
Bayesian-Optimized Impedance Control of an Aerial Robot for Safe
Physical Interaction with the Environment

Asem Khattab, Ramy Rashad, Johan B.C. Engelen and Stefano Stramigioli

Abstract— Impedance control is a widely used interaction-
control technique for aerial and ground robots. To achieve
consistent performance during impedance control tasks, an
a-priori knowledge of the environment parameters is needed
to adjust the controller’s impedance parameters accordingly.
Concentrating on tasks requiring constant impedance parame-
ters throughout operation, a model-free learning framework
is proposed to autonomously find the suitable parameters
values. The framework relies on Bayesian optimization and
episodic reward calculation requiring the drone to repeatedly
perform a predetermined task in the environment actively
searching in the impedance parameters space. The sample-
efficiency and safety of learning were improved by adding
two novel modifications to standard Bayesian optimization. The
proposed technique was validated in a high fidelity simulation
environment. The results show that the proposed framework
is able to automatically find suitable impedance parameters
values in different situations given the same initial knowledge
and that the learned parameters values can be generalized to
similar interaction tasks.

I. INTRODUCTION

In the past two decades, unmanned aerial vehicles (UAVs)
have been successfully deployed for several applications in
the civilian sector. These applications are mostly limited to
passive tasks, which require the UAV to act as a flying
sensor. However, in recent years, there has been an increasing
interest in the robotics community to extend applications of
UAVs to active tasks that require manipulation and physical
interaction with the environment [1].

One of the widely used interaction control techniques, both
for UAVs and fixed-based manipulators, is impedance control
where the interaction behavior of the robot is controlled
instead of controlling the position/force of the robot inde-
pendently [2]. By not relying on model-based environments,
impedance control is able to cope with contact discontinuities
and guarantees stability with arbitrary passive environments.

In impedance control, the contact force between the
UAV’s end-effector and the environment is directly re-
lated to the controller’s stiffness and damping parameters.
However, achieving a consistent performance of the UAV
during interaction tasks requires a-priori knowledge of the
surface geometry and contact properties. This contradicts the

This work has been funded by the cooperation program INTERREG
Deutschland-Nederland as part of the SPECTORS project number 143081.

A. Khattab and J.B.C. Engelen were (previously), and
R. Rashad is with the Robotics and Mechatronics group,
University of Twente, Enschede, The Netherlands. Email:
asem.khattab@gmail.com, jbc.engelen@gmail.com,
r.a.m.rashadhashem@utwente.nl

S. Stramigioli is with the Robotics and Mechatronics group, Univer-
sity of Twente, and ITMO University, Saint Petersburg, Russia. Email:
s.stramigioli@utwente.nl

Fig. 1: Simple block diagram of the proposed learning
problem formulation

main advantage of impedance control to effectively work in
unstructured and unmodeled environments. In general, the
geometric properties of the environment can be acquired by
the robot through visual perception. As for the mechanical
contact properties, such as stiffness and friction, one ap-
proach is to automatically change the impedance parameters
online to improve the interaction behavior.

In the literature, the approaches followed to automatically
improve the impedance behavior of robots over time include
adaptive control theory and machine learning. Adaptive
impedance control has been demonstrated for rigid manipu-
lators in [3] and for UAV-manipulator systems in [4]. Due
to the approach’s model-based nature, in order to guarantee
the stability properties of the controller and design the
adaptation laws, the environment was modeled in both [3],
[4] as a linear spring, which only captures the steady state
dynamics approximately. A supervised-learning approach has
been demonstrated in [5] for medical robotic manipulators,
which is irrelevant for UAV-based applications due to the
requirement of human demonstrations. Unlike supervised
approaches, reinforcement learning is more suited for general
autonomous learning in unknown environments. In [6], [7],
the PI2 algorithm (policy improvement with path integrals)
is used to learn impedance parameters trajectories for robots
with high degrees-of-freedom doing tasks like flipping a
light switch and opening a door. During such tasks, both the
position trajectory and the impedance parameters trajectories
are learned. While such methods have the advantage of
being model-free and hence able to deal with different
environments and unpredictable situations, they suffer from
two main problems. The first one is that the learning is very
specific to the task. Second, the state-action space is huge,
which requires a large number of iterations for the learning
to reach reasonable results.

