residuals ε̂1,t and ε̂2,t.

Concerning the bandwidth h choice, we followed the insights of our simulation in Section 4. Globally,
there exist two possibilities: choosing the bandwidth according to the usual rule-of-thumb h* = 1.5 × σ̂(Z) ×
n

−1/5, or using our cross-validation criterion, which yields h
CV

. Note that the computation time of this cross-
validation function is of order O(n2), by Equation (4). With our sample size n = 329 756, this criterion be-
comes computationally unfeasible in a reasonable time. To cope with this di�culty, we use a Monte-Carlo
approximation

CV

N,h̃(h) := 1
N

N∑
l=1

(
g
k
(X

i
l

,X
j
l

) − τ̂−(i
l
,j
l
), 1,2|Z=(Z

i

l

+Z
j

l

)/2
)2
1

(
d(Z

i
l

, Z
j
l

) ≤ h̃
)

(7)

where, for every l = 1, . . . , N, we sample independently i
l
uniformly in [1, n] and j

l
|i
l
uniformly on the set

{j ∈ [1, n] : d(Z
i
l

, Z
j
) ≤ h̃}. In practice, we choose d(a, b) as the number of days between the two dates a

and b. For instance, the distance between January 1st and December 30th is 2 days. Similarly, (Z
i
l

+ Z
j
l

)/2
corresponds to the mean day of the year between the days Z

i
l

and Z
j
l

, and is computed using the package
circular [2].

The estimated conditional Kendall’s tauwith the bandwidth h
CV

or h* are displayed in Figures 5 and 6.We
observe that conditional Kendall’s tau is negative in winter, meaning that lower temperatures are associated
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with higher electricity demands. This can be explained by the energy consumption for heating purpose. On
the contrary, in summer, higher temperatures are associated with higher energy demand, because of the en-
ergy consumption induced by cooling devices. It is interesting to note that the average conditional Kendall’s
tau in winter (−0.23) is slightly smaller in absolute value than in summer (0.30).
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Figure 7: Conditional Kendall’s tau between electricity consumption and temperature given the day of the year (h*,1 = 12 days)
and the time of the day (in hours, h*,2 = 1 hour).

To complete this analysis, we decided to include a second variable, which is the hour of the day. The
choice of a bivariate bandwidth is not straightforward. To simplify, we decide to use a diagonal bandwidth
given by h*,1 = 1.5 × σ̂(Z1) × n−1/5 = 12 days and h*,2 = 1.5 × σ̂(Z2) × n−1/5 = 1 hour. The results are
displayed on Figure 7. On the x-axis, we globally �nd the same trend: negative dependence in winter and
positive dependence in summer, which is coherent. Moreover, in winter, the conditional Kendall’s tau ismore
important (around −0.5) during nights (20:00-6:00) than in the daytime. This may be explained by the fact
that heating in households has amore important contribution to the total consumption than during daytime,
when many people live outside their homes.

Note that, during summers, the levels of Kendall’s tau given date and daytime are most often smaller
than Kendall’s tau given date only. This may appear as counterintuitive. But, as noticed in [9], the average of
the former quantity (over daytimes) is not equal to the latter quantity in general. In our particular case, we
can argue that, during summers, the levels of dependence between temperature and energy consumption is
rather weak once we control for daytime. This is the same phenomenon with usual factor models, where two
variables may be independent given a third one, but they may be strongly dependent (unconditionnally).
Acknowledgments
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A Proofs
For convenience, we recall Berk’s (1970) inequality (see TheoremA in Ser�ing [37, p.201]). Note that, ifm = 1,
this reduces to Bernstein’s inequality.

Lemma 11. Let m, n > 0, X1, . . . ,Xn i.i.d. random vectors with values in a measurable space X and g : Xm →
[a, b] be a symmetric real bounded function. Set θ := E[g(X1, . . . ,Xm)] and σ2 := Var[g(X1, . . . ,Xm)]. Then,
for any t > 0 and n ≥ m,

IP

(n
m

)−1∑
c

g(X
i1 , . . . ,Xim ) − θ ≥ t

 ≤ exp
(
− [n/m]t2

2σ2 + (2/3)(b − θ)t

)
,

where

∑
c

denotes summation over all subgroups of m distinct integers (i1, . . . , im) of {1, . . . n}.

A.1 Notations

Let us de�ne a few notations that will be used throughout the proofs. For every 1 ≤ i, j ≤ n and z ∈ Rp, let us
de�ne

S
i,j(z) := n−2

K
h

(Z
i
− z)K

h
(Z
j
− z)

(
1

{
X
i
< X

j

}
− IP
(
X1 < X2

∣∣Z1 = Z2 = z
))
, (8)

gz
(

(X
i
, Z

i
), (X

j
, Z

j
)
)

:= K
h

(Z
i
− z)K

h
(Z
j
− z)

(
1

{
X
i
< X

j

}
− IP
(
X
i
< X

j

∣∣Z
i

= Z
j

= z
))

− E
[
K
h

(Z
i
− z)K

h
(Z
j
− z)

(
1

{
X
i
< X

j

}
− IP
(
X
i
< X

j

∣∣Z
i

= Z
j

= z
))]

, (9)

g̃
i,j =

(
gz
(

(X
i
, Z

i
) , (X

j
, Z

j
)
)

+ gz
(

(X
j
, Z

j
) , (X

i
, Z

i
)
))
/2, (10)

g
i

:= E[g̃
i,j|Xi , Zi], (11)

ξz(X
i
, Z

i
,X

j
, Z

j
) := ξ

i,j := g̃
i,j − gi − gj , (12)

`z : (x1, z1, x2, z2) 7→ h

2p

4C2
K

ξz
(

(x1, z1) , (x2, z2)
)
for a given h > 0, (13)

Note that ξ
i,j is a degenerate (symmetrical) U-statistics because E[ξ

i,j|Xi , Zi] = E[ξ
i,j|Xj , Zj] = 0, when i ≠ j.

In the proofs, we will study the di�erence τ̂1,2|Z=z − τ1,2|Z=z using two quantities that can be bounded
separately: f̂ 2

Z (z) and∑1≤i,j≤n Si,j(z).

τ̂1,2|Z=z − τ1,2|Z=z = 4
∑

1≤i,j≤n
w
i,n(z)w

j,n(z)1
{
X
i
< X

j

}
− 4 IP

(
X1 < X2

∣∣Z1 = Z2 = z
)

= 4
n

2
f̂

2
Z (z)

∑
1≤i,j≤n

K
h

(Z
i
− z)K

h
(Z
j
− z)

(
1

{
X
i
< X

j

}
− IP
(
X1 < X2

∣∣Z1 = Z2 = z
))

= 4
f̂

2
Z (z)

∑
1≤i,j≤n

S
i,j(z), (14)

This sum can be decomposed in the following way∑
1≤i,j≤n

S
i,j(z) =

∑
1≤i= ̸j≤n

(
S
i,j(z) − E[S

i,j(z)]
)

+ n(n − 1)E[S1,2(z)] − ∆
n

(z). (15)

where the “diagonal term” ∆
n

(z) := −∑n

i=1 Si,i(z) = IP
(
X1 < X2

∣∣Z1 = Z2 = z
)∑

n

i=1 K
2
h

(Z
i
−z)/n2. The stochastic

component above can itself be rewritten as∑
1≤i= ̸j≤n

(
S
i,j(z) − E[S

i,j(z)]
)

= 1
n

2
∑

1≤i= ̸j≤n
gz
(

(X
i
, Z

i
) , (X

j
, Z

j
)
)

= 1
n

2
∑

1≤i= ̸j≤n
g̃
i,j (16)
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= 1
n

2
∑

1≤i≠j≤n
ξ
i,j + 2(n − 1)

n
2

n∑
i=1

g
i
. (17)

A.2 Proof of Proposition 1

Since there are no ties a.s.,

1 + τ̂(1)
1,2|Z=z = 4

n∑
i=1

n∑
j=1

w
i,n(z)w

j,n(z)
(
1

{
X
i,1 < X

j,1
}
− 1
{
X
i,1 < X

j,1, Xi,2 > X
j,2
})

= 4
n∑
i=1

n∑
j=1

w
i,n(z)w

j,n(z)1
{
X
i,1 < X

j,1
}

+ τ̂(3)
1,2|Z=z − 1.

