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Bubbles are known to hinder electrochemical processes in water-splitting electrodes. In this study, we present a novel method to
promote gas evolution away from the electrode surface. We consider a ring microelectrode encircling a hydrophobic microcavity
from which a succession of bubbles grows. The ring microelectrode, tested under alkaline water electrolysis conditions, does not
suffer from bubble coverage. Consequently, the chronopotentiometric fluctuations of the cell are weaker than those associated with
conventional microelectrodes. Herein, we provide fundamental understanding of the mass transfer processes governing the transient
behavior of the cell potential. With the help of numerical transport models, we demonstrate that bubbles forming at the cavity
reduce the concentration overpotential by lowering the surrounding concentration of dissolved gas, but may also aggravate the ohmic
overpotential by blocking ion-conduction pathways. The theoretical and experimental insight gained have relevant implications in
the design of efficient gas-evolving electrodes.
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The uncontrolled formation of bubbles on catalyst surfaces can
take a remarkable toll on the efficiency of many gas-evolving electro-
chemical systems1 among which photoelectrochemical cells stand out
in significance.2 These surface bubbles not only reduce the electro-
chemically active contact area between the electrode and the reacting
liquid, but also block ion-conduction pathways, thereby increasing the
ohmic drop across the electrolyte in the cell.3 In some cases, bubble
formation can even cause direct catalyst degradation.4

Despite the extensive research done on electrolytic bubbles, the
bubble problem is far from being solved.4,5 One approach is to mi-
cropattern the electrode with hydrophobic sites to promote bubble
growth at desired locations,6 or the use of dimpled or arrayed surface
morphologies that encourage bubble detachment.7,8

The effectiveness of microcavities etched on silicon substrates,
first employed as a means to control multibubble surface cavitation,9

has been recently tested under electrolysis conditions.10 A second ap-
proach is the implementation of superwetting electrodes1 in order to
minimize the fraction of bubble coverage.

In contrast, here we choose to mitigate the effect of bubble for-
mation in water-splitting electrodes by promoting the nucleation of
bubbles away from the electrode surface. This was achieved by means
of a ring microelectrode encircling a superhydrophobic microcavity
etched on a hydrophilic silicon substrate. During electrolysis, a se-
quence of bubbles forms on the cavity and not elsewhere, precisely
because the energy landscape for nucleation is most favorable there.
The electrode surface therefore remains unspoiled. These bubbles play
a crucial role in the electrolysis process by actively lowering the con-
centration of dissolved gas around them as they grow. The likeliness
of another bubble nucleating on the ring electrode is thereby sub-
stantially diminished. In this work we will provide insights into the
relationship between the response of the electrochemical cell to the
various mass transfer processes surrounding the ring–cavity configu-
ration under constant-current electrolysis.

The main advantage of such a configuration is that the ring elec-
trode does not suffer from any ohmic penalties associated with bubble
coverage,11 nor from the large fluctuations in the surface overpotential
that usually coexist with them. For instance, bubbles detaching from
microelectrodes have been reported to induce prominent positive cur-
rent peaks under potentiostatic conditions,12,13 or negative peaks in the
overpotential under galvanostatic conditions.14 In these cases, much
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of the cyclic variation of the surface overpotential is by virtue of the
high bubble coverage fraction, or rather by the reduction and subse-
quent liberation of a substantial portion of the electrode active area as
a bubble grows and detaches.

Experimental

Ring microelectrode microfabrication.—The electrode consists
of a thin platinum ring (inner radius ri = 400 μm, outer radius re =
410 μm, surface area A = 0.0254 mm2) encircling a hydrophobic
cavity or pit (radius rp = 15 μm) etched on a flat and hydrophilic
10 × 10 mm2 SiO2 substrate. A lead connects the ring to an insulated
electrical contact pad (2 × 2 mm2) located in a corner of the substrate
surface. Details of its microfabrication can be found in appendix A.

Alkaline electrolysis cell.—The substrate was placed at the bot-
tom of an alkaline water electrolysis cell, sketched in Figure 1. The
cell is enclosed by an open 20 × 60 × 20 mm3 glass container. The
ring electrode acts as the hydrogen-evolving cathode; a platinum wire
embodies the oxygen-evolving anode. The anode has a large surface
area (∼8 mm2), specifically over 300 times greater than that of the
ring cathode. Both electrodes are connected through a Keithley 2410
power source, and kept at a distance ∼1 cm apart. At the beginning of
each experiment, 15 mL of fresh electrolyte was poured into the cell,
resulting in a ∼12.5 mm layer of electrolyte above the substrate. The

Figure 1. Sketch of the alkaline water electrolysis cell.
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Figure 2. Sequence of images, taken at a time t since the start of electrolysis, showing a hydrogen bubble nucleating and growing from the hydrophobic micropit
of the SiO2 substrate. The ring electrode encircling the pit has been highlighted for clarity. The current density is 39.3 mA/cm2.

electrolyte was prepared by dissolving 0.01 M NaHCO3 in Milli-Q
purified water.

