
Practical Mutation Testing for Smart
Contracts

Joran J. Honig1,3(B) , Maarten H. Everts1,2 , and Marieke Huisman1

1 University of Twente, Enschede, The Netherlands
{maarten.everts,m.huisman}@utwente.nl

2 TNO, The Hague, The Netherlands
3 ConsenSys, New York, USA
joran.honig@consensys.net

Abstract. Solidity smart contracts operate in a hostile environment,
which introduces the need for the adequate application of testing tech-
niques to ensure mitigation of the risk of a security incident. Mutation
testing is one such technique. It allows for the evaluation of the efficiency
of a test suite in detecting faults in a program, allowing developers to
both assess and improve the quality of their test suites. In this paper, we
propose a mutation testing framework and implement a prototype imple-
mentation called Vertigo that targets Solidity contracts for the Ethereum
blockchain. We also show that mutation testing can be used to assess the
test suites of real-world projects.

Keywords: Mutation testing · Smart contract · Solidity

1 Introduction

Recent developments in distributed computing have resulted in platforms that
support the execution of so-called “smart contracts”. In this paper, we will look
specifically at smart contracts written in the Solidity programming language
[12], for the Ethereum blockchain. These smart contracts are programs that
are executed by the nodes in the Ethereum network and can deal with votes,
money transfers and even digital collectibles, such as Cryptokitties [3]. Because
smart contracts exist on the Ethereum blockchain, they are openly readable and
executable by any participant in the network. Furthermore, once a contract is
uploaded it cannot be changed anymore, it is immutable. These properties force
smart-contract developers to be very conscientious about the correctness and
security of their code.

To reason about the correctness and security of smart contracts, developers
employ different testing techniques. One of these techniques is unit testing, a
commonly accepted practice in traditional software development. It has clear
benefits and allows teams around the world to develop and release their software
with confidence.

c© Springer Nature Switzerland AG 2019
C. Pérez-Solà et al. (Eds.): DPM 2019/CBT 2019, LNCS 11737, pp. 289–303, 2019.
https://doi.org/10.1007/978-3-030-31500-9_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-31500-9_19&domain=pdf
http://orcid.org/0000-0003-0635-964X
http://orcid.org/0000-0002-5302-8985
http://orcid.org/0000-0003-4467-072X
https://doi.org/10.1007/978-3-030-31500-9_19

290 J. J. Honig et al.

However, it is often very difficult to provide adequate guarantees over the
correctness and security of a system using unit tests. As a result, critical vul-
nerabilities have frequently been discovered in live contracts. Notable security
incidents include the hack of “The DAO” [14], where an attacker was able to
exploit a re-entrancy vulnerability, allowing the attacker to withdraw 60 million
USD worth of Ether, the base currency of Ethereum. Another example is the
Parity wallet bug [8], where a user accidentally self-destructed code on which
many other contracts were dependent, freezing assets worth 280 million USD at
the time.

One factor that makes the application of unit testing difficult to do well is
accurately described by Dijkstra, who once wrote, “Program testing can be used
to show the presence of bugs, but never to show their absence!” [19]. This paints
a grim picture, as it indicates that even if there are a multitude of tests, then
there is still no guarantee that there are no bugs in the program. However, it
also emphasises what unit tests can be good at, namely showing the presence of
bugs. One needs to be able to gauge the effectiveness of a test suite at detecting
bugs, to effectively apply unit testing to smart contracts. A good metric can
give insight into both the guarantees given by a test suite and possible areas of
improvement. One metric that is frequently used is code coverage, which gives
the developer a concrete idea of which parts of the code are covered. However,
code coverage is flawed and does not give a direct indication of the test suite’s
effectiveness for detecting bugs. An example of a flawed test suite, which scores
well with this metric is one without assertion statements, which could cover all
the lines of code, but would not give any guarantees whatsoever.

Mutation testing [23] is a technique which aims to mitigate this problem.
Instead of using the amount of code covered as a heuristic for the quality of
the test suite, it measures the suite’s effectiveness at detecting faults in the
source code directly. It does this by procedurally introducing small mutations
in the source code, for example, a change from “>” to “<=”, and executing
the test suite for each such mutation. After having tested all the mutations,
the ratio between the detected mutations (also called “killed” mutations), and
the undetected mutations (also called “surviving mutations”) can be used as a
metric to evaluate the quality of the test suite.