But

1 =
n∑
i=1

n∑
j=1

w
i,n(z)w

j,n(z) =
n∑
i=1

n∑
j=1

w
i,n(z)w

j,n(z)
(
1

{
X
i,1 ≤ Xj,1

}
+ 1

{
X
i,1 > X

j,1
})

= 2
n∑
i=1

n∑
j=1

w
i,n(z)w

j,n(z)1
{
X
i,1 < X

j,1
}

+
n∑
i=1

w

2
i,n(z),

implying 1 + τ̂(1)
1,2|Z=z = 2(1 − s

n
) + τ̂(3)

1,2|Z=z − 1, and then τ̂(1)
1,2|Z=z = τ̂(3)

1,2|Z=z − 2s
n
. Moreover,

τ̂

(2)
1,2|Z=z =

n∑
i=1

n∑
j=1

w
i,n(z)w

j,n(z)
(
1

{
X
i,1 > X

j,1, Xi,2 > X
j,2
}

+ 1

{
X
i,1 < X

j,1, Xi,2 < X
j,2
}

− 1
{
X
i,1 > X

j,1, Xi,2 < X
j,2
}
− 1
{
X
i,1 < X

j,1, Xi,2 > X
j,2
})

= 2
n∑
i=1

n∑
j=1

w
i,n(z)w

j,n(z)
(
1

{
X
i,1 > X

j,1, Xi,2 > X
j,2
}
− 1
{
X
i,1 > X

j,1, Xi,2 < X
j,2
})

= 1
2
(
τ̂

(1)
1,2|Z=z + 1

)
+ 1

2
(
τ̂

(3)
1,2|Z=z − 1

)
=
τ̂

(1)
1,2|Z=z + τ̂(3)

1,2|Z=z
2 = τ̂(1)

1,2|Z=z + s
n

= τ̂(3)
1,2|Z=z − sn . �

A.3 Proof of Proposition 2

Lemma 12. Under Assumptions 3.1, 3.2 and 3.3, we have for any t > 0,

IP
(∣∣
f̂Z(z) − fZ(z)

∣∣ ≥ CK,αhα
α! + t

)
≤ 2 exp

(
− nh

p

t

2

2fZ,max
∫
K

2 + (2/3)C
K
t

)
.

This Lemma is proved below. If, for some ϵ > 0, we have C
K,αh

α/α! + t ≤ fZ,min − ϵ, then f̂ (z) ≥ ϵ > 0 with a
probability larger than 1 − 2 exp

(
− nhp t2/(2fZ,max

∫
K

2 + (2/3)C
K
t)
)
. So, we should choose the largest t as

possible, which yields Proposition 2.

It remains to prove Lemma 12. Use the usual decomposition between a stochastic component and a bias:
f̂Z(z) − fZ(z) =

(
f̂Z(z) − E[f̂Z(z)]

)
+
(
E[f̂Z(z)] − fZ(z)

)
. We �rst bound the bias from above.

E[f̂Z(z)] − fZ(z) =
∫
Rp

K(u)
(
fZ
(
z + hu

)
− fZ(z)

)
du.
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Set ϕz,u(t) := fZ
(
z + thu

)
for t ∈ [0, 1]. This function has at least the same regularity as fZ, so it is α-

di�erentiable (by Assumption 3.2). By a Taylor-Lagrange expansion, we get∫
Rp

K(u)
(
fZ
(
z + hu

)
− fZ(z)

)
du =

∫
Rp

K(u)
(
α−1∑
i=1

1
i!ϕ

(i)
z,u(0) + 1

α!ϕ
(α)
z,u(tz,u)

)
du,

for some real number tz,u ∈ (0, 1). By Assumption 3.1(c) and for every i < α,
∫
Rp K(u)ϕ(i)

z,u(0) du = 0. There-
fore, ∣∣∣E[f̂Z(z)] − fZ(z)

∣∣∣ =
∣∣∣ ∫
Rp

K(u) 1
α!ϕ

(α)
z,u(tz,u)du

∣∣∣
= 1

α!
∣∣∣ ∫
Rp

K(u)
p∑

i1 ,...,iα=1
h

α

u
i1 . . . uiα

∂

α

fZ
∂z

i1 . . . ∂ziα

(
z + tz,uhu

)
du
∣∣∣ ≤ CK,α

α! h

α ,

where the last inequality results from Assumption 3.2.

Second, the stochastic component may be written as

f̂Z(z) − E[f̂Z(z)] = n−1
n∑
i=1

K
h

(Z
i
− z) − E

[
n

−1
n∑
i=1

K
h

(Z
i
− z)

]
= n−1

n∑
i=1

(
g(Z

i
) − E[g(Z

i
)]
)
,

where g(Z
i
) := K

h
(Z
i
− z). Apply Lemma 11 with m = 1 and the latter g(Z

i
). Here, we have b = −a = h−pC

K
(by

Assumption 3.1(a)), θ = E
[
g(Z1)

]
≥ 0 (by Assumption 3.1(d)), and

∣∣∣Var[g(Z1)
]∣∣∣ ≤ h−p fZ,max ∫ K2 (combining

Assumptions 3.1(b) and 3.3), so that we get

IP
(∣∣∣∣1
n

n∑
i=1

K
h

(Z
i
− z) − E

[
K
h

(Z
i
− z)

]∣∣∣∣ ≥ t
)
≤ 2 exp

(
− nt

2

2h−p fZ,max
∫
K

2 + (2/3)h−pC
K
t

)
. �

A.4 Proof of Proposition 3

Weshow the result for k = 1. The twoother cases canbeproven in the sameway.Using thedecomposition (14),
for any positive numbers x and λ(z), we have

IP
(∣∣
τ̂1,2|Z=z − τ1,2|Z=z

∣∣ > x) ≤ IP
(

1
f̂

2
Z (z)

> 1 + λ(z)
f

2
Z (z)

)
+ IP
(

4(1 + λ(z))
f

2
Z (z) ×

∣∣∣ ∑
1≤i,j≤n

S
i,j(z)

∣∣∣ > x)

≤ IP
(∣∣∣ 1
f̂

2
Z (z)

− 1
f

2
Z (z)

∣∣∣ > λ(z)
f

2
Z (z)

)
+ IP
(

4(1 + λ(z))
f

2
Z (z) ×

∣∣∣ ∑
1≤i,j≤n

S
i,j(z)

∣∣∣ > x).
For any t s.t. C

K,αh
α/α! + t < fZ,min/2, set λ(z) = 16f 2

z (z)
(
C
K,αh

α/α! + t
)
/f 3
Z,min . This yields

IP
(∣∣∣τ̂1,2|Z=z − τ1,2|Z=z

∣∣∣ > x) ≤ IP
(∣∣∣ 1
f̂

2
Z (z)

− 1
f

2
Z (z)

∣∣∣ > 16
f

3
Z,min

(
C
K,αh

α

α! + t
))

+ IP
(∣∣∣ ∑

1≤i,j≤n
S
i,j(z)

∣∣∣ > f

2
z (z)x

4(1 + λ(z))

)
.