Sodium bicarbonate completely dissociates into sodium (Na+) and
bicarbonate (HCO−

3 ) ions, which constitute the vast majority of the
supporting ions. The electrolyte is slightly basic in nature, with a mea-
sured pH 7.4, due to the equilibrium between OH−, HCO−

3 and CO2−
3

ions in solution. The equilibrium reactions are detailed in the Support-
ing Information.

In each of the three experiments reported in this paper, the cell
was operated at a constant current, namely, at I = 5, 10 or 20
μA. The corresponding current densities at the ring electrode are
19.6, 39.3 and 78.6 mA/cm2 respectively. All three current densi-
ties were found to be sufficiently low as to prevent bubbles from
nucleating on the surface of both the ring cathode and the anode.
However, these current densities did allow for a single bubble from
spontaneously growing from the hydrophobic pit a few seconds af-
ter the start of electrolysis, as evidenced in Figure 2. This is a clear
indication that the surrounding electrolyte is henceforth sufficiently
saturated with dissolved hydrogen as to sustain bubble growth. Even-
tually, the bubble detaches once it reaches the critical size at which
the buoyancy force exceeds the maximal interfacial tension force
that the triple contact line at the rim of the pit is able to provide.15

Shortly afterwards, a new bubble nucleates and the process repeats
itself over again. The cell voltage and the growth of first three bubbles
of the succession were recorded simultaneously. These are shown in
Figure 3.

The evolution of H2 gas abides by the reversible half reaction oc-
curring at the cathode of the alkaline electrolysis cell,16–18

H2O + 2 e− � 2 OH− + H2 [1]

The hydroxyl ion, OH−, is thus produced and consumed at the cath-
ode and anode respectively (cf. Figure 1), at equal rates. In choosing
galvanostatic electrolysis, the production rate of H2 gas remains con-
stant in time. In the absence of convection, but in the presence of an
electric field, the current flowing through a cathode of surface area A
is related to the surface concentration and gradient of the (produced)
species according to

I/A

njF
= Jj = −Dj

A

∫
�

(
∂c j

∂x
+ z jF

RT
cj

∂φ

∂x

)
dσ, j = H2, OH− [2]

where Jj denotes the average molar flux of species j, F = 96485 C/mol
is Faraday’s constant and nH2 = 2, nOH− = 1 are stoichiometric
constants. The second equality constitutes the Nernst–Planck flux
equation,19 where c j is the concentration, � describes the cathode
surface, x is the coordinate pointing normally outwards from �, and
dσ is an infinitesimal area element. The electric potential is denoted
by φ and z j is the charge of the species: zH2 = 0, zOH− = −1;
R = 8.314 Jmol−1K−1 is the gas constant and T the absolute tem-
perature. The transport of uncharged species (z j = 0) such as H2

is strictly driven by diffusion: the migration flux component is identi-
cally zero. For the case of OH−, Equation 2 is only applicable for large
current densities at which the large local overconcentration of OH−

Figure 3. Cell potential E and bubble radius a of the first three bubbles in the succession plotted against elapsed time since the start of constant-current electrolysis.
Three experiments at different current densities are shown. The dashed black curves are fits of the form a2

n/tn = mn = const., from which the effective supersaturation
ζn = mn/2�DH2 was then computed.
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overwhelms the buffer capacity of the surrounding electrolyte. Other-
wise, most of the excess OH− immediately recombines into HCO−

3 and
CO2−

3 ions to satisfy chemical equilibria (see Supporting Information).

Results and Discussion

Bubble growth dynamics.—We begin with a treatment of the ef-
ficiency of gas evolution20 and the bubble growth dynamics observed
in our experiments (see Figure 3). The number of moles of H2 gas,
Nd , in a spherical bubble at its detachment radius ad can be computed
from the ideal gas law,

4

3
πa3

d p = Nd RT [3]

where p � 1 bar is the bubble pressure and T = 293 K. In truth,
the assumption that there are no other gases present in the bubble is
violated especially in the case of the first bubble since the electrolyte
is equilibrated with air. The presence of dissolved air explains why the
first hydrogen bubble nucleates and grows just a few seconds after the
start of electrolysis.10 After this start-up effect, the mean efficiency of
bubble evolution can be computed as the amount of H2 in the bubble
at the time of detachment divided by the total amount of gas evolved
during the bubble lifetime td :

η = Nd

AJH2 td
= 4π

3

a3
d p

RT

nH2 F

Itd
. [4]

