
Shallow CNNs for the
Reliable Detection of Facial Marks

Chris Zeinstra
University of Twente

Faculty of EEMCS, DMB Group
Enschede, The Netherlands

c.g.zeinstra@utwente.nl

Erwin Haasnoot
University of Twente

Faculty of EEMCS, DMB Group
Enschede, The Netherlands

e.haasnoot@utwente.nl

Abstract—Facial marks are local irregularities of skin texture.
Their type and/or spatial pattern can be used as a (soft) biometric
modality in several applications. A key requirement for a bio-
metric system that utilises facial marks is their reliable detection.
Detection methods typically use a blob detector followed by
heuristic post processing steps to reduce the number of false
positives. In this paper, we consider shallow Convolutional Neural
Networks (CNNs) for facial mark detection. The choice of this
network type seems natural as it learns multiple (non) blob
detectors; shallow refers to the fact that we only consider CNNs
up to three layers. We show that (a) these CNNs successfully
address the false positive problem, (b) remove the need for post
processing steps, and (c) outperform a classic blob detector,
approaches taken in previous studies and some other non CNN
type classifiers in terms of EER and FMR at TMR=0.95.

Index Terms—Facial Marks, Image Processing, Forensics,
CNN.

Facial marks are local irregularities of skin texture and

include moles, pockmarks, raised skin, and scars [1], [2].

Facial marks have a potential to be highly discriminating,

an observation that is reflected by their inclusion in the

Bertillonage system [3], [4] that was used to describe persons

for law enforcement purposes more than a century ago in

France. Figure 1 shows two examples of facial marks and an

annotation within the Bertillonage system.

Recent studies have considered facial marks and the spatial

patterns they form, either to augment face recognition systems

[5]–[7] and/or as a single biometric modality [1], [2], [5],

[8]. Applications include identification (querying mugshot

databases for matches to a facial mark spatial pattern of

a perpetrator [9]) and verification (using facial marks to

distinguish between mono zygotic twin [10], [11] and using

their spatial pattern to calculate strength of evidence to be

used in a court of law [2]). The latter study also clearly

showed that in a particular setting up to 30% of the considered

subjects could perfectly be identified solely based on their

facial mark pattern. Finally, a series of related studies [12]–

[14] consider the detection and performance of Relatively

Permanent Pigmented or Vascular Skin Marks (RPPVSM)

found on the back torso.

A key requirement for a biometric system that utilises facial

marks is their reliable detection. Several studies mentioned

here above indicate that the reduction of the number of

false positive matches remains a challenging task. A common

approach in these studies is to

1) apply geometric (for example affine transformation and

cropping) and photo metric (for example gray scale con-

version and illumination compensation) transformations,

2) detect blobs (for example Laplacian of Gaussian or Fast

Radial Symmetry Transform [15]), and

3) heuristically reduce the number of false positive matches

(for example skin detection and masks to exclude facial

parts).

In this work, we present a different approach to the second

step in the detection procedure. It successfully addresses the

false positive problem and removes the need for the third

step. Instead of using a single blob detector, we explore

Convolutional Neural Networks (CNNs) that essentially train a

collection of blob detectors. CNNs are layered computational

structures that have shown impressive results over more tra-

ditional approaches in many domains, see for example [16]

for selected applications in the biometric domain. The aim

of this paper is not to present the best possible performance,

but rather to explore the potential of shallow CNNs to detect

facial marks. Shallow refers to a limited number of layers;

blob detection is a straightforward problem that might be best

served by a simple, straightforward approach.

We select skin patches that either contain a facial mark or

not. We study to which extent the skin patch size and the

inclusion of a photo metric pre processing step influences the

detection performance. Furthermore, we compare the CNN

performances not only to the traditional Laplacian of Gaussian

approach and results of previous studies but also to other

a) b)

Fig. 1. From left to right: a) Two examples of facial marks, b) annotation
within the Bertillonage system.
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Fig. 2. From left to right: a) Orginal colour image, b) ORG image, c) CLAHE
image, d) ORG image with facial mark patches (white squares) and random
non facial mark patches (black squares).

non CNN classifiers to create a broader overview of possible

performance.