By setting

x = 4
f

2
z (z)

(
CXZ,αh

α

α! + 3fz(z)
∫
K

2

2nhp + t′
)(

1 + 16f 2
Z (z)

f

3
Z,min

(
C
K,αh

α

α! + t
))

,

and applying the next two lemmas 13 and 14, we get the result. �
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Lemma 13. Under Assumptions 3.1-3.3 and if C
K,αh

α/α! + t < fZ,min/2 for some t > 0,

IP
(∣∣∣ 1
f̂

2
Z (z)

− 1
f

2
Z (z)

∣∣∣ > 16
f

3
Z,min

(
C
K,αh

α

α! + t
))
≤ 2 exp

(
− nh

p

t

2

2fZ,max
∫
K

2 + (2/3)C
K
t

)
,

and f̂Z(z) is strictly positive on these events.

Proof :Applying themeanvalue inequality to the function x 7→ 1/x2, we get the inequality
∣∣1/ f̂ 2

Z (z)−1/f 2
Z (z)

∣∣ ≤
2
∣∣
f̂Z(z) − fZ(z)

∣∣/f *Z3, where f *Z lies between f̂Z(z) and fZ(z). Denote by E the event E :=
{
|f̂Z(z) − fZ(z)| ≤

C
K,αh

α/α! + t
}
. By Lemma 12, we obtain

IP(E) ≥ 1 − 2 exp
(
− nh

p

t

2

2fZ,max
∫
K

2 + (2/3)C
K
t

)
. (18)

Therefore, on this event E,
∣∣
f̂Z(z) − fZ(z)

∣∣ ≤ fZ,min/2. Moreover, we have fZ,min ≤ fZ(z) using Assumption 3.3
and then fZ,min/2 ≤ f *Z. Combining the previous inequalities, we �nally get∣∣∣∣ 1

f̂
2
Z (z)

− 1
f

2
Z (z)

∣∣∣∣ ≤ 16
f

3
Z,min

∣∣
f̂Z(z) − fZ(z)

∣∣ ≤ 16
f

3
Z,min

(
C
K,αh

α

α! + t
)
,

on E. But since

IP
(∣∣∣ 1
f̂

2
Z (z)

− 1
f

2
Z (z)

∣∣∣ > 16
f

3
Z,min

(
C
K,αh

α

α! + t
))
≤ IP(Ec),

we deduce the result. �

Lemma 14. Under Assumptions 3.1-3.4, if C
K̃,2h

2 < fz(z), we have for any t > 0

IP
(∣∣∣ ∑

1≤i,j≤n
S
i,j(z)

∣∣∣ > CXZ,αhα
α! + 3fz(z)

∫
K

2

2nhp + t
)
≤ 2 exp

(
− (n − 1)h2p

t

2

4f 2
Z,max(

∫
K

2)2 + (8/3)C2
K

t

)

+ 2 exp
(
−

nh

p(fz(z) − C
K̃,2h

2)2

8fZ,max
∫
K̃

2 + 4C
K̃

(fz(z) − C
K̃,2h

2)/3

)
.

Proof : We will use the decomposition of∑1≤i,j≤n Si,j(z) given in Equation (15) and bound separately each of
its three components with high probability.

We �rst bound the negligible diagonal term ∆
n
. Note that K̃(·) := K

2(·)/
∫
K

2 is a two-order kernel, so that
f̃z(z) := ∑n

i=1 K̃h(Z
i
− z)/n can be used as an estimator of fZ(z), where K̃

h
(·) := h−p K̃(·/h). Therefore, applying

Lemma 12 to f̃ , we have for ε > 0 such that C
K̃,2h

2/2 + ε = fz(z)/2,

IP
(
∆
n
≥ 3fz(z)

∫
K

2

2nhp
)
≤ IP
(∣∣∣∣ ∫ K2

n
2
h
p

n∑
i=1

K̃
h

(Z
i
− z) − fZ(z)

∫
K

2

nh
p

∣∣∣∣ ≥ (∫ K2

nh
p

)(
C
K̃,2h

2

2 + ε
))

≤ IP
(∣∣
f̃Z(z) − fZ(z)

∣∣ ≥ CK̃,2h2

2 + ε
)

≤ 2 exp
(
− nh

p

ε

2

2fZ,max
∫
K̃

2 + (2/3)C
K̃

ε

)
. (19)

Second, let us deal with the bias term. Simple calculations provide, if i = ̸ j,

E[S
i,j(z)] = n−2E

[
K
h

(Z
i
− z)K

h
(Z
j
− z)

(
1

{
X
i
< X

j

}
− IP
(
X
i
< X

j

∣∣Z
i

= Z
j

= z
))]
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= n−2
∫

R2p+2

K
h

(z1 − z)K
h

(z2 − z)
(
1

{
x1 < x2

}
− IP
(
X
i
< X

j

∣∣Z
i

= Z
j

= z
))

× fX,Z(x1, z1) fX,Z(x2, z2) dx1 dz1 dx2 dz2

= n−2
∫

R2p+2

K(u)K(v)
(
1

{
x1 < x2

}
− IP
(
X
i
< X

j

∣∣Z
i

= Z
j

= z
))

×
(
fX,Z
(
x1, z + hu

)
fX,Z
(
x2, z + hv

)
− fX,Z(x1, z) fX,Z(x2, z)

)
dx1 du dx2 dv,

because, for every z,

0 =
∫
R4

(
1

{
x1 < x2

}
− IP
(
X1 < X2

∣∣Z1 = Z2 = z
))
fX,Z(x1, z)fX,Z(x2, z) dx1 dx2.

Apply the Taylor-Lagrange formula to the function ϕx1 ,x2 ,u,v(t) := fX,Z
(
x1, z + thu

)
fX,Z
(
x2, z + thv

)
which is

di�erentiable by Assumption 3.4. This yields

E[S
i,j(z)] = n−2

∫
K(u)K(v)

(
1

{
x1 < x2

}
− IP
(
X
i
< X

j

∣∣Z
i

= Z
j

= z
))

×
(
α−1∑
k=1

1
k!ϕ

(k)
x1 ,x2 ,u,v(0) + 1

α!ϕ
(α)
x1 ,x2 ,u,v(tx1 ,x2 ,u,v)

)
dx1 du dx2 dv

=
∫
K(u)K(v)
n

2
α!

(
1

{
x1 < x2

}
− IP
(
X
i
< X

j

∣∣Z
i

= Z
j

= z
))
ϕ

(α)
x1 ,x2 ,u,v(tx1 ,x2 ,u,v)dx1 du dx2 dv.

