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Abstract. Deductive software verification aims at formally verifying
that all possible behaviors of a given program satisfy formally defined,
possibly complex properties, where the verification process is based on
logical inference. We follow the trajectory of the field from its inception
in the late 1960s via its current state to its promises for the future, from
pen-and-paper proofs for programs written in small, idealized languages
to highly automated proofs of complex library or system code written in
mainstream languages. We take stock of the state-of-art and give a list
of the most important challenges for the further development of the field
of deductive software verification.

1 Introduction

Deductive software verification aims at formally verifying that all possible behav-
iors of a given program satisfy formally defined, possibly complex properties,
where the verification process is based on some form of logical inference, i.e.,
“deduction”. In this article we follow the trajectory of the field of deductive
software verification from its inception in the late 1960s via its current state to
its promises for the future. It was a long way from pen-and-paper proofs for
programs in small, idealized languages to highly automated proofs of complex
library or system code written in mainstream programming languages. We argue
that the field has reached a stage of maturity that permits to use deductive ver-
ification technology in an industrial setting. However, this does not mean that
all problems are solved. On the contrary, formidable challenges remain, and not
the smallest among them is how to bring about the transfer into practical soft-
ware development. Hence, the second contribution of this article is to present
an overview of what we consider the most important challenges in the area of
deductive software verification.

To render this article feasible in length (and to avoid overlap with other con-
tributions in this volume) we focus on contract-based, deductive verification of
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imperative and object-oriented programs. Hence, we do not discuss model check-
ing, SMT solvers, general proof assistants, program synthesis, correctness-by-
construction, runtime verification, or abstract interpretation. Instead, we refer
to the articles Runtime Verification: Past Exrperiences and Future Projections,
Software Architecture of Modern Model-Checkers, Statistical Model Checking, as
well as The 10,000 Facets of MDP Model Checking in this issue. We also do
not cover fully automated verification tools for generic safety properties (see the
article Static Analysis for Proactive Security in this issue for some aspects on
these). This is not at all to say that these methods or tools are unimportant or
irrelevant. On the contrary, their integration with deductive verification appears
to be highly promising, as we point out in Sect. 5.2 below.

This paper is organized as follows: in the next section we walk through a non-
trivial example for contract-based verification to clarify the scope and illustrate
some of the important issues. In Sect. 3 we sketch the main developments in the
field ca. up to the year 2000. In Sect. 4 we sketch the current state-of-art and we
discuss the two main approaches to deductive verification: symbolic execution
and verification condition generation. The core of the paper is Sects.5 and 6,
where we discuss the main achievements and the remaining challenges of the
field, divided into technical and non-technical aspects. We conclude in Sect. 7.

2 An Example

Properties to be proven by deductive verification are expressed in a formal spec-
ification language. Ada was the first language that supported expressing formal
specification annotations directly as structured comments next to the program
elements they relate to [97]. As this proved to be natural and easy to use, this
was followed for other programming languages. Eiffel [99] propagated a contract-
based paradigm, where the prerequisites and obligations of each method! are laid
down in a contract. This has the very important advantage that methods, as the
central abstraction concept to structure a program, have a direct counterpart in
formal specifications. Hence, specifications and programs follow the same struc-
ture. For most major imperative/object-oriented programming languages there
exist dedicated contract-based annotation languages (see Sect.5.1).

We give an example of contract-based formal specification and verification of
a Java program with the Java Modeling Language (JML) and provide informal
explanations of JML specification elements; more details are in [66,85]. Consider
the Java method search() in Fig. 1 which implements binary search in a sorted
integer array. Its code is completely specified, so it can be compiled and run
from a suitable main() method.

The method contract (lines 1-7) specifies the intended behavior, whenever
search() terminates normally. The contract’s only requirement (line 2) is that
the input array is sorted (in JML all reference types are assumed to be non-
null by default, so this does not need to be spelled out). Sortedness is specified
with the help of a model method isSorted() that is not shown. The contract

! We use Java terminology for what is also called procedure, function, subroutine, etc.
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1 /%@ public normal_behavior

2 @ requires isSorted(a);

3 @ ensures ((\exists int x; 0 <= x & x < a.length; alx] == v) 7

4 Q@ \result >= 0 && \result < a.length && a[\result] == v :
5 @ \result == -1);

6 @ assignable \strictly_nothing;

7 @/

s public static /*@ pure @*/ int search(int[] a, int v) {

9 int 1 = 0;

10 int r = a.length - 1;

11

12 if (a.length == 0) { return -1; }

13 else if (a.length == 1) { return a[0] ==v 7 0 : -1; }

14 /%@ loop_invariant 0 <= 1 & 1 < r && r < a.length

15 ¢] && (\forall int x; 0 <= x && x < 1; alx] < v)
w6 @ && (\forall int x; r < x && x < a.length; v < a[x]);
17 @ assignable \strictly_nothing;

18 Q@ decreases r - 1;

19 ex/

20 while(r > 1 + 1) {

21 int mid =1 + (r - 1) / 2;

22 if (a[mid] == v) { return mid; }
23 else if (a[mid] > v) { r = mid; }
24 else {1 =mid; }
25 }

26 if(a[l] == v) return 1;

27 if(a[r] == v) return r;

28 return -1;

29 }

Fig. 1. Formal JML specification of a Java binary search method

says that whenever search() is called with a sorted, non-null array then the call
terminates and in the final state the property given in the ensures clause (lines 3—
5) is satisfied. In addition, the assignable clause (line 6) says that the execution
has strictly no side effects, not even creation of new objects. The contract is
valid for any input of unbounded size that satisfies the requirements.

We take a closer look at the ensures clause: line 3 is the guard of a conditional
term saying that the value v occurs as an entry of a. If true, an array index where
v is found is returned as the result, and -1 otherwise. We do not specify whether
the result is the smallest index, but make sure that is in a valid range.