For a typical bubble, ad ∼ 0.5 mm, td ∼ 1000–3000 s. We then
obtain, for the experimental current densities, η ≈ 30%, which implies
that roughly 30% of the evolved hydrogen eventually ends up in the
bubble, while the rest is being continuously absorbed by the bulk fluid.
The bubble hence mainly grows by diffusion, absorbing gas from the
bulk. The efficiency of our configuration is still not close to the 100%
efficiency that is practically observed in conventional microelectrodes
upon which (single) bubbles form.13,14 Nonetheless, it stands an order
of magnitude higher than in the case of a single bubble nucleating on
a flat planar electrode much larger than the bubble itself.21

We can go further and compare the bubble growth dynamics with
the Epstein–Plesset theory.22 For slow growth dynamics, the bubble
radius of the nth bubble in the succession can be assumed to grow in
time as10,23

an(t ) ≈ √
2�ζnDH2 tn, [5]

from which one may estimate the effective H2 gas supersaturation of
the bulk surrounding the nth bubble in the succession, that is,

ζn = Cn/kH2 p − 1. [6]

Here,Cn(t ) represents the effective far-field concentration of dissolved
H2 gas surrounding the bubble, kH2 � 7.7 × 10−6 mol/m3 Pa denotes
Henry’s coefficient of H2 in water, � = kH2 RT = 0.0188 is the Ost-
wald coefficient and tn is the time elapsed since nucleation. Note that
kH2 p = 0.77 mM is the equilibrium concentration of H2 at p = 1 bar.
The theoretical fits of Equation 5 to the experimental bubble growth
rates when I = 19.6 mA/cm2 yields a characteristic supersaturation
value of ζ1 ∼ 0.44 (C1 ∼ 1.11 mM) and ζ3 ∼ 0.54 (C3 ∼ 1.18 mM)
for the first and third bubble respectively. We obtain ζ1−3 ∼ 0.62–
0.71 for 39.3 mA/cm2 (C1−3 ∼ 1.25–1.32 mM) and ζ1−3 ∼ 1.77–1.89
(C1−3 ∼ 2.13–2.22 mM) for 78.6 mA/cm2. The higher growth rates
of the subsequent bubbles in the succession is a clear indicator that
the bulk hydrogen concentration near the ring electrode is indeed in-
creasing in time.

Cell potential.—Figure 3 reveals a transient ‘diffusion-like’ be-
havior of the cell voltage. Remarkably, a steady-state value is never
reached during the long time scale of our experiment. The cell voltage
is clearly influenced by the presence of bubbles, not only by bubble
growth, as one may infer by the periodic relaxation of the potential in
the timescale of the bubbles’ lifetime, but also by bubble detachment,
which is clearly synchronous with sudden drops in the voltage.

In order to address these matters further, we must first acknowledge
the different contributions to the cell potential:16

E (t ) = E�(t ) + Ea(t ) − Ec(t ). [7]

The anode and cathode potential are denoted by Ea and Ec respec-
tively; E�(t ) refers to the ohmic overpotential. The dependency of the
electrode potential on the current density, surface concentrations and
reaction rates can be modeled by the most general form of the Butler–
Volmer equation.19 The electrode kinetic properties of our electrodes
remain unknown, and it is not the purpose of this paper to deter-
mine them. Nonetheless, it stands to reason that the influence of bub-
ble growth or detachment on the cell potential can be made manifest
through the concentration overpotential, only.

Therefore, as a first approximation, we can assume that at a given
current density the reaction overpotential of the ring cathode remains
fairly constant. The concentration overpotential, however, can be as-
sumed to behave semi-quantitatively in the same way to the Nernst
(equilibrium) potential,18

Ec(t ) = E0 + RT

2F
ln

( (
CH2O

)2

(COH− (t ))2 CH2 (t )

)
, [8]

where Cj denotes the concentration of species j at the cathode sur-
face and E0 is the (unknown) standard potential of our cathode. It is
worth pointing out that platinum electrodes driving water electroly-
sis in acidic conditions have extremely fast reaction kinetics and the
Butler–Volmer equation in fact reduces to the Nernst equation. In alka-
line media, however, reaction kinetics are several orders of magnitude
slower,24 and the reaction overpotentials are non-negligible. In any
case, Equation 8 conveys the important fact that an increase in the
surface concentrations of H2 or OH− renders an increase of the cell
voltage E . The concentration of water in the electrolyte is naturally so
high that it can be assumed constant and uniform, CH2O � 55.5 M.

The Nernst potential at the anode is given by a similar equation.
We may however neglect the concentration overpotential on the anode
potential caused by the unsteady surface concentrations of O2 and OH−

or a reduction of active area by O2 bubble coverage. This is justified
by noting that changes in the surface concentration of the reacting
species are proportional to the current density of the electrode (see
Equation 12). In our case, I/A is a factor of 300 smaller at the anode.
Oxygen bubble evolution is thus greatly hindered and O2 primarily
remains dissolved in the electrolyte; the bubble coverage fraction at
the anode was observed to be negligibly small.

