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Summary

The design cycle of the rail condition monitoring system (CMS) consists of prob-

lem investigation, treatment design, and validation. The aim of the project is to

improve the rail maintenance by timely reporting the incipient rail defects. On-

time and appropriate maintenance results in reduction of maintenance cost, short

down-time and high service availability. A massive data has been collected from

railway system through various sensors but the connection between the sensors

data and the rail condition is not known. Moreover, currently the maintenance

strategies are triggered mostly based on human inspection. Therefore an auto-

mated rail CMS need to be developed that makes intelligent decisions using the

data and helps in initiating a timely maintenance process. The rail defects need to

be detected at their earliest stages which could otherwise lead to severe defects and

cause rail failure. Therefore the aimed system will help in carrying out predictive

maintenance of the rail infrastructure. The detailed description of the problem

is discussed in chapter 1. The solution for the design problem is build upon the

need and requirements of the stakeholders and system. Everything that the stake-

holders expect from this solution is included in the list of requirements. Moreover,

requirements at the system level are also identified and aimed to be achieved. A

comprehensive list of requirements is given table 2.1 in chapter 2.

The design of the rail CMS is based on the train axle box acceleration (ABA)

data, that is used by the machine learning (ML) pipeline for information retrieval

about rail condition. The designed ML pipeline for rail CMS is illustrated in figure

3.1 of chapter 3. The pipeline consists of ABA pre-processing, extraction of features

by using time domain analysis, and anomaly detection algorithm for detecting ir-

regular patterns in ABA. The algorithm for anomaly detection is presented in detail
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in chapter 4. The validation process is based on the comparison of the actual rail

defects and anomalies detected by the algorithm in ABA data. The flowchart for the

validation process is shown in figure 5.1 in chapter 5. Video images of rail infras-

tructure are utilized for performing the validation process. The visible rail defects

in the images are manually labelled and feed to the validation model for compar-

ison. The performance metrics such as hits, mishits and false alarms etc. are cal-

culated using the validation model. The design and user guide for the graphical

user interface (GUI) of rail CMS is covered in chapter 6 that explains various com-

ponents in the layout and discusses the inputs and outputs of the system. Finally

the discussion, conclusions, and recommendations are presented in chapter 7 of

the thesis report.
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Chapter 1

INTRODUCTION

1.1 Background and Motivation

Train service is one of the most convenient and reliable transportation sources

these days. The quality of the railway service is measured based on the train punc-

tuality and service availability. The railway network in The Netherlands is around

2800 km long that includes 6500 km of tracks and 4700 km of electrified tracks.

The network contains 4500 bridges and tunnels, 8700 switches, 3000 level cross-

ings, and 380 stations. It serves more than 1200000 passengers per day using 6000

trains. Sometimes delays and interruptions occur in the train service which are

most often caused by erupted issues on railway network and requires maintenance

to resume the service. The maintenance cost for only squat-related rail defects ex-

ceeds 5000 euro/km in a year in Dutch railway network because it is one of the

most intensively used network in Europe. Therefore, avoiding the disturbance in

train service is highly important not only due to high maintenance cost but also

the service delays and downtime is highly unwanted to the passengers.

A fatal train accident occurred at Potters Bar, England On 10 May 2002. The ac-

cident took away the lives of seven people and more than 70 people were injured.



2 Chapter 1. INTRODUCTION

The causes of the event were found out to be defects on rail and inadequate main-

tenance. In order to maintain a safe and uninterrupted train transportation service,

appropriate and timely maintenance activities need to be done (Veit, 2007). It is a

challenge to determine the right time when these maintenance activities should be

performed. In figure 1.1, a PF-curve is given which shows the maintenance tech-

niques with the passage of time depending on the system’s condition. The main-

tenance strategies such as reactive maintenance and preventive maintenance are

triggered depending on the time of defect detection. Detection of rail defects at

severe condition needs replacement of rail components, however in case of minor

defects, grinding and milling is required to stop the defects growth. Artificial intel-

ligence (AI) and machine learning (ML) techniques need to be involved to detect

rail defects at the earliest stage of degradation where the resistance to failure is still

high.

FIGURE 1.1: PF-Curve illustrates maintenance techniques that
trigger various maintenance strategies
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1.1.1 Railway Maintenance

Reactive maintenance has been performed in response to rail failures in order to

resume the train service, however it is considered as too late and can cause fatal

train accidents. It does not keep the rail in optimal condition, minor defects are

not fixed on time that deteriorates the rail condition fast, hence results in shorter

asset life expectancy. Usually preventive maintenance (PvM) is carried out by most

of the companies to maintain the rail network intact. However, it is always hard to

come up with a perfect maintenance scheduling policy. An appropriate frequency

of maintenance need to be settled that is neither too short nor too long. Shorter

length and too frequent maintenance could result in rail traffic disturbance and

high maintenance cost. On the other side, keeping maintenance interval very long

could bring systems failure that is highly undesirable. These failures halt the train

service with an undetermined down-time and the rail maintenance companies suf-

fer huge economic losses. On top of everything, these delays in train service bring

inconvenience to passengers. Moreover, various other methods have been used for

railway condition monitoring (Magel et al., 2008). The methods currently used for

rail health monitoring in The Netherlands are visual inspections and eddy current

and ultrasonic measurements (Thomas, Heckel, and Hanspach, 2007). However,

methods like these are more efficient at severe stage of rail degradation and not re-

garded as optimal. Furthermore visual inspections are hard to carry out and time

consuming, and more importantly the outcome of the inspections rely on the hu-

man operator which could be erroneous (Marino et al., 2007). Predictive mainte-

nance for rail infrastructure is imperative in covering the limitations in other ap-

proaches for maintenance.
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1.1.2 Design Challenge

The detection of rail defects at its earliest stage is paramount to keep the rail in

good condition. The existing rail monitoring techniques cannot detect the incip-

ient rail defects that grow later into severe defects. Therefore, an automated and

intelligent rail CMS needs to be developed that is capable to identify the early stage

defects on rail surface. Development of such a system is vital to efficient and robust

rail infrastructure management because it can trigger an appropriate maintenance

process at the right time. Intensive effort and work is already going on to develop

physics-based models for railway maintenance, however it takes long time and still

difficult to implement. On the other side, the availability of huge amount of sen-

sors data provides the opportunity to develop a data-driven model for rail health

monitoring. The ABA data has been used by Dutch railways for defect detection

such as corrugation and poor quality welds since the mid-1980s (Esveld, 2001). The

main advantage of ABA compared with other methods is its lower cost and ease in

maintenance. The employment of AI techniques on ABA data can reveal useful in-

formation about the condition of the rail system.

1.2 Objective and Scope

In most cases, sensors data are used for data-driven condition monitoring systems.

Similarly for railway infrastructure, the sensors data can be utilized and meaning-

ful information can be extracted to reveal rail condition. The sensors, particularly

accelerometers, are installed on the axle-box of the train which measures accel-

eration of the axle-box when train rolls over the rail. The patterns in ABA signal
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change with rail anomalies. AI and ML techniques are renown for extracting mean-

ingful insights from sensors data that could be interpreted as understandable in-

formation for humans i.e. maintenance personnel. Using AI, the ABA data will be

transformed into management data and human understandable information that

would help in decision making for rail maintenance. The development of an AI-

based application using ABA aims to detect the incipient rail defects that does not

require renewal and replacement of the rail assets. Moreover it will not allow the

rail defects to reach severe condition that ultimately prevents rail failure and train

service derailment. This project focuses on development of data-driven condition

monitoring of rail assets by addressing the following design problem:

"Applying the signal processing techniques and ML algorithms to extract mean-

ingful insights from ABA data and detect abnormal patterns in it. These patterns

represent irregularities on rail surface." The final deliverable of the project will con-

sist of a ML pipeline that can be operated using the designed graphical user inter-

face (GUI).

1.3 Approach

Based on a literature study and regular meetings with stakeholders and project

supervisors, the requirements and constraints of the design task are determined,

which will be presented in chapter 2 of the thesis report. Information collection is

important to start the activities of product design. The stages related to the aimed

project consist of three steps considering the design cycle, see figure 1.2. The first

step in the design cycle covers the problem identification, stakeholders and goals.

The 2nd step of the design cycle is the design phase that deals with the requirements
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and problem solution, and the 3rd step is validation of the solution by comparing

the the predicted outcome with true outputs.

FIGURE 1.2: Design cycle

The feedback from the validation step is used to adjust the parameters of the

data-driven condition monitoring model. The model is optimized after a sufficient

amount of iterations. Figure 1.3 shows such a feedback system for designing the

tool. According to the diagram: (i) If the design is promising, it is adjusted itera-

tively, (ii) In case the design requires a lot of changes to meet the requirements and

needs of the project, a new design is planned, (iii) once the design reaches opti-

mal state, it is regarded as acceptable design. The more iterations it performs, the

more accurate the model becomes. The model accuracy cannot be measured di-

rectly during the validation process in this case because there is no absolute output
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available. However confidence on the data-driven model and the data can be built,

if the reported anomalies in ABA data represent rail abnormalities. For verification

of the detected anomalies, synchronized video camera images of the rail will be

utilized.

FIGURE 1.3: Iterative feedback mechanism for solving a problem

The aimed rail CMS, from the value engineering perspective, should enhance

the quality of the product while reducing the cost and time. Value engineering ac-

cording to Wikipedia is defined as "A systematic method to improve the value of

goods or products and services by using an examination of their function". Value,

as defined, is the ratio of function to cost and can therefore be manipulated by
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either improving the function or reducing the cost. The current design project is

aiming to improve the efficiency of decision making for rail maintenance. It at-

tempts to achieve a high level of reliability by monitoring rail condition and report-

ing the detected defects. Improving the product reliability will significantly reduce

the maintenance time and cost ultimately.