Since ϕ(α)
x1 ,x2 ,u,v(t) is equal to
α∑
k=0

(
α

k

)
p∑

i1 ,...,iα=1
h

α

u
i1 . . . uik vik+1 . . . viα

∂

k

fX,Z
∂z

i1 . . . ∂zik

(
x1, z + thu

)
∂

α−k
fX,Z

∂z
i
k+1 . . . ∂ziα

(
x2, z + thv

)
,

using Assumption 3.4, we get ∣∣E[S1,2(z)]
∣∣ ≤ CXZ,αhα/(n2

α!). (20)

Third, the stochastic component will be bounded from above. Indeed,∑
1≤i= ̸j≤n

(S
i,j(z) − E[S

i,j(z)]) = 1
n

2
∑

1≤i= ̸j≤n
gz
(

(X
i
, Z

i
) , (X

j
, Z

j
)
)
,

with the function gz de�ned in (9). We can now apply Lemma 11 to the sum of the g̃
i,j, which are symmetrized

versions of gz. With this notation, θ = E
[
g̃
i,j
]

= 0. Moreover,∣∣∣Var[gz((Xi , Zi), (X
j
, Z

j
)
)]∣∣∣ ≤ ∫ K

2
h

(z1 − z)K2
h

(z2 − z)
(
1

{
x1 < x2

}
− IP
(
X
i
< X

j

∣∣Z
i

= Z
j

= z
))2

× fX,Z(x1, z1)fX,Z(x2, z2) dx1 dx2 dz1 dz2

≤
∫
K

2(t1)K2(t2)
h

2p fX,Z(x1, z − ht1)fX,Z(x2, z − ht2) dx1 dx2 dt1 dt2

≤ h−2p
f

2
Z,max

(∫
K

2
)2
,

where in the last line we used Assumptions 3.1(b) and 3.3. The same upper bound applies for g̃
i,j (invoke

Cauchy-Schwarz inequality). Here, we choose b = −a = 2C2
K

h

−2p. Applying Lemma 11, for every t > 0, we
obtain

IP
(∣∣∣ ∑

1≤i= ̸j≤n

(
S
i,j(z) − E[S

i,j(z)]
)∣∣∣ ≥ t) ≤ IP

(
2

n(n − 1)
∑

1≤i<j≤n
g̃
i,j > t

)

≤ 2 exp
(
− [n/2]t2

2h−2p
f

2
Z,max(

∫
K

2)2 + (4/3)C2
K

h
−2p
t

)
. (21)

The latter inequality, (19) and (20) yield the result. �
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A.5 Proof of Proposition 4

We will prove the following lemma, that straightforwardly implies the result.

Lemma 15. Under the assumptions and conditions of Proposition 4, we have

IP
(∣∣∣ ∑

1≤i,j≤n
S
i,j(z)

∣∣∣ > CXZ,αhα
α! + 3fz(z)

∫
K

2

2nhp + t
)

≤ C2 exp
(
− α2nh

p

t

8fZ,max(
∫
K

2)

)
+ 2 exp

(
−

nh

p(fz(z) − C
K̃,2h

2)2

8fZ,max
∫
K̃

2 + 4C
K̃

(fz(z) − C
K̃,2h

2)/3

)
+ 2 exp

(
nh

p

t

2

32
∫
K

2(
∫
|K|)2

f

3
Z,max + 8C

K

∫
|K|fZ,max t/3

)
.

Proof : As in the proof of Lemma 14, we will use the decomposition of∑1≤i,j≤n Si,j(z) given in Equation (15)
and bound separately each of its three components with high probability. We keep the same bounds for the
diagonal term ∆

n
from Equation (19) and for the bias term in Equation (20). The di�erence from Lemma 14

will come from the treatment of the stochastic term that is detailed below.

Now, we consider the function `z de�ned in Equation (13). Note that ‖`z‖∞ ≤ 1. By usual changes of variables,
we get ∫

`2
z (x1, z1, x2, z2) fX,Z(x1, z1)fX,Z(x2, z2) dx1 dx2 dz1 dz2

≤ 3h2p (
∫
K

2
fz,max)2

(4C2
K

)2 + 6h3p
∫
K

2
fz,max(

∫
|K|fz,max)2

(4C2
K

)2 ≤ σ2, with

σ := hpC
σ
, C

σ
:=
∫
K

2
fz,max/(2C2

K
), (22)

because 6hp
∫
K

2
fz,max(

∫
|K|fz,max)2 ≤ (

∫
K

2
fz,max)2 and because of Assumptions 3.1(b) and 3.3. With the

notations of [26], this implies D = 1, m = 1 and L is arbitrarily small. Therefore, Theorem 2 in [26] yields

IP
(

1
2n
∣∣∣∑
i= ̸j

`z(X
i
, Z

i
,X

j
, Z

j
)
∣∣∣ > x) ≤ C2 exp

(
− α2x

σ

)
, (23)

for some universal constants C2 and α2 when x ≤ nσ3. By setting t/2 = 4C2
K

x/(nh2p) and applying Lemma 11,
this provides

IP
(∣∣∣ ∑

1≤i= ̸j≤n

(
S
i,j(z) − E[S

i,j(z)]
)∣∣∣ ≥ t) ≤ IP

(
1
n

2

∣∣∣ ∑
1≤i= ̸j≤n

ξ
ij

∣∣∣ ≥ t/2
)

+ IP
(∣∣∣1
n

n∑
i=1

g
i

∣∣∣ ≥ t/4
)

≤ C2 exp
(
− α2nth

p

8fZ,max(
∫
K

2)

)
+ 2 exp

(
nh

p

t

2

32
∫
K

2(
∫
|K|)2

f

3
Z,max + 8/3C

K

∫
|K|fZ,max t

)
,

when t ≤ 2hp(
∫
K

2)3
f

3
Z,max/C4

K

. Combining this inequality, (19) and (20)with the decomposition (15) conclude
the proof. �

A.6 Proof of Proposition 6

For k = 1, we follow the path of the proof of Proposition 4 (of Section A.5). Since τ̂1,2|Z=z −
τ1,2|Z=z = 4∑1≤i,j≤n Si,j(z)/ f̂ 2

Z (z) (by Equation 14), we prove the result if we bound from above 1/ f̂ 2
Z (z) and
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∣∣∑
1≤i,j≤n Si,j(z)

∣∣uniformlyw.r.t. z ∈ Z. To be speci�c, for any positive constant µ < 1, if |f̂Z(z)−fZ(z)| ≤ µfz,min,
then 1/ f̂ 2

Z (z) ≤ f −2
z,min(1 − µ)−2. We deduce

IP
(

sup
z∈Z

∣∣
τ̂1,2|Z=z − τ1,2|Z=z

∣∣ > x) ≤ IP
(
‖f̂Z − fZ‖∞ > µfz,min

)
+ IP
(

4
f

2
Z,min(1 − µ)2 sup

z∈Z

∣∣∣ ∑
1≤i,j≤n

S
i,j(z)

∣∣∣ > x).
First invoke the uniform exponential inequality, as stated in [35], Proposition 9: for every ε <
b
K

∫
K

2
fZ,max/CK,

IP
(
‖f̂Z − fZ‖∞ > ε + CXZ,αh

α

α!

)
≤ IP
(
‖f̂Z − E[f̂Z]‖∞ > ε

)
≤ L

K
exp

(
− C

f ,Knh
p

ε

2), (24)

for n su�ciently large. Then, apply Lemma 16, by setting (x, ε) so that

x = 4
f

2
z,min(1 − µ)2

(
CXZ,αh

α

α! + 3fz,max
∫
K

2

2nhp + t
)
and ε + CXZ,αh

α

α! = µfz,min . �

Lemma 16. Under the assumptions and conditions of Proposition 6, we have

IP
(

sup
z∈Z

∣∣∣ ∑
1≤i,j≤n

S
i,j(z)

∣∣∣ > CXZ,αhα
α! + 3fz,max

∫
K

2

2nhp + t
)
≤ C2D exp

(
− α2nth

p

8fZ,max(
∫
K

2)

)

+ L
K̃

exp
(
−
C
f ,K̃nh

p(fz,max − C̃XZ,2h2)2

4

)
+ 2 exp

(
− A2nh

p

t

2
C

−4
K

162
A

2
1
∫
K

2
f

3
z,max(

∫
|K|)2

)
+ 2 exp

(
− A2nh

p

t

16C2
K

A1

)
.

