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Sleutjes BT, Kovalchuk MO, Durmus N, Buitenweg JR, van
Putten MJ, van den Berg LH, Franssen H. Simulating perinodal
changes observed in immune-mediated neuropathies: impact on con-
duction in a model of myelinated motor and sensory axons. J Neuro-
physiol 122: 1036–1049, 2019. First published July 10, 2019; doi:
10.1152/jn.00326.2019.—Immune-mediated neuropathies affect my-
elinated axons, resulting in conduction slowing or block that may
affect motor and sensory axons differently. The underlying mecha-
nisms of these neuropathies are not well understood. Using a myelin-
ated axon model, we studied the impact of perinodal changes on
conduction. We extended a longitudinal axon model (41 nodes of
Ranvier) with biophysical properties unique to human myelinated
motor and sensory axons. We simulated effects of temperature and
axonal diameter on conduction and strength-duration properties. We
then studied effects of impaired nodal sodium channel conductance
and paranodal myelin detachment by reducing periaxonal resistance,
as well as their interaction, on conduction in the 9 middle nodes and
enclosed paranodes. Finally, we assessed the impact of reducing the
affected region (5 nodes) and adding nodal widening. Physiological
motor and sensory conduction velocities and changes to axonal
diameter and temperature were observed. The sensory axon had a
longer strength-duration time constant. Reducing sodium channel
conductance and paranodal periaxonal resistance induced progressive
conduction slowing. In motor axons, conduction block occurred with
a 4-fold drop in sodium channel conductance or a 7.7-fold drop in
periaxonal resistance. In sensory axons, block arose with a 4.8-fold
drop in sodium channel conductance or a 9-fold drop in periaxonal
resistance. This indicated that motor axons are more vulnerable to
developing block. A boundary of block emerged when the two
mechanisms interacted. This boundary shifted in opposite directions
for a smaller affected region and nodal widening. These differences
may contribute to the predominance of motor deficits observed in
some immune-mediated neuropathies.

NEW & NOTEWORTHY Immune-mediated neuropathies may af-
fect myelinated motor and sensory axons differently. By the devel-
opment of a computational model, we quantitatively studied the
impact of perinodal changes on conduction in motor and sensory
axons. Simulations of increasing nodal sodium channel dysfunction
and paranodal myelin detachment induced progressive conduction
slowing. Sensory axons were more resistant to block than motor

axons. This could explain the greater predisposition of motor axons to
functional deficits observed in some immune-mediated neuropathies.

computational model; conduction slowing and block; myelinated
motor and sensory axon; nodal sodium channel disruption; paranodal
myelin detachment

INTRODUCTION

Immune-mediated polyneuropathies may affect myelinated
nerve fibers, including the myelin sheath, the node of Ranvier,
the adhesion molecules binding the axonal membrane to the
Schwann cell membrane, and the axonal membrane itself
(Kieseier et al. 2018). These neuropathies include the acute
inflammatory demyelinating polyneuropathy (AIDP) and acute
motor axonal neuropathy (AMAN) variants of the Guillain-
Barré syndrome, chronic inflammatory demyelinating polyneu-
ropathy (CIDP), multifocal motor neuropathy (MMN), and
anti-myelin-associated (anti-MAG) glycoprotein neuropathy.
Developing disease-specific treatments poses a significant
challenge because the selective vulnerability of motor or sen-
sory nerve fibers and corresponding downstream mechanisms
have not been fully elucidated. Because the primary function of
myelinated nerve fibers involves efficient transmission of ac-
tion potentials, their damage will eventually present clinically
by loss of muscle strength, loss of sensation, or both. A better
understanding of the key mechanisms that hamper impulse
transmission via saltatory conduction may potentially help to
develop more targeted treatments aimed at prevention of irre-
versible nerve damage.

Studying the underlying pathology in patients with standard
nerve conduction studies may not always provide sufficient
detail because conduction slowing and block may originate
from the malfunctioning of a variety of components in myelin-
ated nerve fibers (Burke et al. 2001; Franssen 2015). Nerve
excitability testing is an attractive translational method in
which threshold changes, induced by various conditioning
stimuli, can be ascribed to changes in ion channel activity at
one site of a group of axons. However, detailed aspects of the
relation between pathological and heterogeneous pathophysio-
logical disease processes at single-axon level cannot be ade-
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quately assessed in ex vivo models such as voltage-clamp
experiments (Franssen and Straver 2014). Animal models that
accurately mimic human pathology specifically in motor and
sensory axons are available for AMAN (Yuki et al. 2001) and
to a limited extent for AIDP, but not for CIDP and MMN.
Studies of computational models of myelinated axons have
emerged to provide a quantitative view of the vital mechanisms
for adequate saltatory conduction (Blight 1985; Fitzhugh 1962;
Goldman and Albus 1968; Halter and Clark 1991; Koles and
Rasminsky 1972; McIntyre et al. 2002; Moore et al. 1978; Smit
et al. 2009; Stephanova and Bostock 1995). By systematically
investigating pathological processes that cannot be examined
otherwise, they may assist in defining avenues for developing
disease-specific treatments.

Emerging insights into the pathology of immune-mediated
neuropathies have shown specific targeting of molecular com-
plexes that characterize the distinct geometrical domains sur-
rounding the node of Ranvier, including the paranode and
juxtaparanode (Delmont et al. 2017; Devaux et al. 2016;
Susuki 2013; Uncini and Kuwabara 2015). Physiologically,
these perinodal domains also have a vital role in saltatory
conduction and recovery following action potentials (Barrett
and Barrett 1982; Halter and Clark 1991; McIntyre et al. 2002).
Moreover, biophysical differences between motor and sensory
axons have often been proposed as potentially contributing to
the varied degree of functional impairment in immune-medi-
ated neuropathies (Burke et al. 2017). However, the interplay
of these biophysical differences and the pathological processes
related to immune-mediated neuropathies with the occurrence
of conduction block remains yet unclear. This emphasizes the
need for a computational model with a sufficient geometrical
and biophysical description to systematically study pathologi-
cal processes and their impact on conduction in motor and
sensory axons.