FIGURE 1.4: Overall picture of the data-driven rail condition mon-
itoring system

1.4 Thesis Outline

The PDEng thesis report covers the details of development of rail CMS in seven

chapters in total. Chapter 2 provides details about the system’s and the stakehold-

ers’ needs and the transformation of those needs into requirements. The overall

picture of the rail condition monitoring system (CMS) is shown in figure 1.4, which

consists of data acquisition, anomaly detection and graphical user interface (GUI)

design. The task of data acquisition and initial data processing are performed by

Strukton Rail. The anomaly detection part consists of three steps, in which the first
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two steps pre-processing and features extraction will be discussed in chapter 3. The

setup for data acquisition, sensor types, positioning and dataset description is also

presented in this chapter. Details of the implementation of the anomaly detection

model are explained in chapter 4. Chapter 5 of the thesis report, provides validation

and analysis of the model’s results while the design of the graphical user interface

(GUI) for the rail CMS is presented in chapter 6. Finally, chapter 7 provides the

discussion and the conclusions drawn from the entire process and indicates the

future possibilities of research and development in the data-driven maintenance

of rail infra-structure.
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Chapter 2

Requirements Engineering

2.1 Introduction

In the process of product designing, it is as important as the product itself to deter-

mine what the anticipated needs are from the project and how to transform these

needs into requirements. In an earlier phase of design process, a preliminary de-

sign is made based on the very little information available where a lot of uncer-

tainties exist. But with the passage of time as more and more information is col-

lected, the requirements develop which leads to a clear picture of the design prod-

uct. It is easy to change things in the preliminary design phase but as the design

process goes ahead, the uncertainties in project and ease of change decrease, on

the other hand the committed-to requirements increases (Bonnema, 2014). Once

the requirements were completely refined and there was no ambiguity regarding

project objectives, a final solution design is made. The most important thing for

any project is the identification of stakeholders, knowing the people who are di-

rectly or indirectly involved in the project. Strukton Rail is the sole stakeholder

of this project. Multiple meetings with stakeholder were conducted to determine

their needs and expectations from this project. The needs of the stakeholder lead
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to project requirements. The project requirements are determined and matched

with the design challenge, stated in chapter 1. The purpose of the requirements

engineering is to justify stakeholder’s needs and find out whether the requirements

are feasible to achieve within the allocated time and scope of the project. Require-

ments engineering is considered a common concept in systems engineering that

entails the process of discovering, developing, and tracing, analyzing, qualifying,

communicating and managing requirements that define a system at successive lev-

els of abstraction.

2.2 Stakeholder

Strukton Rail is the one and only stakeholder of the data-driven rail maintenance

project. It is a multi-national company that focuses on transport systems in densely

populated areas, creating access to mining and port areas, and transportation of

energy. Strukton is also working on spreading rail tracks in different areas across

Europe and outside. They are putting efforts to bring in the state-of-the-art tech-

niques to improve rail maintenance scheduling and reduce the cost. A huge amount

of data is available at Strukton in the form of the train ABA, eddy current (EC) and

ultra-sonic (US) measurements. Strukton is interested in utilizing the available big

data to enhance the rail maintenance strategies.

2.3 Requirements engineering and management

There are several levels of needs and requirements for a project according to the

international council on systems engineering (INCOSE) guide. The first level where

enterprise strategies are expressed in the form of needs is called “enterprise” level.
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Other four levels i.e. the business management level, the business operations level,

the system and the sub-system level describe how the needs are transformed into

the project requirements. The needs at the enterprise level and system/sub-system

level are identified for rail CMS.

2.3.1 The enterprise Level

According to (ISO/IEC/IEEE29148, 2011), the operational concept explain the func-

tion of the system (what) and the reason why the system is performing the func-

tion (why). The enterprises involved in this project are Strukton and UT which are

working in collaboration to develop a data-driven rail maintenance system. In this

project, the big data acquired through various sensors and devices are utilized for

development of the data-driven system. Maintenance optimization and cost re-

duction are the identified needs of Strukton at this level of needs. The enterprise

level covers the strategies for the rail CMS as follows:

• What: Enhance condition monitoring and defects detection for rail system

by transforming the approach of human based visual inspections to an auto-

matic and smart inspection technique.

• Why: Improve the decision making related to rail maintenance in order to

reduce maintenance cost.

2.3.2 The System/Sub-system Level

The system/sub-system level where the selection methodology is defined in phys-

ical and logical views, is usually used for converting the needs and requirements of

Strukton Rail into needs and requirements of the aimed system. These levels shall

fall in solution domain where the respective system needs and requirements are
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defined. The focus of system/sub-sysem level is on how the rail defect detection

could be improved using the rail CMS. The goal of rail CMS at the system level is to

detect the abnormality on rail at its precise location, hence accuracy and reliability

of the system is highly important. The system is supposed to run in python en-

vironment on any computer operating system. The development of the tool shall

be done in such a programming technology that is compatible for integration with

the Strukton main condition monitoring system. The target system shall be flexi-

ble in order to get updated for functionality improvement and fixing programming

bugs. The system shall provide a user-friendly interaction to the maintenance en-

gineer/operator. The needs at the sub-system level are what the systems compo-

nents and functions require for its operation. These needs include, a sufficient stor-

age capacity to hold the big data and store the systems results, in case cloud storage

service is not available. Besides that, a sufficient memory and a high processing ca-

pability is vital at the time of systems operation, otherwise it takes longer time to

process the data and at times the program get crashed.

2.3.3 List of Requirements

Various types of requirements can be identified for a project as mentioned above.

However, for rail CMS, the requirements at the stakeholder- (SH) level and system

(SYS) level are defined. Stakeholder requirements answers the questions such as

"What should be done?", "How well should it be done?" and "Why is it done?", all

these questions are related to the enterprise level, and the latter defines the solu-

tion and provides an answer to the question "How is it solved?" at the system level.

A detailed overview of both types of requirements is provided in table 2.1.



2.3. Requirements engineering and management 15

TABLE 2.1: Stakeholder and system level requirements

Type Label Description

General SH1 The developed tool shall be operated by the maintenance
operators with no or limited technical knowledge of under-
lying data analytics

Applicability SH2 The developed maintenance system shall be applicable for
condition monitoring of various rail tracks

Reliability SH3 Predictions about rail health condition shall be reliable to
improve the maintenance strategies

Readability SH4 The software shall provide operators with enough informa-
tion when it makes a decision i.e. location and severity of
the anomalies

General
SYS5 The deliverable shall be presented in the form of a condi-

tion monitoring system (CMS). A software with machine
learning algorithms working at the backend of graphical
user interface

SYS6 Python shall be used as programming language to develop
the software and all its algorithms

SYS7 Systems hardware with high processing power are required
to run the CMS

SYS8 CMS shall be user friendly and self-explanatory for opera-
tors to use

SYS9 The tool shall operate on ABA data only as an input, data
need to be pre-processed before performing anomaly de-
tection

SYS10 The software shall save outputs in a database that can be
used in future for performing trend analysis in the data

SYS11 The maintenance software shall visualize the outputs in
various ways through plots and enlist detected defects with
their geo-locations

Readability SYS12 The programming code shall be well written and properly
commented to provide a sound understanding for devel-
opers

Maintainability SYS13 The rail CMS shall be accessible to developers at Strukton
for updates and bug fixing

Scalability SYS14 The software shall be scalable and robust to dataset size
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2.4 Requirements analysis

Project requirements are verified through regular consultation with people at Struk-

ton Rail. The feasibility of these requirements has been tested and validated after

discussion, experiments and analysis.

2.4.1 Verification and Testing

The identified requirements are refined and verified through iterative meetings

with supervisors at University of Twente and Strukton Rail. The requirements were

discussed and considered as valid and practical by project manager at Strukton.

Some of the requirements that were over-ambitious and hard to achieve in the

available time, were removed from list of requirements. The principles regarding

identifying and writing these requirements were thoroughly followed according to

INCOSE guide for writing requirements. The requirements are also validated by

implementing these in the design project. They define a set of goals and bound-

aries for developer. The developer needs to stick to the requirements to achieve

the goals while staying inside the restricted boundary. The time duration, available

resources and feasibility of the actions are to be considered while working on the

project in its design phase. Requirements gathering is performed usually in the ear-

lier steps of the design cycle of a project, however it has an impact on every stage

of the design cycle. These requirements can be adapted during the development

process.

The VEE-model shown in figure 2.1 explains how these requirements can influ-

ence various phases of the project during its development. Moreover, it tests the

compatibility and validation of the requirements at different phases of the project.

Part of the requirements are verified by consultation with experts, some of these are
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FIGURE 2.1: Vee-Model for intelligent rail condition monitoring
system

validated during development phase and others after design implementation. The

VEE-model illustrates the impact of requirements and some necessary tests for rail

CMS tool. To the left of the VEE-model, the project requirements are given while

the right side of the model presents the corresponding verification tests. These

tests conform whether the required needs are met or not. This model demonstrates

a vital role of the requirements during the design life cycle of the product. The VEE-

model tells about the right time and appropriate way to test these requirements.

Some of the requirements are easy to be verified, however there are requirements

that need specific tests to be checked. For example SH1, requires a prototype of the

CMS to be operated by non-technical maintenance operators. Their response can

serve as a feedback for CMS modification and improvement. Some of the examples
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from the list of requirements are mentioned in the given model.

2.4.2 Risks

The potential risks involved in this data-driven project were the available time for

the system development and applicability of ABA for condition monitoring. How-

ever a well-organized schedule for all tasks in the project mitigated the time risk.

Moreover, the risk related to the type of data (ABA) was also not threatening to

halt the project, because the yielded output of the data-driven model is promis-

ing. Thus, there was no extra-ordinary risk that hurdled the development of the

ABA-based rail CMS.

2.4.3 Performance Indicator

The implementation of the project design, that will be explained in coming chap-

ters, reveals that the key performance indicator (KPI) of the rail CMS is its capabil-

ity of detecting any sort of abnormality in ABA data. The reported anomaly by the

rail CMS can either be an accurate detection of a rail defect or a false-alarm when

compared with the ground truth. In other words the performance metrics such

as accuracy, false alarms, hit-rate and mishits are considered to be the KPIs of the

system.