Proof :We will use the same arguments as in the proofs of Lemmas 14 and 15. We still invoke the decomposi-
tion (15). First let us �nd a uniform bound for the “diagonal term” ∆

n
(z) = ∑n

i=1 Si,i(z) =
∫
K

2
f̃z(z)/(nhp). As

in (24), for every ε < b
K̃

∫
K̃

2
fZ,max/C

K̃

,

IP
(
‖f̃Z − fZ‖∞ > ε + C̃XZ,2h

2

2

)
≤ L

K̃

exp
(
− C

f ,K̃nh
p

ε

2),
for n su�ciently large. This implies

IP
(

sup
z∈Z

∣∣∣∣ ∫ K2

n
2
h
p

n∑
i=1

K̃
h

(Z
i
− z) − fZ(z)

∫
K

2

nh
p

∣∣∣∣ ≥ (∫ K2

nh
p

)(
ε + C̃XZ,2h

2

2

))
≤ L

K̃

exp
(
− C

f ,K̃nh
p

ε

2).
Choose ε s.t. C̃XZ,2h2/2 + ε = fz,max/2 so that we have the bound

IP
(

sup
z∈Z
|∆
n

(z)| ≥ 3fz,max
∫
K

2/(2nhp)
)
≤ L

K̃

exp
(
− C

f ,K̃nh
p

ε

2). (25)

Second, it is easy to see that the bias term is uniformly bounded by

sup
z∈Z

∣∣E[S1,2(z)]
∣∣ ≤ CXZ,αhα/(n2

α!). (26)

Third, we bound the two components of the stochastic term given by (17). Now apply Theorem 1 in [26],
by recalling (13) and considering the family F :=

{
`z, z ∈ Z

}
, for a �xed bandwidth h. The constant σ

has the same value as in (22). It is easy to check that the latter class of functions is L2 dense (see [26]). Set
ε ∈ (0, 1). Since K is λ

K
-Lipschitz by Assumption 3.5, every function `z ∈ F can be approximated in L2 by

a function `z
j

∈ F, for some j ∈ {1, . . . ,m} s.t.
∫
|`z − `z

i

|2dν ≤ ε2, for any probability measure ν. Indeed,∫
|`z − `z

i

|2dν ≤ 64λ2
K

‖z − z
j
‖2
∞C

2
K

h

−2 that is less than ε2, if we cover Z by a grid of m points (z
j
) in Z s.t.

‖z − z
j
‖∞ ≤ εh/(8C

K
λ
K

) := εδ. This can be done with m ≤ ε−pd∏p

k=1
(

(b
k
− a

k
)/δ
)
e = ε−pdVδ−pe points. Then,

with the notations of [26], L = p and D = V(8C
K
λ
K
/h)p. As above, this yields

IP
(

sup
z∈Z

1
n

2

∣∣∣ ∑
1≤i= ̸j≤n

ξZ(X
i
, Z

i
,X

j
, Z

j
)
)∣∣∣ > t) ≤ C2D exp

(
− α2nh

p

t

8fZ,max

∫
K

2
)
, (27)
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when t ≤ 2hp(
∫
K

2)3
f

3
Z,max/C4

K

.

It remains to bound IP(supz∈Z |n
−1∑n

i=1 gi| > t/4). Consider the family of functions

F := {(x1, z1) ∈ R × Z 7→ h

p

4C2
K

E[gz(x1, z1,X, Z)], z ∈ Z}.

This family of functions is bounded by one and its variance is less than σ2 := h

p

∫
K

2
f

3
z,max

( ∫
|K|
)2. There-

fore, using Assumption 3.5, we can apply Propositions 9 and 10 in [12] that are coming from [11]: for some
universal constants A1 and A2, some constant A

g
that depends on K and fz,max (see Proposition 1 in [11]) and

for every x > 0,

IP
(

sup
z∈Z

h

p

4C2
K

∣∣∣∣ n∑
i=1

E
[
gz(X

i
, Z

i
,X, Z)

∣∣X
i
, Z

i

]∣∣∣∣ > A1
(
x + A

g
n

1/2
σ ln(1/σ)

))
≤ 2 exp

(
− A2x

2

nσ

2

)
+ 2e−A2x ,

that can be rewritten as

IP
(

sup
z∈Z

1
n

∣∣∣∣ n∑
i=1

g
i

∣∣∣∣ > 4A1C
2
K

(
x −

A
g
σ

n
1/2
h
p

ln(σ)
))

≤ 2 exp
(
− A2nh

2p
x

2

σ

2

)
+ 2 exp(−A2nh

p

x).

For anypositive t s.t.4A1C
2
K

(n−1)A
g
σ ln(1/σ) < n3/2

h

p

t/8, note thatwe can�nda real x > thp/(16C2
K

A1).
Then, we have

IP
(

sup
z∈Z

(n − 1)
n

2

∣∣∣∣ n∑
i=1

g
i

∣∣∣∣ > t

4

)
≤ 2 exp

(
− A2nh

p

t

2
C

−4
K

162
A

2
1
∫
K

2
f

3
z,max(

∫
|K|)2

)
+ 2 exp

(
− A2nh

p

t

16C2
K

A1

)
. (28)

The proof is completed by combining all the inequalities (25), (26), (27) and (28) with the decomposi-
tions (15) and (17). �

A.7 Proof of Proposition 7

Note that τ1,2|Z=z = E
[
g
k
(X1,X2)

∣∣Z1 = z, Z2 = z
]
for every k = 1, 2, 3, and that our estimators with the

weights (2) can be written as τ̂(k)
1,2|Z=z := U

n
(g
k
) / {U

n
(1) + ϵ

n
}, where

U
n

(g) := 1
n(n − 1)

∑
1≤i= ̸j≤n

g(X
i
,X

j
)Kh(z − Z

i
)K

h
(z − Z

j
)

E[K
h

(z − Z)]2 =: 1
n(n − 1)

∑
1≤i≠j≤n

g
i,j ,

for any measurable bounded function g, with the residual diagonal term ϵ
n

:= ∑
n

i=1 K
2
h

(z − Z
i
)/{n(n −

1)E[K
h

(z − Z)]2}. By Bochner’s lemma (see Bosq and Lecoutre [5]), ϵ
n
is O

P
((nhp)−1), and it will be negli-

gible compared to U
n

(1). Since the reasoning will be exactly the same for every estimator τ(k)
1,2|z, i.e. for every

function g
k
, k = 1, 2, 3, we omit the sub-index k. Then, the functions g

k
will be simply denoted by g.

