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Abstract—Keystroke Dynamics (KD) as a biometric modality
can provide authentication tools in many real-life applications,
virtually at zero-cost on the client side, due to the reliance of these
techniques on existing hardware, and their low computational
expense. One promising application is the use of KD as a second
factor in password-based authentication. A downside of the ex-
isting modeling methods is the assumption of stationary behavior
from the clients. However, it is expected that humans show
improvements in performing a specific task following practice.
In this study, we propose methods for utilization of learning
models in predicting the future behavior of the clients, even with
little enrollment data, and generate predicted behavioral models
that can be used in different classifiers. In our experiments, the
predicted templates show a reduction in the average equal-error-
rate (EER) consistently across different classifiers a benchmark
dataset. A reduction of 20% is achieved on the best classifier.
Given fewer enrollment data, the performance gain was shown
to reach above 30%. Furthermore, we show that blind detection
of attacks is possible, solely relying on the global learning curve,
with an EER of 16%.

Index Terms—Keystroke Dynamics, Learning Curve, Predicted
Template, Keystroke Biometrics

I. INTRODUCTION

Keystroke Dynamics (KD) provides simple and effective
tools for biometric authentication of users. These methods
are easily deployable in a wide range of access control
applications, as they do not require additional hardware or
any adaptation from the clients. KD has a long history of
application [1] , and the effectiveness of these systems has
been the focus of many studies [2]. A major use-case for KD
is as a second factor for password authentication. The need for
more security in password authentication is evident as for the
existing common issues of the password-only authentication.
Examples are password sharing, same password for multiple
accounts, insecure passwords, attack techniques such as phish-
ing, and password leaks. Many datasets have been proposed
for the task, and good detection accuracies have been achieved
[2].

A major disadvantage of KD as a biometric is its relative
low permanency compared to other biometrics. To address
this problem, template updating methods have been studied
recently [3], [4] . The goal of template updating mechanisms is

to recover performance drops due to changes in typing patterns
by either periodically or constantly updating the stored tem-
plates. These changes are caused by many factors ranging from
environmental factors (e.g. new input devices and interaction
position), to behavioral ones (e.g. mood, adapting new typing
behavior, and improvements in typing proficiency). As the
matter of fact, template updating introduces new attack vectors
to biometric systems, and methods used to report template
update performance do not always map well to applications in
practice [3]. Among the factors that influence typing patterns,
gradual improvement by practice is well-studied in the field of
psychology [5], and mathematical models have been proposed
for modeling these learning trends [6]. Since the effects of
practice and learning on typing patterns are not well-studied
in KD [7], it is worth while to investigate the use of learning
curves to predict behavior changes pro-actively.

Template prediction differs from template updating as it
updates templates in advance, taking into account the pre-
dictable changes in the behavior of the subject, in contrast
to template updating, which does so re-actively. Template
prediction can improve the permanency of KD templates
by removing predictable variability factors, but cannot be a
replacement of template updating as it does not provide any
mechanisms for unpredictable sources of variability. In this
study, we take initial steps for taking advantage of the learning
curve trend and show significant gains in the performance of
the resulting systems. The proposed methods are flexible and
can be adapted for many existing classifiers by detrending the
training data.

The rest of this document is organized as follows: the
methods proposed in this study are explained in section II.
Experiment setup is presented in section III, followed by the
discussion on the results in section IV. Finally, the paper is
concluded in section V.

II. METHODOLOGY

Many features are recorded in different KD applications
(e.g. pressure, mouse movements, etc) but the most commonly
used KD features are derived from timing information, in
particular, the time when a key is pressed and released [8].
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Later, machine learning based or statistical models are trained
on the enrollment data and given a probe, the similarity
or dissimilarity of the sample to the model is calculated.
Modeling is usually done with the assumption of stationary
behavior from the client which is not always true. In this
section, we explain how the learning curve can be used for
generating predicted templates (PT).

