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In this paper is proposed a novel incremental itera-
tive Gauss-Newton-Markov-Kalman filter method for
state estimation of dynamic models given noisy mea-
surements. The filter is constructed by projecting the
random variable representing the unknown state onto
the subspace generated by data. The approximation of
projection, i.e. the conditional expectation of the state
given data, is evaluated by minimising the expected
Bregman’s loss. The mathematical formulation of the
proposed filter is based on the construction of an opti-
mal nonlinear map between the observable and param-
eter (state) spaces via a convergent sequence of linear
maps obtained by successive linearisation of the ob-
servation operator in a Gauss-Newton-like form. To
allow automatic linearisation of the dynamical system
in a sparse form, the smoother is designed in a hier-
archical setting such that the forward map and its lin-
earised counterpart are estimated in a Bayesian man-
ner given a forecasted data set. For this purpose the
relevance vector machine approach is used. To im-
prove the algorithm convergence, the smoother is fur-
ther reformulated in its incremental form in which the

current and intermediate states are assimilated before
the initial one, and the corresponding posterior esti-
mates are taken as pseudo-measurements. As the lat-
ter ones are random variables, and not deterministic
any more, the novel stochastic iterative filter is de-
signed to take this into account. To correct the bias
in the posterior outcome, the procedure is built in a
predictor-corrector form in which the predictor phase
is used to assimilate noisy measurement data, whereas
the corrector phase is constructed to correct the mean
bias. The resulting filter is further discretised via
time-adapting sparse polynomial chaos expansions ob-
tained either via modified Gram-Schmidt orthogonal-
isation or by a carefully chosen nonlinear mapping,
both of which are estimated in a Bayesian manner
by promoting the sparsity of the outcomes. The time
adaptive basis with non-Gaussian arguments is fur-
ther mapped to the polynomial chaos one by a suit-
ably chosen isoprobabilistic transformation. Finally,
the proposed method is tested on a chaotic nonlinear
Lorenz 1984 system.
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1 Introduction

Probabilistic inverse estimation is gaining momentum
in computational practice today. Bayes’s rule as given
in its classical form often cannot be used in practice
because the evaluation of the posterior distribution
requires the use of slowly convergent random walk
strategies such as Markov chain Monte Carlo-like al-
gorithms [10, 25, 24]. On the other hand, its linear
approximation in the form of a Kalman filter [14] be-
came a very important industrial tool for the predic-
tion/forecast of the system state describing various
types of dynamical systems. However, Kalman fil-
ters are not good at coping with highly nonlinear sys-
tem responses, and many attempts have been made
to resolve this issue. The vast majority of studies on
this subject can be broadly classified into two groups:
stochastic strategies based on the sequential Monte
Carlo algorithm also known as particle/ensemble fil-
ters (e.g. [20, 7]), and deterministic methods based on
the linearisation of the measurement operator such as
extended [9, 13] and unscented [27, 18] Kalman filters.
The former theories are based on the approximation
of the posterior distribution via a convex combination
of the Diract delta measure such that the correspond-
ing filter requires only few simulation calls. But, it
is well known that the ensemble in the particle form
may collapse, which is especially evident for small en-
sembles. On the other hand, the deterministic filters
based on the first order Taylor expansion of the mea-
surement operator may become inaccurate when used
in a highly nonlinear setting.
It is well known that the Bayesian update is theoret-

ically based on the notion of conditional expectation
[3]. Here the conditional expectation is not only used
as a theoretical basis, but also as a basic computa-
tional tool for the identification of the initial state
of the dynamical system. Being a unique optimal
projector for all Bregman’s loss functions, the con-
ditional expectation allows the estimation of the pos-
terior moments by finding an optimal map between

the measurement and the parameter/state space that
minimises the expected Bregman’s loss. Therefore,
being able to numerically approximate conditional ex-
pectations, one can build various filtering techniques
for the state assimilation. To accommodate the non-
linearities present in the estimation problem, in this
paper an iterative version of the filter in the Gauss-
Newton form is suggested for the backpropagation of
information on the state in the current time moment
to the initial one. Several previous studies have in-
vestigated the linearisation idea by building the filter
either as an iterative version of ensemble Kalman fil-
ters as presented in [22, 2], or procedures coming from
the randomised likelihood (e.g. [6]) and maximum a
posteriori error estimate (e.g. [28]). In this paper the
iterative filtering technique is based on the approx-
imation of the conditional expectation of the state
given observation, as well as its inverse map, via a
sequence of linearised maps obtained by minimising
the corresponding expected quadratic Bregman’s loss
functions, or by using Bayesian estimation. In this
manner the Gauss-Newton filtering procedure obtains
its hierarchical structure and does not require special
differentiation techniques as the estimation of the Ja-
cobian comes as the by-product. To improve the lo-
cal convergence, the Gauss-Newton estimation is here
improved by substituting the direct state estimation
with the incremental one based on the pseudo-time
discretisations. The idea is to build the optimal map
between the observation and the initial state as a com-
position of linearised maps displaying the intermedi-
ate state posteriors chacareterised by pseudo-time dis-
cretisations. In contrast to the direct estimation this
approach takes the estimated intermediate states as
pseudo-measurements for the preceding ones. Hence,
the dynamic of the filter’s incremental form is driven
by pseudo-time stepping in which the global optimal
linear map of one update step is substituted by few op-
timal local maps obtained by splitting the update step
into smaller increments (pseudo-update steps). As the
pseudo-measurements are random variables and not
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deterministic ones, here is suggested a novel stochas-
tic Gauss-Newton filter for the state estimation in a
predictor-corrector form.
In contrast to most sampling approaches to

Bayesian updating that typically start from the clas-
sical formulation involving conditional measures and
densities, the conditional expectation as the compu-
tationally prime object allows a direct estimation of
the posterior random variable in a functional approx-
imation form. As a stochastic Gauss-Newton filter
operates on random variables, not densities, its nu-
merical implementation is achieved by discretising the
random variables of consideration via time dependent
polynomial chaos expansion (PCEs). The time adap-
tive nature of discretisation is used to prevent an over-
estimation of the measurement prediction after long-
time integration, which is known to be a side-effect of
the classical polynomial chaos representations. There-
fore, the observation random variables are first discre-
tised in a non-Gaussian basis, which is further trans-
formed to the Gaussian one by a nonlinear isoprob-
abilistic transformation. The non-Gaussian basis is
chosen either as an orthogonal one by employing the
stochastic modified Gram-Schmidt orthogonalisation
as already discussed by [11] for purely uncertainty
quantification purposes, or as a non-orthogonal one
taking the form of a nonlinear polynomial map be-
tween two consecutive states. To promote for spar-
sity, the functional representations are estimated in a
data-driven Bayesian way by using the relevance vec-
tor machine approach [26]. By using the sparse time
dependent PCE approximations, the filter is finally
designed in its minimal form that is estimated by us-
ing a minimal number of model evaluations.
The paper is organised as follows: Section 2 gives a

concise introduction to the Bayesian state estimation
of the abstract dynamical system. Section 3 considers
the approximate Bayesian estimation from a condi-
tional expectation point of view. Numerical approxi-
mations of conditional expectation are shortly studied
in Section 4, and hence the Gauss-Newton filtering

procedure is introduced. The Bayesian point of view
on the Gauss-Newton filter is further studied in Sec-
tion 5, whereas its incremental version in predictor-
corrector form is discussed in Section 6. The filter
discretisation and its computational form are given in
Section 7. Here the filter is studied from the perspec-
tive of time adaptive sparse random variable discreti-
sations. The paper is concluded with Section 8.

2 Model problem

Let the state of the dynamical system x ∈ Rd satisfy-
ing the nonlinear initial value problem

ẋ = f(x, t), x0 = x(0) (1)

be observed in time moments 0 ≤ tk ≤ T, tk =
k∆t, k ∈ N0 given time increment ∆t via

yk = Y (xn) (2)

in which Y is a nonlinear observation operator,
whereas xn, n ∈ N0 either denotes the current state
when n = k, or an unknown previous state when
xn = xk−r for r ∈ N, respectively. Assuming that yk
is possibly not measured in its full component form,
i.e. yk ∈ Rm, m ≤ d, the goal is to estimate the state
xn given noisy measurements

ymes = Y (xtru) + ε̂ (3)

in which xtru denotes the so-called truth, whereas ε̂
stands for the corresponding realisation of the mea-
surement noise.
Formally, in a Bayesian setting the unknown state

xn in Eq. (3) is modelled as a random variable (a
priori knowledge or forecast)

xnf (ω) : Ω → Rd (4)

on a probability space (Ω,F ,P) endowed with the set
of elementary events Ω, a σ-algebra of measurable
events F , and a probability measure P. The common

3



choice is to assume that xnf ∈ X := L2(Ω,F ,P;Rd),
the space of real valued random variables with finite
variance. As xn is a random variable, so is the obser-
vation in Eq. (2), here obtaining the form of

Y 3 ykf (ω) = Y (xnf (ω)) + εk(ω) (5)

in which εk(ω) ∼ N (0, Cεk) forecasts the measure-
ment error usually taking the form of zero-mean Gaus-
sian noise with covariance Cεk .
Assuming that xn and yk have a joint probability

density function π(xn, yk), one may use Bayes’s theo-
rem in its density form

πx|y(xn|yk) =
π(xn, yk)

P (yk)
=
πy|x(yk|xn)πx(xn)

P (yk)
(6)

to incorporate (assimilate) new information ymes

into the probabilistic description given in Eqs. (4)-
(5). Here, πx(xn) denotes the prior density func-
tion, πy|x(yk|xn) is the likelihood, the form of which
depends on the measurement error, and P (yk) =∫
Ω π(xn, yk)dxn is the normalisation factor or evi-
dence. If both the prior and the likelihood are con-
jugate, i.e. belong to the exponential family of dis-
tributions with predefined statistics, the posterior
πx|y(xn|yk) in Eq. (6) can be analytically evaluated.
Otherwise, the estimation boils down to computation-
ally intense random walk algorithms of the Markov
chain Monte Carlo type. However, both computations
essentially lead to the extraction of neccessary infor-
mation from the posterior by evaluating some form of
expectation w.r.t. the posterior, an example of which
is the conditional mean

E(xn|yk) =

∫
Ω
xnπx|y(xn|yk)dxn. (7)

Having done so, one may avoid expensive evaluation
of the full posterior by targeting a direct calculation
of desired estimates such as the one given in Eq. (7).
To achieve this, one may design filtering procedures
based on conditional expectation as further described.

3 Conditional expectation

The conditional expectation is defined as the unique
optimal projector for all Bregman’s loss functions
(BLFs) [5]

x∗ := E(x|B) = argmin
x̂∈L2(Ω,B,P;Rd)

E(Dφ(x, x̂)) (8)

over all B-measurable random variables x̂ in which
B := σ(y) is the sub-σ-algebra generated by measure-
ment y. The Bregman’s loss function is defined as

Definition 3.1. Let φ : Rd 7→ R be a strictly con-
vex, differentiable function. Then the Bregman loss
function Dφ : Rd × R 7→ R+ := [0,+∞) is defined as

Dφ(x, y) = H(x)−H(y) = φ(x)−φ(y)−〈x−y,∇φ(y)〉
(9)

in which H(x) = φ(y) + 〈x− y,∇φ(y)〉 is hyperplane
tangent to φ at point y.