The expectation of our U-statistics is

E
[
U
n

(g)
]

:= E
[
g(X1,X2)K

h
(z − Z1)K

h
(z − Z2)

]
/E[K

h
(z − Z)]2

=
∫
g(x1, x2)K(t1)K(t2)fX,Z(x1, z + ht1)fX,Z(x2, z + ht2)dx1 dx2 dt1 dt2/E[K

h
(z − Z)]2

→ 1
f

2
Z (z)

∫
g(x1, x2)fX,Z(x1, z)fX,Z(x2, z)dx1dx2 = E

[
g(X1,X2)

∣∣Z1 = z, Z2 = z
]
,

applying Bochner’s lemma to z 7→
∫
g(x1, x2)fX|Z=z(x1)fX|Z=z(x2) dx1 dx2 = τ1,2|Z=z, that is a continuous

function by assumption.
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Set θ
n

:= E[U
n

(g)], g*(x1, x2) := (g(x1, x2) + g(x2, x1))/2 and g*
i,j = (g

i,j + g
j,i)/2 for every (i, j),

i ≠ j. Note that U
n

(g) = U
n

(g*). Since g* is symmetrical, the HÃąjek projection Û
n

(g*) of U
n

(g*) satis�es
Û
n

(g*) := 2∑n

j=1 E[g*0,j|Xj , Zj]/n − θn . Note that E[Û
n

(g*)] = θ
n

= τ1,2|Z=z + o
P

(1). Since Var(Û
n

(g*) =
4Var(E[g*0,j|Xj , Zj])/n = O((nhp)−1), then Û

n
(g*) = θ

n
+ o

P
(1) = τ1,2|Z=z + o

P
(1).

Moreover, using the notation g
i,j := g

*
i,j − E[g*

i,j|Xj , Zj] − E[g*
i,j|Xi , Zi] + θ

n
for 1 ≤ i ≠ j ≤ n, we have

U
n

(g*) − Û
n

(g*) = ∑1≤i= ̸j≤n gi,j/n(n − 1). By usual U-statistics calculations, it can be easily checked that

Var

(
U
n

(g*) − Û
n

(g*)
)

= 1
n

2(n − 1)2
∑

1≤i1= ̸j1≤n

∑
1≤i2= ̸j2≤n

E[g
i1 ,j1gi2 ,j2 ] = O

( 1
n

2
h

2p
)
.

Indeed, when all indices (i1, i2, j1, j2) are di�erent, or when there is a single identity among them,
E[g

i1 ,j1gi2 ,j2 ] is zero. The �rst nonzero terms arise when there are two identities among the indices, i.e. i1 = i2
and j1 = j2 (or i1 = j2 and j1 = i2). In the latter case, we get an upper bound as O((nhp)−2) when fZ is contin-
uous at z, by usual changes of variable techniques and Bochner’s Lemma. Then, U

n
(g*) = Û

n
(g*) + o

P
(1) =

τ1,2|Z=z + o
P

(1). Note that U
n

(1) + ϵ
n
tends to one in probability (Bochner’s lemma). As a consequence,

τ̂1,2|Z=z = U
n

(g*) / (U
n

(1) + ϵ
n

) tends to τ1,2|Z=z/1 by the continuous mapping theorem.�

A.8 Proof of Proposition 8

Let us note that

τ1,2|Z=z = E
[
g
k
(X1,X2)

∣∣Z1 = z, Z2 = z
]

=
∫
g
k
(x1, x2)fX|Z=z(x1)fX|Z=z(x2)dx1dx2 = ϕ

k
(z)

f
2
Z (z) ,

where ϕ
k
(z) :=

∫
g
k
(x1, x2)fX,Z(x1, z)fX,Z(x2, z)dx1dx2. Also write τ̂(k)

1,2|Z=z = ϕ̂
k
(z)/ f̂ 2

Z (z), where ϕ̂
k
(z) :=

n

−2∑n

i,j=1 Kh(Z
i
− z)K

h
(Z
j
− z)g

k
(X

i
,X

j
) and f̂Z(z) := n−1∑n

i=1 Kh(Z
i
− z). Therefore, we have

τ̂

(k)
1,2|Z=z − τ1,2|Z=z = ϕ̂

k
(z) − ϕ

k
(z)

f̂
2
Z (z)

− τ1,2|Z=z
f̂Z(z) − fZ(z)

f̂
2
Z (z)

×
(
f̂Z(z) + fZ(z)

)
.

By usual uniform consistency results (see for example Bosq and Lecoutre [5]), supz∈Z
∣∣
f̂Z(z) − fZ(z)

∣∣ → 0
almost surely, as n →∞. We deduce that

min
z∈Z

f̂

2
Z (z) ≥ f 2

Z,min/2, andmax
z∈Z
|f̂Z(z) + fZ(z)| ≤ 2 max

z∈Z
fZ(z) a.s.

Thismeans it is su�cient to prove the uniform strong consistency of ϕ̂
k
onZ, to obtain that supz∈Z

∣∣
τ̂

(k)
1,2|Z=z−

τ

(k)
1,2|Z=z

∣∣ tends to zero a.s.

Note that, by Bochner’s Lemma, supz∈Z
∣∣E[ϕ̂

k
(z)] − ϕ

k
(z)
∣∣ → 0. Then, it remains to show that

supz∈Z
∣∣
ϕ̂
k
(z) − E[ϕ̂

k
(z)]
∣∣ → 0 almost surely. Let ρ

n
> 0 be such that we cover Z by the union of l

n
open

balls B(t
l
, ρ

n
), where t1, . . . , tl

n

∈ Rp and l
n
∈ N*. Then

sup
z∈Z

∣∣
ϕ̂
k
(z) − E[ϕ̂

k
(z)]
∣∣ ≤ sup

l=1,...l
n

∣∣
ϕ̂
k
(t
l
) − E[ϕ̂

k
(t
l
)]
∣∣ + A

n
,

where A
n

:= sup
l=1,...l

n

supz∈B(t
l
,ρ
n

)
∣∣
ϕ̂
k
(z) − ϕ̂

k
(t
l
) − (E[ϕ̂

k
(z)] −E[ϕ̂

k
(t
l
)])
∣∣. For any index l ∈ {1, . . . , l

n
} and

any z ∈ B(t
l
, ρ

n
), a �rst-order expansion yields∣∣
ϕ̂
k
(z) − ϕ̂

k
(t
l
) − (E[ϕ̂

k
(z)] − E[ϕ̂

k
(t
l
)])
∣∣

=
∣∣∣∣ 1
n(n − 1)

∑
1≤i≠j≤n

g
k
(X

i
,X

j
)K

h
(z − Z

i
)K

h
(z − Z

j
)
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− 1
n(n − 1)

∑
1≤i= ̸j≤n

g
k
(X

i
,X

j
)K

h
(t
l
− Z

i
)K

h
(t
l
− Z

j
)

−
(
E
[
g
k
(X1,X2)K

h
(z − Z1)K

h
(z − Z2)

]
− E
[
g
k
(X

i
,X

j
)K

h
(t
l
− Z

i
)K

h
(t
l
− Z

j
)
])∣∣∣∣

≤ CLip,K
h

2p+1 |z − tl|
(
E
[
|g
k
(X1,X2)|

]
+ 1
n(n − 1)

∑
1≤i= ̸j≤n

|g
k
(X

i
,X

j
)|
)

= O
(

ρ
n

h
2p+1

)
= o(1),

for some constant C
Lip,K and by choosing ρ

n
= o(h2p+1

n
). Actually, we can cover Z in such a way that l

n
=

O(h−p(2p+1)
n

). This is always possible because Z is a bounded set in Rp. The previous upper bound is uniform
w.r.t. l and z ∈ B(t

l
, ρ

n
), proving A

n
= o(1) everywhere.