2.5 Conclusion

The stakeholder needs and requirements are identified and transformed into the

system/sub-sytem level requirements. The requirements can be adapted during

the development process. The validation and testing of the requirements can either

be performed by consultation and discussions with stakeholder or by following the
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testing approach in the VEE-model. The risks anticipated at the earlier stage of this

project was the time for implementing the design project and feasibility of ABA

data. Both of these risks are mitigated by proper task scheduling and the model

design of the rail CMS. The outcome of the system is interpreted in the form of

performance metrics such as hits and false alarms etc. The metrics are regarded as

the KPIs for the system.
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Chapter 3

Design of Rail Condition

Monitoring System

3.1 Introduction

The design of the rail CMS is based on the accelerometer’s data obtained from the

axle box of the train. When a train runs over the rail, the axle box in the train vibrates

with a certain level. A change in the vibration would occur if the train experiences

any irregularity on the rail while running over it. This unusual behavior could be

aroused because of various factors i.e. rail defects, objects, rail misalignment, train

wheel fault, sleepers etc. The aim of the rail CMS is to catch these anomalies in

the ABA data. Anomalies are data patterns that have different data characteristics

from normal data patterns. The detection of anomalies has a huge significance and

often provides meaningful and critical information in various application domains

that requires an immediate action. The ABA data in its original raw form is quite

complicated and do not reveal meaningful insights about rail condition. That is

why the data is pre-processed and the statistical features are extracted from the

data which are used as input to the anomaly detection technique. The anomaly
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detection technique separates outliers from the normal data. These anomalies are

further analyzed to find their location on the track and severity etc. The 2nd step of

the design cycle, which is implementation of the solution, consists of three main

steps: (i) data pre-processing, (ii) feature extraction and (iii) anomaly detection.

The pipeline given in figure 3.1 illustrates all these three phases of the implemen-

tation. However this chapter covers the data pre-processing and feature extraction

part of the overall methodology.

FIGURE 3.1: ABA based ML pipeline for rail condition monitoring
system
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3.2 Data Description and Acquisition

The required datasets for rail CMS exist in a disintegrated structure that requires

pre-processing to bring it to the format that can be easily used as input to machine

learning algorithm. Moreover, the pre-processed data gives a better representation

of the condition of the system. The various data types acquired during data mea-

surement campaign are stored in different databases. The ABA is one main dataset

from these data types which is used for rail condition monitoring. However, the

other data types that contains essential information, also need to be processed to

prepare the final dataset. A dedicated train is used for data acquisition that has

various sensors installed on it. The train ABA is captured using accelerometers in

the measurement train while location information and rail images are captured by

GPS and camera respectively. The data acquisition setup, sensors positioning on

measurement trains and dataset structure is explained here.

FIGURE 3.2: The sensors’ arrangement on the inspection coach:
video cameras (blue), GPS antenna (green), and the accelerome-

ters (red)

The data capturing devices, installed on the measurement train are (i) a global

positioning systems (GPS) for location information, (ii) six video cameras each side

for shooting the rail and (iii) tri-axial accelerometers attached to axle-box on each
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both sides of the train. The arrangement of the equipment is illustrated in fig-

ure 3.2. All these captured information are essential for the system, accelerome-

ters data is used for anomaly detection, GPS data for locating the anomalies on

track and video data is harnessed for validation of the detected anomalies. The ac-

celerometers and GPS sensors are installed on the vehicle with a 2.4 m horizontal

gap from each other while the GPS sensor is 7.5 m away from the video camera,

see figure 3.2. Due to this structure of sensors placement, the data collected from

these sensors must be synchronized in time and space to correspond to the same

position of the rail.

The measurement train operates in either pushing (locomotive at the back) or

pulling mode (locomotive at the front) during data acquisition. Therefore, either

the accelerometers or the video camera will arrive first when running over a partic-

ular rail section. So the moving direction of the vehicle must be known. Knowledge

on the train direction is critical for validation of the anomalies. It enables the sys-

tem to compare the corresponding rail image to the ABA data. For synchronizing

the acquired data, two types of counters are used: an external counter which incre-

ments each 1 mm and an internal counter that increases after each 0.25 mm. When

the ABA system comes first at a certain point on the rail, the video camera captures

the same point after 3150 external counters (distance of 3.15 m) are passed and vice

versa. The sampling frequency of the ABA system is kept 25.6 kHz. The sampling

rate of ABA is based on time (fixed frequency) while the counters have a distance

based sampling rate that depends on train speed.
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3.3 Data Structures

3.3.1 ABA Data

The raw form of the ABA data is saved as *.tdms format, details of which are given in

the research article (NI, 2019). Furthermore, the acquired accelerometer data has

been converted into time based and distance sampled data, which is saved in HDF5

files with naming convention as *.time.h5 and *.dist.h5 respectively. The *.time.h5

ABA data is sampled at the sampling frequency of the system, while in *.dist.h5 file

1mm distance is passed with each external counter. Both the time and distance

based ABA data have similar structures as shown and explained in Table 3.1. The

only difference in the structure of both these data files is that the time sampled files

are indexed with increasing integers while the distance sampled files are indexed

by internal counters. The ABA database contains data from the channels A and B.

Data for each channel consist of 3 columns which show axle-box acceleration in X,

Y, Z axes respectively. Each data point has its own internal counter which is unique

throughout the dataset.

3.3.2 Video Data

The measurement train also captures the rail images by using high definition cam-

eras. Data acquired by video cameras are saved in *.vdo files associated by their

configuration files: *.event.txt and TrackNetCfg.s3db. There are multiple cameras

installed on the vehicle, each of which is given an ID. The cameras that capture rail

video on the right side of the side have IDs: 60, 61, 62, 63, 64 and 65. IDs of the cam-

eras on the left side are: 70, 71, 72, 73, 74 and 75. Images for a certain length of rail

track can be extracted from the video using the corresponding external counters
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TABLE 3.1: The attributes and description of time-based ABA
database

Attributes Description

Internal coun-
ters

Data counters related to each sample of ABA data, unique
for all ABA data for the same track on the same day

CHA1 ABA data on X-axis of the accelerometer A installed on left
side of the train

CHA2 ABA data on Y -axis of the accelerometer A installed on left
side of the train

CHA3 ABA data on Z-axis of the accelerometer A installed on left
side of the train

CHB1 ABA data on X-axis of the accelerometer B installed on the
right side of the train

CHB2 ABA data on Y -axis of the accelerometer B installed on the
right side of the train

CHB3 ABA data on Z-axis of the accelerometer B installed on the
right side of the train

associated with that location. The video data from cameras with ID 61 and 71 are

used for validating the anomalies that will be explained in chapter 5 of the thesis.

3.3.3 GPS Data

The geographic location data associated with ABA are saved in *poi.csv files in the

database that provides the route information. The GPS data is indexed with exter-

nal counters which can be used to sync ABA data with their geographic location.

This data is captured each 5 m of rail track. The GPS data is highly important to

locate the anomalies on the rail track and to report it for maintenance.
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3.3.4 Auxillary Data

The ABA data require other information during the pre-processing phase. The

seg.csv files contains information about the direction of the inspection train (ERS-

DIR). This value indicates whether the accelerometers come first or the video cam-

era during data acquisition. It also provides the information about the segment of

the rail track that the measurement train is inspecting such as SPOORTAK, GEOCODE,

and GEBIED. Moreover it contains the route information of the inspection train

(KM-FROM and KM-TO).

3.4 Data Pre-processing

As mentioned earlier, ABA data requires pre-processing in order to prepare it for

ML technique and further analysis. It is the entry point of the machine learning

pipeline for anomaly detection, shown in figure 3.1. In this chapter, only the first

two blocks from the schematic diagram, pre-processing and feature extraction will

be discussed. The steps involved in the data pre-processing are (i) Data filtering

and synchronization (ii) Data calibration and (iii) The channel puzzle.

3.4.1 Data Filtering and Synchronization

As mentioned above, the measurement train collects three types of data, i.e. ac-

celerometers data, GPS data and video data. These data types are stored in different

databases. A counter is used to synchronize various datasets so that anomalies in

ABA can be given a correct position and can be compared with the corresponding

rail images during validation and performance metrics calculation.

The counters for synchronization initiate after some time the vehicle starts rail

inspection, therefore not all the data in ABA database can be synchronized. Hence,
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TABLE 3.2: Attributes and description of Sync database

Attributes Description

Internal counter Value associated with each ABA data point, increments ev-
ery 0.25 mm

External counter Value coupled with ABA data instances, ticks every 1 mm
Synchronization Provides the starting point where the internal and external

counters are synchronized
Time Timestamp assigned to ABA data

it is important to use only that data where information about the synchronization is

available. The sync.csv files provide the initial internal counter where the synchro-

nization is started. Using this initial internal counter, all ABA data that precede this

counter is filtered out. To synchronize the remaining data, an interpolation is cal-

culated using the builtin Python interpolation function from the known variables

in the sync.csv file i.e., internal and external counters:

g et_extcount = interpol(i ntcount ,extcount ,kind=′l i near ′). The external coun-

ters for ABA are determined by feeding the internal counters to the function:

extcount = get_extcount(i ntcount ).

3.4.2 Data Calibration

Data calibration is essential if ABA data from both the channels are given as input

to the anomaly detection model simultaneously. Two tri-axial accelerometers are

used to capture the acceleration of the axle box of the train. Sensors on both sides of

the measurement train are not aligned by default. Therefore data for one channel

need to be rotated in order to bring a conformity in both the datasets. Figure 3.3

illustrates two unaligned tri-axial sensors in their X and Z axes. The issue with

rotation of data from a channel is that the angle of rotation is not known. The

information about the misalignment of the sensors has not been noticed during
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data acquisition. The data is rotated with a random angle of rotation initially and

compared with the reference data. This process is continued until the best match

of the datasets from both the channels is obtained. So the rotation is entirely based

on trial and error. This is a bit time consuming and more importantly unreliable.