The loop invariant (lines 14-16) specifies the valid range of the pivots and
says that v can never occur below index 1 or above r. To ensure termination
of search() it is sufficient to ensure termination of the loop. This is achieved
by the decreases clause (line 18), an expression over a well-ordered type that
becomes strictly smaller in each iteration.
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A central advantage of contract-based verification is compositionality and
scalability: after showing that a method satisfies its contract, each call to that
method can be replaced with its contract, instead of inlining the code. Specifi-
cally, if the callee’s requires clause is satisfied at the call point, then its ensures
clause can be assumed and the values of all memory locations of the caller, except
the assignable ones, are preserved. We illustrate the idea with a simple client
method, see Fig. 2.

//@ public invariant next >= 0;
2 private /*@ spec_public @/ int[] indices;
private /*@ spec_public @*/ int next;

[

[}

5 /*@ public normal_behavior

6 @ requires isSorted(a) && a != indices && next < indices.length;
7 @ ensures (\exists int i; i >= 0 && i < a.length; a[i] == v) ?

g @ indices[\old(next)] == \result :

9 @ (next == \old(next) && indices[next] == \old(indices[next]));
10 @ ensures (\exists int i; i >= 0 &% i < a.length; al[i] == v) 7
11 @ a[\result] == : \result == -1;

12 @ assignable indices[next], next;

13 @ also

14 @ public exceptional_behavior

15 @ requires isSorted(a);

16 @ requires (\exists int i; i >= 0 && i < a.length; al[i]l == v);
17 @ requires next >= indices.length;

1s @ signals (ArrayIndexOutOfBoundsException) true;

19 @ assignable \nothing;

20 @/

21 public int addIndex(int[] a, int v) {
22 int idx = search(a,v);

23 if (idx >= 0) {

24 indices[next] = idx;
25 next++;

26}

27 return idx;

28 }

Fig. 2. Formal JML specification of a Java client method

Method addIndex () searches for value v in a. If the entry was found at index
idx, then it is appended to the array contained in the field indices and returned.
The specification is surprisingly complex. First of all, as specified in the excep-
tional termination case (lines 14-19), an ArrayIndexOutOfBoundsException is
thrown if the array indices is full and the given value is found (line 16): in this
case the array has to be extended (line 17). The assignable clause (line 19) is
not strict, because a new exception object is created. Sortedness of parameter a
is necessary to ensure that the contract of search() can go into effect.



Deductive Software Verification 349

The specification case for normally terminating behavior (lines 5-12) of
addIndex () is similar to that of search(): in addition we require (line 6) that
a and indices are different arrays (Java arrays can be aliased) and that there
is still space for a new entry (next < indices.length). The latter could be
weakened by disjoining the condition that the value is found. The second ensures
clause (lines 10-11) is almost identical to the one of search() (we left out the
bounds on the result). The first ensures clause (lines 7-9) says that, if the value
is found then its index is appended to indices; otherwise, indices and next
are unchanged. We use the keyword \old to refer to a value in the prestate. This
is necessary, because next was updated in the method.

Typically, one also specifies class invariants that, for example, capture consis-
tency properties of the instance fields that all methods must maintain. In JML
any existing class invariants are implicitly added to all requires and ensures
clauses which helps to keep them concise. In the example, we maintain the
invariant that next is non-negative (line 1). Class invariants must be established
by all constructors (not shown here).

Discussion. Even our small example shows that precise contracts, even of seem-
ingly innocent methods, can become bulky. The specification of addIndex() is
about twice as long as its implementation. And, as pointed out, that specifica-
tion could be made even more precise. But without further information about
the call context it is hard to decide whether that is useful. A subtle question
is whether the annotation \result >= 0 && \result < a.length in line 4 of
Fig. 1 is needed at all: if it doesn’t hold then the expression a[\result] is not
well-defined in Java anyway. But most verifiers will not be able to deduce this by
themselves, because they treat such an expression as underspecified. The seman-
tics of most tools, including the JML standard, is not always unambiguous.

It is very easy to forget parts of specifications: in most cases, the first attempt
will not be verifiable. While developing the example we forgot a != indices in
line 6 of Fig.2, a typical omission. Good feedback from the verification tool is
very important here. Vice versa, some of the specification annotations should be
automatically derivable, for example, the bounds. Note that reuse of specification
elements is essential to obtain concise and readable annotations.

It took about one hour (for an expert) to specify and verify the example
reproduced here. After finding the correct specifications, formal verification with
the system KeY [3] is fully automatic and takes about 6s on a state-of-the-art
desktop, including the constructor and model methods not displayed. The most
complex method, search(), led to a proof tree with ca. 4,000 nodes and 27
branches. Interestingly, when we loaded the verified example in OpenJML [37],
we only had to rename some KeY-specific keywords such as \strictly nothing
(replaced by \nothing , and then most of the example could be verified directly.
The only specification that could not be verified was the exceptional behavior
specification of method addIndex, as OpenJML adds extra proof obligations to
every array access instruction, capturing that the index should be between the
bounds of the array, to ensure the absence of runtime errors.
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3 History Until LNCS 1750 (aka Y2000)

The Roots of Deductive Verification. The history of deductive software verifica-
tion dates back to the 1960s and 70s. Seminal work in this area is Floyd-Hoare
logic [48,61], Dijkstra’s weakest preconditions [42], and Burstall’s intermittent
assertions [31].

Floyd and Hoare introduced the notion of pre- and postcondition to describe
the behaviour of a program: a Hoare triple {P}S{Q@} is used to express that if
program S is executed in an initial state o, such that the precondition P holds
for o, then if execution of S terminates in a state ¢’, the postcondition @) holds
for the final state o’. This relation is also called partial correctness (partial,
because termination is not enforced). Any pair of states (o,0’) for which the
Hoare triple holds, must be contained in the big-step semantics [110] of S. Floyd
and Hoare proposed a set of syntactic proof rules to prove the correctness of an
algorithm. One classical example of such a proof rule is the rule for statement
composition:

{PYSi{R}  {R}S:{Q}
{P}S1;52{Q}

This rule expresses that to prove that if S1; S5 is executed in a state satisfying
precondition P, if it terminates in a state satisfying @), it is sufficient to find an
intermediate assertion R, such that R can be established as a postcondition
for the first statement Si, and is a sufficient precondition for Sy to establish
postcondition @. Rules like this break up the correctness problem of a complete
algorithm into a correctness problem of the individual instructions.