This metric can provide valuable input in multiple stages of the software
development lifecycle. A threshold value for the mutation score can be used
to set a quality gate before a software release. Additionally, the information on
mutants that have survived (i.e. have not been killed) can be used to increase the
quality of the test suite, as these mutants identify specific edge cases which are
not yet covered by the current test suite. An overview of the surviving mutations
is also useful for a security review, as these mutants indicate locations where the
program behaviour might not match the expectation of the developer.

This paper introduces Vertigo, a mutation testing tool written for Truffle
and Solidity. We will describe the design choices, limitations, and further work
for this implementation. Additionally we provide and discuss the application of
mutation testing in the smart contract development lifecycle.

Practical Mutation Testing for Smart Contracts 291

The two main contributions of this paper are:

– We provide a detailed design and implementation of a mutation testing frame-
work agnostic of its test environment. The implementation is designed to be
extensible to facilitate the implementation of future research.

– We propose new mutation operators that can be applied to Solidity.

2 Background

This section provides an overview of the current state-of-the-art for mutation
testing and Ethereum smart contracts.

2.1 Mutation Testing

Input Original Program PInput Original Program P Input Test Set TInput Test Set T Run T on PRun T on P

P Correct?FalseFix PFix P

True

Create Mutants P’Create Mutants P’

Run T on Each Live P`Run T on Each Live P`

All P’ KilledDone True Analyze and Mark
Equivalent Mutants
Analyze and Mark

Equivalent Mutants

False

Extend TExtend T

Fig. 1. Mutation analysis process adopted from [26]

Jia [23] provides an apt description of mutation testing: “Mutation testing
is a fault-based testing technique which provides a testing criterion called the
“mutation adequacy score”. The mutation adequacy score can be used to mea-
sure the effectiveness of a test set in terms of its ability to detect faults”.

292 J. J. Honig et al.

The Process. The standard mutation testing process is described in Fig. 1.
Initially, a set of mutants p′ is generated based on a set of mutation operators.
Mutation operators are transformation rules that apply a syntactic operation to
the original program p to generate the mutated program p′. As mentioned in
the previous section, an example of such a mutation rule is to substitute “>” by
“<=”.

The original program is then checked for correctness. The correctness of p
under the test suite is required, as it is not possible to distinguish a program p
from a mutated program p′ using a test suite that classifies p as faulty.

If the original program is correct, then the test suite is applied to the different
mutants. Executing the test suite on one particular mutant can lead to different
results: Alive, Killed, Timed Out and Error. The following are rules used to
determine the state of a mutation:

– All tests succeeded → Alive
– At least one of the test fails and the mutant is discovered → Killed
– Execution of the test suite does not terminate → Timed Out
– An error is encountered in the execution of the test suite → Error

The last two classes, Error and Timed Out, are required because mutation
operators can generate mutated code that does not compile or that includes
infinite loops. These cases are not considered for the mutation score as they do
not show the fault detection efficiency of the test suite.

In calculating the mutation score, it is also important to consider that a
mutation operator can generate a mutant that is syntactically different, and
semantically equivalent to the original program. These mutants do not introduce
a fault in the program, and therefore, should not be considered in the mutation
score. Formally, a mutant of this kind is referred to as an “Equivalent” mutation.
Classification of mutants as “Equivalent” can require manual inspection of the
surviving mutants.

Applying the before mentioned rules to the results of each test run, allows
us to calculate the mutation score, which is the ratio between the total number
of detected faults and the total number of non-equivalent seeded faults that did
not end in the timed out or error state. A high score implies that the test suite
is effective at detecting faults, a low one suggests that adaptions should be made
to the test suite.

Coupling Effect. The Coupling Effect was proposed by DeMillo et al. [16]. It
states that “Test data that distinguishes all programs differing from a correct
one by only simple errors is so sensitive that it also implicitly distinguishes more
complex errors”. This effect allows us to limit our mutation operators to only
consider simple syntactic changes, as the tests killing simple errors would also
kill more complex errors. Extending the analysis to include mutation operators
that introduce complex changes will only increase the number of mutants to test
and should not affect the mutation score. Thus, one can assume that test cases
unable to detect simple mutations, also are more likely to permit more complex

Practical Mutation Testing for Smart Contracts 293

errors to remain undiscovered. This insight adds value to mutation testing as a
technique for bug finding, rather than just for code and test quality.