By predicting then the evolution of CH2 (t ) and any changes in
the ionic concentration distribution, it is possible to estimate, semi-
quantitatively, the corresponding variation in the concentration and
ohmic overpotential in time. The evolution of the concentration c j of
each (ionic) species is governed by the advection–diffusion–migration
equation, commonly referred to as the Nernst–Planck equation,

∂c j

∂t
= Dj∇2c j + ∇ ·

(
Djz jF

RT
cj∇φ

)
− U · ∇c j + Sj, [9]

along with the electroneutrality condition,
∑

j z jc j = 0.25 The velocity
field, if any flow is present, is denoted by U . Any equilibrium reactions
between the different ions are taken into account through the source
term Sj (see Supporting Information).

We advance that the transient behavior of the potential observed
in Figure 3 can be explained by three main factors. The first is the
concentration overpotential on the cathode, as a consequence of the
diffusion-driven evolution of surface concentration of H2 and, to a
lesser extent, OH−. The concentration overpotential is mitigated by
the presence of the bubbles growing on the cavity which essentially
act as a sink of hydrogen gas. The second factor is the migration-
driven transport of the supporting ions from the anode to the cathode
across the bulk of the electrolyte, consequently increasing the ohmic
overpotential over time. Last but not least is the advection induced by
a detaching bubble.26 Its repercussion is twofold: it not only disrupts
the high-concentration H2 diffusion layer at the electrode, but also
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alleviates the high ionic concentration layer that inevitably surrounds
the electrode. These arguments are developed and justified next.

The concentration overpotential in the presence of bubbles.—
We commence estimating the relaxation time for the concentrations
of H2 on the ring electrode surface to reach the steady value in the
hypothetical absence of bubbles. The transport Equation 9 for j = H2

simplifies to the diffusion equation

∂cH2

∂t
= DH2∇2cH2 , [10]

for which DH2 ∼ 5.0 × 10−9 m2/s.27 We can immediately resort to
the analytical solution of Equation 10 concerning an equivalent hemi-
spherical electrode of area A = 2πr2

e in a semi-infinite medium. The
electrode is producing H2 at a constant flux I/AnH2 F and the initial
bulk concentration is C∗

H2
. It can be shown, by the method of Laplace

transforms, that the electrode surface concentration CH2 evolves in
time as

CH2 (t ) − C∗
H2

Css
H2

− C∗
H2

= 1 − exp

(
DH2 t

r2
e

)
erfc

(√
DH2 t

re

)
[11]

whereCss
H2

is the steady-state electrode surface concentration. Equation
11 is plotted in Figure 4 and compared with the dimensionless sur-
face concentrations expected for a thin ring (ri/re = 0.976) and a disk
(ri/re = 0) electrode geometry. These were computed numerically us-
ing the open-source partial differential equation solver FreeFem++.28

Recall that re refers to the outer radius of the ring or disk.
From Figure 4a we estimate that the dimensionless relaxation time

of the surface concentration is DH2 t/r2
e ∼ 50. One would then expect

the concentration profile and concentration overpotential to reach the
steady state in about t ∼ 30 minutes in the absence of bubbles. In fact,
the H2 concentration boundary layer also develops fully and reaches
the steady state during this relaxation time. A prediction of the steady-
state H2 concentration distribution within the entirety of the cell, much
larger than the electrode and bubble themselves, is pictured on Figure
4b. Such distribution was readily obtained by numerically solving (in
FreeFem++) the steady-state diffusion equation, ∇2cH2 = 0, on an
axisymmetric domain of similar dimensions to our cell, subject to a
constant concentration boundary condition at the electrode surface,
zero concentration at the free surface, and no flux on the remaining
solid surfaces (see Supporting Information).

Figure 4b reveals that the boundary layer attains a finite size of the
order of a few bubble diameters, since it is prevented from growing any
further by the liquid–air free surface whereon the H2 gas concentration
effectively remains zero. The bulk concentration in the cell is an order
of magnitude less than the local concentration in the vicinity of the
bubble, and about 1% of Css

H2
. For most practical purposes, one then

expects the H2 bulk concentration to be negligible always. Moreover,
it is seen that the cell is sufficiently large such that the boundary layer

remains unaware of any confinement. The modeling of gas transport
in the vicinity of the microelectrode assuming a semi-infinite medium
is thus justified.

Our experiments in Figure 3 show, however, that the overall cell
potential and bubble growth rates enduringly increase during a time
scale much greater than 30 minutes. This suggests that the bubbles
impede the surface concentration from attaining a steady-state value
so quickly by perturbing locally the concentration boundary layer in
the vicinity of the electrode.