2019 IEEE International Symposium on Safety, Security, and Rescue Robotics (SSRR)
Würzburg, Germany, September 2-4, 2019

978-1-7281-0778-3/19/$31.00 ©2019 IEEE

The focus in this work is on tasks requiring a fixed
set of parameters values throughout operation. Examples
of such tasks include surface contact tasks like grinding,
cleaning, painting and writing. Considering such tasks, the
optimal set of parameters values are greatly dependent on
the combined mechanical properties of the surface and the
UAV’s end-effector. The aim is to perform efficient trial-and-
error learning to automatically find the optimal parameters
values. With reference to Fig. 1, the learning problem is
formulated as the problem of finding the position of the
global maximum of a black-box reward function f(x) using
as few evaluations as possible to minimize the learning cost,
where the function being optimized represents a performance
measure for the UAV under a selected set of impedance
parameters values x.

In this paper we propose a method that achieves safe and
stable learning-based impedance controller for interactive
aerial robots. Our approach consists of a model-based passive
impedance controller that guarantees interaction stability, in
addition to a data-driven learning algorithm that improves
the closed loop performance over time. The learning algo-
rithm uses the Bayesian optimization framework combined
with Gaussian processes. The advantages of our approach
compared to other techniques include: exploiting the sys-
tem knowledge available, guarantying contact stability and
enhancing sample efficiency. The issue of sample efficiency
is crucial for aerial robots due to its very limited operation
time. Another relevant issue is that the parameters space is
not completely safe to explore. The safe learning is invoked
in our approach by a novel modification to the standard
technique of globally optimizing acquisition functions in
Bayesian optimization. In the next section we discuss the
details of our proposed method.

II. PROPOSED METHOD

In this work, an episodic learning framework is pro-
posed. At each episode, the drone receives a set of param-
eters values. The controller’s impedance (i.e. parameters)
is configured according to the received values and then
the drone performs a task designed by the user to assess
the performance of the chosen impedance settings. In our
case, this task is following a prescribed trajectory (e.g. a
circular trajectory). While performing the task, all relevant
sensory measurements (from on-board sensors or off-board
ones in the environment) are stored. At the end of the
task, the stored sensors measurements are used to compute
the reward (the performance measure) which can include
different elements (e.g. the root-mean-square (RMS) of the
position error) depending on the objective of the learning.
This reward is sent back to the learning algorithm, which
should intelligently select another set of parameters values
to try in order to quickly find a satisfactory set of parameters
values (i.e. ones that give a high reward).

The learning block in Fig 1 works on finding the position
of the global maximum of the black-box reward function
x∗ = arg max f(x) where:

• x is a vector containing the selected impedance param-
eters values.

• f(x) represents a performance measure of the drone
in the interaction task under the selected impedance
parameters values.

We propose in this work the use of the Bayesian opti-
mization framework combined with Gaussian processes to
optimize this expensive black-box function. In addition to
being very sample-efficient, Bayesian optimization provides
various schemes for effectively balancing exploration and
exploitation as it searches for the position of the maximum. It
also provides means for incorporating human expert knowl-
edge or intuition, if available, in the learning.

From another perspective, our problem considered in this
work can be formulated as a multi-dimensional continuum
bandit problem with: 1) the multi-dimensional continuous
action space corresponds to the impedance controller’s pa-
rameters space, 2) the reward corresponds to the performance
measure, 3) the state corresponds to the circumstance that
determines the optimal action.

Continuum bandits are a class of reinforcement learning
problems where the agent always stays in one state. Per our
specification, as the interest is in a fixed set of parameters
values throughout an interaction task, the optimal parameters
values depend only on the environment and the task. Conse-
quently, as long as the environment and the task are the same,
the agent stays in one state throughout learning, and hence
there is actually no need to formulate, estimate or detect the
state, which is one of the main differences between the bandit
problem and the full reinforcement learning problem.

Continuum bandit problems have been investigated in
literature. However, most of the proposed approaches try
to adapt solutions of the traditional discrete multi-armed
bandit problem to continuum bandits [8]. This results in
discretization of the action space and gives rise to the curse
of dimensionality.

Bayesian optimization, as a solution to the continuum
bandit problem can be then considered a reinforcement
learning technique [9]. In contrast with the classical solutions
of the continuum bandit problem, Bayesian optimization
doesn’t discretize the action space and hence is able to escape
the curse of dimensionality and scale polynomially with the
dimension of the action space.

III. BAYESIAN OPTIMIZATION BACKGROUND

Bayesian optimization is a framework for sample-efficient
search for the extremum of a black-box function. Bayesian
optimization is particularly useful for situations where the
target function has no closed-form expression, is difficult to
get derivatives for, is very expensive to evaluate and/or is
non-convex [9], [10].