The optimality in Eq. (8) then follows from [1]

Theorem 3.2. Let φ : Rd 7→ R be a strictly con-
vex, differentiable function and let Dφ be the corre-
sponding BLF. Let (Ω,F,P) be an arbitrary probabil-
ity space and let B be a sub-σ-algebra of F. Let x
be any F-measurable random variable taking values in
Rd for which both E(x) and E(φ(x)) are finite. Then,
among all B-measurable random variables, the con-
ditional expectation is the unique minimiser (up to
a.s. equivalence) of the expected Bregman loss, i.e.

x∗ := E(x|B) = argmin
x̂∈L2(Ω,B,P;Rd)

E(Dφ(x, x̂)). (10)

The proof of the theorem can be shortly sketched
as follows:

Proof. Let x̂ be any B-measurable random variable,
and x∗ = E(x|B), then one has

E(Dφ(x, x̂))− E(Dφ(x, x∗)) = E(φ(x∗)− φ(x̂)

−〈x− x̂,∇φ(x̂)〉+ 〈x− x∗,∇φ(x∗)〉. (11)
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Using the law of total expectation, e.g. E(x) =
E(E(x|B)), one may further state

E(〈x− x̂,∇φ(x̂)〉) = E (E(〈x− x̂,∇φ(x̂)〉|B))

= E(〈E(x|B)− x̂,∇φ(x̂)〉)
= E(x∗ − x̂,∇φ(x̂)) (12)

Similarly,

E(〈x− x∗,∇φ(x̂)〉) = E(E(〈x− x∗,∇φ(x̂)〉|B))

= E(x∗ − x∗,∇φ(x̂))

≡ 0. (13)

Following this, the relation in Eq. (11) reduces to

E(Dφ(x, x̂))− E(Dφ(x, x∗)) =

E(φ(x∗)− φ(x̂)− 〈x∗ − x̂,∇φ(x̂)〉)
= E(Dφ(x∗, x̂)). (14)

The last relation in Eq. (14) defines the Bregman
Pythagorean inequality

E(Dφ(x, x̂)) ≥ E(Dφ(x, x∗)) + E(Dφ(x∗, x̂)) (15)

such that one may state

Theorem 3.3. Let φ : Rd 7→ R be a strictly convex,
differentiable function and let Dφ be the corresponding
BLF. Let (Ω,F,P) be an arbitrary probability space
and let B be a sub-σ-algebra of F. Let x̂ and x be any
F-measurable random variable taking values in Rd for
which both pairs (E(x̂),E(x)) and (E(φ(x̂)),E(φ(x)))
are finite. Then, we have

E(Dφ(x, x̂)) ≥ E(Dφ(x, x∗)) + E(Dφ(x∗, x̂)) (16)

in which the unique point x∗ is called the Bayesian
projection of x onto B and is defined as following

x∗ := E(x|B) = PBx = argmin
x̂∈L2(Ω,B,P;Rd)

E(Dφ(x, x̂))

(17)

Note that if we took x∗ = E(x) then the term
E(Dφ(x, x∗)) is known as the Bregman’s variance

varφ(x) = E(Dφ(x||E(x))) = E(φ(x))− φ(E(x)) ≥ 0
(18)

for which holds (see [1])

Theorem 3.4. Let x be a random variable with mean
E(x) and variance var(x). The Bregman variance
varφ(x) 6= var(x) is then defined as follows

varφ(x) = E(Dφ(x||E(x)))

= E(φ(x))− φ(E(x)) ≥ 0. (19)

From inequality Eq. (14) one may further state

varφ(x) = E(Dφ(x||E(x)))

= E(Dφ(x, x̂))− E(Dφ(E(x), x̂))

≥ 0 (20)

for any random variable x̂. This then leads to

E(x) = arg
x̂∈L2(Ω,F ,P;Rd)

min E(Dφ(x, x̂)) (21)

which is the same minimum point for any expected
Bregman’s divergence.

The key result of the previous theorems justifies
using a mean as a representative of a random variable,
particularly in a Bayesian estimation.
In a special case when φ takes the quadratic form,

i.e. φ(x) = 1
2‖x‖2L2

, the Bregman’s divergence in
Eq. (9) modifies to the squared-Euclidean distance

Dφ(x||y) = ‖x− y‖2. (22)

In such a case the Bregman Pythagorean theorem
Eq. (15) reduces to the classical Pythagorean theorem
as already discussed by the author and co-workers in
[17].
Following the authors previous works, the con-

ditional expectation E(x|y) of a random variable
x given the measurement y in terms of Bregman’s
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quadratic loss functions is an orthogonal projection
PB(x) of x onto the subspace L2(Ω,B,P;Rd) of all
random variables consistent with the data y, i.e. gen-
erated by the sub-sigma algebra B := σ(y). This fur-
ther means that x can be orthogonally decomposed
into two components xp and xo:

x = xp + xo (23)

in which the projected part reads xp := PB(x),
whereas the orthogonal component xo equals (I −
PB)x.
As an observation ymes arrives, the first term in

Eq. (23), xp, is altered by the data ymes, whereas
the latter one, xo, embodies the remaining (residuals)
of the prior information xf . This idea leads to the
analogy of xp with E(xf |ymes) and of xo with xf (ω)−
E(xf |yf ) in which yf takes the form given in Eq. (5)
such that

xa = E(xf |ymes) + (xf − E(xf |yf )) (24)

holds. This is the filtering form of the decomposi-
tion given in Eq. (23), in which the indices a and f
are used to denote the assimilated (posterior) state
and forecast (prior) state, respectively. Following the
Doob-Dynkin lemma, the previous equation can be
rewritten as

xa = ϕ(ymes) + (xf − ϕ(yf )), (25)

in which the conditional expectation E(xf |ymes) is
represented by a measurable map ϕ(ymes), and simi-
larly E(xf |yf ) is expressed as ϕ(yf ). By rearranging
the terms in Eq. (25) one obtains

xa = xf + ϕ(ymes)− ϕ(yf ), (26)

the general form that is further used to construct
the nonlinear filtering procedure. The advantage of
Eq. (26) compared to Eq. (6) is that all quantities of
consideration are given in terms of random variables,
and not probability measures. Hence, it is easier
to functionally approximate and computationally ma-
nipulate Eq. (26) than Eq. (6), as further discussed.

4 Optimal map

To obtain the maximal information gain in Eq. (26),
the task is to find the optimal map ϕ among all mea-
surable maps Y → X . However, this step is not com-
putationally tractable, and thus additional approxi-
mations are required. The simplest possible choice is
to consider a linear approximation

E(xf |yf ) ≈ Kyf + b (27)

in which the map coefficients (K, b) are obtained by
minimising the orthogonal component in Eq. (24), i.e.

argmin
K,b

E(‖xf − E(xf |yf )‖22)

= argmin
K,b

E(‖xf − (Kyf + b)‖22). (28)

From the optimality condition

∀χ : E(〈xf − (Kyf + b), χ〉) = 0. (29)

one obtains

E(〈xf −Kyf − b, yf 〉) = 0

E (xf −Kyf − b) = 0 (30)

which further results in a linear Gauss-Markov-
Kalman filter equation

xa(ω) = xf (ω) +K(ymes − yf (ω)), (31)

specified by the well-known Kalman gain

K = Cxf ,yf (Cyf )†. (32)

Here, † denotes the pseudo-inverse, Cxf ,yf is the
covariance between the prior xf and the observa-
tion forecast yf , and Cyf = CY (xf ) + Cε is the
auto-covariance of yf consisting of forecast covariance
CY (xf ) and the measurement covariance Cε.
Even though computationally cheap, the previous

formula uses only pieces of provided information in
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ymes and may lead to over– or under– estimation in
highly nonlinear systems. Namely, the term yf in
Eq. (31) is essentially nonlinear and does not com-
ply with the linear approximation of the map ϕ. To
resolve nonlinearity, let the measurement operator Y
be the Fréchet differentiable with Lipschitz continu-
ous derivative H := ∂Y/∂x such that

Y (x) ≈ Y (x̌) +H(x− x̌) =: Y`(x) (33)

holds. Following this assumption, one may further
state

y ≈ Y`(x) + ε =: y`(x) (34)

in which y`(x) represents the linearised measurement
around the point x̌. As Y` is linear, the new Gauss-
Markov-Kalman formula obtains a similar form to the
one given in Eq. (31) and reads

xa = xf +K`(y
mes − y`(xf )) (35)

= xf +K`(y
mes − Y (x̌)−H(xf − x̌)− ε).

Here, xf is the forecast parameter, y`(xf ) is the fore-
cast value of linearised measurement around the point
x̌ given the prior xf , ε is the model of the measure-
ment error, and K` is the corresponding Kalman gain
calculated via

K` = Cxfy`(Cy`)
†

= CxfH
T (HCxfH

T + Cε)
†. (36)

Note that in a special case when all distributions of
consideration are known to be Gaussian, the last for-
mula obtains a similar form to the extended Kalman
filter [8, 23].
The map in Eq. (35) is not optimal as it highly

depends on the choice of the point x̌. Obviously, x̌
taken as E(xf ) is not always the best choice. To find
an optimal linearisation point, one may introduce the
sequence of the first order approximants

Y
(i)
` (x) := Y (x̌(i)) +H(i)(x− x̌(i)) (37)

with
H(i) :=

∂Y

∂x

∣∣∣
x̌(i)
, (38)

and
y

(i)
` (x) = Y

(i)
` (x) + ε. (39)

As a result, the optimal map Y is iteratively found
via the sequence of Kalman gains

K
(i)
` = C

xfy
(i)
`

C†
y

(i)
`

(40)

= Cxf (H(i))T (H(i)Cxf (H(i))T + Cε)
†,

and subsequently the posterior state is estimated via
an iterative procedure

x(i+1)
a = xf +K

(i)
` (ymes − y(i)

` (xf )), (41)

x̌(i) = E(x(i+1)
a ), (42)

here called the Gauss-Newton-Markov-Kalman fil-
ter. Under Gaussianity assumptions one may show
that the previous equation represents the Gauss-
Newton procedure for the maximum aposteriori es-
timate (MAP) as shown in [2]. Note that no such
assumption is made here.
The convergence properties of the algorithm can

be studied via fixed point theorem [12], according
to which the algorithm has local convergence char-
acterised by a spectral radius of ρ(K

(i)
` H(i)).