The prompt increase of the cell voltage observed immediately after
the start of electrolysis (cf. Figure 3) can be mainly attributed to the
concentration overpotential. This is justified by the very rapid initial
diffusion-driven increase of CH2 as seen in Figure 4. Soon after, how-
ever, a bubble nucleates and grows at the center of the ring. The bubble
essentially acts as a sink of H2 gas which has a depressing effect on
CH2 and hence on the concentration overpotential. Indeed, in this con-
figuration where the bubble does not mask the electrode, the bubble
can only be beneficial for the potential and the efficiency of the system
as it passively removes H2 from the vicinity of electrode surface. This
is precisely the ‘enhancement effect’ referred to by other authors.12,29

The enhancement effect is perhaps even better conveyed by
Figure 5 which compares the H2 concentration field in the vicinity
of the ring electrode in the absence and in the presence of a bubble
close to detaching. The bubble was treated as a stationary boundary
under the pseudosteady-state approximation.29 This is justified as long
as the bubble lifetime td notably exceeds the relaxation time by diffu-
sion of the concentration field around a bubble, τa = a2

d/DH2 . In our
case, we find that td/τa > 10. The (axisymmetric) diffusion Equation
10 was then solved on a 50re square domain, subject to a constant
flux condition at the electrode surface, and imposing a constant sat-
uration concentration of kH2 p = 0.77 mM at the bubble surface (see
Supporting Information for details).

The simulation snapshots are taken at a dimensionless time
DH2 t/r2

e = 100, i.e., approximately one hour in dimensional time,
which is roughly the lifetime of our bubbles at the lowest current den-
sity. This implies that the concentration field in the absence of the
bubble (Figure 5a) is essentially the steady-state solution.

Figure 5b highlights the enormous influence that the bubble has
on the concentration field. Strikingly, the bubble lowers the electrode
surface concentration to almost half of the bubble-free steady-state
value. In fact, the steady-state surface concentration of an electrode
in a semi-infinite medium initially at C∗

H2
is given by the analytical

expression

I/A

nH2 F
= β

DH2

re

(
Css

H2
− C∗

H2

)
, [12]

where the geometric factor β accounts for the electrode geometry.
For a hemispheric electrode, β = 1,19 a circular disk electrode has
β = 4/π,30 whereas our ring electrode of thickness ri/re = 0.976 has
β � 18.3 (see appendix B). In the hypothetical absence of bubbles,

Figure 4. (a) Numerical solution of the dimensionless sur-
face concentration, C̃ = (CH2 − C∗

H2
)/(Css

H2
− C∗

H2
) as a

function of dimensionless time t̃ = DH2 t/r2
e for the case

of a thin ring, a disk and a hemispherical electrode of ra-
dius re. The electrodes are assumed to generate a constant
flux of H2 that diffuses into a semi-infinite liquid. The dashed
curve is the analytical solution given in (11). (b) Steady-state
concentration field in the absence of bubbles that would be
attained in an axisymmetric domain of similar dimensions to
our cell. The half-circle (atop the origin) represents a typical
size of a detaching bubble for reference. The concentration is
nondimensionalised as c̃ = (cH2 −C∗

H2
)/(Css

H2
−C∗

H2
); some

contours are outlined for clarity. The ring cathode thickness
is that of our experiments, (ri/re = 0.976).
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Figure 5. Snapshots at DH2 t/r2
e = 100 of the dimensionless concentration field of H2 gas in the vicinity of the ring electrode (ri/re = 0.976) in (a) the absence

and (b) the presence of an encircled bubble. The concentration has been nondimensionalised as c̃ = nH2 FDH2 A(cH2 − C∗
H2

)/Ire (see Supporting Information).
The initial supersaturation (̃c = 0) is set at ζ ∗ = C∗

H2
/kH2 p − 1 = 0.5, similar to the effective supersaturation observed in our experiments at the lowest current

density. We take I/A = 19 mA/cm2 and the dimensionless interfacial concentration at the bubble (saturation concentration) is correspondingly set to c̃ = −0.005.

Equation 12 with C∗
H2

= 0 yields Css
H2

≈ 4.6, 9.2 and 18.3 mM for
I/A = 19.7, 39.3 and 78.6 mA/cm2 respectively. These concentrations
correspond to steady-state supersaturations of ζ = Css

H2
/kH2 p−1 ∼ 5,

11, and 23. Notice that even when halving these values (to account for
the presence of bubbles), the electrode surface supersaturations remain
much larger than the effective supersaturations surrounding the first
bubbles in the succession (approximately 0.5, 0.7 and 1.8 respectively)
previously calculated (cf. subsection “Bubble growth dynamics”).