2.2 Ethereum Smart Contracts

Ethereum. Similar to the well-known blockchain protocol Bitcoin, Ethereum
is a blockchain that can keep track of transactions and balances.

A key aspect of Ethereum is its ability to have contract accounts, in addi-
tion to regular user accounts. These contract accounts have code associated with
them, and every time a transaction is sent to such an account, the nodes in the
Ethereum network evaluate this code. These contracts allow the implementa-
tion of co-owned wallets or the governance of an organisation. The interactions
with these contracts are, because of the decentralised and open nature of the
Ethereum network, less prone to problems like corruption and secrecy.

Smart contracts have a few quirks and properties which make them both
useful and challenging to secure. The first property is that all smart contracts
are uploaded to a public blockchain, which means that the code, is immediately
available to all adversaries, even if it is only bytecode.

The second aspect is that Ethereum smart contracts that are in use can hold
tremendous amounts of value, and even small bugs allow attackers to freeze1 or
steal the currency stored in the contract.

This has led to the implementation of several security analysis tools, which
automatically check for the presence of known weaknesses and vulnerability pat-
terns. These techniques aim to improve the security of the software by looking
for patterns that are known to be vulnerable.

Truffle. Truffle is a framework that aims to provide a development environment
for Solidity developers. For the purpose of this paper, its most relevant aspect
is that it allows developers to write and execute unit tests. These tests can be
written in Javascript using the Mocha framework, or in pure Solidity. Truffle then
uses another tool called Ganache, a Javascript Ethereum node which supports
additional JSON RPC calls for the purposes of testing, to execute these unit
tests.

3 Design

To evaluate the feasibility of mutation testing in the context of Ethereum-based
smart contracts, we created Vertigo, a mutation testing framework for smart
contracts. Vertigo is available on Github2. Vertigo will be made available as
open source.

This section describes the design and implementation of Vertigo. Figure 2
shows the structure and interaction of the base components in Vertigo. The
three main sections shown in Fig. 2 are discussed in order.
1 With freeze, we mean the act of blocking users from accessing the currency stored

in the contract.
2 https://github.com/JoranHonig/vertigo.

https://github.com/JoranHonig/vertigo

294 J. J. Honig et al.

VertigoVertigo

M
ut

at
io

n
An

al
ys

is
M

ut
at

io
n

An
al

ys
is

U
se

r
In

te
rf

ac
e

U
se

r
In

te
rf

ac
e

Pr
og

ra
m

In

te
rf

ac
e

Pr
og

ra
m

In

te
rf

ac
e

CLI Report

Mutation
Campaign1

Mutation
Generator

2

3

Mutation
Runner

4

5

Truffle
cli

Fig. 2. Structure diagram for components in Vertigo

3.1 User Interface

Through the command line interface (CLI) users are able to initialise mutation
testing campaigns. It is possible to configure the Ethereum networks that will
be used for the test runs, through the use of command line options. Using a
command line option, Vertigo can also be instructed to apply the mutation
sampling technique, which will be elaborated in Sect. 3.2.

By default, Vertigo will report all mutants that have survived a mutation
campaign. Optionally, a full report with the other mutations, can be written to
a file.

3.2 Mutation Analysis

The mutation analysis compartment is where most of the work happens, it is
comprised of three interconnected components. These components implement
everything from generating mutants to directing the testing process. The edges
visible in Fig. 2 are numbered according to the data flow through the mutation
analysis components.

Practical Mutation Testing for Smart Contracts 295

Table 1. Increments mirror substitution matrix

Original Result

+= =+

−= =−

Table 2. Mutation operators

Mutation operator Description

Condition Boundary Replaces an conditional operation with its inclusive or
exclusive counterpart

Condition Negation Replaces a conditional operation with its inverse

Math Inversion Replaces a math operator with its inverse

Increments Inversion Replaces an increments statement with its inverse

(a) Mutation operators inherited from PIT

Mutation operator Description

Increments Mirror Replaces an increments statement with it’s mirror

Modifier Removal Removes a modifier application

(b) Vertigo mutation operators

Mutation Campaign. The mutation campaign is the central component in
Vertigo that directs and manages the mutation testing of a project. What follows
is an overview of the steps taken by the mutation campaign while performing
mutation testing.