The remainder of this paper is structured as follows. We

describe the experimental setup in Section I. In Section II we

present and discuss results and compare them to some results

found in literature. Section III contains the conclusion and

presents possible extensions to this work.

I. EXPERIMENTAL SETUP

A. Datasets

We use manually annotated facial mark locations to generate

facial mark and non facial mark patches. These locations were

collected by [2] and belong to 12306 images of 568 subjects of

a subset of FRGCv2. This subset contains images of subjects

with a neutral expression taken under a controlled studio

condition. The reasons that we confine this study to this set

are (a) to our knowledge it is the only large set with this type

of annotation1 and (b) creation of an additional comparable

dataset would require a significant time investment.

B. Image Pre processing

Related studies apply geometric and photo metric transfor-

mations prior to the facial mark detection. We determine the

affine transformation that maps the pupil coordinates to fixed

locations (200, 250) and (400, 250), apply a bicubic texture

interpolation and then crop the image to (800, 600). This trans-

formation ensures that the interpupillary distance is constant

and is chosen as a trade-off between a reasonable image size

and facial mark visibility. The photo metric transformation

consists of a gray scale transformation and CLAHE [17],

a specific adaptive histogram equalisation method. Figures

2a,b,c show an original colour image, its geometrically and

gray scale transformed image (henceforth referred to as ORG)

and the effect of CLAHE respectively.

C. Patch Generation

We sort the subjects of FRGC dataset on their subject

identification number in ascending order and use the first 394

subjects to create the training set and the remaining subjects

to create the test set.

1For example, we consider for example the CFM dataset with 150 images
described in [5] small.

For both sets, we use the same procedure to generate facial

mark and non facial mark patches. To obtain a single facial

mark patch, we randomly select a subject, then randomly select

an image and finally randomly select a facial mark location

within that image to generate the facial mark patch around that

location. Prior to obtaining non facial mark patches, for each

image we create a number of random non facial mark patches

that (a) do not overlap with each other and (b) do not overlap

with facial mark patches. To obtain a single non facial mark

patch, we randomly select a subject, then randomly select an

image and finally randomly select a non facial mark patch

from the set described here above. Figure 2d highlights some

facial mark and non facial mark patches.

We use this procedure to generate 50000 and 10000 facial

mark patches and 50000 and 10000 non facial mark patches

for the train and test set respectively. In order to investigate the

effect of patch size, we take a patch size of 15× 15, 19× 19,

and 23 × 23 around every centre chosen by our procedure.

Moreover, to study the effect of photo metric pre processing,

we extract exactly the same patches from the images that have

been pre processed with CLAHE.

D. Experiments

We define two experiments that compare classifiers in

terms of EER and ROC curves. In both experiments the six

combinations of patch size and ORG/CLAHE are considered.

Experiment 1 determines a baseline performance. We apply

the Laplacian of Gaussian (LoG) with kernel size 3 <= k <=
13 to a patch, followed by a linear min-max mapping to [0, 1]
yielding a matrix L = (Lij). To this patch, we assign a score

s = −∑
ij Lij . We expect that facial mark patches yield

small negative score values, whereas non facial mark patches

in general yield larger negative scores. Figures 3a (facial mark

patch/ORG), 3b its matrix L, 3e (non facial mark patch/ORG),

and 3f its matrix L illustrate this. The other patches contained

in Figure 3 are the corresponding CLAHE patches and their

matrices L.

If we interpret every patch as a vector, we can apply

other non CNN approaches as well. We consider K = 3
Nearest Neighbors, Gaussian Kernel Density Estimation with

bandwidth 0.15, Linear (C = 1) and RBF (C = 1000) Support

Vector Machines, Random Forest (ensemble of 300 decision

trees with depth 200) and a classic fully connected neural

network consisting of three densely connected layers in which

the middle layer is wide (10 times the input size).