Dijkstra observed that it is possible to compute the minimal precondition
that is necessary to guarantee that a program will establish a given postcon-
dition. This simplifies verification, because in this way, one does not have to
“invent” the intermediate predicate that describes the state between two state-
ments, but this can be computed. In particular, the weakest precondition wp for
a statement S7; 59 can be computed using the following rule:

wp(S1; 52, Q) = wp(S1,wp(S2, Q))

For other instructions, similar rules exist. A Verification Condition Generator
(VCG) is a deductive verification tool that produces proof obligations express-
ing that the specified precondition is stronger than the weakest precondition as
computed by the wp rules. For this approach to work, we require the presence of
loop invariants and method contracts for all methods called in the verified code,
which give rise to additional proof obligations.

VCGs in essence apply wp transformation rules backwards through the target
program, starting with the postcondition to be proven. However, it is also possi-
ble to verify a program in the forward direction of its control flow. Burstall [31]
proposed to combine symbolic execution with induction to show that a program
implies its postcondition (see also Sect. 4).
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First Deductive Verification Tools. The early program verification techniques
were, to a large extent, a pen-and-paper activity. However, the limitations of
doing such proofs with pen-and-paper were immediately obvious, and several
groups started to develop tools to support formal verification. These efforts were
all isolated, and usually still required extensive user interaction. Nevertheless, the
correct application of the proof rules was checked by the system, and many obvi-
ous errors were avoided this way. It is not possible to give a complete overview
of early verification systems, but we mention some representative tools and their
main characteristics.

Tatzelwurm [41] was a VCG for a subset of UCSD Pascal. It accepted speci-
fication annotations in sorted first-order logic and used a tableau-based theorem
prover with a decision procedure for linear integer expressions to discharge ver-
ification conditions.

Higher-order logic theorem provers were frequently used to construct a ver-
ified program verifier. The soundness of the verification technique was proven
inside the theorem prover, and the program to be verified was encoded in the
logic of the theorem prover, after which the verified rules could be applied. This
approach was used for example in the Loop project, where Hoare logic rules were
formalized in PVS (later also Isabelle) to reason about Java programs [65,67],
the Sunrise project, which used a verification condition generator verified in HOL
for a standard while-language [64], by Von Oheimb who formalized a Hoare logic
for Java in Isabelle/HOL [126], and by Norrish, who formalized a Hoare logic
for C in HOL [105].

SPARK [112] and ESC [90] were among the first tools to directly implement
the weakest precondition calculus. Development of SPARK started in an aca-
demic setting, was further extended and refined in an industrial setting, and
is now maintained and marketed by AdaCore and Altran. SPARK realizes a
VCG for (a safety-critical subset of) Ada and is still actively developed [60].
The ESC (Extended Static Checker) tool originally targeted Modula-3, but was
then adapted to Java [88]. ESC was designed with automation in mind: it traded
off correctness and completeness with the capability to quickly identify possible
problems in a program, thus providing the programmer with useful feedback.

Another early implementation of the weakest precondition calculus was pro-
vided in the B Toolkit [113] that realized tool support for the B Method [1].
The B Method is based on successive refinement of a sequence of abstract state
machines—weakest precondition reasoning is used to establish invariants, pre-
conditions, and intermediate assertions for a state machine. The B Method is
one of the industrially most successful formal methods (see [93] for an overview),
however, it is not a deductive software verification approach and, for this reason,
not discussed further.

The KIV system [51] was the first? interactive program verifier based on
dynamic logic, an expressive program logic that can be viewed as the syntactic
closure of the language of Hoare triples with respect to first-order connectives

2 The first verification system based on dynamic logic is reported in [95], but it was
based on an axiomatic calculus and had no further impact.
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and quantifiers [54]. It formalizes Burstall’s [31] approach as a dynamic logic
calculus whose rules mimic a symbolic interpreter [55]. Induction rule schemata
permit complete symbolic execution of loops. KIV is still actively being devel-
oped, and much effort has been put into automation, and an expressive spec-
ification language, using higher-order algebraic specifications [45]. It has been
used for verification of smart card applications and the Flashix file system.

ACL2 (A Computational Logic for Applicative Common Lisp) is a program
verification tool for Lisp [78]. As other members of the Boyer-Moore family of
provers, it has a small trusted core, and all other proof rules are built on top of
this trusted core and cannot introduce inconsistencies. Its main proof strategies
are based on induction and rewriting. The ACL2 prover is actively developed.
It has been used to verify properties of, for example, models of microprocessors,
microcode, the Sun Java Virtual Machine, and operating system kernels.

STeP, the Stanford Temporal Prover, used a combination of deductive and
algorithmic techniques to verify temporal logic properties of reactive and real-
time systems. It features a set of verification rules which reduce temporal prop-
erties of systems to first-order verification conditions and implements several
techniques for automated invariant generation [19].

4 From LNCS 1750 to LNCS 10000

A Deductive Verification Community. After the year 2000, we see a gradual
change from tools developed in isolation to a community of deductive software
verification tool developers and users. Within this community, there is active
exchange and discussion of ideas and knowledge. Effort has been put into stan-
dardizing specification languages, notably JML, now used by most contempo-
rary tools aiming at verification of Java. Further, the VS-Comp and VerifyThis®
program verification competitions have been established, where the developers
and users of various deductive verification tools are challenged to solve program
verification competition problems within a limited time frame [68]. After the
competition, participants present their solutions to each other, which leads to
substantial cross-fertilization.

Deductive Verification Architectures. As mentioned above, there are two main
approaches for the construction of deductive verification tools: VCG and sym-
bolic execution. Tools based on VCG use transformation rules to reduce an
annotated program to a set of verification conditions whose correctness entails
correctness of the annotated program. Tools that use symbolic execution collect
constraints on the program execution by executing the program with symbolic
variables. If the collected constraints can be fulfilled and imply the annotations
at each symbolic state, then the annotated program is correct. Both approaches
can be formalized within suitable program logics.