Therefore an alternative approach is used to deal with this problem. A transformed

value P is calculated by taking the square root of the squared sum of the X and

Z axes. This approach takes the direction out of equation and considers only the

magnitude of the acceleration. It is not claimed to be the ideal solution but better

than considering acceleration in unaligned X and Z directions separately.

P =
√

x2 + z2 (3.1)

FIGURE 3.3: Tri-axial accelerometer coordinates for channel A, B
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TABLE 3.3: Channel puzzle

Track-Dir ERS-Dir CH-A CH-B Right Left

OP 1 Right Left CH-A CH-B
OP -1 Left Right CH-B CH-A
AF 1 Left Right CH-B CH-A
AF -1 Right Left CH-A CH-B

3.4.3 Channel Puzzle

Channel A and B in the ABA dataset do not always point to the same side of the

rail. It depends on the values of both Track-Dir and ERS-Dir that tells about the

direction and operating mode of the train respectively. Using these information,

the ABA for left and right side track can be identified. The datasets do not explicitly

provide these information. The measurement train collects data either in pushing

mode in which the vehicle pushes the carriage, represented by a certain value of

ERS-Dir in the dataset, or in pulling mode which is the other way around. Identi-

fying data for pushing and pulling mode of measurement train is vital because it is

found that these mode of operation have an impact on the ABA. The ABA data for

the same track but in different modes have different patterns.

Therefore, the factor of pushing and pulling mode of the train need to be con-

sidered during processing and anomaly detection. During anomaly validation, it is

important to know which side of the track the data is coming from, so that the cor-

responding rail images are used correctly. As mentioned above, there is a gap in the

placement of video camera and accelerometers on the inspection train. Therefore,

during validation process, the ABA need to be adjusted to images by adding or sub-

tracting the external counters depends on whether the train is in pushing mode

or in pulling mode. The issues regarding channels, train direction and operating

mode are solved using the puzzle given in table 3.3.
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3.5 Features Engineering

The data has been pre-processed prior to the time domain analysis for features ex-

traction which made it well-structured, organized and more informative. At this

point, the ABA data is still in its original raw form in which it is acquired. The sen-

sory data in its raw form do not often reveal meaningful insights about the con-

dition of the system. Therefore some features need to be extracted from raw ABA

data that provide a better representation of the condition of the system. The pro-

cess of feature extraction plays a vital role in machine learning based problems i.e.

anomaly detection, object classification, and forecasting etc.

The benefits of feature extraction are two-folds. Firstly, it reduces the massive

size of dataset by down sampling during feature extraction. Secondly, these fea-

tures are more useful and clearer to detect anomalies or patterns of interest which

helps ML model to learn faster and better. Extraction of signal features for monitor-

ing the condition of a system is highly effective as these features can better reflect

the normal and abnormal condition of the system (Assis Boldt et al., 2015; Islam,

Khan, and Kim, 2015). To pull out the maximum possible insights from a signal re-

garding the health of any system, various features extraction paradigms have been

used in the literature. Features are usually calculated using time domain, frequency

domain and time-frequency domain analysis that makes a heterogeneous feature

pool. However, this work uses the features based on time-domain analysis.

3.5.1 Sliding Window Approach

Time domain signal features are extracted from the raw time based ABA signal by

applying a sliding window approach. A certain size of window is chosen that slides

over the entire dataset with or without replacement. The approach is illustrated in
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figure 3.4. Number of features are extracted for each individual window while slid-

ing through the entire dataset. The size of the sliding window has a high impact on

the final outcome of the system. The choice of size of sliding window also depends

on how much of a track length needs to be checked for anomalies that suits the

stakeholder’s requirements. Anomalies with a precision of 1 to 2 m track lengths

are considered as acceptable for this use case.

FIGURE 3.4: Illustration of sliding window for feature extraction.

The parameters, i.e. size of window, ratio of replacement of sliding window,

can be tuned iteratively and the most optimal values should be selected that pro-

vides best performance and meets the stakeholder’s needs. A sliding window of

size 2000 is used during feature extraction, which represent the accelerometer data

for approximately half a meter. The length of track covered by a sliding window

depends on the train speed as well which in this case is considered as constant or

ignored by the model. The extracted feature from each window of data samples
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is assigned the mean value of the internal counters for that specific window. The

window slides over the dataset with a 25% overlap. The overlap is important and

done in order to reconsider the broken pattern at the end part of the signal from

the previous window.

3.5.2 ABA Features Pool

A number of statistical features are extracted from the ABA data by applying the

sliding window approach using time-domain analysis. The obtained features in-

clude root mean square (RMS), kurtosis value (KV), skewness value (SV), peak-to-

peak value (PPV), crest factor (CF), and impulse factor (IF). The peak-to-peak fea-

ture with its raw ABA data is illustrated in figure 3.5. An extensive feature compar-

ison and performance analysis is required to find out the optimal set of features in

train ABA data because it is an unsupervised problem. The mathematical formulae

and description of these statistical features are given as follows:

• Root mean square (RMS): In mathematics, the RMS is defined as the square

root of the mean square. It is also known as the quadratic mean and is a

particular case of the generalized mean with exponent 2.

RMS =
[

1

N

N∑
i=1

xi
2

] 1
2

(3.2)

• Skewness value (SV): In probability theory and statistics, skewness is a mea-

sure of the asymmetry of the probability distribution of a real-valued random

variable about its mean. The skewness value can be positive or negative, or

undefined. It describes the shape of the probability distribution of data.
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FIGURE 3.5: A raw ABA and its peak-to-peak feature

SV =
[

1

N

N∑
i=1

xi − x̄

σ

]3

(3.3)

• Kurtosis value (KV): In probability theory and statistics, kurtosis is a mea-

sure of the "tailedness" of the probability distribution of a real-valued ran-

dom variable. In a similar way to the concept of skewness, kurtosis is a de-

scriptor of the shape of a probability distribution.

K V =
[

1

N

N∑
i=1

xi − x̄

σ

]4

(3.4)
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• Peak-to-Peak value (PPV): Peak-to-peak is the difference between the max-

imum positive and the maximum negative amplitudes of a signal.

PPV = max(xi )−mi n(xi ) (3.5)

• Crest factor (CF): Crest factor is the peak amplitude of the waveform divided

by the RMS value of the signal. In other words, crest factor indicates how

extreme the peaks are in a signal.

C F = max(|xi |)[ 1
N

∑N
i=1 xi

2
] 1

2

(3.6)

• Impulse factor (IF): In signal processing, the impulse factor is a ratio of max-

imum absolute value of signal and the mean of absolute value.

C F = max(|xi |)
1
N

∑N
i=1 |xi |

(3.7)

3.6 Conclusion

The ABA data is passed through a pre-processing step in which the data filter-

ing, synchronization, calibration, and channel adjustment is performed. A pool of

timed-domain statistical features are extracted from the pre-processed ABA data

using a sliding window. The sliding window used during feature extraction, plays

an important role in anomaly detection as well as in validation. The extracted fea-

tures provide a better representation of the rail condition than the original raw

data. The ABA features help the ML model in identifying the anomalies in ABA.

Each feature has its own characteristic, for example, the kurtosis feature performs
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well in identifying the early stage defects. Finding the best feature or best combi-

nation of features is highly important but hard to achieve in this case, because of

the unavailability of actual outputs in the data.
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Chapter 4

Anomaly Detection in ABA Data

4.1 Introduction

The designed machine learning (ML) pipeline for rail condition monitoring project

consists of three main steps, (i) pre-processing (ii) feature extraction and (iii) anomaly

detection. The first two steps are covered in chapter 3 of the thesis report. This

chapter focuses on the anomaly detection part of the ML pipeline, which is the

core task of the project. Various anomaly detection methods can be found in lit-

erature that uses different approaches to determine outliers in the data, i.e., sta-

tistical methods, classification-model based methods, density based approaches.

Most model-based anomaly detection approaches, construct a profile of normal

data points, and based on knowledge about the normal data, it can distinguish be-

tween normal and abnormal samples. Popular algorithms like classification-based

methods (Abe, Zadrozny, and Langford, 2006), and clustering-based methods (He,

Xu, and Deng, 2003), statistical methods (Rousseeuw and Driessen, 1999), all use

this general approach. This profiling based approach has a couple of drawbacks:

firstly, the model is trained to learn normal instances, but it is not optimized to de-

tect anomalies. As a results, the detection accuracy of these algorithms may not be
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as good as anticipated, causing too many false alarms or too many false negatives

(the case in which an anomaly is considered as normal); secondly, most of the ex-

isting techniques work well for a low-dimensional and small size data but not good

for data having high dimension and a massive size due to high computational com-

plexity. The normal data profiling based approaches are not applicable in this use

case because no prior knowledge about normal data is available.

From literature, various techniques for anomaly detection, among which one-

class support vector machine (SVM), isolation forest (iForest), robust covariance,

local outlier factor (LOF) were explored. None of these techniques is ideal for solv-

ing each problem as every technique has its advantages and disadvantages. The

challenge is to find the right technique that provides a befitting solution to the

problem. The above mentioned anomaly detection techniques were trained and

tested on a synthetic dataset, a dataset which has true outputs and can be com-

pared with predicted outputs for performance analysis of these algorithms, which

is not the case with ABA data. Based on the performance yielded by these tech-

niques and research recommendation, isolation forest is selected for detection of

anomalies in the train ABA data. This chapter provides all the details about the

anomaly detection using the Isolation forest algorithm.

4.2 Anomaly Detection

In ML problems, an unsupervised approach is used initially as a seed to generate

labelled data unless the risk rules can be formulated based on domain knowledge

for the problem. For some problems defining risk rules are easy, such as anoma-

lies identification in network traffic metrics where the time between logins and
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distance between origins can be used to formulate a risk rule. However formu-

lating risk rules for identifying the probability of an employee committing secu-

rities fraud, is difficult. Here the behavioral data that the organization captures

is very high dimensional and the relationship between the data attributes is com-

plex. Hence without in-depth domain knowledge, formulating risk rules is difficult.