Experiment 2 compares the performance of six similar

shallow CNNs to the classifiers studied in Experiment 1.

Their architectures are shown in Figure 4. These variations

are chosen to address the impact of small architectural differ-

ences such as the number of layers and the choice of layer

type. All CNNs accept patches and output the facial mark

probability. We use CNN A to determine an odd kernel size

3 <= k <= 13 that yields the best average EER; this kernel

size is subsequently used in the other CNNs.
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Fig. 3. Left part contains patches and the effect of the Laplacian of Gaussian with kernel size k = 5.Top row contains a facial mark patch. From left to right:
a) ORG, b) matrix L, c) CLAHE , d) matrix L. Bottom row contains a non facial mark. From left to right: e) ORG, f) matrix L, g) CLAHE , h) matrix L.
Right part i): ROC curves of Laplacian of Gaussian.

Fig. 4. Architecture of shallow CNNs A to F.

Classifier 15 15 19 19 23 23
ORG CLAHE ORG CLAHE ORG CLAHE

LoG 0.146 0.245 0.137 0.233 0.141 0.238
KNN 0.114 0.154 0.146 0.179 0.184 0.211
KDE 0.126 0.264 0.157 0.342 0.188 0.384
Linear SVM 0.143 0.176 0.136 0.183 0.130 0.194
RBF SVM 0.108 0.0900 0.102 0.0915 0.103 0.102
Random Forest 0.0754 0.0852 0.0959 0.108 0.127 0.132
Classic NN 0.0651 0.0772 0.0770 0.0753 0.0768 0.0760
CNN A 0.0541 0.0554 0.0459 0.0555 0.0455 0.0543
CNN B 0.0452 0.0628 0.0460 0.0555 0.0434 0.0571
CNN C 0.0436 0.0589 0.0357 0.0433 0.0279 0.0408
CNN D 0.0437 0.0588 0.0329 0.0458 0.0293 0.0383
CNN E 0.0340 0.0542 0.0293 0.0425 0.0292 0.0428
CNN F 0.0397 0.0553 0.0318 0.0462 0.0281 0.0422

TABLE I
EERS OF ALL CLASSIFIERS. BEST PERFORMANCE FOR EACH

COMBINATION UNDERLINED.

II. RESULTS AND DISCUSSION

A. Experiment 1 - Baseline

In the application of the LoG we found that kernel size

k = 5 yields both visually a clear distinction between facial

and non facial patches as well in terms of EER. Figure 3i

shows their ROC curves for the six combinations. They clearly

demonstrate the false positive problem: setting a reasonable

value for the TMR (for example 0.95) yields a high value

for the FMR (larger than 0.42 in all cases). Figures 5 present

ROC curves of several non CNN classifiers. Some classifiers

still possess the false positive problem (for example KNN

and KDE), but increasingly exhibit better performance (for

example the classic neural network). The latter classifier is the

only non CNN classifier that consistently has an EER< 0.08,

see Table I. For all classifiers in Experiment 1 we find that (a)

almost always the patch size has a negative influence of the

EER and (b) the application of CLAHE has a variable negative

influence on the EER. Especially the case of the LoG, the

severe deterioration of the performance after the application

of CLAHE can be observed. An explanation can be found

in Figures 3b,d,f and h in which the effect of CLAHE on

matrices L of both facial and non facial patches is shown,

resulting in a larger overlap between the score distributions

of facial and non facial patches. Differences between patch

sizes and ORG/CLAHE are mostly present in KNN, KDE

and the Random Forest. We believe that the deteriorating

performance of KDE can be attributed to the fixed bandwidth

while the dimensionality increases significantly. Finally, if we

fix TMR=0.95, it can be shown that FMR almost always

exceeds 0.15.