The very first step is the application of the test suite on the original program.
If the given test suite fails on the original contracts, then further analysis is
halted, as it will be impossible to determine if the test suite distinguishes a
mutated program from the non-mutated program.

During the next step in the mutation testing process, the mutation campaign
will request the Mutation Generator component to generate a set of mutations
for the project.

The Mutation Campaign implements functionality that allows it to apply cus-
tom filters on the set of generated mutations. In Vertigo we implement one initial
filter that selects a random sample from the available mutations for further analy-
sis. This is an implementation of the optimisation technique “Mutant Sampling”
[23], which is based on the assumption that the mutation score of a random sam-
ple of the mutants will reflect that of the entire set of mutations. Wong [29] showed
that a sample of 10% of the entire mutation set is only 16% less effective than an
analysis of all the mutants, with respect to the mutation score.

To facilitate the implementation of mutant sampling, we have implemented
an extensible interface for filters. This same interface can also be used to imple-
ment other filtering techniques, such as mutant clustering [22] or equivalent
mutation detection [23].

296 J. J. Honig et al.

The generated and filtered mutations are passed to the Mutation Runner,
which applies the test suite on the mutated contracts storing the result of each
test run.

Finally, the mutation campaign will return the results to the user interface,
where these results are formatted and displayed to the user.

Mutation Generator. The Mutation Generator component is responsible for
the generation of mutants, which are generated through the application of so-
called mutation operators. These mutation operators [23] are transformation
rules that can be used to generate mutant programs p′ from a program p. An
example mutation operation could specify the replacement of “==” with “!=”.
The mutation operators implemented in Vertigo have been both specifically
designed for the context of smart contracts (Table 2b) and based on existing
work (Table 2a).

PIT [9], a state of the art mutation testing tool that works on Java, has a
well-documented set of mutation operators. While it implements a wide range
of mutation operators, not all of them are enabled by default. They try to limit
the developer’s exposure to equivalent mutations, by only enabling the mutation
operators which generate lower amounts of equivalent mutations. Vertigo lever-
ages a few selected mutation operators from the PIT default mutation operators;
these are visible in Table 2a.

Additionally, we propose and implement the addition of a set of new mutation
operators, relevant to the Solidity programming language and smart contracts.
They are designed to simulate bugs and security issues applicable to the Solidity
programming language. These mutation operators can be found in Table 2b and
will be discussed in the following paragraphs.

Increments Mirror. A recent development in Smart Contract security has been
the standardisation and formulation of a weakness registry for smart contracts
and Solidity [11]. One issue illustrated in this registry [13] describes a typo-
graphical error introduced when “=+” is written instead of “+=”. In this case
the statement is interpreted as an assignment with a unary operator following
it, whereas the developer intends to write an incrementation operation. This
Mutation Operation tries to introduce the same faults in the target program,
substituting incrementations according to Table 1

Modifier Removal. Solidity allows the use of modifiers. These are functions that
can be used to wrap the functionality of other functions, similar to decorators in
python. One pattern used in smart contract development is that of ownership. A
contract that implements this functionality has a variable that stores the address
of the account that is currently the owner of the contract, and functionality to
transfer ownership. This contract will also implement a modifier which is called
onlyOwner; this modifier will change every function that invokes it to revert if
the caller is not the owner of the contract. The ownership paradigm, allows smart
contract developers to protect administrative functions in a smart contract.

Practical Mutation Testing for Smart Contracts 297

Forgetting to add a modifier is a simple mistake that a developer could eas-
ily make. Because of this, and the serious effect it can have on the security
of a contract we include a mutation operator which simulates the omission of
modifiers.

Mutation Runner. The Mutation Runner component implements the logic
that allows Vertigo to apply mutations to the test project and then apply these
tests on the project. There are two main aspects of this component that are
of interest: Its ability to perform multiple test executions in parallel, and the
mutation application and autonomous configuration.