Our study presents an extended longitudinal myelinated
axon model, modified from McIntyre et al. (2002) by including
axonal ion channel properties under the myelin sheath, based
on experimental mammalian (Waxman et al. 1995) and human
nerve excitability studies (Howells et al. 2012; Jankelowitz et

al. 2007; Kiernan et al. 2005). Our model allows biophysical
characteristics unique to human myelinated motor and sensory
axons to be implemented (Berthold and Rydmark 1995; Bos-
tock et al. 1994; Bostock and Rothwell 1997; Howells et al.
2012; Kiernan et al. 2004; Mogyoros et al. 1996, 1997; Ritchie
1995; Schwarz and Eikhof 1987; Schwarz et al. 1995). We
simulated various physiological conditions and have shown
that these are in agreement with experimental studies. In
addition, we explored how saltatory conduction will be af-
fected by some putative mechanisms associated with immune-
mediated neuropathies, focusing on loss of functioning nodal
sodium channels and disruption of the surrounding paranodal
seal (Susuki 2013; Uncini and Kuwabara 2015).

METHODS

Model structure and anatomical properties of the myelinated axon
model. We applied the double cable structure described by McIntyre
et al. (2002). As a starting point, we used the MATLAB implemen-
tation of this model as published by Danner and colleagues (Danner et
al. 2011a, 2011b; Krouchev et al. 2014). The model accurately
describes the anatomy of a myelinated axon where a successive
node-internode configuration consists of a node (1 segment), paranode
(1 segment), juxtaparanode (1 segment), standard internode (6 seg-
ments), and again, a juxtaparanode (1 segment) and paranode (1
segment). Except for the nodal segments, the nonnodal (paranode,
juxtaparanode, and standard intermode) segments are surrounded by a
myelin sheath in which the periaxonal space was connected to the
extracellular space by a myelin capacitance and conductance. Using
Kirchoff’s first law, each segment k was coupled with the previous
segment (k � 1) and next segment (k � 1), where the nonnodal

Table 1. Overview of morphological and electrical parameters of
model

Morphological Parameters

Nerve fiber Diameter 10 �m
Node to node Distance 1,150 �m
Node Length 1 �m

Diameter 3.3 �m
Paranode Length, per segment 3 �m

Diameter 3.3 �m
Periaxonal space width 0.004 �m

Juxtaparanode Length, per segment 46 �m
Diameter 6.9 �m
Periaxonal space width 0.004 �m

Standard internode Length, per segment 175.2 �m
Diameter 6.9 �m
Periaxonal space width 0.004 �m

Myelin Capacitance 0.1 �F/cm2

Conductance 0.001 S/cm2

No. of myelin lamella 120
Longitudinal resistivity Axoplasmatic 70 �·cm

Periaxonal 70 �·cm

Parameters were obtained from McIntyre et al. (2002).

Table 2. Maximum conductances, specific capacitances, and
resting membrane potential of motor and sensory axon model

Parameter Abbreviation Motor Sensorya

Node
Transient sodium conductance, S/cm2 gNat

3.0
Persistent sodium conductance, S/cm2 gNap

0.01
Slow potassium conductance, S/cm2 gKs

0.08 0.064
Leak conductance, S/cm2 gLk

0.007
Nodal capacitance, �F/cm2 Cnode 2

Paranode
Paranodal capacitance, �F/cm2 Cp 2
Paranodal conductance, S/cm2 gp 0.001

Juxtaparanode
Juxtaparanodal capacitance, �F/cm2 Cjp 2
Juxtaparanodal conductance, S/cm2 gjp 0.0001
Fast potassium conductance, S/cm2 gKf 0.02

Standard internode
Sodium conductance, S/cm2c gNat 0.03
Slow potassium conductance, S/cm2c gKs 0.0027 0.0022
Fast potassium conductance, S/cm2c gKf 0.0033
Leak conductance, S/cm2 gLk 0.0001
HCN conductance, S/cm2d gHCN 0.0014
Electrogenic pump current, pAe Ipump 100
Internodal capacitance, �F/cm2 Ci 2

Resting membrane potential, mVb Vrest �84.9 �81.8

Unless indicated, parameters were obtained from McIntyre et al. (2002).
Absolute values were calculated using diameter and length of the regions
(Table 1) by assuming circular symmetry. aBiophysical differences between
motor and sensory axons (see text and APPENDIX). bResting membrane poten-
tials achieved with the new models (see text). cInternodal conductances relative
to nodal conductances (see text). dDetermined to satisfy internodal ionic
equilibrium at resting membrane potential. ePump current similar to that
previously applied (Stephanova and Bostock 1995).HCN, hyperpolarizing-
activated nucleotide-gated cation channel.
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segments required calculation of the potential across the inner-axonal/
periaxonal and periaxonal/extracelullar space. Because the nodal seg-
ment did not involve the periaxonal space, it included the potential
across inner-axonal/extracellular space, which equals the nodal mem-
brane potential (Danner et al. 2011b). For the longitudinal model, we
used a total of 41 nodes of Ranvier separated by 40 internodes. The
membrane potential was clamped at its resting membrane potential.
Table 1 gives a detailed summary of the morphological and electrical
parameters of these segments (McIntyre et al. 2002) based on micro-
scopic-anatomical mammalian studies (Waxman et al. 1995).

Motor axon: nodal, juxtaparanodal, and internodal ion channel
conductances. Similar to the original model (McIntyre et al. 2002), the
node of Ranvier consists of voltage-gated transient and persistent
sodium channels, voltage-gated slow potassium channels, a leak
channel, and nodal membrane capacitance. Their conductances are
given in Table 2 and the gating kinetics in the APPENDIX.