Kassios et al. [77] report that symbolic execution tends to be faster than
VCG, but the former is sometimes less complete and occasionally suffers from

3 http://www.verifythis.org/.
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path explosion. However, the completeness issue seems to derive from the specific
architecture of the symbolic execution tool that was used in their study, which
relies on an inherently incomplete separation of heap reasoning and arithmetic
SMT solving. Path explosion, however, is clearly an issue for symbolic execution
of complex target code [39]. It was recently shown that it can be mitigated with
symbolic state merging techniques [117].

Long-Running Deductive Verification Projects. Several tools whose development
started around the year 2000 still exist currently, or evolved into new tools. We
sketch the development of some of these tools.

Work on the KeY tool [3] started in 1998 [53] and it has been actively devel-
oped ever since. Like KIV, KeY is based on symbolic execution formalized in
dynamic logic, but it extends the KIV approach to contract-based verification
of Java programs and uses loop invariants as a specific form of induction that is
more amenable to automation. KeY is not merely focused on functional verifica-
tion, but complements it with debugging and visualization [3, Chap. 11] or test
generation [3, Chap. 12]. It covers the complete JavaCard language [102] and
was used to identify a bug in the Timsort algorithm [39], the standard sorting
algorithm provided in the Oracle JDK, Python, Android, and other frameworks.

The development of ESC/Java [88] was taken over by David Cok and Joe
Kiniry, resulting in ESC/Java2 [38]. Initially, their goal was to bring ESC/Java
up-to-date, as well as to provide support for a larger part of JML and more Java
features. ESC/Java2 is not actively developed as a separate tool anymore, how-
ever, it formed the foundation for the static verification support in the OpenJML
framework [37]. Over the years, the proving capabilities of the static verification
support in OpenJML have been strengthened. Like ESC/Java, it still prioritizes
a high degree of automation, but soundness is not traded off anymore. OpenJML
offers not merely support for static verification, but also for runtime verification.

The original ESC/Java development team around Rustan Leino moved into
a different direction. In 2004, they presented Spec#, a deductive verification
tool for C# [11], which reused much of the philosophy of ESC/Java. In parallel
to the development of Spec#, the team also designed Boogie, as an intermedi-
ate language for static verification [10]. Boogie is a very simple programming
language, for which it is straightforward to build correct verification tools. To
provide support for more advanced programming languages, it is sufficient to
define an encoding into Boogie. Boogie is used as the intermediate verification
language for various programming languages, including Java (in OpenJML),
Java bytecode [86], and C# (in Spec#). After the work on Spec# and Boogie,
Leino took a slightly different approach: instead of developing a verification tool
for an existing programming language, he designed Dafny, which is a program-
ming language with built-in support for specification and verification [89], and
in particular supporting dynamic frames [76].

Another widely used intermediate language is Why3 [24] which nowadays is
used as a backend for SPARK 2014, the current version of SPARK/Ada [81], and
Frama-C, a tool for the verification of C programs [80], specified with the JML-
like language ACSL. Its original version (Why [47]) has been used as a backend
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for Krakatoa [98] (for Java programs) and Jessie (for C programs). Frama-C
provides more than mere deductive verification: it also supports runtime verifi-
cation, and it contains analysis tools such as a slicer and a tool for dependency
analysis. Much attention is given to the combination and interaction between
these tools, for example how testing can be used automatically to understand
why a proof fails [109]. Intermediate languages in the context of model checking
are discussed in the article Software Architecture of Modern Model-Checkers in
this issue.

A final example is the Infer tool [32], which supports fully automated deduc-
tive verification techniques to reason about memory safety properties of C pro-
grams. Infer uses separation logic, an extension of classical Hoare logic, which is
especially suited to reason about pointer programs. The development of separa-
tion logic resulted in the creation of a series of research prototype tools (Small-
foot, Space Invader, Abductor) as a way to automatically analyze memory safety
of programs. As the focus of Infer is on a restricted set of properties, specifica-
tions are not required (but it is possible to obtain the specs that infer derives
from the analysis). Infer is integrated in the Facebook code inspection chain,
and is used as one of the standard checks before code changes are committed.

All tools mentioned above have their specific strengths and weaknesses. How-
ever, they share that they target the verification of realistic programming lan-
guages, and have made substantial progress in this direction. Several of the
tools mentioned above are used in undergraduate teaching (both at Bachelor
and Master level). Importantly, this does not happen only at the universities of
the tools’ own developers, but also at other universities where lecturers find it
important to teach their students state-of-the-art techniques that can help to
improve software reliability.

There exist many verification case studies, where unmodified (library) code
was annotated and verified, and often bugs were discovered, see e.g. [39,79,
102,111,116]. Despite those success stories, there is a growing realization that
post-hoc verification and, in particular, specification, remains difficult and chal-
lenging, and that there always is a trade-off between the verification effort and
the level of reliability that is required for an application. A result of this realiza-
tion is that we see a shift of emphasis from proving correctness of an application
to bug-finding and program understanding.

5 Achievements and Challenges: Technical

5.1 Specification Languages

Deductive verification starts with specifying what should be verified, i.e., what
behaviour we expect from the implementation. This is where the specification
language comes into play.

In essence, expected program behaviour is described in the form of a method
contract: a precondition specifies the assumptions under which a method may be
called; a postcondition specifies what is achieved by its implementation, e.g., the



Deductive Software Verification 355

computed result, or its effect on the global state. Eiffel was the first mainstream
programming language that featured such method specifications [100].%

Achievements. For the deductive software verification community, the design
of JML, the Java Modeling Language [66,84], has been a major achievement.
Figures1 and 2 in Sect.2 illustrate typical JML specifications. JML features
method contracts, similar to Eiffel, but in addition provides support for more
high-level specification constructs for object-oriented programming languages,
such as class invariants, model elements, and history constraints [94]. One of the
important design principles of JML is that its notation is similar to Java. Prop-
erties in JML are basically Java expressions with Boolean types, and only a few
specific specification-only constructs such as quantification, and implication have
been added. As a result, JML specifications have a familiar look and feel, and
can easily be understood. JML is also used as a specification language for other
formal validation techniques, such as test case generation, and runtime asser-
tion checking, which further increases its usability in the software development
process.