The origin of this mismatch lies in that the highest concentrations
and concentration gradients are contained within a small diffusion
boundary layer surrounding the ring electrode. Figure 5b reveals that
this diffusion layer is quite small in comparison to the bubble size at
detachment. The size of the diffusion layer thickness is often charac-
terized by the Nernst diffusion layer thickness δ.19,26,31 We find that
the Nernst diffusion thickness, which adopts the formal definition of
δ/re = 1/β ∼ 0.05 in compliance with Equation 12, indeed represents
a realistic length scale of the diffusion layer observed in our thin-ring
configuration.

We finally turn our attention to the sudden drops in the cell voltage
caused by bubble detachment, or rather by the forced convection that is
generated during the departure process. As discussed in the introduc-
tion, the reduction in the surface overpotential is less prominent than in
the conventional case of a bubble departing from a microelectrode,13,14

owing to the fact that the ring electrode is never in direct contact with
the bubble.

Even without considering entrainment in the bubble wake, whose
velocities at a fixed height near the electrode were incidentally mea-
sured to decay exponentially over a couple of seconds (data not shown),
we expect the H2 diffusion layer to be completely disrupted by the de-
taching bubble. The volume occupied by the detaching bubble must be
refilled with the adjacent electrolyte, including the electrolyte in the
diffusion layer around the electrode due to its immediate proximity.
We find justification in the fact that the volume of the half-torus (with
tube radius δ) comprising the Nernst diffusion layer surrounding the
electrode is very small compared to the bubble volume at detachment:

VN

Vd
∼ π2reδ

2

4πa3
d/3

= 3π

4β2

r2
e

a3
d

∼ 2 × 10−3. [13]

Ohmic overpotential.—It is expected that detachment-driven con-
vection additionally disrupts the diffusion layer of high ionic con-
centration that surrounds the cathode, thereby reducing the ohmic
overpotential, E� in Equation 7. This claim is evidenced in Figure

6, which compares the steady-state concentration field of cations, or
equivalently anions, in the presence and absence of a bubble. The con-
centration field is obtained from a simple numerical model. The bubble
is treated as a stationary boundary as before, but now the medium is
confined to a closed cylindrical domain that resembles our experimen-
tal configuration. In particular, the interelectrode distance, the volume
of solution, and electrode sizes are equivalent to those of our set-up.
The equilibrium concentrations of Na+ and HCO−

3 ions are assumed
to always remain much greater than those of OH−, CO2−

3 and H+.
Upon the approximation that the solution has a perfect buffer capac-
ity, it can be shown (see Supporting Information) that the steady-state
Nernst–Planck Equation 9 simplifies to

∇2c± = 0 [14]

where c± � cNa+ � cHCO−
3

is the total cationic or anionic concentra-
tion. Equation 14 is solved numerically assuming uniform ionic fluxes
at the electrodes (cf. Supporting Information). The aforementioned
assumption of perfect buffer capacity is expected to hold everywhere
except in the very small diffusion layer closest to the ring cathode
surface where the local concentrations of OH− and CO2−

3 are highest,
even possibly exceeding the concentration of HCO−

3 for the larger cur-
rent densities. This is corroborated by Figure 6, where it is seen that
most of the interelectrode concentration difference takes place within
this small region. In fact, the dimensionless difference of �c̃ ≈ 0.07
obtained for our geometry translates to a fractional concentration dif-
ference of order unity since, for our experimental current densities,

�C∗
±

C∗±
= (I/A)re�c̃±

2FD−C∗±
∼ 1. [15]

We have set C∗
± = 0.01 M as the initial bulk concentration of

cations/anions in the solution, whereas D− represents the effective
diffusion coefficient that determines the ionic boundary layer thick-
ness at the electrodes (D− � DHCO−

3
under the assumption of per-

fect buffer). A fractional concentration change of order unity suggests
that the local OH− overconcentration near the cathode is likely too
large for the buffer capacity of the solution (cf. Supporting Informa-
tion). In such a case, the validity of perfect buffer assumption of the
model is therefore somewhat limited. Nonetheless, this highlights the
importance of C∗

± being sufficiently in excess to ensure weak ionic
gradients and a high buffer capacity throughout the whole solution.