The features in the focus of this study are derived from the
key-press and -release times as listed below:

• Duration (aka hold or dwell time): The time between
pressing a specific key and releasing it.

• Press-Press latency (PP-latency): The time between
pressing one key and pressing the next one. This feature
follows a learning curve, as shown in Fig. 1.

• Release-Press latency (RP-latency) (aka flight time):
The time between releasing one key and pressing of
the next key. This RP-latency can be negative as the
next key can be pressed before the previous is released.
Furthermore, it is linearly related to the previous two
features, and can be calculated by subtracting the duration
from PP-latency.

A. Learning Curve

The 3-parameter learning curve can be described using the
power-law (PL) formula [6], g[r] = arb + c , where r is
the repetition number, a is the slope, b is the power, and
c is the asymptote. Given the time series on training data
g[ri], ri ∈ R sampled at repetition number set R, the PL
parameters a, b, and c can be estimated using non-linear least
square method. The resulting parameters can then be used to
predict the value of g[rt], where rt is the probe repetition
number. As a result, ideally, the model can be represented as
the set of PL parameters P = {a, b, c}.

B. Bayesian Inference

In many applications, it is not realistic to assume always
having enough samples of g[r] series to have an accurate
estimate of the PL parameters P . To alleviate this problem,
one can generate an accurate estimate of the global model
parameters P0 over the general durations and latencies over a
large number of repetitions in a subject independent manner,
to be used as a prior model. Having such an accurate estimate
as a prior, given observations from subject model parameters
Ps0 of a trained model on limited noisy samples from his/her
training data, one can arrive at the updated parameters using
Bayesian inference.

The updating mechanism is explained as follows on each in-
dividual model parameter. For the sake of simplicity, appealing
to the central limit theorem, each fitted parameter in the PL
model follows a normal distribution, with a mean of µ and a
standard deviation of σ derived from the estimated standard
error. For a specific parameter, the global fit provides initial
values µ0 and σ0, while the fit on a specific subject from a
number of samples n, leads to values µs0 and σs0 . Now, the

(a) Duration values

(b) Release-Press latency values

Fig. 1: All instances of (a) duration and (b) release-press fea-
tures, across all subjects, plotted over the number of repetition.
The average values are shown in yellow and the power-law
function fitted to average values in each case is reported in its
legend.
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This process can be done for each parameter in the model
separately to acquire the posterior distribution means µs,
which will be used as inferred model parameters Ps.

The global parameters can be learned per feature, however,
such a feature specific model would be of limited use. In this
study, a more fruitful approach is taken by learning parameters
over global features (i.e. duration, PP-, and RP-latencies), in a
key-inspecific way. An example of the process is explained and



depicted in section IV-A. This allows a more accurate average
model and a wider applicability of the global parameters.

C. Blind Detector

In real-life scenarios, the client is usually in the later stages
of the learning curve, while the unpracticed attacker is in
the initial stages. Even though the assumption of having an
unpracticed attack may not always be true, this gap may be
utilized for detection of attacks in special cases, where the as-
sumption can be made, in the following manner. By bypassing
the subject based inference step, the global parameters can on
their own be used as a subject-independent model. This model,
instead of presenting how the individual behaves, represents
how well a well-practiced person will behave.

Such a model does not rely on enrollment data, hence the
name blind, and as a result, it does not have a differentiation
power between different subjects, as it will generate the same
model for all subjects. Thus, it can only function as to contrast
between existing bona fide (BF) instances and presentation
attacks (PA).

D. Classifiers

In this study, four statistical methods (distance measures) are
used as classifiers. The motivation behind this selection was
the similarity between the modeling across all these classifiers,
as well as the comparison possibility they provide in reference
to the benchmark dataset [9]. These are Euclidean, Normed
Euclidean, Manhattan, and Scaled Manhattan distances, im-
plemented in accordance with the reference study [9]. These
distance measures rely on a template consisting of a mean
vector and an average absolute deviation (AAD) vector.