JML is a rich specification language; complex specifications can be expressed
in it. It provides extensive support for abstraction in the form of a fully-fledged
theory of model specification elements, based on the idea of data abstraction
as introduced by Hoare [62]. The principles behind this are old, but JML turns
it into a technique that can be used in practice. Abstraction allows a clear
separation of concerns between specification language and implementation [33],
and increases portability of specifications.

The design of JML has been influential in the design of other specification lan-
guages for deductive verification, such as the ANSI/ISO C Specification Langage
(ACSL), which is used in the Frama-C project [80], and the Spec# specification
language for C# [11] and its spin-off Code Contracts [96].

Challenges. A central problem of deductive verification is that specifications can-
not be as declarative and abstract as one would like them, in order for verification
proofs to succeed. Specifications become polluted with intermediate assertions
and implementation properties that are necessary as hints for the verification
engine. This becomes problematic in the verification of large code bases and
is exacerbated by usage of off-the-shelf libraries. To improve the situation, we
believe attention should be given to address the following two challenges:

S.1 Provide specifications for widely-used APIs. At the very least, these should
describe under which circumstances methods will (not) produce exceptions.
For specific APIs, such as the standard Java collection library, also functional
specifications describing their intended behaviour are required. This task
is work-intensive and has little (direct) scientific reward. It is, therefore,
difficult to find funding to conduct the required work, see also challenge F.1.

4 However, Eiffel contracts were intended for runtime (rather than static) verification.
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S.2 Develop techniques to infer specifications from code in a (semi-)automated
manner. Many specification details that have to be spelled out explicitly,
actually can be inferred from the code (as illustrated in the example of
Sect.2). There is work on specification generation [63,101], but it is not
integrated into deductive verification frameworks (see challenge 1.9).

5.2 Integration

Integration aspects of formal verification appear on at least three levels. On the
most elementary level, there is the software engineering aspect of tool integration
and reuse. Then there is the aspect of integrating different methods and analyses
to combine their complementary strengths. Finally, there is the challenge to
integrate formal verification technology into an existing production environment
such that added value is perceived by its users. We discuss each aspect in turn
in the following subsections.

Tool Integration and Reuse. Software reuse is still considered to be a chal-
lenging technology in Software Engineering® in general. Therefore, it is not sur-
prising that this is the case for formal verification in particular. The situation is
exacerbated there, due to the complexity of interfaces and data structures.

Achievements. One success story of tool reuse in deductive verification is cen-
tered around Boogie [10] (see also Sect.4), an intermediate specification and
verification language and VCG tool chain, most often complemented by the
SMT solver Z3 [40] as its backend. Boogie is a minimalist language, optimized
for formal verification. It is used as a backend in several verification tool chains,
including Chalice [87], Dafny [89], Spec# [11], and VCC [36]. More recently, also
the intermediate verification language Silver [104], which has built-in support for
permission-based reasoning, reuses Boogie as one its backends. In addition, it
also comes with its own verification backend, an SE-based tool called Silicon.
Interestingly, Silver in turn, is used as a backend in the VerCors platform [§]
for reasoning about concurrent Java and OpenCL programs. Similarly, but with
less extensive reuse, the WhyML intermediate verification language is used in
the verification systems Frama-C [80] and Krakatoa [47]. Recently, a translation
from Boogie to WhyML was presented [5] that links both strands. The state-of-
art on tool integration in the model checking domain is discussed in the article
Software Architecture of Modern Model-Checkers in this issue.

Challenges. Intermediate verification languages are good reuse candidates,
because they are small and have a clear semantics. In addition, compilation
is a well-understood, mainstream technology with excellent tool support. This
makes it relatively easy to implement new frontends. On the other hand, tool
reuse at the “user level”, for example, for JML/Java or ACSL/C is much harder
to achieve and we are not aware of any significant case.

5 There is a whole conference series devoted to this topic, see https://en.wikipedia.
org/wiki/International_Conference_on_Software_Reuse.
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I.1 Equip frontend (JML, Java, ACSL, C, ...) as well as backend (Boogie, Silver,
Why, ...) languages with precise, preferably formal, semantics. In the case
of complex frontend languages this involves identifying a “core” that must
then be supported by all tools.

1.2 Equip formal verification tools with a clear, modular structure and offer their
functionality in well-documented APIs. This is a work-intensive task with
few scientific rewards and, therefore, closely related to Challenge F.1.

1.3 Establish and maintain a tool integration community, to foster work on reuse
and increase its appreciation as a valuable contribution.’

Method Integration. Arguably, one of the largest, self-imposed stumbling
blocks of formal methods has been the propagation of monolithic approaches.
At least in deductive verification, it became very clear within the last decade that
software development, formal specification, formal verification, runtime verifica-
tion, test case generation, and debugging are not separate activities, but they
have to be done in concert. At the same time, formal specifications have to be
incrementally developed and debugged just as the pieces of code whose behavior
they describe. This is now commonly accepted in the community, even if the
infrastructure is not there yet; however, there are encouraging efforts.

Achievements. It is impossible to list exhaustively the flurry of papers that
recently combined formal verification with, for instance, abstract interpreta-
tion [117], debugging [58], invariant generation [82], software IDEs [92], testing
[109], to give only a few examples.

Most deductive verification tools (as well as proof assistants) provide an inter-
face to SMT solvers via the SMT-LIB [12] standard. There is growing interest in
formal verification from the first-order theorem proving community where tools
can be integrated via the TPTP standard [119]. There is also work towards the
exchange of correctness witnesses among verifiers [17].