Comparing Figures 6b and 6c one finds that the ionic concentra-
tion difference between the cathode ring and anode wire is mildly
aggravated when the bubble is present. The bubble seems to block
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Figure 6. (a) Steady-state concentration field of
cations or equivalently anions, in an axisymmet-
ric closed domain of similar dimensions to our
experimental cell. Panel (b) shows a close-up of
the ionic concentration field in the vicinity of the
ring electrode, whereas panel (c) shows the same
close-up in the absence of the bubble. The con-
centration has been nondimensionalised as c̃ =
2FD−A(c± − C∗± )/Ire (see Supporting Informa-
tion). The initial bulk concentration corresponds to
c̃ = 0.

ion-conduction pathways; the high ionic concentration region near
the ring visibly increases as a result. Bubble departure will therefore
weaken the concentration difference between the cathode and anode,
and hence the ohmic drop across the solution. The latter can be read-
ily estimated by solving the steady-state electric potential in the same
domain, under the same aforementioned assumptions. It then follows
that ∇ · (c±∇φ) = 0, from which φ can be computed given that c±
is already known. As before, we make the approximation of uniform
current density across the electrodes’ surface, as opposed to constant
potential.

The steady-state potential difference �φ/RT can only depend on
the geometry of the cell and, very importantly, on the level of elec-
trolyte concentration:32

� = FD−C∗
±

(I/A)L
, [16]

where L defines a characteristic length, e.g. the interelectrode distance.
We find that �φ/RT depends inversely on �: a higher value of �
means that the bulk concentration of supporting ions is more in excess
relative to the current density employed. Consequently, both the ob-
struction effect on the overpotential and the ohmic overpotential itself
decrease. Note that � scales precisely as the inverse of the fractional

concentration change defined in (15), a quantity which ideally must
be kept small to ensure E� remains small. A value of � = 0.002 was
used to model our experiments; Figure 7 represents the steady-state
electric potential field obtained by numerically solving the steady-state
Nernst–Planck Equation 9 as explained in the Supplementary Informa-
tion. At this low value of �, the obstruction due to the mere presence of
the bubble can have a remarkable impact on the ohmic overpotential.
Indeed, the bubble behaves as an electrical shield, causing the ohmic
potential to increase by roughly 20%. Moreover, taking �φ̃ ∼ 25,
we expect the magnitude of the ohmic overpotential in our experi-
ments to be of order E� ∼ F�φ̃/RT ∼ 0.6 V. Doubling the value
of � = 0.002, we obtain a reduction of 75% in the potential differ-
ence. This hints that the concentration of supporting electrolyte used
in all three experiments (0.01 M) falls short from the optimal level of
excess.

Finally, we determine whether the transient nature of the measured
cell voltage can be attributed to the unsteadiness in the ohmic potential.
In other words, we seek the characteristic time scale required for the
potential and ionic concentrations to reach the steady state. Initially,
the supporting ions are homogeneously distributed in the solution,
compliant with diffusive equilibrium. During electrolysis, however,
the diffusion of supporting ions becomes a reactive transport mecha-

Figure 7. Steady-state electric potential field in
(a) the absence and in (b) the presence of a bub-
ble for electrolyte concentration level � = 0.002.
The electric potential has been nondimensionalised
as φ̃ = Fφ/RT , and shifted in order to make the
potential zero at the cathode. The location of the
cathode and anode are as indicated in Figure 6.
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nism that opposes their migration due to the presence of the electric
field. The steady-state concentration and potential fields are precisely
attained once the concentration gradients are large enough for the dif-
fusion fluxes to match and oppose the migratory fluxes of all ionic
species everywhere in the solution. In short, migration is the driv-
ing transport mechanism of the supporting ions during electrolysis.
Therefore, one should only consider the unsteady and migration terms
in the Nernst–Plank Equation 9 when seeking the ionic relaxation time.
These two terms scale as

∂c±
∂t

∼ �C∗
±

τM
, ∇ ·

(
D±z±F

RT
c±∇φ

)
∼ D±|z±|F

RT
C∗

±
E�

L2
. [17a,b]

The characteristic length of the concentration and potential gradients
can be taken as L ∼ 1 cm, namely, the distance between the electrodes,
whereas �C∗

± represents the characteristic concentration change that
takes place over the migration time scale τM . An order of magnitude
balance between the unsteady and migration terms yields

τM ∼
(

�C∗
±

C∗±

)(
RT/F

|z±| E�

)(
L2

D±

)
. [18]

The fractional concentration difference is expectedly of order unity
(cf. Equation 15). The diffusivity of HCO−

3 is quite similar to that
of Na+ (D± ∼ 1.2 × 10−9 m2/s); this allows τM to be estimated
through independent consideration of one supporting ion or the other.
Setting E� ∼ 0.1 V to 1 V, we obtain τM of order 103 or 104 sec-
onds at most. This time scale is well below the diffusive time scale
L2/D± ∼ 105 s, but it is still comparable, if not larger, than the time
scale of our experiments. We therefore conclude that the continu-
ous rise of the cell voltage in time should be rightfully attributed, in
part, to the migration-driven increase of the ohmic overpotential in
time.