Formally, the goal of Bayesian optimization is to find the
position x∗ of the global maximum (or minimum) of an
unknown target function f(x):

x∗ = arg max
x∈χ

f(x) (1)

173

where χ is the space of parameters.
Instead of relying on the density of evaluations, Bayesian

optimization exploits all the evaluations it can get by building
a surrogate model that represents the current belief about the
black-box function. It uses this model to decide where to
prop (evaluate) the function next. The decision of the next
point to prop is carried out via acquisition functions, which
provide a way to balance exploration and exploitation.

At the start, the user collects w observations to form an
initial surrogate model. In particular, the user selects points1

x1:w and samples the target function f(x) at these points
obtaining y1:w, where yi = f(xi)+εi is a (noisy) observation
of the target function with noise εi. The points and their
corresponding observations combined in tuples are denoted
D1:w where Di = (xi, yi). Each iteration, a surrogate model
is built, this model is used to find the best point to try next via
acquisition functions. The selected point is sampled and the
process continues. The procedures of Bayesian optimization
on a simple 1D example are shown in Fig. 2 (a-c).

The surrogate model used in the presented work is a
Gaussian Process GP(µ0, k); a non-parametric model, com-
pletely specified by a mean function µ0(x) and and a kernel
(covariance function) k(x,x′). In most cases, as well as the
case in our work, the mean is chosen to be a fixed function,
generally equal to zero [10].

Say we received n (noisy) observations D1:n of the target
function. Then the posterior of the random variable f(x) at
an arbitrary point x given the observations D1:n is normally
distributed with the following mean and variance functions:

f(x) | D1:n ∼ N (µn(x), σ2
n(x)) (2)

µn(x) = µ0(x) + k(x)T (K + σ2I)−1(y −m) (3)

σ2
n(x) = k(x,x) + k(x)T (K + σ2I)−1k(x) (4)

where the mean vector m and the positive semi-definite
covariance matrix K are defined elementwisely as mi :=
µ0(xi) and Ki,j := k(xi,xj) respectively, and σ2 is the
given variance of the Gaussian noise. Further, k(x) repre-
sents a vector of covariance values between the arbitrary
point x and the previous observations points x1:n.

The kernel function k(xi,xj) selected to be used with the
Gaussian process is the radial basis function (RBF) kernel
expressed as:

kRBF (x,x′) = exp

(
−1

2
[(x− x′)Tθ(x− x′)]

)
(5)

where θ is a diagonal matrix of dim(x) squared length scales
θ2i . Through the choice of hyperparameters θ, one can control
how rapid are the changes in the functions predicted by
the GP prior. Typically, the values of the hyperparameters
are learned using the observations that were obtained so far
through seeding random values and maximizing the marginal
likelihood of the fitted GP model [10], [11].

As for the acquisition function, its role is to balance
exploration and exploitation by providing a measure for the

1In this paper, we use the notation xi:j = {xi, xi+1, . . . , xj}.

utility of obtaining a new observation at the point xn+1 based
on the surrogate model built using the past observations D1:n.
The next point to sample is then obtained by optimizing the
acquisition function:

xn+1 = arg max
x∈χ

α(x | D1:n) (6)

Different acquisition functions lead to different explo-
ration/exploitation trade-offs and behaviors that are suitable
for certain applications but not suitable for others. For
this work, the Probability of Improvement (PI) function is
used [9]. This function assesses, for a certain point x, the
probability of finding a target function value (or reward)
that is higher than the maximum found observation by the
hyperparameter ξ:

PI(x) = P (f(x) ≥ max(y1:n) + ξ) (7)

= Φ

(
µn(x)−max(y1:n)− ξ

σn(x)

)
(8)

where Φ(·) is the standard normal cumulative distribution
function. Maximizing the PI function results in selecting
points most likely to offer an improvement of at least ξ.
This allows ξ to affect how local/global the search is [10].

IV. LOCAL OPTIMIZATION OF ACQUISITION FUNCTION

Even though the established theoretical proofs of the con-
vergence of Bayesian optimization are only valid given that
the position of the true global maximum of the acquisition
function is found every iteration and is selected as the next
point to observe the target black-box function at, in practice it
is nearly impossible to ensure this condition [9]. In this work
we give up the quest for finding this global maximum for a
more local way of optimizing. We claim that the presented
approach is more safe and efficient, especially for black-box
functions related to the aerial robotic application at hand.