The mutation application process is described by the following steps:

1. Vertigo creates a temporary directory and copies the files from the initial
project to it.

2. The mutation is applied to the source code
3. The Truffle configuration is adapted allowing Vertigo to interpret test results
4. The Truffle test command is invoked directed at the mutated project

Because Vertigo uses temporary directories, the original project directory will
never need to be written to. The use of temporary directories allows parallel
application of multiple mutations; additionally, there is no risk of a mutation
persisting if Vertigo fails unexpectedly.

Parallelisation. The user is able to indicate the networks that will be used for
the mutation testing process. These networks provide a virtual environment used
for the execution of the tests. Parallel testing is enabled if Vertigo is provided
with multiple networks, in which case each instance of a runner is dynamically
assigned a free network for each test run.

3.3 Program Interface

Vertigo already implements an interface with Truffle and its CLI right now, but
this is extensible and allows integration of different platforms with a similar
interface.

The first element exposed by the Truffle interface is the analysis of source
code and the generation of an abstract syntax tree (AST). The information in
the AST is used by the Mutation Generator to find possible mutations.

The second element is the application of the test suite on a project, which
allows the Mutation Runner component to check if the test suite distinguishes
the original program from a mutated one.

Ganache. Truffle uses Ganache to model an Ethereum blockchain. Ganache
extends the traditional Ethereum interface by adding some specific JSON RPC
calls that allow Truffle to execute each test in a clean environment. During the
development of the Vertigo framework, we found that Truffle, through its sup-
port for the Mocha framework, also supports the writing of tests that do not use
this clean environment. This results in a situation where although a program

298 J. J. Honig et al.

Table 3. Mutation test results

Lived Error Timeout Killed Equivalent Total Mutation score Code coverage Duration

Aragon OS 0 27 1 306 0 334 100% 99% 129min

Openzeppelin-solidity 30 55 3 303 5 391 92% 100% 260min

might be correct under a test set T , it might not be under consecutive runs of
the test set T . As a solution, we propose that developers refrain from using this
functionality. Alternatively, if the only side effect caused by the tests is an alter-
native distribution of resources over the test accounts initialised by the Truffle
framework, then the user can decide to initialise Ganache with the option -e to
increase the default balance of the test accounts. This change will increase the
number of times that T can successfully be applied.

4 Evaluation

In this section we apply mutation analysis on two popular smart contract
projects. Moreover, we provide a discussion on the analysis results provided
by Vertigo.

4.1 Experiments

We analysed two popular smart contract projects, both of which boast impressive
code coverage results (see Table 3). Since both projects are very well maintained
and extensively tested, any analysis results can provide insight into the applica-
bility of mutation testing to real-world smart contract projects.

The first project we analyse is AragonOS, which is described as “a smart
contract framework for building decentralised organisations, dapps, and proto-
cols” [1]. The second is openzeppelin-solidity [7], a library of contracts for secure
contract development.

The results of these test runs can be found in Table 3. The mutation score is
calculated using the following formula:

score =
(killed)

(lived − equivalent) + killed
× 100% (1)

The experiments were executed on a Ubuntu 18.04 machine with the following
available resources: Threadripper 1950X, 32 GB RAM and a 1 TB NVMe SSD.
The mutation testing was performed using 16 parallel testing networks.

4.2 Discussion

The results show that AragonOS outperforms openzeppelin-solidity on mutation
score even though openzeppelin-solidity would seem to perform better when code
coverage is used as a metric. If the developers of either project decide that they
want to improve the quality of their test suite, then code coverage will not be
able to provide much insight, as both projects have a coverage of 99 or 100%.

Practical Mutation Testing for Smart Contracts 299

However, Table 3 shows that openzeppelin does not have a perfect mutation
score; thus, the application of mutation testing would allow the developers to
improve their test suite. Besides the mutation score, the developers can also use
the surviving mutations to identify the portion of code that requires improved
tests.

Additionally, the 30 surviving mutations for openzeppelin-solidity demon-
strated yet uncovered edge cases in the behaviour of the program. An example
of such an edge case is a function which uses a Solidity modifier to implement
access control. The survival of a mutant that removes such a modifier, indicates
that the test suite might not check whether an access control policy is enforced
for this function. Without an automated technique like mutation testing, discov-
ering these edge cases would have been strenuous and time-consuming.