An interesting recent trend is that specialized verification and static analysis
tools are being equipped with more general techniques. For example, the termina-
tion analysis tool AProVE [50] as well as the safety verification tool CPAchecker
[18] both implement a symbolic execution engine to improve their precision. We
observe that boundaries between different verification subcommunities that used
to be demarcated by different methods and tools are dissolving.

Challenges. In addition to the tool integration challenges mentioned above, on
the methodological level, questions of semantics and usability arise. To mention
just one example, there is a plethora of approaches to loop invariant generation,
see e.g., [46,63,114]. All of them come with certain limitations. They tend to be

5 Relating to formal methods-based software tools in general, the journal Software
Tools for Technology Transfer (STTT), as well as the conference Tools and Algo-
rithms for the Construction and Analysis of Systems (TACAS), were established as
dedicated venues to foster tool integration and maturation. The article [118] dis-
cusses the history and the challenges of this endeavor, see also 1.7.
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driven by the technology they employ, not by applications and they are designed
as stand-alone tools. This makes their effective usage very difficult.

Another area from whose integration deductive verification could benefit is
machine learning, specifically, automata learning (see also the article Combining
Black-Box and White-Box Techniques for Learning Register Automata in this
issue).

1.4 Calls to auxiliary tools must return certificates, which must be re-interpreted
in the caller’s correctness framework. This is necessary to ensure correctness
arguments without gaps.

I.5 The semantic assumptions on which different analysis methods are based
must be spelled out, so that it is possible to combine different approaches in
a sound manner. Some work in this direction has been done for the .NET
static analyzer Clousot [35], but such investigations should be done on a
much larger scale.

[.6 There is a plethora of possible combinations of tools and methods. So far,
method and tool integration is very much ad hoc. There should be a sys-
tematic investigation about which combinations make methodological sense,
what there expected impact is, and what effort their realization would
require.

1.7 A research community working on method integration should be established.

Integration with the Software Production Environment. It is very diffi-
cult to integrate software verification technology into a production environment.
Some of the reasons are of a non-technical nature and concern, for example,
usability or the production context. These are explored in Sect. 6 below. Another
issue might be the lack of coverage, see Sect. 5.3. In the following, we concentrate
on processes and work flows.

Achievements. Our guiding question is: How can formal software verification be
usefully integrated into a software development process? The emerging integra-
tion of verification, test generation, and debugging aspects into single tool chains,
as described above, is an encouraging development. We begin to see deductive
verification tools that are intentionally presented as enhanced software develop-
ment environments, for example, the Symbolic Execution Debugger (SED) [56]
based on Eclipse or the Dafny IDE [91] based on MS Visual Studio.

Several verification tools support users in keeping track of open proof obli-
gations [59,80,91] after changes to the code or specification. This is essential to
support incremental software development, but not sufficient. To realize version-
ing and team-based development of verified software, it is necessary to general-
ize code repositories into proof repositories [30]: a commit computes not merely
changes, but a minimal set of new proof obligations that arise as a consequence
of what was changed.

Another issue is that most verification attempts fail at first. It requires often
many tries to render a complex verification target provable [39]. It is crucial
to provide feedback to the user about the possible cause behind a failed proof.
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Systems, such as KeY [3], can provide symbolic counter examples, and SED [56]
computes symbolic backward slices from failure nodes in symbolic evaluation
trees. The system StaDy [109] goes beyond this and uses dynamic verification
to analyze failed proofs. The StaRVOOTrS framework [34] generates optimized
runtime assertion monitors for the unprovable parts of a specification.

In the context of commercial software production one can question whether
functional verification is a worthwhile and realistic goal in the first place.
Arguably, for safety- and security-critical code, as well as for software libraries
used by millions, it is, but probably not for any kind of software. However, this
does not mean that formal verification technology is restricted to the niches men-
tioned above, because there are many relevant formal verification scenarios, in
addition to functional verification, notably: bug finding (discussed in Sect. 4) [15],
information flow [44], and symbolic fault injection [83].

Challenges. The nature of software development is mostly incremental and evo-
lutionary, and this must be accounted for by formal verification technology when
used in commercial production. This is not the case at the moment.

Perhaps the biggest obstacle in functional verification is the lack of detailed
enough specification annotations in the form of contracts and loop invariants.
Without contracts, in particular for library methods, deductive verification does
not scale. For some verification scenarios less precise annotations will do, but in
general this is a huge bottleneck [13].

1.8 Implement proof repositories that support incremental and evolutionary ver-
ification and integrate them with verification tools.

1.9 Integrate automated specification generation techniques into the verification
process.

5.3 Coverage

To make sure that deductive verification tools are practically usable, they need
to support verification of a substantial part of the programming language. This
means that for every construct of the programming language, verification tech-
niques need to be developed (or at least, clear boundaries have to be provided,
detailing what is covered, and what is not). Moreover, once the verification tech-
niques are there, all variations of the programming language construct need to
have tool support. Developing suitable verification techniques is typically a sci-
entific challenge, but ensuring that a tool supports all variations of a language
construct is mainly an engineering issue. If a language construct is not supported,
preferably the tool design is such that it gracefully ignores the non-understood
construct, and warns the user about this.

Achievements. State-of-the-art tools for deductive verification currently cover
a very large part of the sequential fragment of industrially-used languages. To
mention a few: OpenJML [37], KeY [3] and KIV [45] for Java, Frama-C [80],
VeriFast [72] and Infer [32] for C, AutoProof [120] for Eiffel, and SPARK [60]
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for Ada. These tools are mature enough to verify non-trivial software applica-
tions, and to identify real bugs in them, as discussed in Sect.4. However, for
more advanced language features such as reflection, and recent features such as
lambdas in Java, verification technology still has to be developed (and thus, is
currently not supported by these tools).

To provide tool support for a realistic programming language entails verifica-
tion techniques such as reasoning about integer types (including overflow) [16],
reference types, and exceptions [70]. Some of these, for example, support to rea-
son about exceptions, became mainstream and are built into all modern deduc-
tive verification tools. In contrast, precise reasoning about integers, including
overflow, often clutters up specifications and renders verification much harder.
Therefore, many deductive verification tools abstract away from it, or provide it
as an optional feature.