Working with robotic systems, using explorative acquisi-
tion functions is risky as the search is more probable to fall
into areas of low rewards (corresponding to bad performance
or even instability). While very local/exploitative settings
do not suffer from this issue, they are more probable to
get stuck in a local maximum. Instead of trying to find
the global maximum of the acquisition function, only areas
close to the positions of the already seen observations are
considered in our approach. Specifically, at each iteration n
and for all i ≤ n, a hyper-rectangle Bi is virtually placed
centered around each point xi with dimensions equal to that
of the domain of the target function scaled down by the
hyperparameter d < 1.0 (distance).

The next point to sample is then selected as the position
of the maximum of the acquisition function within hyper-
rectangles B1:n:

xn+1 = arg max
x∈

⋃n
i=1 Bi

α(x | D1:n) (9)

The hyper-rectangle Bi is formed as follows. Suppose χ
the domain of the black-box function is given as a two-
columns matrix such that row j represents the lower and

174

n = 3

n = 4

n = 5

n = 3

n = 4

n = 5

(a)

(b)

(c)

(d)

(e)

(f)

objective function

acquisition max

Observations

next observation

acquisition function hyper-rectangle

newly added

hyper-rectangle

Posterior Mean µ(.)

Posterior Uncertainty

µ(.) ±

Global Optimization of Acquisition Function Local Optimization of Acquisition Function

Fig. 2: Behavior of Bayesian optimization with global optimization of the acquisition function compared to that with the
proposed local optimization on a simple 1D Example. The meaning of the different elements of the subfigures are indicated
in the graphs. Theses meanings are the same across all subfigures.

upper limit of the input of the function along dimension j:

χj,1 ≤ xj ≤ χj,2

where superscripts here are used as row-based matrix indices
and xj is the component of the input x along dimension j.
Then Bi is formed also as a two-columns matrix such that
its row j is:

Bj,1:2i = [max(χj,1, xji −
Dj

2
),min(xji +

Dj

2
, χj,2)] (10)

where Dj = d(χj,2 − χj,1) is the scaled distance along
dimension j. The max and min operations above are used to
ensure that the hyper-rectangles do not go outside the domain
of the target function.

At each iteration of Bayesian optimization, a new hyper-
rectangle is added as the number of obtained observations
increases. Then the next point is chosen by optimizing
the acquisition function in the areas within all the hyper-
rectangles since the acquisition function within them changes
its shape as the surrogate model evolves.

The idea is illustrated in Fig. 2 where the behavior of
Bayesian optimization with global optimization of the acqui-
sition function is compared to that with the proposed local
optimization on a simple 1D Example. Both Bayesian opti-
mization runs started with the same three initial observations
(red dots in figures 2a and 2d) and are using the same UCB
acquisition function. In the first iteration (upper row), the
location of the global maximum of the acquisition function
(Fig. 2a) offers a low value of the objective function, while
with the locally optimized acquisition function (Fig. 2d), the

search was able to avoid falling into this area of low reward
by moving only in small steps.

With the proposed local optimization, at each new iteration
(figures 2e and 2f), a new 1D hyper-rectangle is added
intersecting with an existent one. The acquisition function
is optimized within all hyper-rectangle to select the position
of the next observation. This allows local optimization to
get early warnings along paths leading to low rewards and
to quickly find paths leading to higher rewards. After three
iterations (bottom row), both global optimization and local
optimization searches are about to find the global maximum.
However, local optimization got higher rewards along the
way. This can be seen by observing that, at each row, the
value of the next observation (blue cross) resulting from local
optimization (right graph) is higher than that resulting from
global optimization (left graph).

V. SIMULATION SETUP

The simulations done in this work are centered around a
fully-actuated hexarotor UAV [12] used for a task involving
physical interaction with the environment. Simulations will
be done for a surface sliding task. In this simple learning
task, the drone learns the optimal impedance parameters for
drawing a certain shape on a wall. The aim is to provide
a clear proof-of-concept for using the proposed learning
framework to find impedance parameters values. In this
section, the task description is provided along with the choice
of reward function, and the software implementation details
for the Bayesian optimization algorithm.

175

A. Sliding Task Description

For the learning of the impedance parameters values for
drawing a certain shape on a wall, the predetermined task
chosen to be done at each episode is simply following a
trajectory to draw the shape on the wall. The end-effector of
the drone is commanded to follow a trajectory while exerting
a normal force on the surface using the impedance controller.

To investigate the ability of the proposed learning frame-
work to find the suitable impedance values as the task
changes, two different kinds of changes are included in the
simulation. First, two different shapes (trajectories) will be
used for training; a square and a circle. Second, surfaces
of different materials will be put in the simulations. The
different surface materials are simulated by changing the
friction coefficient (µ) between the end-effector of the UAV
and the wall. Four different coefficients are used: 0.4, 0.8,
1.16, and 1.4.