5 Bayesian estimation of optimal map

In the form given in Eq. (41) the Gauss-Newton-
Kalman filter has two drawbacks: first the filter re-
quires the time consuming evaluation of the Jacobian
H(i), and second the filter is biased as it assumes that

E
[
(Y (xf ))k

]
= E

[
(Y (x̌) +H(x̌)(xf − x̌))k

]
(43)

holds for k = 1, .., n. Therefore, the straightforward
linearisation is not the best possible choice. Instead,
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one may search for the optimal linear map in a similar
setting as given in Section 4.
In numerical practice the measurement operator

Y (xf ) is encoded in the corresponding computer soft-
ware/simulator of the physical model, and hence is
not explicitly known. But, using the classical un-
certainty quantification procedures (e.g. the pseudo-
spectral method or similar) one may obtain zf :=
Y (xf ) given xf in a non-intrusive way. In such a case
both zf and xf are known, and hence the estimation
of the measurement operator Y (xf ) in a linearised
form becomes simple. It only requires an estimation
of the map ϕy : xf 7→ zf , i.e. the conditional expecta-
tion E(zf |xf ). By taking the Bregman’s squared loss
function, as already discussed, the parameterised map
ϕy(β) can be estimated by minimising

β∗ = argmin
β

E(‖zf − ϕy(xf , β)‖22). (44)

In a special affine case

E(zf |xf ) ≈ Ȟ(xf − x̌) + h =: ϕy(xf , β), (45)

with β := (Ȟ, h) the previous optimisation problem
reduces to

argmin
Ȟ,h

E(‖zf − (Ȟ(xf − x̌) + h)‖22), (46)

the solution of which

Ȟ = CY (xf ),xfC
†
xf

(47)

represents the approximation of the Jacobian, and

h := E(Y (xf ))− E(xf − x̌) (48)

is the linear constant. Note that if Y (xf ) is originally
linear described by the true Jacobian H, then using
the formula in Eq. (47) one has that

Ȟ = CY (xf ),xfC
†
xf

= HCxfC
†
xf
≡ H. (49)

Similarly, for the inverse map zf 7→ xf holds

Cxf ,zfC
†
zf
≡ H†. (50)

Employing the previous two relations one may con-
clude that the Jacobian of the forward map is
equal to the inverse Kalman gain when the obser-
vation yf = zf + ε does not contain the measure-
ment/modelling/approximation error ε.
However, note that Eq. (46) holds only if lineari-

sation is done once as in the extended Kalman filter
procedure. Otherwise, given z(i)

a := Y (x
(i)
a ) one solves

the following problem

argmin
Ȟ(i),h(i)

E(‖z(i)
a − (Ȟ(i)(x(i)

a − x̌(i)) + h(i))‖22), (51)

such that the filter in Eq. (41) obtains its unbiased
form

x(i+1)
a = xf +K

(i)
` (ymes − y(i)

h (xf )) (52)

in which

y
(i)
h (xf ) : = Ȟ(i)(xf − x̌(i)) + h(i) + ε. (53)

Note that previously we have assumed that we
know random variables zf and xf resp. z

(i)
a , x

(i)
a ,

which is often not the case. Instead, in numerical
simulations we may only know their samples. Let
us denote the set of samples of the variable x(i)

a by
xsim := (x

(i)
a (ωi)

N
i=1). Similarly, let us denote the set

of forecasted samples by zsim := (z
(i)
a (ωi)

N
i=1) such

that
z(i)
a (ωi) = ϕy(x

(i)
a (ωi)) + εy(ωi) (54)

holds. In such a case, the approximation of the Jaco-
bian can be estimated from

z(i)
a (ωi) = Ȟ(i)(x(i)

a ωi)− x̌(i)) + h(i) + εy(ωi) (55)

in a Bayesian framework given measurement data
dsim := (xsim, zsim) by assuming that the pair h, Ȟ
and the approximation error εy are unknown, and
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hence modelled as uncertain. In a Bayesian setting
the map parameters β := (Ȟ, h, εy) can be estimated
as:

πβ|dsim(β|dsim) ∝ πdsim|β(dsim|β)πβ(β) (56)

in which πβ(β) is a joint prior distribution on β here
factorised according to πβ = πȞ(Ȟ)πh(h)πεy(εy).
The prior information can be imposed further such
that each element of the prior is of Gaussian type. As
Eq. (55) is of linear type, the Bayesian estimation in
such a case reduces to the Kalman filter estimate. For
this purpose one may assume that the prior mean for
the Jacobian is close to the inverse of the previously
estimated Kalman gain, see Eq. (49) and Eq. (50).
To include more information into the prior such as
sparsity of the matrix, the prior has to be carefully
designed, as discussed in Section 7.2.
Note that same type of approach can be also used

for the estimation of the Kalman gain in Eq. (32).
Following Eq. (54) one may pose the following prob-
lem: given samples (xf (ωi), y

(i)
h (xf (ωi)) estimate

E(xf |yf ) = ϕ(y
(i)
h ) such that

xf = E(xf |yf ) + εx = ϕ(y
(i)
h ) + ε(i)

x (57)

holds. Assuming linear map

ϕy(y
(i)
h ) = K(i)y

(i)
h + b (58)

and given the data set dsim := (xf (ωi), y
(i)
h (ωi)) one

may use Bayes’s rule to estimate β := (K, b, εx) in
a similar manner as in Eq. (56). The numerical ad-
vantage of Bayes’s rule compared to Eq. (28) lies in
the prior knowledge which can be imposed on the
Kalman gain, e.g. the sparsity information on the
mapping coefficients as discussed in Section 7.2. This
further allow us to use the previously described filter
in a "hierarchical sense" for both solving the inverse
problem, as well as for estimating the optimal linear
map. In particular, the hierarchical approach is inter-
esting when one would like to estimate the approxi-
mation/modelling/linearisation error ε as further dis-
cussed in Section 7.2. However, note that by using

Bayes’s rule to obtain a Kalman gain we do not sat-
isfy the orthogonality condition, and hence we do not
have a Kalman filter estimate as understood in the
classical sense.

6 Predictor-corrector
Bayesian-Gauss-Newton-Markov-Kalman
filter for backpropagation

To estimate the initial condition of the dynamical sys-
tem given in Eq. (1), one may use the previously de-
signed filter in the following form:

x
(i+1)
0,a = x0,f +K

(i)
` (ymes − y(i)

` (x0,f )), (59)

in which x0,f is the a priori random variable describ-
ing the initial condition at t0, ymes is the measure-
ment at the time T and y` := Ȟ(i)(xf − x̌(i))+ ȟ(i) +ε
is the forecasted linearised measurement at T and in
iteration (i). In a similar manner one may also es-
timate any state between t0 and T . Considering the
identification of all states equidistantly separated by
the update time step ∆τ , the Gauss-Newton-Markov-
Kalman filter is schematically described in Alg. (1)-
Alg. (2), and depicted in Fig. (1). After initialisation
of the prior variable, one approximates the forward
map xf 7→ yf by the linearised operator estimated ei-
ther in a classical way, see Eq. (51), or in a Bayesian
manner, see Eq. (56). Once the linearised measure-
ment is found, one may estimate the inverse map lin-
early again in two different manners: by projection
or by Bayes’s rule. Once both maps are estimated
one may assimilate the state using the measurement
data, and hence update the linearisation point. This
method of estimating the state will be called direct
smoothing (DS) further on. A numerical example is
shown in Fig. (2). Here, the smoothing algorithm
with a window size of two days is used to estimate
the second component of the Lorenz 1984 system (for
model details see the Appendix) given noisy full state
measurement data, see Alg. (2). Clearly, the linear

9



Figure 1: Schematic representation of direct back-
ward propagation

update observed in the upper plot fails to properly
estimate the state in any other time moment than
the time of the measurement itself. On the other
hand, the nonlinear filtering counterpart taking the
iterative form as described previously produces satis-
fying results, see the lower plot in Fig. (2). This also
holds for all three Lorenz components as depicted in
Fig. (3).
In general the Gauss-Newton procedure is known to

be convergent when the residuals are assumed to be
small. However, if the state xn is estimated given yk,
in which k is many times larger than n (e.g. estimation
of the initial state after long time integration), and/or
the system is highly nonlinear, the direct estimation
can be a problem. Fig. (4) depicts an example of
filter divergence when estimating the initial condition
of the Lorenz 1984 system given the state measured
after 96 hours. To overcome this, the large “update
step”, i.e. the time interval [tn, tk], is split into smaller
update steps defined by pseudo-time moments tn ≤
τ` ≤ tk, τ` = tn+`∆τ via ∆τ = c∆t stepping in which
∆t is the time discretisation step, and 1 ≤ c ∈ N.

In this way one divergent Gauss-Newton iteration is
substituted by several convergent ones, and the direct
estimation is substituted by an incremental one.
The initial value estimation via a pseudo-time step-

ping Gauss-Newton procedure can be done in dif-
ferent ways. Here, two variants are considered: the
mean-based and the random variable-based smooth-
ing. Both start with filtering of the current state xk
given the measurement data ymesk at tk via

x
(i+1)
k,a = xk,f +K

(i)
k (ymesk − y(i)

kh(xk,f )) (60)

in which xk,f is the prior knowledge on the current
state, and y

(i)
kh(xk,f ) is the measurement prediction.

As y(i)
kh(xk,f ) is linear in the state xk,f , the iterative

filter in Eq. (60) consists of only one iteration. Fig. (5)
shows the posterior probability density function of xa
of the current state x after six days of integration
given the perturbed full measurement data xm = xt+
ε̂ and the measurement noise with Cε = (0.1xt)

2I.
Once converged, the a posteriori state xk,a is

adopted as a pseudo-measurement for the preced-
ing state xk−∆τ at the time tk − ∆τ . However,
this could be done in at least two different ways:
i) by assuming that the posterior mean is a pseudo-
measurement and the posterior covariance is the mea-
surement/modelling error describing our confidence in
the “measured” value, or ii) by assuming that xk,a is
an uncertain “perfect” measurement, see Fig. (6).