To accurately simulate internodal membrane dynamics, the original
passive description was modified by implementing juxtaparanodal and
internodal voltage-gated fast potassium channels and internodal volt-
age-gated sodium, slow potassium, and hyperpolarizing-activated nu-
cleotide-gated cation (HCN) channels. Density of nodal sodium chan-
nels is significantly higher (1,000–2,000 channels/�m2) than at the
internode (�25 channels/�m2) (Waxman et al. 1995). By taking a
physiological ratio of 100 (2,000 channels/�m2 divided by 20 chan-
nels/�m2), the internodal sodium conductance was set at 1/100 of the
nodal sodium conductance. To reduce complexity, internodal sodium
channels in a persistent state were omitted. Because the density of
internodal slow potassium channels was suggested to be approxi-
mately 1/30 of their nodal density, the internodal-to-nodal conductance
ratio was set at 1/30 (Waxman and Ritchie 1993). Based on the same
study, internodal fast potassium conductance was set at 1/6 of jux-
taparanodal conductance (Waxman and Ritchie 1993). The location of
Na�-K� pumps is still ambiguous. Early work suggested a nodal
location, but subsequent electrophysiological and staining experi-
ments suggested an internodal location (Kleinberg et al. 2007; Wax-

man et al. 1995). Therefore, an electrogenic pump current was
implemented in the internode. Based on the above modifications, a
conductance for HCN channels was applied to satisfy internodal ionic
equilibrium at the resting membrane potential, which was set at �84.9
mV (see Table 2 and APPENDIX). A schematic view of the new model
is shown in Fig. 1.

Sensory axon: biophysical differences with respect to motor axon.
Sensory axons were suggested to have greater inward rectifying
current (Bostock et al. 1994). Responses to long-lasting hyperpolar-
ization revealed that a major part of this greater current originates
from changes in gating kinetics of HCN channels, which was best
modeled by depolarizing their half-activation potential (Howells et al.
2012). In our model, this half-activation was depolarized by 6.3 mV.
Furthermore, a reduced slow potassium channel expression was hy-
pothesized to contribute to the increased susceptibility of ectopic
activity in sensory axons (Baker et al. 1987; Howells et al. 2012;
Kocsis et al. 1987). This was modeled by reducing the slow potassium
conductance in the sensory axon model by 20% relative to the motor
axon. Subsequently, broadening of the sensory action potential due to
a reduction in slow potassium channel was compensated by acceler-
ating the activation gate and slowing the inactivation gate of sensory
sodium channels (Honmou et al. 1994; Howells et al. 2012; McIntyre
et al. 2002; Mitrović et al. 1993; Schwarz et al. 1983) (see APPENDIX).
With these biophysical differences, an ionic equilibrium was achieved
when sensory resting membrane potential was set at �81.8 mV (see
Table 2 and APPENDIX). Without altering the amount of sodium
channels in persistent state, the depolarized membrane potential of 3.1
mV in sensory axons (motor vs. sensory: �84.9 vs. �81.8 mV)
approximately doubled the persistent sodium current at resting mem-
brane potential, which was also suggested to be an important biophys-
ical difference (Bostock and Rothwell 1997; Howells et al. 2012).

Simulation and stimulation settings. Numerical integration of the
differential equations was performed within MATLAB (R2014b; The
MathWorks, Natick, MA) using the SUNDIALS CVode package
(version 2.6.1; Hindmarsh et al. 2005) with time steps of 10 �s. To

Fig. 1. The longitudinal myelinated axon model. A schematic view of a myelinated axon [modified from Franssen and Straver (2013) with permission from Wiley
Periodicals, Inc.] with an electric circuit diagram of the new model showing the nodal, paranodal, juxtaparanodal, and internodal regions. The nodal domain (1
segment) contains persistent (Nap) and transient sodium (Nat) channels, slow potassium (Ks) and leak (Lk) channels, and the nodal capacitance (Cn) in the axonal
membrane. The paranodal domain (2 segments, 1 left and 1 right) contains, in the axonal membrane, a linear conductance with, in parallel, a capacitance (Gp

and Cp). The juxtaparanodal domain (2 segments, 1 left and 1 right) contains, in the axonal membrane, fast potassium channels (Kf) and, in parallel, a linear
conductance (Gjp) and capacitance (Cjp). The internodal domain (6 segments, 3 left and 3 right) contains sodium channels (Na), fast (Kf) and slow (Ks) potassium
channels, a leak (Lk) conductance, Ih-channels (H), an electrogenic pump (Ipump), and an internodal capacitance (Ci) in the axonal membrane. The myelin sheath
is represented by a linear conductance with, in parallel, a capacitance in the paranode (Gm,p and Cm,p), juxtaparanode (Gm,jp and Cm,jp), and internode (Gm,i and
Cm,i) (see Table 2). Longitudinally, the model contains axonal (Gax) and periaxonal (Gperi) resistivities (see Table 2).
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calculate the conduction velocity, first, the derivative of the membrane
potential was taken in every node, and from this the time points with
maximum gradient were determined. To provide an estimate of
conduction velocity, the distance between nodes 11 and 31 was
divided by the time interval with maximum gradient at these nodes.
The nodal excitation threshold and severity levels of pathological
conditions that blocked saltatory conduction were determined using a
binary search algorithm based on Hennings et al. (2005). These
severity levels, expressed as a percentage of normal, were determined
with a binary search stop criteria of 0.5% and subsequently rounded
down to the integer that induced a block. Similarly to a previous study
(Hales et al. 2004), when the membrane potential reached a target
level (0 mV in our simulations), a generated action potential was
detected. To avoid boundary effects of the model, results of the
simulations were derived from the middle nodes (nodes 11–31).
Single intracellular stimuli were delivered with a stimulus duration of
1 ms and a fixed stimulus intensity set at three times the excitation
threshold at node 11.

Simulating effects of temperature, axon diameter, and strength-
duration properties. The relation between conduction velocity and
myelinated axon diameter was simulated by increasing axon diameter
from 10 �m (default) to 14 and 16 �m. In conjunction, other
parameters were also scaled (see Table 1 in McIntyre et al. 2002),
including the nodal (3.3, 4.7, and 5.5 �m), paranodal (3.3, 4.7, and 5.5
�m), juxtaparanodal (6.9, 10.4, and 12.7 �m), standard internodal
diameter (6.9, 10.4, and 12.7 �m), node-to-node distance (1,150,
1,400, and 1,500), and number of myelin lamellae (120, 140, and
150). The effect of temperature on conduction velocity was modeled
by varying temperature from 30°C to 36°C (default temperature) in
steps of 2°C. Rheobase and strength-duration time constant were
determined by using Weiss’s law (Bostock 1983; Mogyoros et al.
1996) and assessing excitation thresholds at five different stimulus
durations (1, 0.8, 0.6, 0.4, and 0.2 ms) at the middle node (node 21).