B. Reward Shaping

In the learning problem at hand, we consider a simple
goal: maximizing the accuracy of drawing while minimizing
the used impedance gains. Excessively large gains are asso-
ciated with higher power consumption and more aggressive
interaction behavior which is highly discouraged. However,
higher gains also increase the accuracy of tracking the
setpoint, which means that maximizing the accuracy actually
contradicts minimizing the impedance gains. The reward
function should manage this conflict.

The used reward function for this task, in terms of the
impedance parameters values x, is defined:

f(x) = −c1Et − c2Er − c3
sum(x)

dim(x)
(11)

where Et = Ext + Eyt + Ezt is the sum of the translational
root-mean-square errors along the three axes, Er = Exr +
Eyr +Ezr is similarly the sum of the rotational errors, dim(•)
is the number of elements in a vector, and c1, c2 and c3 are
weighting factors.

For this reward function, as it is typically the case for many
reward functions seen in literature, the units of the individual
parts of the function are different. So, the definition of the
function has no direct physical meaning. The weights have
to balance the difference in units and set the priorities of
optimization. For all simulations presented in this paper, c1 =
100, c2 = 150 and c3 = 0.15.

The range of this suggested reward function is very
difficult to predict in advance. This is inconvenient when
using Bayesian optimization. For instance, the meaning the
hyperparameter ξ of the PI acquisition function (7) is directly
related to the range of the optimized function. So, the same
value for ξ can lead to explorative behavior for one reward
function but an exploitative behavior for another one with a
much larger range. The same problem arises with the noise
hyperparameter σ2.

To solve this issue, we suggest limiting the range of the
target function between zero and one using the Sigmoid

logistic function defined:

S(x) =
1

1 + e−l(x−m)
(12)

where m is the location of the midpoint of the function and
l is the steepness of the curve. Logistic functions have been
used in different areas in machine learning. Most notably, in
logistic regression and as the “activation” function for neural
networks.

The midpoint m of the Sigmoid function is selected
by using the initial observations. Specifically, the maxi-
mum received reward in the initial points is considered the
midpoint of the used logistic function. Consequently, the
standard Bayesian optimization algorithm is modified with
the highlighted modifications in Algorithm 1.

Algorithm 1: Bayesian Optimization with a Logistic
Function

1 Get w initial observations D1:w = {(xi, yi)}wi=0

2 Calculate the midpoint of the logistic function
m = max(y1:w).
The logistic function is then: S(x) = 1/

[
1 + e−l(x−m)

]
3 Transform the initial observations:
D1:w = {(xi, S(yi))}wi=0

4 for n = w,w + 1, w + 2... do
5 Build/update the surrogate statistical model

M(S(f(x))|D1:n)
6 Select xn+1 by optimizing the acquisition function

α(x|D1:n)
7 Obtain a (noisy) new observation at xn+1:

yn+1 = f(xn+1) + εn+1

8 Augment the data
D1:n+1 = {D1:n, (xn+1, S(yn+1))}

C. Implementation Details

The simulation environment used consisted of a simulated
hexarotor UAV equipped with an impedance controller (de-
tails can be found in [12]). The simulation environment is
built over ROS (Robotics Operating System) via Gazebo
and RotorS simulators [13].

The learning algorithm was implemented by modifying
the BayesianOptimization package [14] to add the
possibility of forming the hyper-rectangles and optimizing
the acquisition function within them. For limited page space,
the reader is referred to [15].

Finally, Table I summarizes the selected values for the
discussed settings in this section.

VI. SIMULATION RESULTS AND DISCUSSION

In this section, the simulation results of an agent learning
four impedance parameters are shown. In all simulations, 50
observations were used of which 10 are initial observations
and 40 are Bayesian optimization iterations. The used initial
observations were the same for all simulations presented.

176

TABLE I: Summary of the used learning settings in the
simulations.

Setting Notation Selected Value
Acquisition Function PI
PI hyperparameter ξ 0.01
Domain of f(x) along a dimension i χi (0.01, 50)
distance in local optimization d 0.05
GP noise hyperparameter σ2 0.0001
Logistic function steepness l 0.5

In the following discussions, we define S+
n the maximum

obtained value of the target function after n observations

S+
n = maxS(y1:n) (13)

which is known in literature as the learning rate. Similarly,
y+n = max y1:n is the corresponding maximum of the noisy
observations of the reward function defined in (11). We
also define the average of the received rewards after n
observations as:

ȳn =

n∑
i=0

y/n (14)

A. Drawing a circle trajectory

Fig. 3 shows the learning rates (top) and the corre-
sponding values of the maximum seen rewards (bottom) of
the circle problem with different friction coefficient values.
Most of the improvement happened in the first 15 Bayesian
optimization iterations after the 10 initial observations. How-
ever, the amount of improvement increases as the friction
coefficient increases.