6.1 Gaussian based pseudo-measurement

Instead of evaluating the initial condition in Eq. (59)
directly one may use the “smoothing” procedure in
which the intermediate states are estimated before
the desired one, see Fig. (6). In other words, the
first unknown state xk at the measurement time tk is
estimated via Eq. (60), whereas the preceding state
xk−∆τ at the time tk −∆τ is further evaluated given
the Gaussian approximation xgk,a ∼ N (x̄k,a, Cxk,a) of

10
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Figure 2: Linear and nonlinear smoothing of the second component of the Lorenz 1984 system

Algorithm 1 Direct smoothing (DS): Bayesian-Gauss-Newton-Markov-Kalman filter, backpropagation
1: function BGNMK(x0,f , y

mes,@integ,∆t,∆τ, t0, T, ε). Where x0,f - prior on initial value, t0 beginning
of time interval, T end of time interval, ymes - measurements, integ - forward function (model) handle,
∆t - time integration step, ∆τ - update step, ε - measurement error

2:
3: for tt = t0 : ∆τ : T do . Update the assimilation time
4: Set prior
5: xf = integ(x0,f ,∆t, t0, tt) . integrate ODE system from t0 to tt by time step ∆t
6: Update
7: xa = GNMK(xf , y

mes,@integ,∆t, tt, T, ε)
8: end for
9: end function
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Algorithm 2 Direct smoothing (DS): Bayesian-Gauss-Newton-Markov-Kalman filter, backpropagation
1: function GNMK(xf , ymes,@integ,∆t,∆τ, tt, T, ε) . Where x0,f - prior on initial value, t0 beginning of

time interval, T end of time interval, ymes - measurements, integ - forward function (model) handle, ∆t
- time integration step, ∆τ - update step, ε - measurement error

2:
3: Set linearisation point
4: x̊(0) = E(xf ), x

(0)
a = xf

5: Set i = 0, err = 2 · tol, maxiter = 100
6: while i ≤ maxiter & err ≤ tol do
7: Predict measurement
8: z

(0)
a = integ(x

(i)
a ,∆t, tt, T ) . integrate ODE system from tt to T

9: Approximate forward map x
(i)
a 7→ z

(i)
a := Y (x

(i)
a ) by

10: ϕy(x
(i)
a ) = H̊(i)(x

(i)
a − x̊(i)) + h̊(i)

11: Estimate forward map coefficients β := (H̊(i), h̊(i)) by
12: - projection:
13: H̊(i) = C

z
(i)
a ,x

(i)
a
C†
x

(i)
a

, h̊(i) = E(z
(i)
a )− H̊(i)(x

(i)
a − x̊(i)),

14: - or by Bayes’s rule
15: given data dsim = (xa(ωj)

(i), za(ωj)
(i)), j = 1, ..., N (see Section 7.2)

16: update πβ|dsim(β|dsim) ∝ πdsim|β(dsim|β)πβ(β)
17: Linearise predicted measurement
18: y

(i)
` (xf ) = H̊(i)(xf − x̊(i)) + h̊(i) + ε

19: Approximate inverse map y
(i)
` 7→ xf by

20: ϕ(y
(i)
` ) = K(i)y

(i)
` + b(i)

21: Estimate inverse map coefficients w := (K(i), b(i)) by
22: - projection:
23: K(i) = C

xf ,y
(i)
`

C†
y

(i)
`

, b = E(xf )−K(i)E(y
(i)
` )

24: - or by Bayes’s rule
25: given data dsim = (xf (ωj), y

(i)
` (ω(j)), j = 1, ..., N (see Section 7.2)

26: update πw|dsim(w|dsim) ∝ πdsim|w(dsim|w)πw(w)
27: Update state
28: x

(i+1)
a = xf +K(i)(ymes − y(i)

` ),
29: Update linearisation point
30: i = i+ 1;

31: x̊(i) = E(x
(i)
a )

32: Convergence criterion . e.g. mean based
33: err = ‖E(x

(i)
a )− E(x

(i−1)
a )‖ · ‖E(x

(i−1)
a )‖−1

34: end while
35: end function
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Figure 5: Update of the current state x at t = 6 days

Figure 6: The schematic representation of pseudo-
backward propagation

the convergent xk,a such that

x
(i+1)
k−∆τ,a = xk−∆τ,f +K

(i)
k−∆τ (xgk,a − y

(i)
kh(xk−∆τ,f ))

(61)
holds. Here, xk−∆τ,f is the apriori assumption on
the state at the time tk−∆τ , y

(i)
kh(xk−∆τ,f ) is the lin-

earised measurement operator (i.e. the linearised for-
ward map xk−∆τ,f 7→ xk,f ) around the point x̊(i) in
iteration (i):

y
(i)
kh(xk−∆τ,f ) = H̊(i)(xk−∆τ,f − x̊(i)) + h̊(i). (62)

The map coefficients H̊(i), h̊(i) are estimated either
by the projection algorithm or by Bayesian update
similar to those depicted in Alg. (1)-Alg. (2), whereas
the linearisation point is chosen as

x̊(i+1) = E(x
(i+1)
k−∆τ,a). (63)

Decoupling xgk,a into the mean x̄k,a and perturbation
εk,f ∼ N (0, Cxk,a) parts, one may rewrite Eq. (61) to

x
(i+1)
k−∆τ,a = xk−∆τ,f+K

(i)
k−∆τ (x̄k,a−(y

(i)
kh+εk,f )), (64)
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thanks to the symmetry of the Gaussian distribution
representing εk,f . In this manner Eq. (64) can be un-
derstood as the state estimation given deterministic
measurement x̄k,a at the time tk. Hence, the algo-
rithm of pseudo-time stepping is only a slight exten-
sion of the one presented in Alg. (1). The new pro-
cedure requires estimation of the current state, after
which the original filter is called, see Alg. (3).
Rewriting Eqs. (60)-(65) for all preceding states,

one obtains the general form of a smoothing iterative
filter:

x
(i+1)
`−1,a = x`−1,f +K

(i)
` (x̄`,a − (y

(i)
`,h(x`,f ) + ε`)), (65)

for all ` = k, k − ∆τ, .., k − n∆τ . The last formula
further can be generalised by taking into account all
estimated states from the time moment tk to the cur-
rent time tn as measurements, similarly to the classi-
cal smoothing algorithm.
Unfortunately, the estimate in Eq. (65) is biased

due to nonlinearity of the time-dependent problem. If
not corrected, the bias becomes propagated through
the model with each new update as shown in Fig. (7)
on the example of the first Lorenz 1984 component.
The mean value deteriorates from the measured one
with each update such that the deviation becomes
larger with the reduction of the update step size ∆τ
in contrast to expectations.
The posterior xk,a in Eq. (65) has the mean x̄k,a

that differs from the true posterior mean x̄truek,a ac-
cording to the error

εk = x̄truek,a − x̄k,a, (66)

which further becomes propagated in time with the
state integration/assimilation. Hence, Eq. (64) (and
similarly Eq. (65)) have to be corrected for the
amount given in Eq. (66).
The correction scheme is schematically depicted in

Fig. (8) and is of the predictor-corrector type. The
predictor phase starts with

• the prior assumption on the state xk−∆τ,f at the
time tk−∆τ with ∆τ being the backpropagation
increment.

• The state xk−∆τ,f is integrated forward (I∆τ in
Fig. (8) denotes the integration operator over
time interval ∆τ from tk−∆τ to tk) to obtain the
current prior state xk,f at the time tk.

• The current state xk,f is further assimilated with
the measurement data xmesk in a linear direct
GMK manner (in Fig. (8) denoted by UL) to ob-
tain the posterior xk,a. xmesk may represent the
real data only for the state that is being mea-
sured, otherwise these are pseudo-measurement
data. For example, if we update in the time in-
terval [t0, T ] given measurement data at the time
T , then the measurement xmesk at tk = T is the
real measurement ymes. Otherwise, if tk < T
our measurement at tk is the posterior estimate
obtained by incremental backpropagation of the
posterior at tk + ∆τ .

• The assimilated current state xk,a is then used
as a pseudo-measurement for the assimilation of
xk−∆t,f state via iterative GMK (see Eq. (64)),
in Fig. (8) denoted by backward update operator
U−∆τ .

With this the corrector phase starts by

• integrating forward the estimate xk−∆τ,a via I∆τ

to obtain the prior on the current state xak,f at tk
given posterior xk−∆τ,a at tk−∆τ .

• Furthermore, the newly obtained estimate xfk,a is
used as a prior for a second turn of updating the
current state at tk given measurement xmesk . The
update is performed using linear direct GMK rule
to obtain xak,a.

• The difference between the prior xfk,a and pos-
terior xak,a estimates then defines the correction
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Algorithm 3 Pseudo-smoothing I (PS): incremental BGNMK (iBGNMK) with Gaussian approximation
1: function iGNMK(x0,f , y

mes,@integ,∆t,∆τ, t0, T, ε) . Where x0,f - prior on initial value, t0 beginning
of time interval, T end of updating interval, ymes - measurement at T , integ - forward function handle,
∆t - time integration step, ∆τ - update step, ε - measurement error

2: Predict current state at T
3: xf = integ(x0,f ,∆t, t0, T ) . integrate ODE system from t0 to T by time step ∆t
4: Predict measurement
5: yf = Ix(xf ) + ε . Ix is the indicator operator in case dim(xf ) > dim(ymes)
6: Update current state at T given ymes

7: xa = xf + Cxf ,yfC
−1
yf ,yf

(ymes − yf )
8: for tt = T −∆τ : −∆τ : t0 do
9: Set pseudo-measurement

10: xga = Gaussian(xa)
11: Decompose pseudo-measurement:
12: to the mean value x̄a = E(xga)
13: and the fluctuation term εf := xga − x̄a
14: Set preceding prior
15: xf = integ(x0,f ,∆t, t0, tt) . integrate ODE system from t0 to tt by time step ∆t
16: Update preceding state
17: xa = GNMK(xf , x̄a,@integ,∆t,∆τ, tt, tt+ ∆τ, x̊, εf )
18: end for
19: end function
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Figure 8: The scheme of bias correction
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error. This is the corrector phase. The process is
further repeated for xk−2∆τ,f given the measure-
ment xmesk−∆τ adopted as the corrected version of
xk−∆τ,a.

To estimate the correction error, let the converged
posterior estimate in Eq. (64) be denoted by xk−∆τ,a

(beginning of the corrector phase in Fig. (8)) such
that

xk−∆τ,a = xtruek−∆τ,a + ek−∆τ (67)

holds, in which ek−∆τ denotes the bias error at the
time tk−∆τ . Propagating the a posteriori estimate
xk−∆τ,a by time step ∆τ forward 1, one obtains the
forecast estimate xfk,a at tk such that

xfk,a = H̊k(xk−∆τ,a − x̊k) + h̊k (68)

= H̊k(x
true
k−∆τ,a + ek−∆τ − x̊k) + h̊k

= H̊k(x
true
k−∆τ,a − x̊k) + h̊k + H̊kek−∆τ

= xf,truek,a + H̊kek−∆τ (69)

1this may include several time discretisation steps ∆t

holds. Here, H̊k and h̊k are converged parameters of
the forward map, and xf,truek,a denotes the forecast of
the exact a posteriori estimate. The analysis step at
time moment tk is then given by

xak,a = xfk,a +K(xmesk − xfk,a − εk,f ) (70)

= xf,truek,a + H̊kek−∆τ +

K(xmesk − xf,truek,a − H̊kek−∆τ − εk,f )

= xf,truek,a +K(xmesk − xf,truek,a )

+H̊k(I −K)ek−∆τ −Kεk,f
= xa,truek,a + H̊k(I −K)ek−∆τ −Kεk,f .

Here, xa,truek,a is the assimilated value of xf,truek,a . By
subtracting the previous two equations

xfk,a − xak,a = xf,truek,a − xa,truek,a + (71)

H̊kek−∆τ − H̊k(I −K)ek−∆τ

+Kεk,f
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and taking the mathematical expectation one obtains

E(xfk,a − xak,a) = E(xf,truek,a − xa,truek,a ) + (72)

H̊kēk−∆τ − H̊k(I −K)ēk−∆τ .

Furthermore,

E(xfk,a − xak,a) = E(xf,truek,a − xtruek,a )

+E(xtruek,a − xa,truek,a ) (73)

+H̊kKēk−∆τ

in which

E(xf,truek,a − xtruek,a )
!

= 0 (74)

E(xa,truek,a − xtruek,a )
!