There is active research to investigate how to extend support for deductive
verification to concurrent software. This opens up a whole new range of prob-
lems, because one has to consider all possible interleavings of the different pro-
gram threads. Pen-and-paper verification techniques existed already for a long
time [75,107], however, tool support for them remained a challenge.

The advent of concurrent separation logic [28,106] gave an important boost,
as it enabled modular verification of individual threads in a (relatively) sim-
ple way. This has given rise to a plethora of new program logics to reason
about both coarse-grained and fine-grained concurrency, see [29] for an overview.
Also variations of separation logic for relaxed memory models have been pro-
posed [121,124]. However, most of these logics still lack tool support.

In parallel to the theoretical developments, the basic ideas of concurrent sep-
aration logic, extended with permissions [25,26] started to find their way into
deductive verification tools. Existing tools such as VeriFast [72], VerCors [9,20]
and VCC [36] support verification of data race-freedom for different programming
languages, using both re-entrant locks [6] and atomic operations as synchronisa-
tion primitives [7,71]. Current investigations focus on the verification of functional
properties of concurrent software by means of abstraction [23]. In addition to Java
and C, the VerCors tool set also supports reasoning about OpenCL kernels, which
is using a different concurrency paradigm [22]. Also the KeY verifier provides some
support to reason interactively about data race freedom of concurrent applica-
tions [103]. This approach can be used in addition to VeriFast and VerCors, and
is in particular suitable to trace the source of a failing verification.

There also exist alternative verification techniques for concurrent software
that use a restricted setup to achieve their goals. In particular, Cave [123] auto-
matically proves memory safety and linearizability using an automated inference
algorithm for RGSep, a combination of rely-guarantee reasoning and separa-
tion logic [125]. Just as the Infer tool mentioned above, it achieves automa-
tion by restricting the class of properties that can be verified. Another alter-
native line of work is to investigate more restricted concurrency models that
allow near-sequential verification techniques. This is the approach advocated
in ABS [74] which supports cooperative multitasking with explicit scheduling
points [43].
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Challenges. The main challenges with respect to coverage go into two different
directions: one is to cover more aspects of the programming languages already
supported; the other is to cover new classes of programming languages.

C.1

C.2

C.3

C4

C.5

6

6.1

Precise verification of floating point numbers is essential for many algo-
rithms, in particular in domains such as avionics. There is preliminary
work [108], but a full-fledged implementation of floating point numbers in
deductive verification systems is not yet available. A promising recent break-
through is an automatable formal semantics for floating points numbers [27]
which found its way also into the SMT-LIB and the SMT competition.
Tool support for verification of concurrent software is still in its infancy.
We need further developments in two directions: (1) automated support of
functional properties of fine-grained concurrency, which does not require an
overwhelming amount of complex annotations, and can be used by non-
experts in formal verification, and (2) verification techniques for relaxed
memory models that resemble realistic hardware-supported concurrent exe-
cution models.

Reasoning techniques for programs that use reflection are necessary for
application scenarios such as the analysis of obfuscated malware, or of
dynamic software updates.

The rapid evolution of industrial programming languages (e.g., substantial
new features are added to Java every 2-3 years) is a challenge for tools that
are maintained with the limited manpower of academic research groups.
Translation to intermediate languages is one way out, but makes it harder
to provide feedback at the source level. Ulbrich [122] suggested a systematic
framework for combining deductive verification at the intermediate language
level with user interaction at the source level, but it has yet to be integrated
into a major tool.

Deductive verification technology is not merely applicable to software, but
also to cyber-physical systems, as they exhibit similar properties [52]. Com-
putational engineers are mainly working with partial differential equations
to describe their systems, and they implement these in C, MATLAB, etc.
There are some results and tools for deductive verification of hybrid sys-
tems [49]. Hybrid systems have been traditionally modeled with differen-
tial equations (see the article Multi-Mode DAE Models: Challenges, Theory
and Implementation in this issue) and automata-based techniques (article
Continuous-time Models for System Design and Analysis in this issue). It is
an open problem to find out how these different methodological approaches
relate to and could benefit from each other.

Achievements and Challenges: Non-technical

Usability

Research in formal verification is method- and tool-driven. As a consequence, the
effectiveness of a novel method or a new tool is usually simply claimed without
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justification or, at best, underpinned by citing execution statistics. The latter
are often micro benchmarks carried out on small language fragments. The best
case are industrial case studies which may or may not be representative and in
nearly all publications these are performed by the researchers and tool builders
themselves, not by the intended users.

To convince industrial stakeholders of the usefulness of a formal verification
approach, it is not only necessary to demonstrate that it can fit into the existing
development environment (see Sect.5.2), but also to argue that one can solve
tasks more effectively or faster than with a conventional solution. This is only
possible with the help of experimental user and usability studies.

Achievements. There are very few usability studies around formal verification
tools. We know of an evaluation of KeY and Isabelle based on focus groups [14],
while the papers [21,57,69] contain user studies or analyses on APT usage, prover
interfaces, and proof critics, respectively. There are a few papers that attempt to
construct user models or elicit user expectations, but [57] seems to be the only
experimental user study so far that investigated the impact of design decisions
taken in a verification system on user performance.

Challenges. To guide research about formal verification so that it has impact
on industrial practice, it is essential to back up claims on increased effectiveness
or productivity with controlled user experiments. This has been proven to be
beneficial in the fields of Software Engineering and Computer Security.

U.1 Claims about increased effectiveness or productivity attributed to new meth-
ods or tools should be backed up by experimental user studies.

U.2 Establish the paper category Experimental User Study as an acceptable kind
of submission in formal verification conferences and journals.