Looking to the bottom graph in Fig. 3, it can be confirmed
that, the reason for the improvement trend is that the initial
observations produce better rewards for smoother surfaces.
At the end of the 40 Bayesian optimization iterations, the
maximum found reward converges to almost the same value
of −7.6 for all values of µ.

B. Drawing a square trajectory

Having trained the drone to find suitable impedance pa-
rameters values for drawing circles with different frictions, it
is worth investigating if the learned values are able to provide
satisfactory performance for tasks involving drawing another
trajectory with different smoothness properties.

Using the Parameters Values Learned for the Circle:
Before training on the square trajectory, the impedance
parameters values found in the circle learning were applied
to the square task (denoted by 2) with the respective friction
coefficient values as in Table II. The previously shown results
of using these parameters values in the circle tasks (denoted
by #) are also included in the table for comparability. It
can be seen that the values produced lower rewards and
higher translational errors in square task than in circle task.
Note that a higher translational error (and hence a lower
reward) is expected for square tasks because of the involved
discontinuities in the trajectory. However, it is still unclear
form that table if the difference in rewards is completely due

TABLE II: Learned parameters values for the circle task
applied to the square task.

µ Shape y+ Et[cm] x̄

0.40 # -7.52 1.83 7.892 -8.74 2.47

0.80 # -7.66 1.74 8.702 -8.96 2.23

1.16 # -7.62 1.73 8.302 -8.91 2.24

1.40 # -7.56 1.72 7.982 -8.90 2.28

to the added difficulty or due to the fact that square tasks need
completely different values for the impedance parameters.

Square Learning Results: To reach a conclusion about the
aforementioned point, Bayesian optimization was run to find
the suitable impedance parameters for the square problem.
The same ten locations of the initial observations used in
the circle task were used here. Figure 4 shows the learning
curves. It can be seen from the top graph (showing the
maximum seen value of the target function S+

n) that the
amounts of improvement exhibit a similar trend to these seen
in the circle case.

Looking to the bottom graph in Fig. 4, it can be seen also
that the maximum seen reward within the initial observations
is higher for the two highest values of µ and lower for the
two lowest values. At the end, the maximum found reward
converges to almost the same value of around −8.80 for all
values of µ. This is more than one unit lower than the max-
imum rewards reached in the circle tasks. These differences
between the square learning and the circle learning can be
attributed to the increased difficulty in the square tasks (due
to discontinuities) decreasing the room for improvement and
limiting the maximum reward that can be found.

Using the Parameters Values Learned for the Square:
To see how the performance obtained by the impedance
parameters values learned for the square tasks differs from
that of the values learned for the circle tasks, table III
shows the results of using the learned parameters values of
the square tasks on the circle and square tasks. Comparing
these results with the ones shown in Table II, important
conclusions can be drawn. Generally, it can be seen that
the rewards resulting from impedance values obtained by
training on a certain shape are greater than those resulting
from training on the other shape. However, the difference
between the two rewards is mostly small. This means that
training for drawing one shape might be enough to find
parameters values suitable for drawing different shapes.

The results in tables II and III show one of the key
advantages of the problem formulation suggested in the pre-
sented work over other formulations in literature [6], [7] that
concern learning a trajectory of impedance parameters values
for a certain task. A learned impedance values trajectory for
drawing a square, for example, cannot be used for drawing a
circle. With the suggested method, training does not have to
be repeated for similar tasks provided that the environment
is the same.

177

0.6

0.8

S
+ n

10 15 20 25 30 35 40 45 50

n

12

10

8

y
+ n

= 0.4 = 0.8 = 1.16 = 1.4

Fig. 3: Learning curves of the circle problems.

0.6

0.8

S
+ n

10 15 20 25 30 35 40 45 50

n

12

10

8

y
+ n

= 0.4 = 0.8 = 1.16 = 1.4

Fig. 4: Learning curves of the square problems.

TABLE III: Learned parameters values for the square tasks
applied to the circle and square tasks.