While the results show that mutation testing can be used to improve
openzeppelin-solidity, the analysis was unable to find a mutant which would not
be caught by the test suite of Aragon OS. This result indicates that the devel-
opers of this project were able to implement a high-quality test suite without
the help of mutation testing.

During the inspection of the analysis subjects, we realised that the smart
contract projects sparingly made use of plain arithmetic operations. Rather,
the projects employ the use of safe math libraries. A safe math library is a
library that implements simple arithmetic operations, like addition and subtrac-
tion. These libraries extend normal arithmetic behaviour with safety checks. For
example, the add functions will check if the result of an addition is overflowed
and raise an exception that is the case. As a result, most of the business logic
will use functions like add() and subtract(), instead of the binary operators +
and −. This can have an impact on some of the mutation operators which target
mathematical operators, as the usage of plain arithmetic operators will be less
frequent. Introduction of mutation operators that extend the behaviour of the
arithmetic mutation operators to the safe math functions is a topic for future
work (see Sect. 6.1).

Finally, the results in Table 3 show that a remarkably low number of equiva-
lent mutants have been generated. This shows the effectiveness of the mutation
operators taken from PIT [9] (visible in Table 2a). Additionally, there were no
equivalent mutants for the mutation operators in Table 2b. The low amount
of equivalent mutants being generated by the mutation operators in Vertigo
is beneficial for the application of mutation testing, as the manual process of
determining equivalency for smart contracts can be time-consuming.

5 Related Work

Securing smart contracts is a difficult task, for which multiple approaches have
been proposed and implemented. These tools apply techniques such as symbolic
execution (Mythril [6], Oyente [24], Maian [25], Manticore [5]), or perform data
and control flow analysis (Securify [27], Slither [10], Vandal [15]). A common
aspect of these tools is that they leverage common patterns that describe vul-
nerabilities, to report on the existence of vulnerabilities or bugs. This makes

300 J. J. Honig et al.

them complementary to the application of unit testing and mutation testing, as
they target the identification of common bugs, whereas unit testing allows for
the testing of business logic.

Besides fully automated approaches, there are also verification approaches
where a user is asked to define invariants and properties which are then validated
(K-framework [21] and Verisol [28]). Such approaches are complementary to
mutation testing, as mutation testing can also be applied to the evaluation of
specifications [17].

There have also been some developments in the application of mutation test-
ing to smart contracts. Eth-mutants [4] is a project that implements a proof
of concept mutation analyzer for Solidity. However, key optimisations like par-
allelisation are not present in this project, such optimisations are necessary to
make mutation testing practical for real-world projects. Additionally, Vertigo is
designed to be extensible with various proposed optimisations [23] in mind.

Another project is Universalmutator [20], which has recently been extended
with mutation rules for Solidity. Universalmutator is a project aimed at rapid
development of mutations for different programming languages, using regular
expression based substitution rules. This approach is focused on the generation of
mutants, whereas Vertigo aims to implement the entire mutation testing process.

6 Conclusion

In this paper, we studied the design of a mutation testing framework and the
application of mutation testing to the domain of smart contracts. We showed
that mutation testing allows developers to both gauge the effectiveness of their
test suite and improve the test suite in order to increase this effectiveness.
Additionally we provide analysis results for two major smart contract projects,
openzeppelin-solidity [7] and AragonOS [1]. For this paper, we created the tool
Vertigo, an implementation of the proposed designs.

6.1 Future Work

The implementation of Vertigo relies upon functionality exposed by Truffle
through its command line interface. This interface does not yet support run-
ning individual tests and code coverage reporting. These features can provide
essential information for optimisations that allow Vertigo to “do less” [23].

Specifically, the addition of these features will allow for the implementation
of the following two optimisations, which are also available in PIT [9]:

– Instead of running the entire test suite for each mutant, Vertigo should deter-
mine the specific tests that cover the line on which the mutant introduces
a syntactic change. The results of tests that do not cover this line should
not depend on the change, and therefore these tests provide little value when
executed on the mutant.

Practical Mutation Testing for Smart Contracts 301

– Instead of running the tests in the test suite in a random or pre-set order,
Vertigo should optimise the order, so fast tests are executed earlier. Once a
test fails, the execution of the other test can be omitted since they do not
provide additional value over the previously executed test.