Similarly in case of ABA based rail condition monitoring, there is no information

available about the signal amplitude and frequencies in response to any defect on

rail surface. Hence no definite risk rules can be formulated to reveal the relation

between train ABA and rail defects. This combined with issues such as confiden-

tiality makes it very hard to formulate and validate these risk rules. This is where

the unsupervised ML techniques stand out to make the most out of the unlabeled

data.

With very little domain knowledge, a simple unsupervised algorithm can be

used to create a list of anomalies which can then be analyzed further to create la-

beled data. Once a sufficient amount of labeled data is generated by performing

labelling task over a period of time, the paradigm of the ML technique can be trans-

formed from an unsupervised approach to a supervised ML technique. This sec-

tion specifically explains how outliers in the data are detected. The unsupervised

anomaly detection is also referred to as outliers detection. In the context of out-

lier detection, the outliers/anomalies cannot form a dense cluster as the anomaly

estimators assume that the anomalies are located in low density space. The ML

pipeline shown in figure 4.1 depicts the implementation of the anomaly detection

model enclosed in the rectangle.

The anomaly detection technique used in this project, which is known as Iso-

lation Forest, is quite unique in its approach to detect outliers. It is a model-based

method that explicitly isolates anomalies rather than normal data profiling. It has



40 Chapter 4. Anomaly Detection in ABA Data

FIGURE 4.1: Machine learning pipeline for anomaly detection in
ABA data

a linear time complexity with a low memory requirement. Literature reveals that

iForest yields better performance compared to ORCA (a tool that uses nearest neigh-

bor based approach), local outliers factor (LOF) and Random Forests algorithms in

terms of area under the curve (AUC), and processing time especially in large data

sets (Liu, Ting, and Zhou, 2008). The iForest algorithm achieves better results in

high dimensional problems having a large number of irrelevant features, and also

in situations where training data is purely normal. This technique works on the ba-

sis of two quantitative properties of anomalies: firstly, they are in minority, contain-

ing fewer data samples and secondly, they have attribute-values that are very dif-

ferent from those of normal instances. The algorithm perceives anomalies as "few

and different", which make these instances easy to be isolated from normal data.
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The isolation forest method builds an ensemble of trees called "iTrees", for a given

data set, the data samples with a shorter average path length are considered as out-

liers by the algorithm. Two variable parameters are involved in this method: firstly,

the number of trees to build and secondly, the sub-sampling size. It is reported that

iForest anomaly detection performance converges quickly having a lower number

of iTrees, and it only requires a small sub-sampling size to achieve high detection

performance with high efficiency (Liu, Ting, and Zhou, 2008). The salient features

of iForest that distinguish it from rest of the anomaly detection algorithms are:

• The isolation characteristic of iTrees enables them to build partial models

and exploit sub-sampling to an extent that is not feasible in existing meth-

ods. Since a large part of an iTree that isolates normal points is not needed

for anomaly detection; it does not need to be constructed. A small sample

size produces better iTrees because the swamping and masking effects are

reduced.

• Isolation forest does not apply distance or density calculations to find anoma-

lies. This approach eliminates the high computational cost of distance cal-

culation in all distance-based methods and density-based methods.

• This technique has a linear time complexity with a low constant and a low

memory requirement.

• Isolation forest is capable of handling a massive size dataset with a large

number of irrelevant features.

Isolation and Isolation Tree: The term isolation refers to "separating a data

sample from the rest of the data". Outliers in data, are more susceptible to isola-

tion because they are few in number and different from the dense data clusters.



42 Chapter 4. Anomaly Detection in ABA Data

Splitting of a feature is recursively repeated in a random tree until all instances are

isolated. This random partitioning yields shorter paths for anomalies because of

its distinguishable feature-values. Hence, when a forest of random trees collec-

tively produce shorter path lengths for a certain data point, then it is highly likely

that the data point is an anomaly. The number of splits required to separate an

instance is equivalent to the path length from the root node to a terminating node

in a tree. Figure 4.2 illustrates the concept of anomalies being more susceptible

to isolation during random partitioning. It can be noticed that for a normal data

point, xi , it generally requires more splits in data to be isolated, while for anoma-

lous data instance, xo , the opposite is true; it usually requires fewer partitions to be

separated from rest of the data. Hence anomalies have shorter path lengths. In iso-

lation forest, partitions are generated by randomly selecting a feature i.e. kurtosis,

peak-to-peak etc., and then randomly choosing split points between minimum and

maximum value of the selected feature. The splitting of an attribute is performed

recursively which can be represented by a tree structure.

FIGURE 4.2: Normal point xi requires more random partitions to
be isolated and anomaly xo requires fewer partitions to be isolated

((Liu, Ting, and Zhou, 2008))
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Several key terms such as isolation tree, path length and anomaly score need to

be defined in order to clearly understand the isolation forest algorithm:

4.2.1 Isolation Tree

Let T be a node of iTree, which is either an external node with no child or internal

node with one test and exactly two daughter nodes (Tl ,Tr ). A test contains two

parameters q and a split p such that the test q < p divides data points into Tl ,Tr .

Figure 4.3 illustrates the structure of a binary tree.

FIGURE 4.3: Illustration of a binary isolation tree

Assume a dataset X = {x1, ..., xn} containing n number of samples with a d-

variate distribution. To build an iTree, dataset X is iteratively divided by selecting a

feature q and a split value p, until any of these conditions are satisfied: (i) the tree

reaches a height limit, (ii) |X| = 1 or (iii) all the data samples in X have the same val-

ues. Isolation tree is like a normal binary tree and each of its node has exactly zero

or two child nodes. If all the instances of dataset are distinct, each of it is isolated

to an external node once the tree is fully grown. In this case the number of external
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nodes is n while internal nodes are n - 1; adding these two parameters gives the to-

tal number of nodes in an iTree, which is 2n - 1; therefore the memory requirement

is bounded and linearly grows with n.

4.2.2 Path length

The path length is denoted by h(x) and is defined as the number of edges an in-

stance xi traverses in an iTree from the root node until the traversal ends at an ex-

ternal node. The outliers generally have a shorter path length compare to inliers in

the data. To illustrate this, a dataset containing normal and fraudulent credit card

entries, is used. It is obtained from an online machine learning competition forum.

The purpose of using this dataset is to demonstrate the calculation of path lengths

by the iForest model for normal and anomalous data points. The reason why this

dataset has been used instead of ABA dataset because it provides labeled data. Us-

ing labeled data, the path lengths for both normal and abnormal data samples can

be calculated.

Figure 4.4 shows a histogram to illustrate the average path lengths for normal

and anomalous data instances. The path lengths in this example are calculated

using 15 trees with a sampling size of 5000. Each tree in the forest is generated with

different set of data partitions. Therefore average path lengths are calculated over a

number of trees to determine the expected path length. For anomalous data points,

the shorter path lengths appear most of the times while for normal data instances

the longer path lengths are yielded with high frequency.

4.2.3 Anomaly Score

The anomaly score for data instances is calculated on the basis of their path lengths.

It is anomaly score which defines a data point as anomaly. The maximum possible
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FIGURE 4.4: Path lengths comparison of path lengths for normal
and abnormal data determined by iForest algorithm

height of an isolation tree grows in the order of n, while the average height grows

in the order of log n (Breunig et al., 2000) . If h(x) is normalized by any of the above

the parameters, it is neither bounded nor be compared directly. An iTree has sim-

ilar structure to a binary search tree (BST); the calculation of average h(x) for an

external node terminations is the same as the unsuccessful search in BST. Estima-

tion of the average path length of iTree is thus inferred from a BST analysis. Given

a dataset of n data points, section 10.3.3 of (He, Xu, and Deng, 2003) provides the

average path length of an unsuccessful search in BST as:

c(n) = 2H(n −1)− 2(n −1)

n
(4.1)

In equation 4.1, H(i) represents a harmonic number and it can be estimated by
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ln(i) + 0.5772156649 (Euler’s constant). While c(n) which is the average of h(x) given

n, is used to normalize h(x). The anomaly score s of a data sample x is given as:

s(x,n) = 2
−E(h(x))

c(n) (4.2)

In equation 4.2, E(h(x)) shows the average value of h(x) from a collection of

iTrees, considering this equation for anomaly score s calculation, the following

statements can be made:

• When E(h(x)) is equal to c(n), anomaly score s is 0.5.

• When E(h(x)) is equal to zero, anomaly score s is 1.

• When E(h(x)) is equal to n-1, then anomaly score s is 0.

The anomaly score s is monotonic to h(x) and using the value of s, the following

assessment can be made:

• If the value s of an instance is close to 1, then it is definitely an anomaly.

• If a data instance has s value much lesser than 0.5, then it is considered as

normal.

• If anomaly score s for an instance is around 0.5, then the entire data sample

has no distinct anomaly.

4.3 Training of Isolation Forest Model

In the training stage of the model, iTrees are constructed recursively by a random

selection of a feature from training dataset until data points are isolated or a spe-

cific tree height is reached which results in a partial model. It must be mentioned

here that the limit of tree height l is set automatically by using sub-sampling size
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Algorithm 1: iForest(X , t ,ψ)

Inputs: X - input data, t - number of trees, ψ - sub-sampling size
Output: a set of t iTrees

1. Initialize Forest
2. Set tree height limit l = cei l i ng (log2ψ)
3. for i = 1 to t do
4. X ′ ← sample(X, ψ)
5. Forest ← Forest ∪ iTree(X ′, O, l)
6. end for
7. return Forest

ψ : l = cei l i ng (l og2ψ), which is nearly the average height of binary tree (Bre-

unig et al., 2000). The notion of average height reveals the interesting insight to

make a decision about anomalies. Data samples that have greater path length

than tree height limit are definitely normal, the interest lies in those instances that

have shorter path lengths than tree height because those instances are most likely

anomalies. The pseudo code of iForest training is given in Algorithms 1 and 2.