B. Experiment 2 - Shallow CNN
Figure 6 shows the trained filters of CNN A for a 13× 13

convolution kernel size. Although filters of this size clearly

reflect the two input classes, we found that setting k = 5 in

CNN A yields the lowest overall EER taken over the six pos-

sible combinations. Therefore we use this convolution kernel

size for all CNNs. CNN A consist only of one convolutional

layer, whereas CNNs typically contain more and different type

layers. For example, CNN C contains convolutional layers

followed by max pooling layers. Table I shows that this

architecture improves the EER, the lowest EER is 0.0279 in

the 23× 23/ORG case. Another layer type is the dense layer

used in classic neural networks. If we add one such layer to

CNNs A and C prior to the last softmax layer, we obtain CNNs

B and D, respectively. In both cases, A vs. B and C vs. D, we

do not see an improvement. Although CNN C has the lowest



a) KNN b) KDE c) Linear SVM

d) RBF SVM e) Random Forest e) Classic Neural Network

Fig. 5. ROC curves of non CNN classifiers.

overall EER, we are also interested in the effect of adding

more convolutional layers to CNN A.

CNN E and F contain two and three layers, respectively.

CNN A improves by adding layers, however having two layers

is seems somewhat better than three layers. Since we do not

train and evaluate any of our classifiers on different partitions

of the dataset, we will and cannot claim any significant

difference(s) between the classifiers. We notice that (a) in

general the EER improves if the patch size is larger and (b)

the application of CLAHE has a variable negative influence

on the EER. All CNN ROC curves are plotted in Figure 7.

Finally, if we fix TMR=0.95, it can be shown that FMR

almost always is below 0.08 and in some cases as low as

0.01.

C. Discussion

The results of Experiments 1 and 2 seem to indicate that

shallow CNNs have addressed the false positive problem.

Only a few studies mentioned in the Introduction do report

solely on performance of the detection of facial marks. For

example, [8] reports 4.2% FNMR and 4.2% FMR on a set

of 120 subjects and 7.1% FNMR and 2.4% FMR on a set of

85 subjects. The study [1] shows that their automatic method

has an EER of 0.155. The semiautomatic approach yielded an

EER of 0.122. Finally, [5] reports 73.1% precision and 57.0%

recall on a dataset of 265 subjects and 13.6% precision and

16.2% recall on another dataset of 30 celebrities.

Although different datasets were used for above results and

our own, we conclude that there is a strong indication that our

approach is state-of-the-art.

Fig. 6. Selection of filters of CNN A, trained on patch size 15 × 15/ORG
using convolution kernel size k = 13.

III. CONCLUSION AND FUTURE WORK

We were able to reproduce the false positive problem of

LoG. We employed various traditional classifiers and found

that their EER and ability to reduce the false positive problem

varied. These results and some other results found in literature

are surpassed by several shallow CNN architectures. In par-

ticular an architecture that consists of two convolutional and

max pooling layers yielded an EER=0.0279 and FMR=0.01 at

TMR=0.95, which in our opinion shows that the false positive

problem has been addressed in a satisfactory manner. Although

the primary motivation for using CNN is to consider it as a

collection of blob detectors, we actually found that using as

small kernel size had comparable performance to a larger size,

emphasising the general expressive power of CNNs. The use of

CLAHE instead of ORG increases the EER for all classifiers.

Remarkably, the patch size has a positive influence on the

EER of CNNs, whereas in the case of non CNN classifiers

this relationship is reversed.

We identify several extensions to this work. First, we

deliberately selected simple CNNs; another complementary
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Fig. 7. ROC curves of CNN classifiers.

approach is to use a more complex pre-trained CNN and

apply transfer learning. Also, we can evaluate our approach

multiple times and on more datasets to create performance

confidence intervals and measure differences between sets.

Finally, although our approach was to detect facial marks,

we could augment face recognition systems in challenging

cases such as the comparison of facial images of mono zygotic

twins.
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