For this paper, we selected a limited set of mutation operators to provide a
prototype that is applicable to real-world projects. A topic for further research
is to evaluate existing mutation operators, and design new mutation operators
specifically for the analysis of smart contracts. An evaluation of mutants with
respect to their representativeness of the mutation score allows for the applica-
tion of mutant selection as an optimisation technique.

Vertigo now supports mutation of Solidity smart contracts, and leverages the
Truffle framework to execute the tests; thus, Vertigo is limited to the mutation
testing of Solidity smart contracts for ethereum. A possible extension to Vertigo
is the design of mutation operators for other smart contract languages and the
implementation of interfacing logic for other test frameworks. Such an exten-
sion allows for a more uniform application of mutation testing over different
blockchain platforms.

Furthermore, examining security critical bug classes like those described in
the SWC registry [11] to design mutation operators that try to introduce vul-
nerabilities is promising. Daran and Thévenod-Fosse [18] have examined to what
extent seeded faults represent actual faults. A possible topic for further research
is to measure the extent to which mutation operators, like Modifier Removal in
Table 2b, represent actual security critical faults.

Finally, in Sect. 4 we discussed the impact of so-called safe math libraries on
the mutation analysis results. Specifically, we saw that the use of plain arithmetic
operators was replaced by the use of functions that extend the basic behaviour
of these arithmetic operators in the tested projects. Vertigo can be extended
to more extensively cover these projects by implementing one of the following
approaches:

– the implementation and design of mutation operators that reflect the
behaviour of the mathematical operations for commonly used safe math func-
tions

– An extension of Vertigo to allow for project specific mutation operators, allow-
ing the developer to express the mathematical mutation operators for their
specific project

Additionally, a new mutation operator can be designed for projects using safe
math libraries, that introduces faults that mimic developers forgetting to use safe
math libraries; a problem that has resulted in the well known “batchOverflow”
bug [2].

302 J. J. Honig et al.

References

1. aragonOS. https://hack.aragon.org/docs/aragonos-intro.html
2. Batch overlflow vulnerability - CVE-2018-10299. https://cve.mitre.org/cgi-bin/

cvename.cgi?name=CVE-2018-10299
3. CryptoKitties. https://www.cryptokitties.co/
4. eth-mutants: a mutation testing tool for smart contracts. https://github.com/

federicobond/eth-mutants
5. Manticore. https://github.com/trailofbits/manticore
6. Mythril. https://github.com/consensys/mythril
7. openzeppelin-solidity. https://github.com/OpenZeppelin/openzeppelin-solidity
8. Parity Bug Security Alert. https://www.parity.io/security-alert-2/
9. PIT Mutation Testing. http://pitest.org/

10. Slither: Static Analyzer for Solidity. https://github.com/crytic/slither
11. Smart Contract Weakness Classification and Test Cases. https://

smartcontractsecurity.github.io/SWC-registry/
12. Solidity. https://github.com/ethereum/solidity
13. SWC-129. https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-129
14. The DAO Attacked: Code Issue Leads to $60 Million Ether Theft - CoinDesk.

https://www.coindesk.com/dao-attacked-code-issue-leads-60-million-ether-theft
15. Brent, L., et al.: Vandal: a scalable security analysis framework for smart contracts.

CoRR (2018)
16. Budd, T.A., DeMillo, R.A., Lipton, R.J., Sayward, F.G.: The design of a proto-

type mutation system for program testing. In: Proceedings of the AFIPS National
Computer Conference, vol. 74, pp. 623–627 (1978)

17. Budd, T.A., Gopal, A.S.: Program testing by specification mutation. Comput.
Lang. 10(1), 63–73 (1985). https://doi.org/10.1016/0096-0551(85)90011-6

18. Daran, M., Thévenod-Fosse, P.: Software error analysis. In: Proceedings of the 1996
International Symposium on Software Testing and Analysis - ISSTA 1996, vol. 21,
pp. 158–171. ACM Press (1996). https://doi.org/10.1145/229000.226313

19. Dijkstra, E.W.: Ewd 249 Notes on Structured Programming, 2nd edn. Department
of Mathematics, Technische Hogeschool Eindhoven (1970)