= 0

due to unbiased requirement. This further gives

E(xfk,a − xak,a) = H̊kKēk−∆τ .

Hence, the mean bias error for the assimilated state
xk−∆τ,a at the end of the predictor phase reads:

ēk−∆τ = (H̊kK)−1E(xfk,a − xak,a). (75)

In a similar manner one may correct the variance of
the posterior by considering the second moment in
Eq. (72).
Introducing the estimated error in Eq. (75) to the

update in Eq. (64) one obtains the unbiased solution
as shown in Fig. (9a) for the update of the first Lorenz
1984 component. The total correction over a period
of 12 days is shown in Fig. (9b), in which are de-
picted the relative errors of the biased and unbiased
pseudo-estimated states compared to the direct es-
timated state following Eq. (59). As one may notice
the error is decreasing for several orders of magnitudes
when the correction is introduced.

6.2 Random-variable based pseudo-measurement

The previous estimation did not take into considera-
tion the full uncertainty in the pseudo-measurement.
Hence, the estimate does not have correct variance
as only the Gaussian approximation of the measure-
ment is considered. This can be seen in Fig. (10) in
which the corrected pseudo-estimate is compared to
the direct one.
However, by taking the current aposteriori estimate

xk,a at the time tk— obtained by assimilating the
measurement data ymes at tk via linear GMK filter—
as uncertain non-Gaussian pseudo-measurement, the
estimation of the preceding state xk−∆τ in a back-
propagation manner (tk → tk−∆τ ) becomes stochastic
as the measurement is a random variable. Following
this, one may further state

x
(i+1)
k−∆τ,a = xk−∆τ,f +K

(i)
k−∆τ (xk,a − y(i)

kh(xk−∆τ,f )),
(76)

similarly to Eq. (64). However, in contrast to Eq. (64)
the pseudo-measurement xk,a is taken in its full form,
and not only as a Gaussian approximation. This fur-
ther means that y(i)

kh(xk−∆τ,f ) is a “perfect” linearised
version of the time-discretised model in Eq. (1) around
point x̊(i)

k

y
(i)
kh(xk−∆τ,f ) = H̊

(i)
k (xk−∆τ,f − x̊(i)

k ) + h̊
(i)
k + εk, (77)

and similarly K
(i)
k−∆τ is the “perfect” Kalman gain

given as
K

(i)
k−∆τ = C

xk−∆τ,f ,y
(i)
kh

C†
y

(i)
kh

. (78)

Notice that εk represents the modelling/ discretisation
error, the estimate of which is further described in
Section 7.2.
The posterior estimate in Eq. (76) has different sec-

ond order statistics than those specified by the “clas-
sical” Kalman filter in the previous section. To sim-
plify the notation let xf := xk−∆τ,f , xa := xk−∆τ,a,
yf := y

(i)
kh(xk−∆τ,f ) and ym := xk,a, then the mean
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value of the converged posterior reads

x̄a = x̄f +Kk−∆τ (ȳm − ȳf ), (79)

whereas the covariance follows from

Cxa = Cxf +Kk−∆τCymK
T
k−∆τ

+Kk−∆τCyfK
T
k−∆τ

−2Kk−∆τCyf ,ymK
T
k−∆τ

−Cxf ,yfKT
k−∆τ

−Kk−∆τC
T
xf ,yf

+Kk−∆τCxf ,ym

+Cxf ,ymK
T
k−∆τ . (80)

In the previous equations the index (i) is avoided, as
the last two equations are written for i = iconv in
which iconv is the number of iterations of the con-
verged estimate. In Eq. (80) note that

−2Kk−∆τCyf ,ymK
T
k−∆τ

= −2Kk−∆τ H̊
(i)
k Cxf ,ymK

T
k−∆τ

= −2Cxf ,ymK
T
k−∆τ (81)

as the Kalman gain is optimal 2, i.e. Kk−∆τ H̊
(i)
k = I.

Having that Kk−∆τ = Cxf ,yfC
†
yf and after substitut-

ing the last equation in Eq. (80) one obtains

Cxk−∆τ,a
= Cxf + Cxf ,yfC

†
yf
Cym(C†yf )TCTxf ,yf

+Cxf ,yfC
†
yf
Cyf (C†yf )TCTxf ,yf

−Cxf ,yf (C†yf )TCTxf ,yf

−Cxf ,yfC†yfC
T
xf ,yf

(82)

= Cxf + Cxf ,yfC
†
yf

(Cym − Cyf )(C†yf )TCTxf ,yf

which in the original notation reads

Cxk−∆τ,a
= Cxk−∆τ,f

+ Cxk−∆τ,f
H̊TC†

y
(i)
kh

(Cxk,a − Cy(i)
kh

)C†
y

(i)
kh

H̊TCxk−∆τ,f

T .(83)

Using the estimation in Eq. (76) one obtains the
correct estimate of the posterior variance as obtained
by the direct simulation, see Fig. (11) for the com-
parison of the update obtained by direct iteration
(DS) and the pseudo (PS) one. Note that the pseudo-
updating is here performed every 6 hours. The same
estimate is also depicted earlier in Fig. (2), in which
the iterative pseudo-estimation is compared to the
linear pseudo-estimation every 6 hours. The pseudo-
nonlinear posterior estimate converges faster than the
direct one, see Fig. (12) for comparison of the number
of iterations neccessary to achieve the relative error
in the posterior mean of magnitude 1e-3. Usually the
posterior converges very fastly after two or three iter-
ations up to tolerance on the first decimal. However,
this number raises up to ten iterations if the accu-
racy is up to 1e-3 in all three components. On the
other hand, a direct iteration of the initial condition
requires up to 50 iterations for the same accuracy.
This behaviour also depends on the discretisation of
the previously described filters which will be discussed
later.
The random variable updating does not introduce

bias into the estimation, and hence the bias correction
introduced earlier does not change much the posterior
estimate, see Fig. (13). A small difference between the
corrected and original estimates exists due to numer-
ical integration of discretisation errors.

7 Iterative polynomial chaos filter

The advantage of the filtering approach as presented
in Eq. (52), Eq. (64) and Eq. (76) compared to the
other Bayesian numerical procedures lies in the sim-
plicity of the posterior variable estimation. Once the
random variables appearing in Eq. (52) are approx-
imated using the standard Galerkin functional ap-
proximation tools in their minimal form, the filtering
procedure reduces to the purely algebraic method for

2In numerical computations Kk−∆τ H̊
(i)
k ≈ I
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Figure 11: The pseudo-estimation of the Lorenz 1984 state every two days backwards using the random
variable algorithm. The pseudo-update is made every 6 hours.
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Algorithm 4 Pseudo-smoothing II (PS): incremental RV-based GNMK (irvGNMK)
1: function irvGNMK(x0,f , y

mes,@integ,∆t,∆τ, t0, T, x̊, ε) . Where x0,f - prior on
initial value, t0 beginning of time interval, T end of updating interval, ymes - measurement at T , integ -
forward function handle, ∆t - time integration step, ∆τ - update step, ε - measurement error

2: Predict current state at T
3: xf = integ(x0,f ,∆t, t0, T ) . integrate ODE system from t0 to T by time step ∆t
4: Predict measurement
5: yf = Ix(xf ) + ε . Ix is the indicator operator in case dim(xf ) > dim(ymes)
6: Update current state at T given ymes

7: xa = xf + Cxf ,yfC
−1
yf ,yf

(ymes − yf )
8: for tt = T −∆τ : −∆τ : t0 do
9: Set pseudo-measurement

10: xma = xa
11: Set preceding prior
12: xf = integ(x0,f ,∆t, t0, T ) . integrate ODE system from t0 to tt by time step ∆t
13: Update preceding state
14: xa = orvGNMK(xf , x

m
a ,@integ,∆t,∆τ, tt, T, ε)

15: end for
16: end function
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Figure 12: Number of iterations neccessary to achieve
posterior accuracy of 1e-3 in the mean

estimating the posterior variable. However, in high-
dimensional problems, or when using commercial soft-
wares, sometimes it is not possible to use spectral,
but pseudo-spectral approximations. Therefore, here
the focus is put on the discretisation of random vari-
ables in a data-driven sparse functional approxima-
tion form. In this light the optimal approximations of
the state variable, their numerical evaluations using
the minimal number of sample points, as well as an
efficient estimation of forward and inverse maps, i.e.
the Jacobian of linearised forward maps, as well as
Kalman gain are discussed here.

7.1 Random variable discretisations

For the purpose of discretisation, the random vari-
ables appearing in Eq. (52) can be expressed in terms
of some known simpler kind of random variables, as
previously studied by the author and colleagues in a
purely linear setting, see [21]. This can be achieved
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Algorithm 5 Pseudo-smoothing (PS) II: incremental BGNMK filter, backpropagation
1: function orvGNMK(xf , xma ,@integ,∆t,∆τ, tt, T, ε) . Where x0,f - prior on initial value, t0 beginning

of time interval, T end of time interval, ymes - measurements, integ - forward function (model) handle,
∆t - time integration step, ∆τ - update step, ε - measurement error

2:
3: Set linearisation point
4: x̊(0) = E(xf ), x

(0)
a = xf

5: Set i = 0, err = 2 · tol, maxiter = 100
6: while i ≤ maxiter & err ≤ tol do
7: Predict measurement
8: z

(0)
a = integ(x

(i)
a ,∆t, tt, T ) . integrate ODE system from tt to T

9: Approximate forward map x
(i)
a 7→ z

(i)
a := Y (x

(i)
a ) by

10: ϕy(x
(i)
a ) = H̊(i)(x

(i)
a − x̊(i)) + h̊(i)

11: Estimate forward map coefficients β := (H̊(i), h̊(i)) by
12: - projection:
13: H̊(i) = C

z
(i)
a ,x

(i)
a
C†
x

(i)
a

, h̊(i) = E(z
(i)
a )− H̊(i)(x

(i)
a − x̊(i)),

14: - or by Bayes’s rule
15: given data dsim = (xa(ωj)

(i), za(ωj)
(i)), j = 1, ..., N (see Section 7.2)

16: update πβ|dsim(β|dsim) ∝ πdsim|β(dsim|β)πβ(β)
17: Linearise predicted measurement
18: y

(i)
` (xf ) = H̊(i)(xf − x̊(i)) + h̊(i) + ε

19: Approximate inverse map y
(i)
` 7→ xf by

20: ϕ(y
(i)
` ) = K(i)y

(i)
` + b(i)

21: Estimate inverse map coefficients w := (K(i), b(i)) by
22: - projection:
23: K(i) = C

xf ,y
(i)
`

C†
y

(i)
`

, b = E(xf )−K(i)E(y
(i)
` )

24: - or by Bayes’s rule
25: given data dsim = (xf (ωj), y

(i)
` (ω(j)), j = 1, ..., N (see Section 7.2)

26: update πw|dsim(w|dsim) ∝ πdsim|w(dsim|w)πw(w)
27: Update state
28: x

(i+1)
a = xf +K(i)(xma − y(i)

` ),
29: Update linearisation point
30: i = i+ 1;

31: x̊(i) = E(x
(i)
a )