Two parameters are fed to the iForest algorithm, the sub-sampling size ψ and

the number of trees t. It is found that the sub-sampling sizeψ=128 yields sufficient

insight for anomaly detection. Moreover, the path length converges well before

t=100. At the end of the training process, an ensemble of trees is returned which

can be referred as the trained model. The algorithm uses the constructed trees

during training to test new data for anomaly detection.

4.4 Model Evaluation and Discussion

In order to evaluate the trained model, an anomaly score s is determined from the

expected path length E(h(x)) for each instance in test dataset. E(h(x)) is calculated



48 Chapter 4. Anomaly Detection in ABA Data

Algorithm 2: iTree(X,e,l)

Inputs: X - input data, e - current tree height, l - height limit
Output: an iTree

1. if e ≥ l or |X| ≤ 1 then
2. return exNode{Size ← |X| }
3. else
4. let Q be a list of features in X
5. randomly pick a feature q ∈Q
6. randomly select a split point p from max and min values of feature q in X
7. Xl ← f i l ter (X , q ≤ p)
8. Xr ← f i l ter (X , q ≥ p)
9. return inNode{Left ← iTree(Xl ,e +1, l ), Right ← iTree(Xr ,e +1, l ),

SplitAttr ← q, SplitValue ← p }
10. end if

by traversing instances through each iTree in iForest. Using the PathLength func-

tion, given in Algorithm 3, a single path length h(x) is determined by counting the

number of edges e from the root node to a terminating node as data instance x

passes through an iTree. When x is terminated at an external node, where Size > 1,

the return value is e +c(Si ze). The adjustment in the form of c(Size) accounts for

an unbuilt subtree beyond the limit of tree height. When h(x) is obtained for each

tree in the collection of trees, an anomaly score is yielded by computing s(x, ψ) in

equation 4.2. The complexity of the model evaluation process is O(nt logψ), where

n is the size of testing dataset. To obtain the top m anomalies, the data is sorted in

descending order using s. The first m instances are the top m anomalies depending

on the value of s.

The training ABA data do not provide prior information about normal and ab-

normal data instances, in other words no ground truth information is available to

validate the model. Which is why, an unsupervised technique has been used. The

accuracy of the iForest model cannot be determined in the absence of ground truth



4.5. Conclusion 49

Algorithm 3: PathLength(x,T,e)

Inputs: X - data instance, T - an iTree, e - current path length; to be initialized as 0 at the
function first call
Output: path length of x

1. if T is an external node then
2. return e + c(T.size) {c(.) is defined in 4.1}
3. end if
4. a ← T.splitAtt
5. if xa < T.splitValue then
6. return PathLength(x, T.left, e + 1)
7. else {xa ≥ T.spl i tV alue}
8. return PathLength(x, T.right, e + 1)
9. end if

information about anomalies. However, visualizing the results in 2D plots indicate

to some extent the performance of the model in separating anomalies from nor-

mal data. A 2D contour plot is given in figure 4.5, which shows the detected out-

liers in red and yellow for test and training dataset respectively, while the normal

data points are colored in green and white for test and training dataset respectively.

It can be noticed that data instances which fall beyond the learned threshold are

declared as outliers by the model. Figure 4.5 illustrates the results for two time-

domain statistical features from the extracted pool of features namely the kurtosis

and peak-to-peak values. Various combination of features are used during testing

phase of the model which will be discussed in chapter 5.

4.5 Conclusion

The isolation forest algorithm separates oultiers based on the assumption that the

outliers are few and different from the dense cluster in the data. This algorithm
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FIGURE 4.5: Illustration of iForest model to separate anomalies
from normal data cluster.

identifies anomalies by looking into the disparity between anomalies and the nor-

mal data, unlike other model-based algorithms that profile normal data for anomaly

detection. The isolation forest algorithm generates iTrees using a sub-sample of

data that reduces the effect of swamping and masking. Besides that, the technique

has a linear time and computation complexity and low memory requirement. Per-

formance metrics of the iForest model can only be determined if true labels were

available for ABA data. The parameters such as impurity ratio, sub-sampling size,

number of iTrees, type and number of the features affect the outcome of the iForest

algorithm.
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Chapter 5

Validation and Analysis

5.1 Introduction

The anomaly detection model is used to find out abnormal patterns in train ABA

data. For this purpose, the isolation forest algorithm is used which is discussed

in detail in chapter 4. The sensitivity of the model for detecting anomalies can be

altered by tuning its parameters that generates different outputs. Usually in a su-

pervised machine learning approach, a validation dataset is used to validate the

model. The applied anomaly detection method in this design problem works in an

unsupervised manner as the true outputs are not available. This implies that the

validation process here refers to the feasibility of usage of ABA for rail conditioning

monitoring, not to the model accuracy. In this validation approach, the detected

anomalies in ABA are compared with the corresponding rail images to see whether

the predicted anomalies correspond to actual anomalies on the rail or not. Perfor-

mance metrics such as true positives, false positives and false negatives etc. are

calculated during this analysis. Various other approaches for assessing the feasibil-

ity of ABA will also be discussed in this chapter.
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5.2 Validation Approaches

Validation and analysis of anomalies in ABA can be performed in several ways using

the available auxiliary datasets i.e. rail images data and EC testing reports. Chan-

nel and passage comparison for anomalies is also conducted to find out the behav-

ior of ABA for various passages of a train on both sides of the rail. Comparison of

ABA anomalies with the respective rail images in section 5.2.1 helps to determine

the performance metrics, while using the EC testing reports in section 5.2.2 helps

in locating the head-check defects and provides their severity levels. That in turn

provides an opportunity to explore the relation between magnitude of the ABA ab-

normality and the head-checks severity. Analysis of ABA data that is acquired for

both channels i.e. left and right rail, in section 5.2.3 is done in order to study the ef-

fect of defects on data for both the channels. Finally another analysis to assess the

applicability of ABA for rail condition monitoring is performed in section 5.2.4. The

ABA for multiple train passages at a certain route either in same direction and or in

opposite direction are processed. The interest lies in comparison of the anomalies

from different passages and to check the consistency of ABA signal in response to

rail abnormalities. These analyses serve as proof of concept for using train ABA for

rail defect detection.

5.2.1 Validation using camera images

The ability of the anomaly detection model to distinguish between normal and ab-

normal data points, can be assessed by visualizing the results of the model in a 2D

contour plot. The plot is shown in figure 4.5 of chapter 4. It can be seen that the

algorithm accurately separates the outliers from normal ABA data points with a few
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exceptions. In this way, the model is validated or in other words the anomaly de-

tection potential of the model, is assessed. However, the performance cannot be

quantified and performance metrics such as accuracy, hitrate and false alarms etc.

cannot be calculated. Therefore, rail images of the same track are used for com-

parison of the actual defects on rail with the detected anomalies in ABA. The rail

images based validation method is depicted in figure 5.1.

The following steps are taken in the validation process of ABA anomalies using

rail images:

• Determine the external counters of the data samples that are reported as

anomalies by the algorithm.

• Use the external counters of the detected anomalies to extract the corre-

sponding camera images of the rail from the video.

• Manually label the defects such as head-checks and squats on the rail using

the labelImg tool. It returns pixel values of the marked spots in the images.

• Process these images to spot the detected anomalies on the rail images using

their external counters.

• Synchronize the external counters with the pixels of the defects on rail im-

ages. Execute the python script that compares the counters of anomalies and

actual defects.

• Calculate the performance metrics for the anomaly detection model in terms

of hit rate, false alarms and false negatives.

The performance metrics are determined by comparing the model output with

defects labeled on rail images. When the actual rail defect and the detected ABA

anomaly are found within a predefined range (approximately 1 m distance on the

rail), the anomaly is regarded as a hit (true positives), otherwise it would be counted
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FIGURE 5.1: Validation process of the rail condition monitoring
system

as a false alarm. Figure 5.2 shows three examples of a hit because the rail abnormal-

ity (enclosed in rectangle in red) and the predicted ABA anomaly (shown as vertical

line in green), are within the specified range.
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(A) Example 1

(B) Example 2

(C) Example 3

FIGURE 5.2: Comparison of anomalies on rail and ABA
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5.2.2 Validation by ECT data

The aim of the ABA based condition monitoring system is to detect early stage rail

surface detects. From the analysis on rail images, it is found that the model is ca-

pable of detecting the irregular ABA patterns for clearly visible rail surface abnor-

malities and the rail objects as shown in figure 5.2. Synchronizing and comparing

these defects with anomalies in the data is easy because these rail abnormalities are

visible in the images and therefore can be labeled. In case of head-checks, the la-

belling is difficult because head-checks are hardly visible on the rail images. Hence

the anomaly comparison is uncertain. Here utilizing ECT reports come in handy

because these reports have details about head-checks i.e. their location (km), and

crack size. These reports provide head-checks location as a track section rather

than a single point on rail. Moreover, the depths of the head-check cracks are given

in ranges rather than exact depths. The positions of ABA based anomalies are de-

termined in terms of kilometers so that it can be compared with that of ECT results.

All the track sections where ECT has reported head-checks have anomalies in ABA.

These results are quite promising as the ABA based anomaly detection model is ca-

pable of detecting head-check defects that develop into severe cracks as the train

passages increases and ultimately cause rail failure. Besides detecting the head-

checks, the ECT data based validation helps in performing head-checks severity

analysis.