Simulating nodal sodium channel disruption and loss of paranodal
seal. Several mechanisms in immune-mediated neuropathies have
been suggested in which the node of Ranvier and its surrounding
structures play an important role (Kieseier et al. 2018). For instance,
in MMN, half of the patients have high titers of serum antibodies
against ganglioside GM1, which is expressed on the axolemma of the

nodes of Ranvier and perinodal Schwann cells. Ganglioside GM1 was
suggested to contribute to nodal sodium channel clustering and
paranodal stabilization (Susuki et al. 2007a, 2007b, 2012). Disrupted
sodium channel clustering and paranodal myelin detachment at both
sides of the nodes may contribute to the development of conduction
slowing and eventually block. Simulations were performed to quantify
how these mechanisms affect saltatory conduction. Disrupted sodium
channel clustering may result in decreased inward sodium current
density (reviewed by Kaji 2003). In the present study, this was
simulated by decreasing maximum transient and persistent sodium
channel conductances (Fig. 1; nodal Nap and Nat). Broken paranodal
seals were simulated by decreasing the periaxonal resistance across
the paranodal region such that juxtaparanodal fast potassium channels
also become exposed to the extracellular medium (Fig. 1; increasing
the periaxonal paranodal conductance Gperi,p and the juxtaparanodal
conductance Gperi,jp).The resulting effective increase in nodal area
was simulated by increasing nodal capacitance (Fig. 1; Cn). The
affected region involved the nine middle nodes (nodes 17–25) and the
paranodal structures between them.

RESULTS

Validation of motor and sensory axon model. Figure 2
illustrates an action potential in a myelinated motor and a
myelinated sensory axon obtained at the middle node (node 21)
after application of a single pulse at node 11. The excitation
thresholds at node 11 were 577 pA for the motor axon and 403
pA for the sensory axon. The action potential was followed by
the physiologically characteristic depolarizing afterpotential
(DAP) and hyperpolarizing afterpotential (HAP) (inset in Fig.
2A). Action potential duration (halfway resting and peak po-
tential) was longer for the motor axon (0.34 ms) than for the
sensory axon (0.29 ms). With a modeled diameter of 10 �m,
the action potential propagation (nodes 11–31) was in the
physiological range with a conduction velocity of 47.9 m/s for
the motor axon (Fig. 3) and 50.0 m/s for the sensory axon
(Boyd and Kalu 1979).
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Fig. 2. Motor and sensory action potential generation. A and B: generated action potential for the motor (black) and sensory (gray) myelinated axon up to 100
ms (A) and up to 3 ms (B) at node 21 after a 1-ms intracellular stimulus pulse of 3 times the excitation threshold at node 11. In A, inset, the action potential close
to the resting membrane potential is also shown. Dotted lines represent resting membrane potential.
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Conduction velocity increased approximately linearly
with axon diameter to 70.0 m/s (14 �m) and 83.3 m/s (16
�m) in motor axons and to 73.7 m/s (14 �m) and 88.2 m/s
(16 �m) in sensory axons (Fig. 4A). Conduction velocities
also increased linearly with temperature (Fig. 4B), the
increase being 1.60 m·s�1·°C�1 for the motor and 1.58
m·s�1·°C�1 for the sensory axon. After conversion to Q10
with the conduction velocities at 30°C and 36°C, Q10 was
1.45 for the motor axon and 1.43 for the sensory axon,
thereby falling within the range of physiologically observed
temperature dependence (Davis et al. 1976; Lowitzsch et al.
1977; Paintal 1965; Rasminsky 1973).

Figure 5 illustrates the strength-duration properties for
motor and sensory axons determined at the middle node. It
must be emphasized that simulations with intracellular stim-
ulation result in a shorter strength-duration time constant
(SDTC) compared with experiments with transcutaneous
stimulation due to the large nerve/electrode distance (Kuhn
et al. 2009). The motor rheobase was 476 pA and the motor
SDTC was 205 �s, which closely match values in previous
modeling studies (Bostock 1983; Daskalova and Stephanova
2001; McIntyre et al. 2002). In agreement with experimental
studies, the SDTC in the sensory axon (304 �s) was higher

and the rheobase was lower (308 pA) compared with values
in the motor axon. This results in a ratio of 1.5 for sensory/
motor SDTC (304/205 �s), which matches with experimen-
tal observations (Kovalchuk et al. 2018; Mogyoros et al.
1996).

Disruption of nodal sodium channel clusters in motor and
sensory axon. Figure 6A shows motor action potential propa-
gation from node 11 to node 31 for a 70% of normal nodal
sodium channel conductance. A small drop in the maximal
membrane potential can be observed at the affected middle
nodes with a slowed conduction velocity to 43.4 m/s. Failure of
motor action potential propagation occurred at a nodal sodium
channel conductance of 25% of normal (4-fold drop; Fig. 6B).
To determine the effect of disruption of nodal sodium channel
clusters on motor and sensory conduction velocities, nodal
sodium channel conductance was reduced from 100% (nor-
mal), 70%, 50%, and 30% up to conduction block. In sensory
axons, action potential propagation failure occurred at a con-
ductance of 21% of normal (4.8-fold drop). Decreasing nodal
sodium channel conductance induced progressive slowing to-
ward block in the motor and sensory axons, with slightly
higher conduction velocities and more resistance to conduction
block for the sensory axon (Fig. 7).