Now, for every l ≤ l
n
, apply Equation (21) for every z = t

l
. For any t > 0, this yields

IP
(

1
n(n − 1)

∣∣∣∑
i= ̸j
g

(l)((X
i
, Z

i
), (X

j
, Z

j
)
)
− E
[
g

(l)((X1, Z1), (X2, Z2)
)]∣∣∣ > t) ≤ exp

(
− C0nh

2p
n
t

2

C1 + C2t

)
,

for some positive constants C0, C1, C2, by setting

g

(l)((X
i
, Z

i
), (X

j
, Z

j
)
)

:= g
k
(X

i
,X

j
)K

h
(t
l
− Z

i
)K

h
(t
l
− Z

j
).

Therefore, we deduce

IP
(

sup
l=1,...l

n

∣∣
ϕ̂
k
(t
l
) − E[ϕ̂

k
(t
l
)]
∣∣ ≥ t) ≤ C4h

−p(2p+1)
n

exp
(
− C0nh

2p
n
t

2

C1 + C2t

)
,

for some constant C4. Finally, applying Borel-Cantelli lemma, supz∈Z
∣∣
ϕ̂
k
(z) − E[ϕ̂

k
(z)]
∣∣ tends to zero a.s.,

proving the result.�

A.9 Proof of Proposition 9

By Markov’s inequality,∑n

i=1 w
2
i,n(z) = O

P
((nhp)−1) for any z, that tends to zero. Then, by Slutsky’s theorem,

we get an asymptotic equivalence between the limiting laws of any τ̂(k)
1,2|z, k = 1, 2, 3, and of their linearly

transformed versions τ̃1,2|z. Thus, we will prove the asymptotic normality of τ̂(k)
1,2|z for some index k = 1, 2, 3,

simply denoted by τ̂1,2|z.

Let g*(x1, x2) := (g
k
(x1, x2) + g

k
(x2, x1))/2 for some index k = 1, 2, 3 (that will be implicit in the proof).

We now study the joint behavior of (τ̂1,2|Z=z′
i

− τ1,2|Z=z′
i

)
i=1,...,n′ . We will extend Stute [38]’s approach, in the

case of multivariate conditioning variable z and studying the joint distribution of U-statistics at several con-
ditioning points. As in the proof of Proposition 7, the estimator with the weights given by (2) can be rewritten
as τ̂1,2|Z=z′

i

:= U
n,i(g*) / (U

n,i(1) + ϵ
n,i), where

U
n,i(g) := 1

n(n − 1)E[K
h

(z′
i

− Z)]2

n∑
j1 ,j2=1,j1= ̸j2

g(X
j1 ,Xj2 )K

h
(z′
i
− Z

j1 )K
h

(z′
i
− Z

j2 ),

for any bounded measurable function g : R4 → R.

Now,we prove the joint asymptotic normality of
(
U
n,i(g)

)
i=1,...,n′ . TheHÃąjek projection Û

n,i(g) ofU
n,i(g)

satis�es Û
n,i(g) := 2∑n

j=1 gn,i
(
X
j
, Z

j

)
/n − θ

n
, where θ

n
:= E

[
U
n,i(g)

]
(see [37, Section 5.3.1]) and

g
n,i(x, z) := K

h
(z′
i
− z)E

[
g(X, x)K

h
(z′
i
− Z)

]
/E[K

h
(z′
i
− Z)]2.
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Lemma 17. Under the assumptions of Proposition 9, for any measurable bounded function g,

(nhp)1/2
(
Û
n,i(g) − E

[
U
n,i(g)

])
i=1,...,n′

D−→ N(0,M∞(g)), as n →∞,

where, for 1 ≤ i, j ≤ n′,

[M∞(g)]
i,j :=

4
∫
K

2
1{z′

i

=z′
j

}

fZ(z′
i

)

∫
g

(
x1, x)g

(
x2, x)fX|Z=z′

i

(x)fX|Z=z′
i

(x1)fX|Z=z′
i

(x2)dx dx1 dx2.

This lemma is proved in A.10. Similarly as in the proof of Lemma 2.2 in Stute [38], for every i = 1, . . . , n′ and
every bounded symmetrical measurable function g, we have (nhp)1/2

Var

[
Û
n,i(g) − U

n,i(g)
]

= o(1), which
implies

(nhp)1/2
(
U
n,i(g) − E

[
U
n,i(g)

])
i=1,...,n′

D−→ N(0,M∞(g)), as n →∞.

Considering two measurable bounded functions g1 and g2, we have U
n,i(c1g1 + c2g2) = c1Un,i(g1) +

c2Un,i(g2) for every numbers c1, c2. By the CramÃľr-Wold device, we check that

(nhp)1/2
((
U
n,i(g1) − E

[
U
n,i(g1)

])
i=1,...,n′

,
(
U
n,i(g2) − E

[
U
n,i(g2)

])
i=1,...,n′

)
D−→ N

(
0,
[
M∞(g1) M∞(g1, g2)

M∞(g1, g2) M∞(g2)

])
,

as n →∞, where

[M∞(g1, g2)]
i,j :=

4
∫
K

2
1{z′

i

=z′
j

}

fZ(z′
i

)

∫
g1
(
x1, x)g2

(
x2, x)fX|Z=z′

i

(x)fX|Z=z′
i

(x1)fX|Z=z′
i

(x2)dx dx1 dx2.

Set τ̃1,2|Z=z′
i

:= U
n,i(g*) / Un,i(1). Note that sup

i=1,...,n′ |ϵn,i| = O
P

(n−1
h

−p). Since (nhp
n

)1/2(
τ̂1,2|Z=z′

i

−
τ̃1,2|Z=z′

i

)
= O

P

(
(nhp

n
)1/2

ϵ
n,i
)
is o

P
(1) by Assumption 3.6(i), it is su�cient to establish the asymptotic law

of (nhp
n

)1/2(
τ̃1,2|Z=z′

i

− τ1,2|Z=z′
i

)
. By a limited expansion of fX,Z w.r.t. its second argument, and under As-

sumption 3.4, we easily check that E
[
U
n,i(g*)

]
= τ1,2|Z=z′

i

+ r
n,i, where |r

n,i| ≤ C0h
α

n
/f 2
Z (z′

i

), for some constant
C0 that is independent of i. Since E[U

n,i(1)] = 1 + o((nhp)−1/2) and E[U
n,i(g*)] = τ1,2|Z=z′

i

+ o((nhp
n

)−1/2) by
Assumption 3.6(i), we get

(nhp)1/2
((
U
n,i(g*) − τ1,2|Z=z′

i

)
i=1,...,n′

,
(
U
n,i(1) − 1

)
i=1,...,n′

)
D−→ N

(
0,
[
M∞(g*) M∞(g*, 1)
M∞(g*, 1) M∞(1)

])
, as n →∞.