An attempt has been made to investigate the relation between size of the rail

defects, head-checks in particular and level of abnormality of ABA signal. As men-

tioned earlier, the anomaly detection model detects anomalies at the reported lo-

cations of head-checks, allowing a comparison between the details of ABA anoma-

lies and the head-checks. Information regarding anomalies i.e. location and ABA
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anomaly score are generated by the rail CMS, while details of head-checks i.e. loca-

tion and crack size are obtained from ECT reports. The hypothesis is that the ABA

anomaly score and the corresponding defect crack size hold a highly correlated re-

lation. If that is found to be true then based on information of the other, one can

be estimated. The plot in figure 5.3 illustrates the relation between crack depth

and anomaly severity for a rail track at the Almere-Weesp route. These anomalies

are found at those locations where ECT has reported head-checks. The results ob-

tained from this analysis are not true to the expectations and prior assumptions.

The plot shows the corresponding head-check cracks size in green and anomalies

score in red. Looking into the yielded outcome, the graphs follow each other for

some anomalies, but for others the anomaly scores are just opposite to the crack

sizes. Hence, no concrete conclusion can be drawn because of insufficient correla-

tion.

5.2.3 Channel comparison

It is expected that severe defects on the rail create clear patterns in the ABA signal

not only on the rail side where the defect exists but also in ABA data of the other side

of the rail. Having this assumption in mind, the ABA data for both channels A and B

are processed and synchronized. For each ten meters track section, the ABA signals

with their anomalies, were plotted for both channels against each other, see figure

5.4. The anomalies are shown in red vertical lines exactly at the location where it is

detected. It is found that in most cases anomalies appear on both channels at the

same location while sometimes it is seen on one side only. Intensive research and

analysis is required to understand this behavior of ABA. A possible explanation is

that, early stage rail defects affect the ABA on just one side while severe defects or

rail objects have influence on ABA data on both sides.
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FIGURE 5.3: Severity analysis by comparing head-check (crack
depth) with severity of ABA anomalies

5.2.4 Passage comparison

Passage comparison is used to check the consistency and feasibility of ABA. In or-

der to do that, it is required to process the ABA data that is acquired from the same

route for multiple train passages either in the same direction or in the opposite di-

rection. Applying the anomaly detection technique on ABA data for each passage

will reveal whether the detection of anomalies is consistent or not. Ideally, a high

percentage of anomalies should be detected at the same location for each passage.

In this analysis, the ABA data for two passages on the same route in Groningen are

compared. In table 5.1 , pairs of anomalies that are colored with the same color rep-

resent the repetition of anomalies within a certain range for two different passages.

The positions of the paired anomalies lie within approximately 1 m distance on the
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(A) Example 1

(B) Example 2

FIGURE 5.4: Channel comparison by plotting the anomalies de-
tected by the model on each side of the rail
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TABLE 5.1: Repetition of anomalies at same location for two pas-
sages

Match Location (km) Counters

YES
7.079 299060431
7.080 281822233

YES
7.081 308862381
7.081 299062580

YES
7.082 281820014
7.083 299064732

NO 7.085 299066877

YES
7.090 299069020
7.091 281811139

YES
7.092 299073322
7.093 281808923

rail track. External counters in each pair shows ABA measurements for different

passages. It is found that the repetition of the anomalies at the same position on

rail but different passages occur approximately 90% of the times, which shows the

behavior of ABA is consistent. The consistency of the ABA supports its applicability

for rail condition monitoring and defect detection.

5.3 Results and Discussion

It is reported in research literature that the kurtosis can be a good indicator to dis-

tinguish between a faulty and a normal system (Heng and Nor, 1998). When the

system deteriorates, this value increases to indicate a failure. However, the kurtosis

value decreases when the defect reaches an advanced state of degradation. There-

fore, the kurtosis is most effective in detecting early stage defects, i.e. head-checks

and squats in this case. The crest factor is the ratio of the PPV to the RMS and it is

reportedly a good candidate for detecting incipient faults in system. However, this

feature decreases with a progressive failure because the RMS value generally rises
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TABLE 5.2: Outcome of the anomaly detection model for various
ABA features

Features Anomalies Hits False Alarms Mishits

RMS 74 49 25 98
Kurtosis 85 70 15 77
Skewness 81 67 14 80
Peak-to-Peak 92 68 24 79
Crest factor 101 83 18 64
Impulse factor 93 75 18 72
All features 126 94 32 53

with a progressive failure. Thus, the crest factor could give better performance for

detecting incipient defects while the RMS value can represent severe defects in a

better way. The impulse factor is used to measure the strength of an impact gen-

erated by a defect in the system (Caesarendra and Tjahjowidodo, 2017). The skew-

ness value measures the asymmetry of the impulse generated by defects.

The extracted pool of six features is tested by the iForest model for anomaly de-

tection. The tests include the combination of all features as well as each feature

individually as an input to the model. The performance yielded by these features

is given in the table 5.2. The tests that were conducted using all features, yields

better results compared to using individual features. Looking into the results pro-

duced by each individual feature, it can be noticed that the crest factor gives the

best result. It achieves the highest number of hits with comparatively less mishits

and false alarms. However, the test on the combination of all features outperforms

each feature tested individually. In this analysis, the detected anomalies in ABA are

regarded as hits if the anomaly lies within approximately 1 m range of the labelled

rail defect. This range changes with variation in the sliding window, used during

feature extraction. The false alarms are those anomalies which are reported by the

model because these exist in the data but during validation nothing (rail defects or
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objects) can be spotted at that location or its vicinity by looking into the rail im-

ages. This implies that the detected anomalies are false alarms just because the

corresponding rail images do not show any rail defect or object. Mishits are the

number of rail defects that go undetected by the model, which means that the de-

fect or rail object exist at the location but no abnormality in the nearby ABA data is

found.

A significant number of mishits and false alarms badly affects the reliability of

ABA data to be used for condition monitoring of rail infra-structure. The reason for

false alarms could be any other abnormality in the rail system besides rail defects

i.e. rail misalignment, train wheel fault, surface disparity, measurement noise etc.

Therefore, the false alarms can be expected in this case because of the mentioned

factors. There is a fair amount of hit points (a case in which the rail defects and

the anomalies coincide) which supports the feasibility of ABA, however the consid-

erable number of mishits in the model results require further improvements. The

results given in table 5.2, are obtained from a dataset of a single track in Gronin-

gen. Therefore a definite conclusion about the applied approach cannot be drawn

by experimenting only one dataset.

5.4 Conclusion

The output of the ML pipeline is validated using the rail images. The performance

metrics of the rail CMS are calculated on the basis of comparison between actual

irregularities spotted on rail images and the detected anomalies in ABA. If the de-

tected ABA anomaly lie within 1 m range of the actual rail defect, it is considered as

hit otherwise a false alarm. Analyses on channel and passage comparison are per-

formed in order to check the feasibility of ABA for rail condition monitoring. These
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analyses reveal that the ABA has enough potential to represent the rail abnormali-

ties.
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Chapter 6

Graphical User Interface (GUI)

Design

6.1 Layout design

The user interface is an essential component of any software based system to pro-

vide an interaction between the system and the users. A python based graphics

library PyQT has been used to make the layout of the rail CMS. The design of the

GUI is shown in figure 6.1 which consists of several widgets, buttons, and tables etc.

The user interface provides a limited control of the rail CMS to the maintenance

personnel according to the requirements defined by Strukton. The user can tune

parameters such as sliding window size, type of features and sampling size etc.,

while performing pre-processing and anomaly detection by using the interface. A

wrong input to the model will generate an error notification. In the notification,

the correct format of the required file will be suggested. Moreover, the user will be

notified with a run-time error in case a problem occurs during the process.
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FIGURE 6.1: Design of Graphical User Interface (GUI) for rail CMS

6.2 Inputs and Outputs

The model requires several input files for pre-processing, anomaly detection and

analysis with constraints on their format and file extension. For pre-processing

the required files are raw ABA data file, Sync file, POI file, and Seg file. However,

for anomaly detection, a pre-processed ABA data file is required. Moreover the

model parameters that are required for anomaly detection, can be adjusted by the

operator using the interface. A detailed description of the above mentioned input

files are discussed in chapter 3 of the thesis.
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6.2.1 Input files

The information regarding the formats and file extensions of the input files of the

rail CMS are given as follows:

• ABA data: ABA is the core input to the rail CMS, used for anomaly detection.

The ABA as an input must have H5 file extension. An H5 file is a data file

saved in the hierarchical data format (HDF). It contains multidimensional

arrays of scientific data. In order to perform the pre-processing, ABA data

must be loaded into the system. In case, a pre-processed data file is already

available, then the maintenance operator should load the pre-processed file

for anomaly detection.

• SYNC file: The sync file should be given as input to the model in MS Excel

file with CSV file extension. It is required to synchronize the ABA data with its

external counters. Besides that, it provides information to filter out unsynced

ABA data. Therefore the sync file is essential to perform the pre-processing.

• POI file: It should be inserted into the system as MS Excel format having CSV

file extension. This file is required to obtain location information for ABA

during the pre-processing.

• SEG file: The SEG file is feed into the model as MS Excel file with CSV for-

mat. This file is essential for identifying the direction and operational mode

of inspection train in the ABA data during pre-processing.

6.2.2 Output files

There are two main outputs of the system (i) the pre-processing output and (ii) the

anomaly detection output.
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• Pre-processing output: The output of the pre-processing phase is saved in

the user selected local directory in HDF format with h5 file extension. The

pre-processed data is filtered, synchronized and transformed. The output

from the pre-processing step is the input to the anomaly detection module.

• Anomaly detection output: The output of the anomaly detection model is

saved in the local machine in a MS Excel file with CSV file extension. It con-

tains the external counters, anomaly score and location (km) of the detected

anomalies in ABA data.

6.3 User guidelines

The following are the instructions for the users to interact with the rail CMS and

control some of the input parameters.

• The layout shown in figure 6.1 consists of four segments namely pre-processing,

anomaly detection, model parameter settings, and results segment.

• By clicking the Browse button in the pre-processing segment, the user can

load the required data files according to the given labels in front of each but-

ton.

• Once the files with correct formats and extensions are successfully loaded,

then the pre-processing can be initiated by clicking the Start button.