Fig. 3. Motor action potential propagation. Action potential
propagation of the motor myelinated axon model up to 3 ms
from node 11 to node 31. The dots at node 11 (T1 � 0.10 ms)
and 31 (T2 � 0.58 ms) define the time points with the highest
gradient of membrane potential from which the conduction
velocity was derived [(20 � 1,150 �m)/(T2 � T1) � 47.9 m/s].
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Paranodal myelin loop detachment in motor and sensory
axon. Detachment of paranodal myelin loops from the axonal
membrane in motor and sensory axons was simulated by
decreasing the periaxonal resistance to 70%, 50%, 30%, and

20% of normal. Motor conduction velocity decreased to 44.2
(70% of normal), 41.1 (50% of normal), 35.4 (30% of normal;
Fig. 8A) and 28.0 m/s (20% of normal) until conduction block
occurred at a periaxonal resistance of 13% of normal (Fig. 8B).
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S, sensory � 304 �s).
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Fig. 6. Motor action potential slowing and conduction block
due to disrupted nodal sodium channel clusters. Action poten-
tial propagation of the motor myelinated axon model up to 3
ms from nodes 11 to 31, with 70% of normal nodal sodium
channel conductance (A) resulting in a slight drop of the
maximum membrane potential around the affected region and
conduction slowing [(20 � 1,150 �m)/(T2 � T1) � 43.4 m/s],
and 25% of normal nodal sodium channel conductance (B)
inducing a conduction block for stimulation at node 11 at 3
times the excitation threshold. Insets in A show a schematic
view of the myelinated axon with the affected region (top) and
the characteristics of the myelinated axon being modeled
(bottom), the persistent (Nap) and transient (Nat) sodium
channel conductances.
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Sensory conduction velocity decreased to 46.9 (70% of nor-
mal), 44.2 (50% of normal), 37.7 (30% of normal), and 30.7
m/s (20% of normal) until conduction block occurred at a
periaxonal resistance of 11% of normal (9-fold drop). Decreas-
ing periaxonal resistance induced progressive slowing toward
block in the motor and sensory axons, where the sensory axon
had slightly faster conduction velocities and was more resistant
to conduction block (Fig. 9).

Interaction of disrupted nodal sodium channel clusters and
paranodal myelin loop detachment. More sophisticated simu-
lations were subsequently performed to the interaction of nodal
sodium channel disruption and detachment of paranodal my-
elin loops on conduction slowing and block. Figure 10A shows
that a boundary of block emerges, representing the percentage
of normal where this interaction induces conduction block.
Outside this boundary (Fig. 10A, bottom left), there is failure of
saltatory conduction, and within this boundary (Fig. 10A, top
right), saltatory conduction is still maintained, albeit at lower
conduction velocities. The sensory axon, compared with the
motor axon, had consistently higher resistance to the emer-
gence of block. Finally, for the motor axon, we completely
mapped the conduction velocity distribution within the bound-
ary of block in two-dimensional (Fig. 10B, top) and projected
three-dimensional representations (Fig. 10B, bottom), which
also encompass the results of Figs. 7 and 9.

Sensitivity of the boundary of block to enlarged nodal area.
Depending on various pathophysiological conditions and their
severity levels, the boundary of block shifts, changing the areas
covered by conduction slowing and block. To investigate the
sensitivity of this boundary, two additional conditions were
simulated in the motor axon. Because damage may appear
more focally, the affected region was reduced to five nodes
(nodes 19–23). Also, paranodal myelin detachment may, as an
additional consequence, effectively enlarge the exposed nodal
area. An enlarged nodal area was simulated by increasing the
nodal capacitance that reflects widening of nodal length from 1

to 3 �m. Figure 10C shows that the two conditions shift the
boundary of block in opposite directions. When only five nodes
are affected, the area covered by conduction block is reduced,
whereas for nodal widening this area increases.

DISCUSSION

In this study we successfully implemented a mathematical
model to simulate saltatory conduction along peripheral my-
elinated motor and sensory axons in circumstances resembling
those hypothesized in immune-mediated neuropathies. The
simulations with the model generated action potentials fol-
lowed by the physiological depolarizing and hyperpolarizing
afterpotentials. Our model further corresponded with experi-
mental and simulation studies on motor and sensory conduc-
tion velocities that scaled linearly with temperature and axonal
diameter (Boyd and Kalu 1979; Davis et al. 1976; de Jesus et
al. 1973; Franssen and Wieneke 1994; Lowitzsch et al. 1977).
Also, the motor and sensory strength-duration properties fol-
lowed the behavior observed in human peripheral myelinated
nerves (Howells et al. 2013; Kiernan et al. 2000, 2001;
Kovalchuk et al. 2018; Mogyoros et al. 1996; Sleutjes et al.
2018) Subsequently, we were able to quantitatively determine
that saltatory conduction progressively slows before conduc-
tion block when pathology associated with immune-mediated
neuropathies was induced, by focusing on disrupted nodal
sodium channel clusters and paranodal detachment (Franssen
and Straver 2014; Kieseier et al. 2018; Susuki et al. 2012;
Uncini and Kuwabara 2015). A boundary of block emerged
when the interaction of both mechanisms was simulated, with
block occurring outside this boundary and slowing when re-
maining within this boundary. Simulations provided a link
between the biophysical differences characteristic for motor
and sensory axons and their varied impact on the emergence of
conduction block. This provides quantitative evidence of their
differential susceptibility to conduction block (Burke et al.
2017), which may also consequently induce a varied degree of
functional impairment.

Differences between motor and sensory fibers. The imple-
mented biophysical differences between motor and sensory
axons are based on experimental evidence and simulations
obtained from human nerve excitability studies (Bostock et al.
1994; Bostock and Rothwell 1997; Howells et al. 2012). With
the use of these differences, our findings support the studies
suggesting that sodium gating kinetics may underlie the nar-
rower sensory action potential compared with motor action
potential (Burke et al. 1997; Howells et al. 2012; McIntyre et
al. 2002), despite the larger persistent sodium current and
smaller slow potassium conductance in normal sensory com-
pared with motor axons. Sensory conduction velocity was also
previously found to be slightly higher than the motor nerve
conduction velocity (Nielsen 1973). The slopes of the conduc-
tion velocity due to temperature changes (1.6 m·s�1·°C�1)
were approximately linear and fell within the experimentally
observed ranges for motor and sensory axons (1.1–2.3
m·s�1·°C�1) (Davis et al. 1976; de Jesus et al. 1973; Franssen
and Wieneke 1994; Halar et al. 1980; Lowitzsch et al. 1977;
Rasminsky 1973). Modeled strength-duration properties were
in agreement with previous modeled values (Bostock 1983;
Daskalova and Stephanova 2001; McIntyre et al. 2002). Single
intracellular stimuli applied at a node results in shorter simu-
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Fig. 7. Relation of motor and sensory conduction slowing toward block with
increasing nodal sodium channel cluster disruption. Relation between nodal
sodium channel cluster disruption is simulated by decreasing the sodium
channel conductance from 100% (normal), 70%, 50%, and 30% and decreasing
conduction velocities in motor (black) and sensory (gray) axons until conduc-
tion block (motor � 25% of normal; sensory � 21% of normal). Note the
logarithmic scaling of the x-axis.
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lated SDTC compared with experiments with large nerve/
electrode distance (Kuhn et al. 2009). Uniform stimulation
over all nodes and internodes has been suggested to more
closely approximate external stimulation with large surface
electrodes (Daskalova and Stephanova 2001). It should be
further noted that studying single axons (Mogyoros et al. 1996;
Sleutjes et al. 2018) results in a larger physiological range for
strength-duration properties compared with assessing a group
of axons. The sensory-to-motor SDTC ratio of 1.5 (304/205
�s) was also in accordance with previous studies (Howells et
al. 2012; Kiernan et al. 2000, 2001; Kovalchuk et al. 2018;
Mogyoros et al. 1996). Although the excitation threshold
depends on many factors, the order of magnitude (�0.1–1 nA)
to generate an action potential resembled that of other model-
ing results (Bostock 1983; Danner et al. 2011b; Stephanova
and Bostock 1995). With the implemented biophysical differ-
ences between motor and sensory axons, our simulations
showed that they responded differently to conduction slowing
and emergence of block induced by nodal and paranodal