III. EXPERIMENT SETUP

A. Dataset

Killourhy dataset [9] is selected for this study due to being
one of the largest freely available datasets with a high number
of repetition per subject. This dataset consists of data collected
from 51 subjects. A total of 400 repetitions per subject were
recorded in 8 sessions with at least one-day of spacing between
two subsequent sessions. The dataset provides duration (called
hold in [9]), PP-latency, and RP-latency values for each key
in the password “.tie5Roanl” plus the final Enter key-press,
while joining the Shift+R key combination as a single key-
press. This results in 11 duration values, 10 PP-latency values,
and 10 RP-latency values, in a timing vector of 31 numbers
per repetition. The setup used in this article matches that of
[9].

B. Parameters

a) Baseline:: For the baseline system, models are gen-
erated by calculating the average and AAD of the training
observations per feature, resulting in a model vector of 31
means and 31 AAD values.

b) Predicted Template:: To generate the PTs, the training
observations are used to train one PL function per feature,
resulting in 31 PL parameter sets. A conservative model is then
generated by averaging the predictions of each PL function
over the repetition number range 201-400, corresponding to
the last four sessions. The AAD model is calculated by the
same method used for the baseline system.

c) Predicted Template with Prior:: To estimate the global
PL function parameters, the leave-one-out approach is used.
After excluding the data from the target subject, all the key
entries over all the features of the same type (duration, PP-
latency, and RP-latency values) are pooled, and the average
is calculated for each repetition number (Fig. 1). Then, a PL
function is fitted on the resulting values. The outcome of this
process is 3 sets of PL parameters corresponding to each of
the 3 types of features. These parameters are then used as
prior for the parameters generated by the PT method, based on
their corresponding feature category, and the posterior model
is inferred using Eq. 1. The rest of the modeling is done in
the same manner as for PT.

d) Blind Detector:: The blind detector relies solely on
the global PL function parameters for generating the static
predicted model. To avoid the effect of using the training data
of target subjects in generating the global PL functions, again,
the leave-one-out approach is used. Then, similar to PT, for
each feature, samples from the corresponding category in the
range of 201-400 are generated and averaged. To generate the
AAD model, the AADs of repetitions of each subject for each
feature is calculated and averaged per feature type.

e) Accuracy Measures:: To measure the performance of
the proposed methods in a way comparable to the original
study, the average equal-error-rate (EER) measure [9] is se-
lected.

IV. RESULTS AND DISCUSSION

A. Learning Curve

Fig. 1 presents all instances of features for each category,
along with their average, and a PL function fitted to it. The
duration values remain almost static as shown in Fig. 1a. There
is a slight upward trend which was not captured by the PL
function due to the lack of a linear term. However, the fitted PL
function represents the mean of the data accurately. The RP-
latency values show a clear exponential trend as depicted in
1b. This trend was well captured by the fitted PL function. The
significance of the effects is especially evident in comparison
with the initial repetitions with the last 100, showing a ratio of
approximately 2 to 1. The same pattern was observed for PP-
latency values, as PP-latencies are essentially the RP-latencies
plus the duration values. It is interesting to observe the piece-
wise recurrence of the overall patterns inside each session,
mostly visible in repetitions 50, 100, 150, and 200, as a result
of spacing between sessions [5].

B. Predicted Templates

As displayed in Tab. I the PTs outperform the baseline
consistently across all classifiers. The percentile reduction in



TABLE I: Performance of the proposed systems in contrast to the baseline system in terms of mean equal error rates and
their corresponding standard deviations, on the benchmark task. (The last column corresponds to 200 enrollment repetition in
Fig. 2)

Euclidean Euclidean (normed) Manhattan Manhattan (Scaled)
Avg EER (STD) Avg EER (STD) Avg EER (STD) Avg EER (STD)

Baseline 0.171 (0.095) 0.215 (0.119) 0.153 (0.093) 0.096 (0.069)
Predicted 0.142 (0.073) 0.148 (0.079) 0.110 (0.072) 0.077 (0.060)
Predicted w/ Prior 0.205 (0.169) 0.188 (0.145) 0.120 (0.084) 0.079 (0.057)
Blind 0.164 (0.162) 0.173 (0.124) 0.160 (0.153) 0.182 (0.168)