20. Groce, A., Holmes, J., Marinov, D., Shi, A., Zhang, L.: An extensible, regular-
expression-based tool for multi-language mutant generation. In: Proceedings of
the 40th International Conference on Software Engineering Companion Proceeed-
ings - ICSE 2018, pp. 25–28. ACM Press (2018). https://doi.org/10.1145/3183440.
3183485

21. Hildenbrandt, E., et al.: KEVM: a complete semantics of the Ethereum virtual
machine. In: 2018 IEEE 31st Computer Security Foundations Symposium, pp.
204–217. IEEE (2018). https://doi.org/10.1109/CSF.2018.00022

22. Hussain, S.: Mutation clustering. Master’s thesis, King’s College London, UK
(2008)

23. Jia, Y., Harman, M.: An analysis and survey of the development of mutation
testing. IEEE Trans. Softw. Eng. 37(5), 649–678 (2011). https://doi.org/10.1109/
TSE.2010.62

24. Luu, L., Chu, D.H., Olickel, H., Saxena, P., Hobor, A.: Making smart contracts
smarter. In: Proceedings of the 2016 ACM SIGSAC Conference on Computer and
Communications Security - CCS 2016, pp. 254–269. ACM Press, New York (2016).
https://doi.org/10.1145/2976749.2978309

https://hack.aragon.org/docs/aragonos-intro.html
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-10299
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-10299
https://www.cryptokitties.co/
https://github.com/federicobond/eth-mutants
https://github.com/federicobond/eth-mutants
https://github.com/trailofbits/manticore
https://github.com/consensys/mythril
https://github.com/OpenZeppelin/openzeppelin-solidity
https://www.parity.io/security-alert-2/
http://pitest.org/
https://github.com/crytic/slither
https://smartcontractsecurity.github.io/SWC-registry/
https://smartcontractsecurity.github.io/SWC-registry/
https://github.com/ethereum/solidity
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-129
https://www.coindesk.com/dao-attacked-code-issue-leads-60-million-ether-theft
https://doi.org/10.1016/0096-0551(85)90011-6
https://doi.org/10.1145/229000.226313
https://doi.org/10.1145/3183440.3183485
https://doi.org/10.1145/3183440.3183485
https://doi.org/10.1109/CSF.2018.00022
https://doi.org/10.1109/TSE.2010.62
https://doi.org/10.1109/TSE.2010.62
https://doi.org/10.1145/2976749.2978309

Practical Mutation Testing for Smart Contracts 303

25. Nikolic, I., Kolluri, A., Sergey, I., Saxena, P., Hobor, A.: Finding the greedy, prodi-
gal, and suicidal contracts at scale. In: Proceedings of the 34th Annual Computer
Security Applications Conference. ACSAC 2018, pp. 653–663 (2018). https://doi.
org/10.1145/3274694.3274743

26. Offutt, A.J., Untch, R.H.: Mutation 2000: uniting the orthogonal. In: Wong, W.E.
(ed.) Mutation Testing for the New Century, pp. 34–44. Springer, Boston (2001).
https://doi.org/10.1007/978-1-4757-5939-6 7

27. Tsankov, P., Dan, A., Cohen, D.D., Gervais, A., Buenzli, F., Vechev, M.: Securify:
practical security analysis of smart contracts. In: Proceedings of the 2018 ACM
SIGSAC Conference on Computer and Communications Security, CCS 2018 (2018).
https://doi.org/10.1145/3243734.3243780

28. Wang, Y., et al.: Formal specification and verification of smart contracts for Azure
blockchain. CoRR (2018)

29. Wong, W.E.: On mutation and data flow. Ph.D. thesis (1993)

https://doi.org/10.1145/3274694.3274743
https://doi.org/10.1145/3274694.3274743
https://doi.org/10.1007/978-1-4757-5939-6_7
https://doi.org/10.1145/3243734.3243780

	Practical Mutation Testing for Smart Contracts
	1 Introduction
	2 Background
	2.1 Mutation Testing
	2.2 Ethereum Smart Contracts

	3 Design
	3.1 User Interface
	3.2 Mutation Analysis
	3.3 Program Interface

	4 Evaluation
	4.1 Experiments
	4.2 Discussion

	5 Related Work
	6 Conclusion
	6.1 Future Work

	References