dysfunction at various severity levels. Differences in motor and
sensory axons are likely not limited to axonal membrane
dynamics, but might also include microstructural components.
This may further contribute to the varied susceptibility and
selectivity of motor and sensory involvement in immune-
mediated neuropathies. Although more difficult to elucidate,
adequate implementation of these differences may further im-
prove computational models to study immune-mediated neu-
ropathies more specifically.

Emergence of conduction block. Inducing conduction block
required considerable blockage of sodium channels (4- to
5-fold) and reduction of the paranodal seal resistance (8- to
9-fold), emphasizing that the safety factor for impulse gener-
ation is generally high. Normal axons have a safety factor,
defined as the ratio of available to required driving current to
excite a node, in the same order of magnitude (~5–7; Tasaki
1953). Our simulations further suggest that the smaller the area
(Fig. 10B, top) or volume (Fig. 10B, bottom) in the multidi-
mensional diagrams covered by conduction slowing relative to
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Fig. 8. Motor action potential slowing and conduction block
due to paranodal myelin loop detachment. Action potential
propagation of the motor myelinated axon model up to 3 ms
from nodes 11 to 31 with 30% of normal paranodal seal
resistance (A) resulting in a slight drop of the maximum
membrane potential around the affected region and conduction
slowing [(20 � 1,150 �m)/(T2 � T1) � 35.4 m/s] and 13% of
normal paranodal seal resistance (B) inducing a conduction
block for stimulation at node 11 at 3 times the excitation
threshold. Insets in A show a schematic view of the myelinated
axon with the affected region (top) and the characteristics of
the myelinated axon being modeled (bottom), the periaxonal
paranodal (Gperi,p) and juxtaparanodal conductance (Gperi,jp).
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that of conduction block, the more susceptible the myelinated
axon becomes to the occurrence of a conduction block. As a
result, additional, either internal or external, perturbations (e.g.,
membrane hyperpolarization or voluntary activity) that nega-
tively affect the condition are likely to reduce this area or
volume and may result in crossing of the slowing/block bound-
ary, inducing failure of action potential propagation. Being
close to this boundary is comparable to a reduced safety factor
just above unity, where conduction is still possible, but slower.
When it falls below unity by crossing the boundary, conduction
failure eventually occurs (Franssen and Straver 2013, 2014).
Interestingly, our findings further indicate that if conduction is
still possible at the affected region, the membrane potential
recovers outside such a region (Figs. 6A and 8A). This implies
that multifocally affected regions within a myelinated axon do
not necessarily lead to block, provided they are separated by
sufficient distance. Nevertheless, as long as conduction is
preserved, nerve function potentially varies depending on the
distant from the affected region, which may explain the excit-
ability studies in patients with MMN showing both abnormal
(Garg et al. 2019) and normal excitability indexes outside the
affected region (Cappelen-Smith et al. 2002). Further experi-
mental evidence of this longitudinal recovery is also present in
a study in which a rat myelinated fiber was partly exposed to
anti-galactocerebroside serum and internodal conduction time
normalized adjacent to the affected region (Lafontaine et al.
1982).

Simulating pathology. In various human neuropathies, the
modeled pathology, including nodal sodium channel abnormal-
ities and paranodal myelin loop detachment, was suggested to
be of significant relevance. In CIDP, excitability changes in
median nerve motor axons distal to sites with conduction block
were consistent with increased current leakage between node
and internode; furthermore, sera of these patients were shown
to bind to nodal and paranodal regions of teased rat nerve fibers
(Garg et al. 2019). In anti-MAG neuropathy, electron micros-

copy of sural nerve biopsy sections revealed loosening of
paranodal Schwann cell microvilli (Kawagashira et al. 2010).
Axonal excitability studies of median nerve motor axons
showed decreased threshold changes during the supernormality
period of the recovery cycle which were consistent with in-
creased juxtaparanodal fast potassium channel activation due
to loss of paranodal sealing (Garg et al. 2018). In diabetic
neuropathy, latent addition revealed decreased nodal persistent
sodium currents; this method allows for separation of changes
in strength-duration properties due to passive nodal properties
from those due to active nodal properties (Misawa et al. 2006).
Axonal excitability studies in patients with type 1 diabetes
without neuropathy showed changes consistent with loss of
sodium permeability and decreased fast and slow potassium
conductances (Kwai et al. 2016). Finally, staining of nodal
sodium channels was shown to be decreased or lost in a rabbit
model of human AMAN (Susuki et al. 2007b). Supporting our
simulations, an experimental study showed that targeting so-
dium channels with lidocaine slows conduction, and therefore
dysfunction of sodium channels should be considered as a
mechanism of slowing, also in absence of block (Yokota et al.
1994). Similarly, exposure to anti-galactocerebroside antibod-
ies was suggested to disrupt the outermost paranodal myelin
loops from the paranodal axon, thus inducing slowing and
block (Lafontaine et al. 1982). At a microstructural level,
abnormalities in various proteins (Kieseier et al. 2018) may
contribute to altered sodium channel conductance and paran-
odal seal resistance. GM1 gangliosides are enriched in the
nodal and paranodal axolemma and maintain nodal sodium
channel clustering and paranodal stabilization (Susuki et al.
2007b). Additionally, the septate-like junctions at the paranode
are formed by axonal contactin-associated protein (Caspr1) and
contactin 1 that are tightly connected to neurofascin-155 at the
paranodal myelin loops. Nodal sodium channels are anchored
to spectrin of the cytoskeleton via ankyrin-G and to gliomedin
of the Schwann cell microvilli via neurofascin-186. As such,
changes in functioning of these proteins may potentially be
reflected within the model by dysfunction of sodium channels
and detachment of paranodal myelin loops.