µ Shape y+ Et[cm] x̄

0.40 # -7.84 1.80 9.542 -8.73 2.20

0.80 # -7.71 1.72 9.232 -8.89 2.19

1.16 # -8.09 2.00 9.912 -8.84 2.19

1.40 # -7.70 1.72 8.962 -8.79 2.15

C. Learning without the Proposed Modifications

All the simulations presented in this section so far were
done with the two novel modifications proposed in sec-
tions IV and V-B. In this subsection, results are shown
confirming the significance of these modifications when
learning impedance parameters for an aerial robotic system.

1) The Effect of Global Optimization: Figure 5 compares
the learning rates (y+n curves) and the average received
rewards (ȳn curves) of the circle problems with a globally
optimized acquisition function to the already seen results
with a locally optimized acquisition function as suggested in
section IV. Again, for the simulations done with a globally
optimized acquisition function, the same settings and initial
points offered for the other simulations, were used (including
using a logistic function) except that PI was optimized
globally with the same default global optimization method.

Looking at the learning rates (y+n curves), it can be seen
that learning with a globally optimized PI was able to reach
high rewards quicker than it is with a local optimization.
However, in all learning problems, local optimization of the
acquisition function was able to find higher rewards at the
end. This is because, for a globally optimized PI, setting
the hyperparameter ξ to 0.05 results in a more explorative
behavior allowing quicker finding of places with higher
rewards. However, this increased exploration resulted in the
search being unable to fine-tune and reach the locations of
the highest rewards. Local optimization, while still benefiting
from the exploration by setting ξ to 0.05, is able reach higher

rewards slightly slower than global optimization.
What is more significant about local optimization is not

its ability to find higher rewards, but its ability to make the
learning much safer. Observing the averages of the received
rewards during the different learning problems (ȳn curves),
it can be clearly seen that the search with local optimization
almost always obtains rewards that are equal or higher than
the already seen rewards (ȳn are always increasing except
for a minor exception for the learning problem with µ =
0.4). This indicates that the search is safe as it doesn’t
fall in areas in the impedance parameters space with low
rewards (corresponding to very unsatisfactory and dangerous
performance or instability). This is because the search with
local optimization is able to receive early warnings along
paths leading to low rewards instead of jumping straight to
them. On the other hand, the search with global optimization
falls into areas with worse rewards than already obtained
most of the time of the training, which indicates that the
learning is very unsafe. Unless there is a very fast way of
detecting failures, this training is disastrous if conducted with
a physical UAV in the real world.

2) The Effect of Not Using the Logistic Function: Fig-
ure 5c compares the learning curves for the circle and square
tasks without using a logistic function to the already seen
learning curves obtained with using a logistic function as
suggested in Algorithm 1.

In the simulations done without using the logistic function
modification, the same locations for the initial observations
were provided and the same learning settings were used
except that Bayesian optimization was performed directly
on the received rewards without inputting them to a logistic
function as described in section V-B.

It can be seen form Fig. 5c that, in almost all cases,
using the logistic function modification resulted in reaching
higher rewards in lower numbers of iterations confirming
the statements made in section V-B. Few exceptions exist.
For the circle tasks with µ = 0.8 and µ = 1.16, using
the logistic function modification resulted in getting higher
rewards quicker. However, towards the end of the training
(40 Bayesian optimization iterations), the learning curves

178

− .25

− 8.00

− 7.75

− 7.50
= 0.4

10

9

8

= 0.8

12

10

8

= 1.16

10 20 30 40 50

n

12.5

10.0

7.5

= 1.4

Locally opt im ized Globally opt im ized

(a) Learning rates y+
n

− 0

− 40

− 20

= 0.4

− 75

− 50

− 25

= 0.8

− 75

− 50

− 25

= 1.1

10 20 30 40 50

n

− 40

− 20

= 1.4

Locally opt im ized Globally opt im ized

(b) Average received rewards ȳn

−

− 8

= 0.4

− 10

− 9

− 8

= 0.8

− 12

− 10

− 8

= 1.16

10 15 20 25 30 35 40 45 50

n

− 12.5

− 10.0

− 7.5

= 1.4

Circle With Logist ic Funct ion

Circle

Square With Logist ic Funct ion

Square

(c) Learning rates y+
n

Fig. 5: Comparison of Learning with and without the Proposed Modifications. Fig. (a) and (b) shows effect of locally
optimized (solid) vs. globally optimized (dashed) acquisition function for the circle problems. Fig. (c) shows effect of using
the logistic function for the circle and square problems.

without using the logistic function could reach a slightly
higher point in a way that doesn’t affect the general trend.
Also, for the square task with µ = 0.8 the learning curve is
faster without using the logistic function, although reaching
the same point at the end of the training. The reason why
the learning curve was faster in this only case is that the
range of the reward function in that case was suitable for
the selected learning settings. However, as the range of
the reward function changes from one situation to another,
Bayesian optimization without using the logistic function
was not able to maintain the same performance.