Now apply the Delta-method with the function ρ(x, y) := x/ywhere x and y are real-valued vectors of size n′
and the division has to be understood component-wise. The Jacobian of ρ is given by the n′ × 2n′ matrix

J
ρ

(x, y) =
[
Diag

(
y

−1
1 , . . . y−1

n
′
)
, Diag

(
− x1y

−2
1 , · · · − x

n
′y
−2
n
′
)]

,

where, for any vector v of size n′, Diag(v) is the diagonal matrix whose diagonal elements are the v
i
, with

i = 1, . . . , n′. We deduce (nhp)1/2
(
τ̃1,2|Z=z′

i

− τ1,2|Z=z′
i

)
i=1,...,n′

D−→ N(0,H), as n →∞, setting

H := J
ρ

(~τ, e)
[
M∞(g*) M∞(g*, 1)
M∞(g*, 1) M∞(1)

]
J
ρ

(~τ, e)T ,
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where ~τ =
(
τ1,2|Z=z′

i

)
i=1,...,n′

and e is the vector of size n′ whose all components are equal to 1. Thus, we have

J
ρ

(~τ, e) =
[
Id
n
′ , −Diag(~τ)

]
, denoting by Id

n
′ the identitymatrix of size n′ and by Diag(~τ) the diagonalmatrix

of size n′ whose diagonal elements are the τ1,2|z′
i

, for i = 1, . . . , n′. To be speci�c, we get

H = M∞(g*) − Diag(~τ)M∞(g*, 1) −M∞(g*, 1)Diag(~τ) + Diag(~τ)M∞(1)Diag(~τ).

For i, j in {1, . . . , n′} and using the symmetry of the function g*, we obtain

[M∞(g*)]
i,j = 4

∫
K

2
1{z′

i

=z′
j

}E[g*(X1,X)g*(X2,X)|Z = Z1 = Z2 = z′
i
]/fZ(z′

i
),

[Diag(~τ)M∞(g*, 1)]
i,j = 4τ1,2|Z=z′

i

∫
K

2
1{z′

i

=z′
j

}E[g*(X1,X)|Z = Z1 = z′
i
]/fZ(z′

i
)

= 4
∫
K

2
1{z′

i

=z′
j

}τ
2
1,2|Z=z′

i

/fZ(z′
i
) = [M∞(g*, 1)Diag(~τ)]

i,j = [Diag(~τ)M∞(1)Diag(~τ)]
i,j .

As a consequence, we obtain

[H]
i,j =

4
∫
K

2
1{z′

i

=z′
j

}

fZ(z′
i

)
(
E[g*(X1,X)g*(X2,X)|Z = Z1 = Z2 = z′

i
] − τ2

1,2|Z=z′
i

)
. �

A.10 Proof of Lemma 17

Let us �rst evaluate the variance-covariance matrix M
n,n′ := [Cov(Û

n,i , Ûn,j)]1≤i,j≤n′ . Note that
E
[
g
n,i(Xj , Zj)

]
= E
[
Û
n,i
]

= E
[
U
n,i(g)

]
, and that

(
(nhp)1/2(

Û
n,i − E[U

n,i(g)]
))

i=1,...,n′
= 2hp/2

n
1/2

n∑
j=1

(
g
n,i(Xj , Zj) − E[U

n,i(g)]
)
i=1,...,n′ ,

that is a sum of independent vectors. Thus, Cov(Û
n,i , Ûn,j) = 4n−1

Cov

(
g
n,i
(
X, Z

)
, g

n,j
(
X, Z

))
, for every i, j

in {1, . . . , n′}, and

E
[
g
n,i(X, Z)g

n,j(X, Z)
]

=
∫
K
h

(z′
i
− z)K

h
(z′
j
− z)

E
[
g(X, x)K

h
(z′
i

− Z)
]
E
[
g(X, x)K

h
(z′
j

− Z)
]

E[K
h

(z′
i

− Z)]2E[K
h

(z′
j

− Z)]2 fX,Z(x, z)dx dz

∼ 1
h
p

f
2
Z (z′

i

)f 2
Z (z′

j

)

∫
g

(
x1, x)g

(
x2, x)K

h
(z′
i
− z)K

h
(z′
j
− z)K

h
(z′
i
−w1)K

h
(z′
j
−w2)

× fX,Z(x, z)fX,Z(x1,w1)fX,Z(x2,w2)dx dz dx1 dw1 dx2 dw2

∼ 1
h
p

f
2
Z (z′

i

)f 2
Z (z′

j

)

∫
g

(
x1, x)g

(
x2, x)K(u1)K(u2)K(u)K(

z′
j

− z′
i

h

+ u)fX,Z(x, z′
i
− hu)

× fX,Z(x1, z′i − hu1)fX,Z(x2, z′j − hu2)dx du dx1 du1 dx2 du2.

When i = ̸ j and for n su�ciently large, the latter term is zero because K is compactly supported (As-
sumption 3.6(ii)). In this case, we have Cov(Û

n,i , Ûn,j) = −4n−1E[U
n,i]E[U

n,j] ∼ −4n−1
τ1,2|Z=z′

i

τ1,2|Z=z′
j

=
o

(
(nhp)−1). Otherwise, i = j and, as E

[
g
n,i
(
X1, Z1

)]
= O(1), we have

Var

((
g
n,i(X, Z)

)2) ∼ 1
h
p

f

4
Z (z′

i

)

∫
g

(
x1, x)g

(
x2, x)K(u1)K(u2)K2(u)fX,Z(x, z′

i
− hu)

× fX,Z(x1, z′i − hu1)fX,Z(x2, z′i − hu2) dx du dx1 du1 dx2 du2
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∼
∫
K

2

h
p

fZ(z′
i

)

∫
g

(
x1, x)g

(
x2, x)fX|Z=z′

i

(x)fX|Z=z′
i

(x1)fX|Z=z′
i

(x2) dx dx1 dx2,

by Bochner’s lemma and 3.1. We have proved that, for every i, j ∈ {1, . . . , n′},

nh

p[M
n,n′ ]i,j →

4
∫
K

2
1{z′

i

=z′
j

}

fZ(z′
i

)

∫
g

(
x1, x)g

(
x2, x)fX|Z=z′

i

(x)fX|Z=z′
i

(x1)fX|Z=z′
i

(x2) dx dx1 dx2,

as n →∞. Therefore, nhpM
n,n′ tends to M∞.

We now verify Lyapunov’s condition with third-order moments, so that the usual multivariate central
limit theorem would apply. It is then su�cient to show that

(
h

p/2

n
1/2

)3 n∑
j=1

E
[∣∣
g
n,i(Xj , Zj) − E[U

n,i(g)]
∣∣3] = o(1). (29)

For any j = 1, . . . , n, we have

E
[∣∣
g
n,i(Xj , Zj) − E[U

n,i(g)]
∣∣3]

∼
∫ ∣∣∣ 1

f
2
Z (z′

i

)

∫
g(x1, x)K

h
(z′
i
− z1)K

h
(z′
i
− z)fX,Z(x1, z1)dx1 dz1 − E

[
U
n,i(g)

]∣∣∣3fX,Z(x, z)dx dz.

By the change of variable z1 = z′
i

− ht1 and z = z′
i

− ht, we get

E
[∣∣
g
n,i(Xj , Zj) − E[U

n,i(g)]
∣∣3] ∼ h−2p

∫ ∣∣∣ 1
f

2
Z (z′

i

)

∫
g(x1, x)K(t1)K(t)fX,Z(x1, z′i − ht1)dx1 dt1

− h

pE
[
U
n,i(g)

]∣∣∣3fX,Z(x, z′
i
− ht)dx dt = O(h−2p),

because of Bochner’s lemma and Assumptions 3.1 and 3.4. Therefore, we have obtained

(
h

p/2

n
1/2

)3 n∑
j=1

E
[∣∣
g
n,i(Xj , Zj) − E[U

n,i(g)]
∣∣3] = O(h3p/2

n

−3/2
nh

−2p) = O((nhp)−1/2) = o(1),

applying Assumption 3.6(i). Therefore, we have checked Lyapunov’s condition and the result follows. �

References
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