Fig. 2: Average equal error rate (with 95% confidence in-
tervals) vs the number of enrollment repetitions for scaled
Manhattan classifier on proposed methods and the baseline
system. The graph starts at 3 for predicted templates and 4 for
predicted templates with prior, as at least 3 observations are
required to fit a power-law function, and another observation
for estimating its parameters’ confidence intervals.

the mean EER is 17%, 31%, 28%, and 20% for Euclidean,
Normed Euclidean, Manhattan, and Scaled Manhattan clas-
sifiers respectively. The effect of the number of enrollment
samples on the performance of the PTs is depicted in Fig. 2
for the best classifier (Scaled Manhattan). The PTs system-
atically perform better than the baseline for large numbers
of enrollment repetitions consistently, however, they show no
improvement if the number of enrollment repetitions drops
below 8.

C. Predicted Templates with Prior

Using the prior knowledge has a negative impact of the
performance of the system, as shown in Tab. I, however, com-
pared to the PT method this negative impact is not significant
(except for the Euclidean classifier). Following the standard
experiment setup, 200 enrollment repetitions are used, and it
was possible to generate the PTs with high accuracy without a
need for prior information. However, the benefits of using prior
knowledge are observable in Fig. 2. PT with prior outperform
the PT method consistently and significantly when the number

0 5 10 15 20 25 30 35 40 45 50

Equal Error Rate [%]

0

0.02

0.04

0.06

0.08

0.1

0.12

Baseline

Predicted

Predicted w/ Prior

Blind

Fig. 3: Normalized equal error rate histogram (using kernel
density estimation) of proposed systems in comparison to the
baseline system and the blind method for the scaled Manhattan
classifier.

of enrollment repetitions falls below 15. As in most real-life
applications, the number of enrollment repetitions falls in the
lower range of 2, this method can be positively incorporated.

D. Blind Detector

The blind detector shows a very high performance, close to
the baseline system, for Euclidean and Manhattan classifiers
as shown in Tab. I. The high performance of this system
can be explained by the major difference in the BF and PA
trial selection in the dataset. The BFs are selected from after
the first 200 trials, while the PAs are selected from the first
5 of every other subject. This major difference causes the
BFs to have a high similarity with the blind detector model
(which represents practiced behavior), while the PA trials are
dissimilar (representing unpracticed behavior). This also shows
the significant impact of the learning curve on the performance
of the systems in this setup. It is important to note that the
standard deviation of this system is very high compared to
all other systems. To analyze this further, the histogram of
the subject EERs are plotted in Fig. 3. The EERs of the
blind detector have a more flat distribution along the x-axis,
showing its performance to be variable for different subjects.
Nevertheless, on average it performs well due to the high
accumulation of EERs in the lower range. This system is the



only system where Manhattan classifier outperforms scaled
Manhattan, showing the ineffectiveness of AAD estimation.

V. CONCLUSION AND FUTURE WORK

In this paper, multiple methods have been proposed for
utilization of the learning curve in template prediction. Con-
sequently, the average EER of multiple classifiers has been
reduced by 17% to 31% on a standard dataset. The proposed
systems can be used as the modeling step of different clas-
sifiers and can provide outstanding performance even with a
small number of enrollment data. A blind detector has also
been proposed with an average EER of 16%, which can be
incorporated without a need to individual subject modeling.
This system, due to its simplicity, can have a wide range of
applications, however, its variable performance across different
subjects must be taken into account.

The future work includes: incorporating template prediction
into more complex classifiers, evaluating the methods on more
recent benchmark datasets, incorporating spacing information
and the piecewise power laws [5] in the modeling, and
replacing the 3-parameter PL function with a 4-parameter
model that includes a delay factor. It is also recommended to
study the transferability of the trained global model to other
datasets.
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