These results clearly show that the suggested logistic
function modification allowed Bayesian optimization to gen-
eralize the meaning of learning settings among black-box
reward functions of different natures.

VII. CONCLUSION

In this presented work, the concentration was on drone
interaction tasks requiring a fixed set of impedance parame-
ters. This allowed formulating the problem as an optimization
of an expensive black-box function. A solution was then
presented relying on Bayesian optimization with novel modi-
fications significantly improving safety and sample-efficiency
of learning as was demonstrated in the simulation results.
Future work includes experimental results on a drone as well
as applying the technique on different robots and for different
interaction tasks.

REFERENCES

[1] F. Ruggiero, V. Lippiello, and A. Ollero, “Aerial Manipulation: A
Literature Review,” IEEE Robot. Autom. Lett., vol. 3, no. 3, pp. 1957–
1964, jul 2018.

[2] L. Villani and J. De Schutter, “Force control,” in Springer handbook
of robotics. Springer, 2016, pp. 195–220.

[3] J. Duan, Y. Gan, M. Chen, and X. Dai, “Adaptive variable impedance
control for dynamic contact force tracking in uncertain environment,”
Robotics and Autonomous Systems, vol. 102, pp. 54–65, 2018.

[4] M. Car, A. Ivanovic, M. Orsag, and S. Bogdan, “Position-based adap-
tive impedance control for a uav,” in 2018 International Conference
on Unmanned Aircraft Systems (ICUAS). IEEE, 2018, pp. 957–963.

[5] N. Aghasadeghi, H. Zhao, L. J. Hargrove, A. D. Ames, E. J. Perreault,
and T. Bretl, “Learning impedance controller parameters for lower-
limb prostheses,” in 2013 IEEE/RSJ International Conference on
Intelligent Robots and Systems. IEEE, 2013, pp. 4268–4274.

[6] J. Buchli, F. Stulp, E. Theodorou, and S. Schaal, “Learning variable
impedance control,” The International Journal of Robotics Research
(ijrr), vol. 30, no. 7, pp. 820–833, 2011.

[7] F. Stulp, J. Buchli, A. Ellmer, M. Mistry, E. Theodorou, and S. Schaal,
“Model-free reinforcement learning of impedance control in stochastic
environments,” IEEE Transactions on Autonomous Mental Develop-
ment, vol. 4, no. 4, pp. 330–341, 2012.

[8] O. Kroemer and J. Peters, “Active exploration for robot parameter
selection in episodic reinforcement learning,” in IEEE Symposium
on Adaptive Dynamic Programming And Reinforcement Learning
(ADPRL). IEEE, 2011, pp. 25–31.

[9] B. Shahriari, K. Swersky, Z. Wang, R. P. Adams, and N. de Freitas,
“Taking the human out of the loop: A review of bayesian optimiza-
tion,” Proceedings of the IEEE, vol. 104, no. 1, pp. 148–175, Jan
2016.

[10] E. Brochu, V. M. Cora, and N. de Freitas, “A Tutorial on Bayesian
Optimization of Expensive Cost Functions, with Application to Active
User Modeling and Hierarchical Reinforcement Learning,” ArXiv e-
prints, Dec. 2010.

[11] D. Duvenaud, “Automatic model construction with gaussian pro-
cesses,” Ph.D. dissertation, University of Cambridge, 2014.

[12] R. Rashad, J. B. Engelen, and S. Stramigioli, “Energy tank-based
wrench/impedance control of a fully-actuated hexarotor: A geometric
port-hamiltonian approach,” in IEEE International Conference on
Robotics and Automation (ICRA), 2019.

[13] F. Furrer, M. Burri, M. Achtelik, and R. Siegwart, “Rotors - a modular
gazebo mav simulator framework,” in Robot Operating System (ROS).
Springer, 2016, pp. 595–625.

[14] Fernando Nogueira, “Bayesianoptimization, a python
implementation of global optimization with gaussian processes.”
https://github.com/fmfn/BayesianOptimization, 2018, [Online;
accessed 6-June-2018].

[15] A. Khattab, “Towards an interactive drone, a bayesian optimization
approach,” Master’s thesis, University of Twente, 2018.

179