It is worth mentioning that the electric double layer, and all ef-
fects associated with it, have been excluded throughout this paper.
This was deemed reasonable on the basis that the ionic adsorption
by the electrode surface has little impact on the macroscopic dis-
tribution of the ionic species several Debye screening lengths away
from the electrode. In addition, the formation of the double layer is
simply too fast. Such time can be quantified by first computing the
capacitance of the double layer, Cd = ε/λd ∼ 10 μF/cm2, where
ε = 710 pF/m is the permitivity of water and λd = 3 nm is the
double layer thickness. The latter is equal to one Debye screening
length,33

λd = εRT

F 2
∑

j C∗
j z2

j

. [19]

Taking Rcell = E/I ∼ 400 k� as the cell resistance, the cell relax-
ation time associated with the charging of the double electric layer is
τd = ACd Rcell ∼ 2 ms.34 The charging time is thus too short, by all ac-
counts, to have any credible contribution to the transient nature of the
cell potential over several thousand seconds. Moreover, we find that
the capacitive charging current, estimated as Id = ACd dE/dt ,35 is of
the order of nanoamperes at best. It therefore constitutes a negligible
portion of the measured current.

Conclusions

A novel method to promote gas evolution away from the electrode
surface has been tested under alkaline water electrolysis. It consists in
a ring microelectrode encircling a hydrophobic microcavity. The ring
microelectrode does not suffer from bubble coverage, owing to the fact
that bubbles preferably form on the cavity instead. Consequently, the
chronopotentiometric fluctuations of the electrolysis cell have been
observed to be much weaker than those associated with conventional
microelectrodes.

It has been shown that the bubbles on the cavity exert a salubrious
influence on the cell potential difference by reducing the concentra-
tion overpotential of the microelectrode during the diffusive growth
and detachment stages. The reduction in surface overpotential comes

at the cost of a lesser gas evolution efficiency. We have argued that
bubble formation also delays the concentration overpotential from
reaching a steady state value. Therefore, we hold bubble formation
partly accountable for the long-term transient behavior of the cell
voltage.

The second factor responsible for such long-term behavior is the
unsteadiness of the ohmic overpotential, which must conform to the
large relaxation time of ionic migration across the solution in the cell.
Furthermore, we have exposed the shielding effect by which bub-
bles increase the ohmic overpotential, which is naturally alleviated
upon bubble detachment. The magnitude of the ohmic losses and the
blockage effect are drastically intensified with insufficient excess of
supporting electrolyte.

The insight and fundamental understanding that this contribution
offers forms a useful base for future work concerning the optimal
design and operation of ring microelectrodes. We believe that these
findings can have important implications, for instance, in the design
and advancement of gas-evolving electrochemical energy conversion
systems.
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Appendix A. Sample Fabrication

The fabrication method is best explained with reference to Figure A1, which depicts
the cross section of the substrate after the key steps in its fabrication process. In step 1, a
silicon wafer (containing multiple samples) with a 150 nm thick SiO2 layer is patterned
using standard photolithography techniques. The Olin OIR 907-17 resist is spin-coated,
followed by DC-sputtering of a 10 nm thick tantalum adhesion layer and a 100 nm thick
platinum layer with a custom-made sputter coater (T’COaty, Nanolab, MESA+ Institute).
Step 2 shows the substrate after the deposited metal has been patterned via a lift-off
process. The resulting metal film forms a ring shaped electrode with an inner radius of
400 μm and outer radius of 410 μm. A superhydrophobic cavity, 30 μm in diameter,
is defined and created (steps 3 and 4) in the center of each electrode. The fabrication of
superhydrophobic cavities has been described elsewhere.10,21 Finally, in step 5 the wafer is
cleaned with acetone in an ultrasonic bath (VWR Ultrasonic Cleaner USC-THD, 45 kHz)
to remove the photoresist and diced (Dicing Saw Loadpoint Micro Ace 3) to extract the
10 × 10 mm2 samples.

Figure A1. Cross-sectional overview of the fabrication steps (not to scale).
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Figure B1. Numerical values of β (dots) as a function of the ring thickness.
The fitting curve is given by Equation B1.

Appendix B. Geometric Factor

The geometric factor β, defined in Equation 12, can be verbally interpreted as the
current density ratio between a disk/ring electrode and a hemispherical electrode of the
same (outer) radius re required to sustain a given steady-state concentration difference
between the electrode surface and the bulk. It stands to reason that thinner rings will have
higher values β, primarily because they posses less surface area. The geometric factor was
computed numerically in FreeFem++ by solving the steady-state diffusion Equation (see
Supporting Information). Values of β for a wide range of ring thicknesses are graphed in
Figure B1. The analytical value β = 4/π for a flat disk (ri/re = 0)30 has also been plotted.
The dependance of β on the ring thickness is well described by the fitting relation

β = 4

π

[
1 + 1

3

(
ri/re

1 − ri/re

)]
. [B1]
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