32: Convergence criterion . e.g. mean based
33: err = ‖E(x

(i)
a )− E(x

(i−1)
a )‖ · ‖E(x

(i−1)
a )‖−1

34: end while
35: end function

24



0 1 2 3 4 5 6 7 8 9 10 11 12

0.5

1

1.5

2
x

p99 NCPS
p50 NCPS
truth
mes
p99 CPS
p50 CPS

Figure 13: The random variable pseudo-update of the Lorenz 1984 first component with (CPS) and without
(NSP) correction.

by introducing a truncated polynomial chaos approx-
imation of the state variable

x(ω) ≈ x̂(ω) =
∑
α∈Jx

x(α)Ψα(ϑ(ω)), (84)

in which Ψα are multi-variate polynomials in random
variables ϑ as arguments. The random variables ϑ
represent the parameterisation of the prior uncertain-
ties in the initial conditions or even model parameters.
They are usually taken as independent, uncorrelated
random variables of some simpler kind such as for
example normal or uniform random variables corre-
sponding to the Askey scheme as discussed in [29]. In
a similar manner, one may approximate the predicted
error

ε(ω) ≈ ε̂(ω) =
∑
α∈Jε

ε(α)Ψα(η(ω)) (85)

in which η(ω) and ϑ(ω) are assumed to be indepen-
dent and uncorrelated. Collecting all random vari-
ables of consideration, the global discretisation of the
state reads

x(ω) ≈ x̂(ω) =
∑
α∈JΨ

x(α)Ψα(ξ(ω)), (86)

in which ξ(ω) := (ϑ,η)
When dealing with time-dependent systems, the

approximation as given previously is not optimal

when the time integration of the nonlinear system be-
fore the update is too long. In such a case the state
becomes highly non-Gaussian and requires high-order
polynomial chaos approximations. Fig. (14) shows
the decrease of the state PCE accuracy in time, and
its improvement with the increase of the polynomial
order. Similarly, the non-Gaussianity increases the
number of sampling points neccessary for the estima-
tion of PCE coefficients as the sparsity of the solution
decreases, see Fig. (15).
To resolve this problem, the idea is to change the

basis in Eq. (86) to

x̂k(ω) =
∑
α∈JΦ

x
(α)
k Φα(ζ(ω)) = Φkvk, (87)

in which the random variable ζ(ω) follows the distri-
bution of the last known state xk−n(ω) for which the
lower order approximation in Eq. (86) is still suitable,
and Φα(ζ(ω)) are the basis functions chosen either as
orthogonal via a modified Gram-Schmidt process, or
non-orthogonal ones as polynomial maps of the last
known state.
The basis transformation starts with the definition

of new random variables ζ(ω) driven by the evolution
law in Eq. (1) such that

ζ(ω) = g(ξ(ω)) (88)
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Figure 14: Relative error of a) the first state PCE w.r.t. to the polynomial order for 100 randomly chosen
samples b) the state PCE for p = 4 and 100 randomly chosen points
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Figure 15: State sparsity in time for fixed polynomial
order p = 4

holds, in which g(ξ(ω)) describes a nonlinear trans-
formation of the initial random variables ξ(ω) over
some predefined period of time. Let tk−n be the last
time moment in which the classical PCE basis can be
used to approximate the state xk−n. Then, given a
small numberN of model trajectories (xk−n(ξ(ωi))

N
i=1

for (ξ(ωi))
N
i=1 one may estimate the state coefficients

x
(α)
k−n in the original basis Ψα(ξ(ω)). Since xk−n(ω)

is fully defined, one may take ζ(ω) := xk−n(ω). By
arranging ζ(ω) into multivariate polynomial form, we
may define the new basis Φα(ζ(ω)) using the modi-
fied Gram-Schmidt (MGS) orthogonalisation process,
for more details please see [11]. In such a case the
new state xk(ω) at time tk can be estimated given a
small number of trajectories (xk(ξ(ωi))

N
i=1 and their

corresponding basis functions Φ(ζ(ωi)). Having

x̂k(ωi) =
∑
α∈JΦ

x
(α)
k Φα(ζ(ωi))

=
∑
α∈JΦ

x
(α)
k Φα(g(ξ(ωi))) (89)
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one may estimate the coefficients x(α)
k via Bayesian re-

gression as described in Section 7.2. Here, JΦ is a new
multi-index set defined by a polynomial order that is
lower than the corresponding Hermite one. This pro-
cedure further allows the evaluation of a large number
of samples of xk as the large number of samples of ζ
resp. ξ is known, and hence one may repeat the pro-
cess to estimate the next unknown state in time tk+1.
Fig. (16) shows the accuracy of the MGS for the

polynomial order p = 3 and 100 randomly chosen
samples w.r.t. the solution obtained from 106 Monte
Carlo runs. In comparison to the Bayesian regression
on classical PCE depicted in Fig. (14) one may note
that the accuracy of the MGS solution improves by
an order of magnitude for the same number of sam-
ples. The dependence of the MGS solution on the
number of samples and the polynomial order can be
seen in Fig. (17) and Fig. (18), respectively. As ex-
pected, the accuracy improves with the sample num-
ber. Similar holds for the polynomial order. Finally,
the sparsity of the newly obtained approximation is
shown in Fig. (19), where it is observed that the first
state is much sparser than the other two.
The basis estimation via Gram-Schmidt orthogo-

nalisation can be computationally demanding. Thus,
a much more efficient solution is to consider the non-
orthogonal basis. The simplest choice is to observe
the current state xk(ω) as a nonlinear map of the last
known one xk−n(ω), i.e.

xk(ω) =
∑
α∈JΥ

x
(α)
k Υα(xk−n(ω)) (90)

in which the coefficients x(α)
k are obtained via regres-

sion described in Section 7.2. Here, Υα(xk−n(ω)) are
taken to be the non-orthogonal multivariate polyno-
mials defined as:

Υα(xk−n(ω)) = x
(α)
k−n

= xα1
k−ny

α2
k−nz

α3
k−n (91)

with (α) being the multi-index set similarly defined
to the one that describes the classical PCE.
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Figure 16: Accuracy of the MGS basis in time for all
three Lorenz states
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Figure 17: Accuracy of the MGS solution w.r.t. the
number of randomly chosen samples for
the first Lorenz state for p = 3
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Figure 18: Accuracy of the MGS solution w.r.t. the
polynomial order
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Figure 19: Sparsity of the MGS Lorenz state in time

Fig. (20)a) shows the accuracy of the third and
fourth order nonlinear map (NMAP) approximations
(of order 3 (NMAP3) resp. order 4 NMAP4) com-
pared to the solution obtained by regressing on the
fixed Hermite polynomial basis of fourth order (PCE),
and the MGS solution of fourth order. While the PCE
solution is not accurate enough, both the MGS and
the nonlinear map solutions give similar results for the
same order of approximation. In the beginning lower
order nonlinear map solution (NMAP3) matches the
solution obtained by fixed regression. In contrast to
the PCE solution, the error stabilises over time and
does not over-estimate the Lorenz state. Furthermore,
the accuracy of the NMAP4 solution is tested on dif-
ferent data set sizes in Fig. (20)b). The experiment
shows that even a low number of samples (56 sam-
ples) can be used to achieve the desired accuracy, see
Fig. (20)c).

By using approximations in Eq. (89) and in Eq. (90)
one may use a small number of solution trajectories of
xk−n(ω) to estimate a large number of samples xk(ω).
The approximations are made adaptive such that the
last known basis is used in a current time, and the
Kullback-Leibler divergence is used to estimate the
error compared to the validation set. If the error
is bigger than tolerance then the basis is adaptively
modified.

Even though both of the previous approximations
are significantly better than the original basis, they
are not suitable to be used in the filtering process
due to correlated arguments, and in the latter case
also due to the non-orthogonality. Therefore, to com-
pute the time dependent polynomial chaos approxi-
mations, the previous approximations at the update
time are transformed such that the non-Gaussian cor-
related random variables ζ(ω) are mapped to uncor-
related Gaussian ones via nonlinear transformation.
The main idea of the transformation process is to map
the state variable xk−n(ωx) by an isoprobabilistic map
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to a Gaussian random variable θ(ωθ), ωθ ∈ Ωθ, i.e.

T : xk−n(ωx) 7→ θ(ωθ) (92)

such that the approximations rewrite to the PCE with
multivariate Hermite orthogonal basis Ψα(θ(ωθ)):

x̆k(ωθ) =
∑
α∈K

x
(α)
k Ψα(θ(ωθ)) (93)

characterised by much lower cardinality than the one
in Eq. (89) or Eq. (90).
Due to simplicity reasons, the transformation in

Eq. (92) is assumed to be of the Nataf-type, which
shows good performance for this kind of problem. The
other more general type of transformations are the
current state of the research and will be discussed in
another paper.
The Nataf transform is a composition of maps

T = T1◦T2 in which the first one T1 maps the vector of
non-Gaussian random variables ζ with marginal cu-
mulative distributions Fζ to the vector of correlated
standard Gaussian variables κ via inverse cumulative
distribution of the standard normal Φ−1

N :

T1 : ζ(ωζ)→ κ(ωθ) := Φ−1(Fζ(ζ)), (94)

whereas the second one T2 maps correlated random
variables into uncorrelated ones

T2 : κ(ωθ)→ θ(ωθ) = C−1/2
κ κ(ωθ). (95)

Here, the factorC−1/2
κ is evaluated using the Cholesky

decomposition. To perform the step in Eq. (94),
one requires knowledge on the cumulative distribu-
tion function (cdf) Fζ . As this information is not
accessible, but only instances of the random variable
(ζ(ωj))

M
j=1 are known, one may use the kernel density

estimator as the one presented in [4] to obtain Fζ . In
addition, Fζ is interpolated in a Bayesian manner (see
Section 8) using the polynomial of order 3.
Hence, for the further process of assimilation one

may rewrite Eq. (90) to the orthogonal polynomial

chaos expansion expressed in terms of newly esti-
mated standard random variables:

x̂
(i+1)
k−∆τ,a = x̂k−∆τ,f + K̂

(i)
k−∆τ (x̂k,a − ŷ(i)

kh) (96)

in which

ykh(ω) ≈ ŷkh(ω) =
∑
α∈K

y
(α)
k` Ψα(θ(ω)) + ε̂(ω) (97)

i.e.
ŷkh(ω) =

ˆ̊
H(x̂k−∆τ,f − x̊) +

ˆ̊
h+ ε̂. (98)