Sensitivity of the model to parameter choices. In addition to
altering parameters to simulate pathology, it must be noted that
small variations in any parameter within the model (e.g.,
dimensionality of the myelinated axon, ion channel conduc-
tances, gating kinetics, and longitudinal characteristics) will
cause fluctuations in excitability properties, with levels of
conduction slowing or block depending on the parameter’s
sensitivity within the model. Therefore, with the specific pa-
rameterization applied, the model structure, and simulation and
stimulation settings, our findings should not be interpreted as
rigid and absolute cutoff points regarding conduction slowing,
conduction block, and varied response of the motor and sen-
sory axons. More extensive and advanced probabilistic ap-
proaches are required to determine the contribution of these
sources of variability (Mirams et al. 2016). Nevertheless, our
simulation study provides a broad and quantitative insight into
how single or interaction of multiple pathophysiological mech-
anisms may affect saltatory conduction, which otherwise can-
not be systematically studied with experimental techniques.

Model limitations. The model includes the most prominent
voltage-gated ion channels whose functioning has been exper-
imentally studied in detail. Because completely capturing the
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Fig. 9. Relation of motor and sensory conduction slowing toward block with
increasing detachment of paranodal myelin loops. Relation between detach-
ment of paranodal myelin loops is simulated by decreasing the paranodal seal
resistance from 100% (normal), 70%, 50%, 30%, and 20% of normal and the
decreasing conduction velocities in motor (black) and sensory (gray) axons
until conduction block (motor � 13% of normal; sensory � 11% of normal).
Note the logarithmic scaling of the x-axis.
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functioning of a human peripheral myelinated axon in a com-
putational model is impossible, these models always come with
certain simplifications. It has also been suggested that ion
channel types are present in the myelin membrane (Baker
2002; Chiu 1987). The myelin sheath in our model involved a
myelin conductance and capacitance, which has also previ-
ously been applied (McIntyre et al. 2002; Stephanova and
Bostock 1995), generating physiological conduction velocities
and excitability properties. In addition to the gating kinetics,
temperature also affects conductance, the electrogenic pump,
and resting membrane potential (Franssen et al. 2010; Howells
et al. 2013; Kovalchuk et al. 2018; Smit et al. 2009; Stepha-
nova and Daskalova 2014). For convenience, we kept these
parameters constant, because their values are less unambigu-
ously defined to set properly. In the simulated temperature
range (30–36°C), results matched experimental studies well,
indicating the validity of our approach. The dynamics of
extracellular and intracellular ion concentrations have not yet
been incorporated into the model. The electrogenic pump
represents a constant current, where more sophisticated models

take into account its dependence on ion concentrations (Dijk-
stra et al. 2016). Repetitive nerve stimulation can result in
potassium accumulation in the periaxonal space, which may
also induce conduction block (Brazhe et al. 2011) or affect
resting membrane potential and excitability of the nerve (Hage-
man et al. 2018). Because we restricted our study to simula-
tions of action potential propagation after application of single
stimuli, the expectation is that the above factors will have only
a limited effect on our findings. Simulations of pathology were
implemented homogenously in the affected region. When my-
elinated axons are pathologically targeted, they are likely to be
affected more heterogeneously. Disturbed sodium channel
clustering not only may be reflected by blockage of channel
conductance but also potentially accompanies changes in gat-
ing kinetics. In pathological conditions, also implementing the
expression of other sodium channel subtypes (e.g., Nav1.8)
may become relevant to further refine the model, given there is
some evidence of their presence in some nodes of Ranvier
(Han et al. 2016). Because the membrane potential of the
model is clamped, changes to conductances do not affect the

Fig. 10. Emergence of a boundary of block in motor and sensory axons due to the interaction of nodal sodium channel cluster disruption and paranodal myelin
loop detachment, and effects of enlarged nodal area and a reduced affected region. A: the interaction of nodal sodium channel cluster disruption (as a percentage
of normal nodal sodium channel conductance) and paranodal myelin loop detachment (as a percentage of normal paranodal seal resistance) in motor and sensory
axon (9 middle nodes) for stimulation at 3 times the excitation threshold. B: 2-dimensional (top) and 3-dimensional (bottom) maps of motor conduction slowing
toward block from interaction in A. C: boundary of block in motor axon in 9 middle nodes (closed squares, dashed line; same as A), 9 middle nodes with enlarged
nodal area (open squares, solid line), and 5 middle nodes (shaded squares, dashed line). Note the logarithmic scaling of the axes.
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resting membrane potential. As such, the model allows study of
changes to resting membrane potential as a separate mecha-
nism. The above aspects can be further addressed in more
detail in subsequent studies and provide interesting opportuni-
ties for improvements, depending on the research question
posed.