• As soon as the pre-processing is completed, a Save button will appear which

is used to store the pre-processed file in the local directory.

• In case the pre-processed file is already available, the user can straight away

go for the anomaly detection process.
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• In the anomaly detection segment, the users need to load the pre-processed

file and set the values for sliding window and the intended ABA features. Be-

sides that, the users are required to set the parameters of the model in the

model parameters segment. The anomaly detection process can be initiated

by clicking the Start button in the anomaly detection segment.

• The location, counters, and severity of the detected anomalies are displayed

in the table in the results segment of the layout as soon as the anomaly detec-

tion process is completed. The generated results of anomaly detection model

can be stored in a MS Excel file with CSV format in local storage by clicking

the Save button in the anomaly detection segment.
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Chapter 7

Discussion and Conclusions

This chapter presents the final discussion on the project, draws conclusions of the

thesis report and provides direction for further enhancement in the project. The

potential areas for improvements in the system are discussed in section 7.1. The

conclusions of the project is presented in section 7.2. In section 7.3, the recom-

mendations are given for further research and development in the data-driven rail

maintenance project.

7.1 Discussion

The rail CMS is developed keeping in view the requirements at the stakeholder and

the system level. Validation and testing of these requirements are done using the

V-model approach, discussed in chapter 2. The purpose of the design project is

to detect irregularities in train ABA data. The detection capability of the rail ab-

normality of the applied solution shows promising results. However the number

of mishits and false alarms yielded by the model for all experiments with various

features still asks for improvement in various segments in the ML pipeline. Each

component in the pipeline can be replaced by its counterpart technique to achieve

better hitrate and decrease the number of false alarms. This can be achieved in
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an iterative manner on the basis of trial and error, because no ML approach exists

that solves each problem in the best way. The choices made regarding the various

techniques, algorithms and parameters for the entire process are based on previ-

ous experience and domain literature.

Calibration: The calibration of ABA data on channel A and channel B is one po-

tential area that can be improved. This step is highly critical as it is the entry point

to the anomaly detection model and data getting distorted at this stage would seri-

ously affect the final outcome. In this work a transformed value is calculated using

ABA data in X and Z axes. The tri-axial accelerometer data can be used in alterna-

tive ways to improve the end results, such as rotating the data from one sensor with

an angle to coincide it with data from other sensor. For that, the angle of rotation

must be known otherwise it has to be done in an iterative manner with a random

selection of rotation angle. After each iteration the similary between the data of

both sensors need to be checked. Using acceleration data in X axis only is also an

option, although it will not represent the horizontal acceleration of the train axle-

box because of misalignment.

Feature engineering: Signal processing is a critical part in the whole process and

it carries high potential for improvement in the rail CMS. In this project, a set of

statistical features is used by performing time-domain analysis of the ABA signal.

Other types of features can be investigated by using frequency and time-frequency

domain analysis specially in case of using a supervised ML approach for rail de-

fect detection. The issue with selection of the optimal features and dimensionality

reduction can be handled using methods like principal component analysis (PCA)

and singular value decomposition (SVD). Moreover, the features can be selected

based on their physical connection with the rail defects. Besides that, the size of

the sliding window during feature extraction is also significant for improving the
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performance metrics of the model.

Variable train speed: The current design of the rail CMS does not consider the fac-

tor of the train speed while processing and detecting anomalies in the data. The

vibration level of the axle box of the train changes with variation in train speed.

Since the train speed is varying througout the passage, not incorporating the factor

of speed on ABA can have negative impact on the model outcome. Moreover, ig-

noring the speed factor creates problems while setting a fixed size sliding window

during feature extraction. The sliding window size is kept constant assuming a con-

stant speed througout the inspection campaign. It defines the length of the target

area on rail track to be monitored for anomaly detection. When there is a varia-

tion in the speed, the targeted track length also changes accordingly because of the

fixed window size. Ultimately the calculation of performance metrics of the model

are negatively affected. A proper solution is needed to deal with the train speed

variation. The flexibility of the designed pipeline allows to incorporate the impact

of train speed. One way to do it, is to normalize ABA data with train speed, but the

relation between speed and amplitude of ABA is not known. Therefore normalizing

the data can distort the original information in the data. Hence, normalization is

not the right and safe option. Another way to handle the impact of train speed is

to make categories of ranges of train speeds such as below 40 km/h, from 40 km/h

to 60 km/h and above 60 km/h. It has been reported in literature that the low train

speeds do not have high significance in detection of rail defects using ABA data,

while speeds around 70 km/h generate more valuable information regarding rail

condition. Considering these research findings, the low speed ABA data can be fil-

tered out, which is normally found near the rail stations and the switches. Only

the data above 40 km/h can be processed and analyzed for defect detection. The

high speed data are to be categorized and treated separately by the model. Each



74 Chapter 7. Discussion and Conclusions

detected anomaly will then be associated with its respective train speed.

Anomaly detection model: The parameters used for anomaly detection model

such as sub-sampling size, contamination in data, and number of iTrees have an

impact on the model output. The contamination ratio is significant because it gives

a prior information to the model about the percentage of the outliers in the data.

A higher contamination value would expand the threshold for data samples to be

outliers and will result in larger number of anomalies and vice versa. Increasing the

impurity ratio improves the hit-rate but it also increases the number of false alarms

which is undesirable.

Validation: Validation of the model is done using rail images, however it would

have been ideal if true outputs of ABA were available and used for the model vali-

dation. Besides that, the rail images require manual labelling of the defects which

is laborious and can be erroneous as the early stage defects are not always clearly

visible in the images. Doing so, the outcome of the model cannot be validated in a

true sense, because training of the model is done on one type of data and the vali-

dation is performed on completely different data.

Channel and Passage comparison: Analysis on the channel comparison and the

measurement train passages is carried out in order to assess the feasibility of ABA.

The outcome for passage comparison is convincing because anomalies are found

to be repeated in most cases at same location for multiple passages. It means that

the abnormal behavior of ABA at certain points on rail is not random. The consis-

tency shown in anomaly repetition reveals that ABA is potential candidate for rep-

resenting rail irregularities. However, only the detection of the irregularities related

to the rail defects is important. In channel comparison, a considerable number of

anomalies were found on both sides of rail while a smaller amount of anomalies
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were appeared just on one side of the rail. It can be said that severe rail abnor-

malities affect the ABA on both sides while incipient rail defects generate certain

patterns in ABA on one side of rail.

Defects severity estimation: The severity analysis that is discussed in chapter 5, is

done in pursuit of exploring the correlation between the defect crack size and ABA

anomaly score. It is presumed that highly severe defects create high energy ABA

signals and vice versa. The head-checks crack size and the corresponding anomaly

score is plotted in figure 5.3 to show the correlation between these two variables.

The correlation between crack severity and anomaly score is found to be rather

random and inconsistent. Further analysis needs to be done using more data for

various rail tracks that probably yield better correlation between crack severity and

ABA abnormality. The correlation is important, as it can help in crack size estima-

tion by feeding the anomaly score to the regression models. Based on the success

of this analysis, each detected anomaly will be associated with the estimated crack

size.

Rail defects classification: Labeling rail defects such as head-checks and squats

can be done using the reports of EC and US testing reports . These reports contain

information such as type, size, and location of defects on rail. Although the la-

belling task is hard and laborious, it will help in shifting the problem solution from

an unsupervised to a supervised ML domain. Labelled data are highly vital for ML

applications as then the models can be trained in a supervised manner for the de-

fined classes in the data. Calculation of performance metrics and model optimiza-

tion can be directly performed because of the availability of ground truth informa-

tion. The models that are trained using a supervised approach, learn the patterns

in the data for these defects. The trained models can identify the head-checks and

squats in newly acquired ABA data. Based on the prediction accuracy, the model’s
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parameters can be tuned accordingly to obtain the best outcome. Moreover, the rail

images based validation will be no more required in the supervised way of train-

ing models. The validation will rather be performed during the training phase of

the model using the actual data labels. Supervised training of the models can be

performed using either classical ML techniques or deep learning (DL) techniques

depending on the input type of the data. One positive characteristic of the DL is

that these techniques do not require features to be extracted beforehand. The DL

models extract and optimize the features themselves and identify various classes

in the data. The big question regarding the ABA labelling using EC and US testing

reports is the reliability of these reports.

7.2 Conclusion

The main goal of the project was to come up with a solution to the design problem,

presented in chapter 1. The objective was to develop a condition monitoring sys-

tem for rail infrastructure in pursuit to detect incipient rail defects that ultimately

improve time and cost of rail maintenance. The conclusions from this work are

drawn at the same levels where the requirements were defined. At the system’s

level the following concluding points are drawn:

• The GUI of the rail CMS is supportive and friendly for user interaction. The

usage guidelines are provided in this report. This fulfills the requirements

SH1, and SYS8.

• The developed rail CMS can be used for anomaly detection on various rail

tracks, which fulfills the requirement SH2.

• The rail CMS takes the ABA as the main input for anomaly detection accord-

ing to the requirement SYS9.
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• The rail CMS is developed using python to enable its integration with python

based systems. It is done in fulfilment of the requirement SYS6.

• The rail CMS is flexible to modification and bug fixing, which fulfills the re-

quirement SYS13.

• The rail CMS enable the users to save the output of anomaly detection in

local storage as per requirement SYS10.

Considering the requirements at the stakeholder’s level, the following conclusions

are drawn after completing the design process:

• The rail CMS generates clear human interpretable information in the form

of location and severity of the detected anomalies on rail according to the

requirement SH4.

• In order to fulfill the requirement SH3, further improvements are required

in the rail CMS as given in section 7.3 to help in decision making regarding

initiation of rail maintenance.

7.3 Recommendations

The following are the recommendations to move forward in the data-driven rail

maintenance project:

• Including the train speed factor in the designed ML pipeline.

• Rail defects detection and classification using a supervised ML approach by

providing labelled ABA data.

• Severity estimation of the rail defects.
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