The accuracy of the transformed solution in a
Gaussian basis (tMGS- transformed modified Gram-
Schmidt process) compared to non-Gaussian ones (de-
noted by MGS in plot) w.r.t. to the polynomial order
is shown in Fig. (21)a). As expected, the Gaussian
basis requires higher polynomial order to achieve the
same accuracy as the non-Gaussian one.
The comparison of the transformed approach to the

classical MGS one is depicted in Fig. (21b). Here,
four different types of solutions are considered. The
solutions denoted by MGS and tMGS (transformed
MGS) are obtained by integrating original samples
of the state in time, whereas solutions MGSresamp
and tMGSresamp are obtained by sampling the poly-
nomial chaos approximations that are further inte-
grated in time. In the latter case the approximation
error gets propagated in time, and hence the solu-
tion is less accurate than the corresponding sampled
solution. The reason to investigate the second case
lies in the updating procedure. After the update of
the state is made one does not have the original state
samples coming from sampling the initial condition.
Instead, one samples the newly obtained polynomial
chaos approximation.
The discretised posterior in Eq. (96) is described by

both the state random variables as well as the vari-
ables describing the measurement noise. The number
of the latter ones increases with the number of mea-
surements, and hence the cardinality of the posterior
PCE grows. However, the dimension increase can be
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avoided by same transformation process as described
before. In Fig. (22)a) the accuracy of the transformed
state for NMAP estimate with respect to the polyno-
mial order is depicted. The sparsity of the newly ob-
tained state is depicted in Fig. (22)b) and is slightly
higher than the one described by the MGS procedure.
Finally, the assimilation results can be significantly

different than those obtained using the classical PCE.
In Fig. (23) one may see a comparison of the as-
similated state using the direct iteration with non-
adaptive classical polynomial chaos expansion of order
4 (DS) and the pseudo-state (PS) update (frequency
of update is 6h) using the transformed nonlinear map
estimate of same order. Clearly, the DS estimation
leads to the overestimation of the posterior variance
already after one day of estimation, as expected. This
is due to the inaccuracy of the state approximations.
On the other hand, the transformed nonlinear map
estimate and the one based on the transformed mod-
ified Gram-Schmidt estimation are giving very close
results. Fig. (24) depicts the mean and variance rela-
tive errors between these two solutions.
The modified basis approach results in a stable

posterior variance with respect to the pseudo-time
step size, see Fig. (25) in which are depicted pos-
terior bounds for two different updating step sizes.
This, however, does not hold for the classical PCE. In
addition, the modified updating procedure is robust
with respect to the measurement noise as presented in
Fig. (26). Here, the posterior 99% regions are shown
for three different values of the measurement noise
with cε being the coefficient of the variation of noise.

7.2 Sparse polynomial chaos approximations

The Gauss-Newton-Markov-Kalman filter requires re-
peated evaluations of the forward problem. To reduce
the overall computational burden, the propagation of
the uncertainty through the forward problem can be
achieved in a data-driven non-intrusive spectral set-
ting. Given the approximation of the state in a poly-

nomial chaos setting

x̂f (ω) =
∑
α∈JΨ

x
(α)
f Ψα(ξ(ω)) = Ψv, (99)

the goal is to estimate the unknown coefficients v
given N samples (xf (ωi))

N
i=1, i.e.

xf (ωi) =
∑
α∈JΨ

x
(α)
f Ψα(ξ(ωi)) (100)

for i = 1, ..., N . In a vector form the previous relation
reads

u = Ψv. (101)

In a case when N ≤ P := card JΨ, the system in
Eq. (101) is undetermined, and requires additional in-
formation. As a priori knowledge on the current state
exists (e.g. for small time step sizes the subsequent
state is close to the current one), one may model the
unknown coefficients v a priori as random variables
in L2(Ωv,F ,P;RP ), i.e.

v(ωv) := [v(α)(ωv)] : Ωv → RP ,

and further use the linear Gauss-Markov-Kalman fil-
tering procedure as previously described to determine
their conditional mean. As the coefficients can be
both positive and negative, one may assume that the
prior v(ωv) is normally distributed

v ∼ N (0, I) ∼ e− ‖v‖
2

2

resulting in

va(ωv) = vf (ωv) +K(u−Ψvf (ωv)). (102)

Having the Kalman filter on both the updating and
forecasting levels, the last equation together with
Eq. (76) forms the hierarchical structure of the it-
erative Gauss-Newton-Kalman filter. However, such
estimation still requires a large number of samples as
all coefficients in the polynomial chaos expansion are
taken into consideration even those close to zero. To
promote for sparsity, see Fig. (15), the prior distri-
bution has to be concentrated more around the zero
value. This can be achieved by taking a Laplace prior
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Figure 20: Non-orthogonal approximation of solution
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Figure 21: a) Accuracy of transformed MGS solution in time w.r.t. to polynomial order b) Comparison of
accuracies of different MGS approaches
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Figure 22: State sparsity of the non-orthogonal approximation of solution
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Figure 23: Update of the Lorenz 1984 state backwards every two days. The forecast is estimated using the
nonlinear map.
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Figure 24: Relative error between the posterior mean and variance of the transformed MGS based solution
with respect to the transformed nonlinear map one. Both are obtained by using the square root
algorithm
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Figure 25: The robustness of the square-root update of the full state with respect to the time step size
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Figure 26: Estimation of the Lorenz state with respect to different coefficients of the variation of noise cε

36



0 10 20 30 40 50 60
10−16

10−12

10−8

10−4

100

Iterations

L
ik
el
ih
o
o
d
er
ro
r

1e-2
1e-3
1e-4
1e-5
1e-8

Figure 27: Convergence of marginal likelihood error
with respect to the priorly assumed re-
gression error N (0, σ2) for the Lorenz 1984
example

v ∼ e−‖v‖1

to model the unknown coefficients. As the work with
a Laplace prior is computationally difficult, in this
paper we use the corresponding hyperprior instead as
advocated in relevance vector machine approach, see
[26]. The hyperprior is modelled as

p(v|$) =
∏
α∈J

p(v(α)|$α), v(α) ∼ N (0, $−1
α )

with $α being the precision of each PCE coefficient
modelled by a Gamma prior p($α). By marginalising
over $ one obtains the overall prior

p(v) =
∏
α∈J

∫
p(v(α)|$α)p($α)d$α

which is further simplified by taking the most proba-
ble values for $, i.e. $MP .
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Figure 28: Lorenz 1984 state sparsity with respect to
the data noise level
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Figure 29: Convergence of the marginal likelihood er-
ror with respect to the number of data
points for a fixed regression error prior.
The state is the second component of the
Lorenz 1984 system.
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To estimate the coefficients in Eq. (101) we further
use Bayes’s rule in a form

p(v,$,σ2|u) =
p(u|v,$,σ2)

p(u)
p(v,$,σ2) (103)

in which the coefficients v, the precision $ and the
regression error σ2 are assumed to be uncertain. For
computational reasons the posterior is further fac-
torised into

p(v,$,σ2|u) = p(v|u,$,σ2)p($,σ2|u)

in which the first factoring term is the convolution
of normals p(v|u,$,σ2) ∼ N (µ,Σ), whereas the
second factoring term p($,σ2|u) cannot be com-
puted analytically, and thus is approximated by delta
function p($,σ2|u) ≈ δ($MP ,σMP ). The estimate
($MP ,σMP ) is obtained from

p($,σ2|u) ∝ p(u|$,σ2)p($)p(σ2)

by maximising the evidence (marginal likelihood)

p(u|$,σ2) =

∫
p(u|v,σ2)p(v|$)dv

taking the form

p(u|$,σ2) = (2π)−P/2(R)−1/2

exp
(
−1

2
uT (R)−1u

)
(104)

in which R = B−1 +ΨA−1ΨT with B = σ−2IP , and
A = diag($α)α∈J . By optimality criteria

∂p(u|$,σ2)

∂$
= 0

and
∂p(u|$,σ2)

∂σ2 = 0

one may iteratively obtain the values for $ and σ2.
The number of iterations neccessary to achieve the

desired accuracy depends on the value of the mea-
surement noise if not marginalised, see Fig. (27). If
the signal is clean, the convergence is faster and vice
versa. Likewise, the sparsity increases with the in-
crease of the noise magnitude, see Fig. (28). For a
higher noise magnitude more polynomial chaos terms
can be considered as zero, and vice versa. In addi-
tion, the convergence also depends on the size of the
data set, see Fig. (29) on the example of a randomly
chosen (i.e. Monte Carlo) data set. The convergence
is hence faster when more samples are available.

7.3 Sparse optimal maps

Once the functional approximation of the forecasted
state is computed, the discretisation of the coefficients
of the forward (e.g. Jacobian ˆ̊

H) and inverse maps
(i.e. Kalman gain K̂

(i)
k−∆τ ) in Eq. (96) is the only re-

maining operation before having full discretisation of
the posterior variable. This can be simply achieved
by using the direct projection method in which Jaco-
bian and Kalman gains are computed directly by em-
ploying Eq. (47) and Eq. (40), respectively, and the
formula for the evaluation of the respective covariance
matrices:

Cq,w = E((q̂ − q̄)⊗ (ŵ − w̄)) (105)

=
∑
α,β∈K

E(ΨαΨβ)q(α) ⊗w(β) − q̄ ⊗ w̄.

The last relation can be further rewritten in a matrix
form as

Cq,w = Q̃f∆W̃
T
f (106)

in which (∆)αβ = E(ΨαΨβ) = diag(α!) and Q̃ is
equal to Q := (...,x(α), ...)T without the mean part.
Similar holds for W .
However, in case of high dimensional problems this

approach can be expensive. Therefore, the estima-
tion of a linearised map in Eq. (55) can be rephrased
in a similar setting as described in the previous sec-
tion. Given samples of the a posteriori estimate of
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the state x(i)
na(ωj) in i-th iteration, one may evalu-

ate the samples of the measurement forecast u(ω) =

[Y (x
(i)
na(ωj))]

N
j=1 such that

u(ω) =
∑
α∈K

u(α)Ψα(ξ(ω)) = Ψv (107)

holds. Hence, Bayesian regression as introduced ear-
lier can be used for the estimation of unknown sparse
coefficients v. In this regard

Yk(x
(i)
na) = H̊

(i)
(x(i)

na − x̌(i)) + h̊k + εk (108)

holds in which H̊
(i)
, h̊k and ε are unknown, and are

to be estimated from underdetermined data. How-
ever, in contrast to the problem in the previous sec-
tion, here one aims at estimating the matrix parame-
ter type. To reduce the estimation to the same form
as in Eq. (107), one may vectorise the previous equa-
tion to

ux = Xqx + εx (109)

in which

X = [1 (x(i)
na(ωj)− x̌(i))T ]Nj=1 ∈ RN×(d+1)

qx = [hx; (Ȟ(i)(1, :))T ] (110)

and εx = εx ⊗ e. Here, xna(ωj) ∈ Rd is the state
sample, e = [1, 0, ..., 0]T and εx is the approximation
error of the first state. Similarly, one may write

uy = Xqy + εy

uz = Xqz + εz.

In these forms Eqs. (110)- (111) can be also solved in
a sparse Bayesian setting.
The Jacobian estimated in this manner is slightly

better than the estimate obtained using Eq. (47) as
can be seen in Fig. (30). Here, the relative errors of
regression (Jreg) and covariance (Jcov) type of Jaco-
bians compared to the analytical value of Jacobian are
depicted. Both Jacobians converge very fast, already

after 3 iterations, whereas their accuracy deteriorates
with the increase of the length of pseudo-update step
as expected.
Besides promoting sparsity in the polynomial chaos

approximations and the Jacobian, one may also use
the Bayesian method to estimate the Kalman gain by
solving the linear system

xk−∆τ,f (ωj) = K
(i)
k−∆τy

(i)
kf (ωj) + b(i) + εK (111)

given the set of sample points (x
(i)
nf (ωj),y

(i)
kf (ωj)).