Conclusion. With its current implementation, the presented
model contains the most prominent biophysical aspects that
appear necessary and sufficient to simulate saltatory conduc-
tion in motor and sensory axons. The link between these
biophysical aspects and their varied impact on the emergence
of block provides support that they may also partly contribute
to the selective susceptibility in immune-mediated neuropa-
thies. It further explains how action potential propagation
becomes affected due to pathological mechanisms involved in
immune-mediated neuropathies by focusing on perinodal
changes. In various human neuropathies, such as anti-MAG
neuropathy, these mechanisms may not remain restricted to the
perinodal region but also may involve morphological changes
associated with demyelination (Kawagashira et al. 2010). It
therefore also provides a valuable platform that enables the

implementation of, for example, segmental, paranodal, or
juxtaparanodal demyelination (Franssen and Straver 2014;
Stephanova et al. 2006, 2007) to further study their individual
and composite impact on saltatory conduction. In CIDP and
MMN, next to the morphological changes, also the interaction
with increased or decreased currents through specific ion chan-
nels (e.g., juxtaparanodal fast potassium channels) is of clinical
relevance to incorporate into the model (Garg et al. 2019). It
may help to understand how these abnormalities can poten-
tially be counteracted by specific pharmacological ion channel
modifiers to prevent the occurrence of conduction block and
restore action potential propagation. Computational models
(Stephanova and Daskalova 2008), in conjunction with tech-
niques to reliably assess the physiology and pathology in single
human myelinated axons (Howells et al. 2018; Sleutjes et al.
2018), are valuable tools for providing insights into vital
mechanisms that affect saltatory conduction and into which
component may potentially be targeted in immune-mediated
neuropathies.

APPENDIX

Below we present the basic equations in the model underlying the
ionic currents, including their dynamics. For a more extensive de-
scription of the double-cable structure with the corresponding differ-
ential equations, we refer to the work of Danner et al. (2011b). The
specific ionic currents, including their gating properties, were mod-
eled according to the Hodgkin-Huxley formulation (Hodgkin and
Huxley 1952). The transient and persistent sodium, slow and fast
potassium, inward rectifying, and leak currents are described by

INat
� gNat

m3h�Vmem � ENa� (A1)

INap
� gNap

p3�Vmem � ENa� (A2)

IKs
� gKs

s�Vmem � EK� (A3)

IKf
� gKf

n4�Vmem � EK� (A4)

IH � gHCNq�Vmem � EH� (A5)

ILk
� gLk�Vmem � ELk� (A6)

Values for the conductances gNat
, gNap

, gKs
, gKf

, gHCN, and gLk
are

given in Table 2. The variables m, h, p, s, n, and q are the dimen-
sionless gates involving the transient sodium activation and inactiva-
tion, persistent sodium activation, slow and fast potassium activation,

Table 3. Ion channel gating variables with their corresponding
equations

Ion Channel Gating Variables Equations

�m, �p,�n, �s A�V�B�
1�e

��V�B�
C

�h, �m,�p,�n,�s A��V�B�
1�e

�V�B�
C

�h A

1�e
��V�B�

C

�q Ae
��V�B�

C

�q A

e
��V�B�

C

Variables m, h, p, s, n, and q are the dimensionless gates involving the
transient sodium activation and inactivation, persistent sodium activation, slow
and fast potassium activation, and hyperpolarization-activated nucleotide-
gated cation activation, respectively. Rate constants (A), half-activation poten-
tials (B), and slope factors (C) are presented in Table 4.

Table 4. Rate constants, half-activation potentials, and slope factors for motor and sensory axons

Variable

Rate Constant A, ms�1

(Tref � 20°C) Half-Activation Potential B, mV Slope Factor C, mV

Motor Sensorya Motor Sensorya,b Motor Sensorya

�m 1.86 1.778 20.4 20.2 10.3
�m 0.0861 0.0824 25.7 25.5 9.16
�p 0.01 0.0096 27.0 26.8 10.2
�p 0.00025 0.00024 34.0 33.8 10.0
�h 0.0619 0.075 113.8 112.5 11.0 8.4
�h 2.294 2.800 31.8 30.5 13.4 10.2
�n 0.008 83.2 1.1
�n 0.0142 66 10.5
�s 0.00097 23.5 12.7
�s 0.00059 91.1 11.7
�q,�q 0.0009 107.3 101.0 12.2

Values are rate constants (A), half-activation potentials (B), and slope factors (C) for gating variables m, h, p, s, n, and q in motor and sensory axons. aChanges
of sensory-to-motor sodium channel activation gate (m, p) and inactivation gate (h), similar to those in Howells et al. (2012). bDepolarization of the half-activation
of hyperpolarization-activated nucleotide-gated cation channels by 6.3 mV (see text).
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and HCN activation, respectively. Vmem is the membrane potential.
The ionic reversal potentials (Howells et al. 2012; Jankelowitz et al.
2007) are given by

Eion �
RT

F
log��K�ex � Selion�Na�ex � Selion�K�ex

�K�i � Selion�Na�i � Selion�K�i
� , (A7)

where Eion represents the reversal potentials for sodium (ENa), potas-
sium (EK), and inward rectifier (EH). ELk

is set to resting potential
(Vrest). The applied channel selectivities Selion were SelNa � 0.9,
SelK � 0, and SelH � 0.097 (Howells et al. 2012). The applied intra-
cellular ([K]i, [Na]i) and extracellular potassium and sodium concen-
trations ([K]ex, [Na]ex) were comparable to those in previous studies
(Kiernan et al. 2005; Schwarz et al. 1995; Smit et al. 2009) with
[K]ex � 5.6 mM, [K]i � 155 mM, [Na]i � 9 mM, and [Na]ex � 144.2
mM, and F and R are Faraday’s constant, 96,485 C/mol and the gas
constant, 8.315 J/mol K. The dynamics of the channel gates were
described by

dy

dt
� [�y�1 � y� � �yy]Q10

Tsim�Tref

10 , (A8)

where y represents the channel gates (i.e., m, h, p, s, n, q), and �y and
�y were derived using the equations shown in Table 3 and correspond-
ing parameters shown in Table 4 (Howells et al. 2012; Jankelowitz et
al. 2007; Kiernan et al. 2005; McIntyre et al. 2002).

The temperature dependencies are given by Q10 (Q10 � 2.2 for m
and p gates, Q10 � 2.9 for h gate, and Q10 � 3.0 for n, s, and q gates).
The default simulated temperature (Tsim) was 36°C, and the reference
temperature (Tref) was 20°C. At t � 0, the initial conditions for the
gating kinetics satisfied (Hodgkin and Huxley 1952)

yt�0 �
�y

�y � �y
, (A9)

where yt�0 represents the initial state of the gates. To ensure a net zero
current at resting membrane potential across the axonal membrane in
the compartments with voltage-gated ion channels, a small auxiliary
current is implemented to initialize the model (Carnevale and Hines
2009).
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