6.2 Funding

To support formal verification of industrial languages in real applications requires
a sustained effort over many years. As detailed in the previous sections, to spec-
ify and to reason about programs means that the semantics of the language they
are written in must be fully and deeply understood, solutions for inference and
its automation must be found, suitable specification abstractions must be dis-
covered. To formulate appropriate theoretical and methodological underpinnings
took decades and the process is still not complete for complex aspects such as
floating point types and weak memory models (Sect. 5.3).

The road from the first axiomatic descriptions of program logics (Sect.3)
to the verification of software written in major programming language that is
actually in use was long, and we are by far not at its end. It takes a long view,
much patience, and careful documentation to avoid “re-invention of the wheel”
or even regression. Tool building is particularly expensive and can take decades.
To protect these large investments and to ensure measurable progress, long-term
projects turned out to be most suitable.
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Achievements. There are several long-term projects in deductive software verifi-
cation that have sufficiently matured to enable industrial applicability (see also
Sect. 4). We mention ACL27, Boogie®, KeY?, KIV!?, OpenJML!!, SparkPro!?,
and Why/Krakatoa'?.

Challenges. Some of the long-term projects mentioned above are supported by
research labs with strong industrial ties (Altran, INRIA, MSR). Unfortunately,
neither the trend to embedded industrial research nor the current climate of
academic funding are very well suited for this kind of enterprise. The challenge
for ambitious projects, such as DeepSpec'?, is their continuation after the initial
funding runs out. It is worrying that all existing long-term academic projects
on deductive software verification were started before 2000. Further detrimental
factors to long-time engineering-heavy projects are the publication requirements
for tenured positions in Computer Science as well as the unrealistic expecta-
tions on short-term impact demanded from many funding agencies. Successful
long-term research is not “disruptive” in its nature, but slowly and systemati-
cally builds on previous results. On the other hand, usability aspects of formal
verification are hardly ever evaluated.

F.1 The academic reward system should give incentives for practical achieve-
ments and for long-term success (see [4] for some concrete suggestions how
this could be achieved).

F.2 Large parts of Computer Science should be classified and treated as an Engi-
neering or Experimental Science with an according funding model. Specifi-
cally, there needs to be funding for auxiliary personnel (professional software
developers) and for software maintenance: complex software systems should
be viewed like expensive equipment, such as particle colliders. The base level
of funding should be that of an engineering or experimental science, not a
mathematical science.

F.3 Grant proposals should foresee and include funding to carry out systematic
experimental studies, also involving users. For example, money to reward
the participants of user studies must be allocated.

6.3 Industrial and Societal Context

The best prospects for industrial take-up of deductive verification technology is
in application areas that are characterized by high demands on software quality.

" http://www.cs.utexas.edu/~moore/acl2/.
8 https://github.com/boogie-org/boogie.
9 http://www.key-project.org/.
9 http://www.isse.uni-augsburg.de/en/software/kiv/.
1 http://www.openjml.org)/.
2 http:/ /www.adacore.com/sparkpro/.
'3 http://krakatoa.lri.fr/.
1 https://deepspec.org/.
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This is clearly the case for safety- and security-critical domains that are regulated
by formal standards overseen by certification authorities.

In many other application domains, however, timely delivery or new fea-
tures are considered to be more important than quality. A contributing factor
are certainly the relatively weak legal regulations about software liability. With
the ongoing global trend in digitalization, however, we might experience a surge
in software that can be deemed as safety- or security-critical, in particular, in
the embedded market (e.g., self-driving cars [2], IoT). On the other hand, that
market is partially characterized by a strong vendor lock-in in the form of mod-
eling tools such as MATLAB/Simulink, which have no formal foundations. An
interesting side effect of digitalization is the arrival of companies on the software
market that so far had no major stake in software. Here is an opportunity for
formal methods and formal verification, in particular, since software verification
tools are as well applicable to cyber-physical systems [52, 73] (see Challenge C.5).

Formal specification and deductive verification methods are expressed rel-
ative to a target programming language. New features of languages such as
C/CH++ or Java are not introduced with an eye on verifiability, making formal
verification and coverage unnecessarily difficult.

Achievements. The latest version of the DO-178C standard [115], which is the
basis for certification for avionics products, contains the Formal Methods Supple-
ment DO-333 that permits formal methods to complement testing. This makes
it, in principle, possible to argue that formal verification can speed up or decrease
the cost of certification.

The development of the concurrent modeling language ABS [74] demon-
strated that it is possible to design a complex programming language with many
advanced features that has an associated verification tool box with high cov-
erage [127], provided that analyzability and verifiability are taken into account
during language design.

Challenges. In order to ensure substantial impact of deductive software veri-
fication in society and industry, a coordinated effort is necessary to influence
standardization and certification activities.

ISC.1 Researchers from the formal verification area should become involved in
language standardization. In general, research in the fields of program-
ming languages and formal verification must be better coordinated.

ISC.2 Researchers from the formal verification area should become actively
involved in the standardization efforts of certification authorities.

ISC.3 Specific quality assurance measures for verification tools such as test cov-
erage, incremental testing, external validation, etc. should be developed
and applied. If deductive software verification should become usable in
certification activities, the software quality of the verification tools them-
selves is a critical issue.
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7 Summary

We described the progress made in the area of deductive software verification.
Starting as a pen-and-paper activity in the late 1960s, deductive verification
nowadays is a mature technique and it can substantially increase the reliability
of software in actual production. Advanced tool support is available to reason
about the behaviour of complex programs and library code, written in main-
stream programming languages. Industrial applicability of deductive verification
is witnessed by several success stories.

However, there are many challenges that need to be addressed to make the
transfer from an academic technique to a technique that is a routine part of
commercial software development processes. We divided these challenges into
two categories: technical and non-technical. Technical challenges relate to what
properties can be verified, what programs can we reason about, how we can make
verification largely automatic, and how we provide feedback when verification
fails. Non-technical challenges relate to how we can fund all necessary engineering
efforts, how we can ensure that tool developers get sufficient scientific credits,
and how to convince industrial management that the extra effort needed for
verification will actually be beneficial. We hope that these challenges can serve
as an incentive for future research directions in deductive software verification.
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