Collecting samples of each of the states into vectors
u1,u2 and u3 respectively for x, y and z one may
rewrite the previous equation as

um = Wkm + εm, m = 1, ..3 (112)

in whichW = [1 (y
(i)
kf (ωj))

T ] ∈ RN×(d+1) and km =

[b(i); (K
(i)
` (m, :))T ] ∈ Rd. The unknown coefficients

km can be then evaluated by using the Bayes’s rule.

8 Conclusion

We have developed the iterative incremental
predictor-corrector Gauss-Newton-Markov-Kalman
smoothing algorithm for the non-Gaussian state
estimation given noisy measurements. The method
is based on the nonlinear local approximation of
the conditional expectation, and is mathematically
generalised to take into account possible measure-
ment uncertainty. The resulting update equation is
discretised by using the time-adaptive polynomial
chaos expansion in terms of the standard normal
random variables, the number of which matches the
state dimension. These are obtained by isoproba-
bilistic transformation of the non-Gaussian posterior
random variable expressed in terms of generalised
polynomials of the last known state. The adjustment
of the basis functions is achieved via modified Gram-
Schmidt as well as nonlinear mapping algorithm
such that the desired updating accuracy does not
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Figure 30: Accuracy of the approximated Jacobian compared to the exact Jacobian

change when the measurement frequency is too low.
The resulting Kalman-type update formula for the
PCE coefficients can be efficiently computed solely
within the PCE. As it does not rely on sampling, the
method is robust, fast and exact.
As compared to Monte Carlo, the method is not

directly affected by sampling error. However, the
method accuracy involves regression error, the trun-
cation error of polynomial approximations (PCE, ap-
proximation of optimal map and approximation of
inverse map) and errors characterising the transfor-
mation of the non-Gaussian random variables. The
polynomial approximations here are all evaluated in
a data learning setting via Bayes’s rule given ran-
domly chosen samples. This may lead to potential
over-estimation of some of the polynomial coefficients.
However, note that the PCE approximations can be
easily exchanged with a fully deterministic Galerkin
algorithm for the state estimation obtained given the
variational form of the stochastic ordinary differential
equations as previously studied in [19].
The updating procedure has been applied to a low-

dimensional state estimation problem of the chaotic
Lorenz-84 system. It is shown that the method is
robust and able to estimate the initial state of the
Lorenz-84 system even when the updating step is large
and the measurement noise is high. The extension of
the presented method to more realistic applications
is currently ongoing research. As the numerical com-
plexity of the method increases with the state dimen-
sion, the future plan is to consider low-rank tech-
niques as well as to implement more efficient adap-
tive sampling strategies. This would then allow the
use of quadratic approximations in the iterative form.
Finally, the proposed method is based on the approx-
imation of the conditional expectation of the state
and not its higher moments. The further step is to
also include the conditional expectation of the second
moment into the updating process as well.
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9 Appendix: The Lorenz 1984 system

For the numerical evaluation of the estimation
method described in the previous, here we consider
the well-known “Lorenz-84” model [15, 16]. It is de-
scribed by a set of three state variables x = (x, y, z)T .
Here x represents a symmetric, globally averaged
westerly wind current, whereas y and z represent the
cosine and sine phases of a chain of superposed large-
scale eddies transporting heat polewards. The state
evolution is described by the following set of ordinary
differential equations (ODEs):

dx

dt
= −ax− y2 − z2 + aF1

dy

dt
= −y + xy − bxz + F2 (113)

dz

dt
= −z + xz + bxy,

in which F1 and F2 represent known thermal forcings,
and a and b are fixed constants.
In the numerical experiment considered in the pa-

per the initial condition of the “unknown truth” is
(1.0, 0.0,−0.75), the thermal forcings are set to F1 =
8 and F2 = 1, whereas the parameters are set to
a = 0.25 and b = 4. Given the initial values, the
previous system is integrated forward in time using
an adaptive embedded Runge-Kutta (RK) scheme of
orders 4 and 5.
As the Lorenz-84 model shows chaotic behaviour

and is very sensitive to the initial conditions, we
model them as independent Gaussian random vari-
ables:

x0(ω) ∼ N (x0, σ1)

y0(ω) ∼ N (y0, σ2) (114)
z0(ω) ∼ N (z0, σ3)

with x0 = y0 = z0 = 0 and standard deviations σ1 =
σ2 = σ3 = 1.

References

[1] A. Banerjee, X. Guo, and H. Wang. On the
optimality of conditional expectation as a breg-
man predictor. IEEE Trans. Information Theory,
51(7):2664–2669, 2005.

[2] B. M. Bell. The iterated Kalman Smoother as a
Gauss-Newton Method. SIAM Journal on Opti-
mization, 4(3):626–636, 1994.

[3] A. Bobrowski. Functional analysis for probability
and stochastic processes: an introduction. Cam-
bridge University Press, Cambridge, Cambridge,
UK, 2005.

[4] Z. I. Botev, J. F. Grotowski, and D. P. Kroese.
Kernel density estimation via diffusion. Ann.
Statist., 38(5):2916–2957, 10 2010.

[5] L.M. Bregman. The relaxation method of finding
the common point of convex sets and its appli-
cation to the solution of problems in convex pro-
gramming. USSR Computational Mathematics
and Mathematical Physics, 7(3):200 – 217, 1967.

[6] Y. Chen and D. S. Oliver. Ensemble random-
ized maximum likelihood method as an iterative
ensemble smoother. Mathematical Geosciences,
44(1):1–26, 2012.

[7] N. Chustagulprom, S. Reich, and M. Reinhardt.
A hybrid ensemble transform particle filter for
nonlinear and spatially extended dynamical sys-
tems. SIAM/ASA Journal on Uncertainty Quan-
tification, 4(1):592–608, 2016.

[8] G. A. Einicke. Smoothing, filtering and predic-
tion: estimating the past, present and future. In-
Tech, 2012.

[9] G. A. Einicke and B. Langford. Robust extended
Kalman filtering. IEEE Transactions on Signal
Processing, 47(9):2596–2599, 1999.

41



[10] D. Gamerman. Markov chain Monte Carlo:
stochastic simulation for Bayesian inference.
Chapman & Hall, Boca Raton, USA, 2 edition,
May 1997.

[11] Marc Gerritsma, Jan-Bart van der Steen, Peter
Vos, and George Karniadakis. Time-dependent
generalized polynomial chaos. J. Comput. Phys.,
229(22):8333–8363, November 2010.

[12] S. Gratton, A. S. Lawless, and N. K. Nichols. Ap-
proximate Gauss-Newton methods for nonlinear
least squares problems. SIAM Journal on Opti-
mization, 18(1):106–132, 2007.

[13] X. Kai, C. Wei, and L. Liu. Robust ex-
tended Kalman filtering for nonlinear systems
with stochastic uncertainties. IEEE Transactions
on Systems, Man, and Cybernetics-Part A: Sys-
tems and Humans, 40(2):399–405, 2010.

[14] R.E. Kalman. A new approach to linear filtering
and prediction problems. ASME. J. Basic Eng.,
82(1):35–45, 1960.

[15] E. N. Lorenz. Irregularity: a fundamental prop-
erty of the atmosphere. Tellus A, 36(2):98–110,
1984.

[16] Edward N. Lorenz. A look at some details of the
growth of initial uncertainties. Tellus A, 57(1):1–
11, 2005.

[17] H. G. Matthies, E. Zander, B. Rosić, and
A. Litvinenko. Parameter estimation via con-
ditional expectation: a Bayesian inversion. Ad-
vanced Modeling and Simulation in Engineering
Sciences, 3(1):1–21, 2016.

[18] R. Van Der Merwe and E. A. Wan. The
square-root unscented Kalman filter for state
and parameter-estimation. In Acoustics,

Speech, and Signal Processing, 2001. Proceed-
ings.(ICASSP’01), volume 6, pages 3461–3464.
IEEE, 2001.

[19] O. Pajonk, B. Rosić, A. Litvinenko, and H. G.
Matthies. A deterministic filter for non-Gaussian
Bayesian estimation. Physica D: Nonlinear Phe-
nomena, 241(7):775–788, 2012.

[20] B. Ristić, S. Aurlampalam, and N. Gordon.
Beyond the Kalman filter: particle filters for
tracking applications. Artech House Publishers,
Boston, 2004.

[21] B. Rosić, O. Pajonk, A. Litvinenko, and H. G.
Matthies. Sampling-free linear Bayesian up-
date of polynomial chaos represenations. Journal
of Computational Physics, 231(17):5761–5787,
2012.

[22] P. Sakov, D. Oliver, and L. Bertino. An iterative
EnKF for strongly nonlinear systems. Monthly
Weather Review, 140(6):1988–2004, 2012.

[23] D. Simon. Optimal state estimation: Kalman, H
infinity, and nonlinear approaches. John Wiley
& Sons, 2006.

[24] A. F. M. Smith and G. O. Roberts. Bayesian
computation via the Gibbs sampler and related
Markov chain Monte Carlo methods. Journal of
the Royal Statistical Society. Series B (Method-
ological), 55(1):3–23, 1993.

[25] H. A. Tchelepi, H. Bazargan, and M. A. Christie.
Efficient Markov chain Monte Carlo sampling us-
ing polynomial chaos expansion. In Proceedings
of the SPE Reservoir Simulation Symposium,
The Woodlands, Texas, United States, 2013. on-
line.

[26] M. E. Tipping. Sparse bayesian learning and the
relevance vector machine. Journal of Machine
Learning Research, 1:211–244, 2001.

42



[27] E. A. Wan and R. Van Der Merwe. The un-
scented Kalman filter for nonlinear estimation.
In Adaptive Systems for Signal Processing, Com-
munications, and Control Symposium 2000. AS-
SPCC. The IEEE 2000, pages 153–158. IEEE,
2000.

[28] K. Wang, T. Bui-Thanh, and O. Ghattas. A
randomized maximum a posterior method for
posterior sampling of high dimensional nonlin-
ear Bayesian inverse problems. arXiv preprint
arXiv:1602.03658, 2016.

[29] Dongbin Xiu. Numerical Methods for Stochas-
tic Computations: A Spectral Method Approach.
Princeton University Press, Princeton, NJ, USA,
2010.

43


	1 Introduction
	2 Model problem
	3 Conditional expectation
	4 Optimal map
	5 Bayesian estimation of optimal map
	6 Predictor-corrector Bayesian-Gauss-Newton-Markov-Kalman filter for backpropagation
	6.1 Gaussian based pseudo-measurement
	6.2 Random-variable based pseudo-measurement

	7 Iterative polynomial chaos filter
	7.1 Random variable discretisations
	7.2 Sparse polynomial chaos approximations
	7.3 Sparse optimal maps

	8 Conclusion
	9 Appendix: The Lorenz 1984 system

