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Abstract. Forest carbon estimation currently largely relies on remote sensing techniques in
combination with field measurement. High-resolution images, which are commonly utilized for
carbon estimation, are not readily available, and their cost prohibits communities from reaping
the benefits of maintaining their forest under the UN reducing emissions from deforestation and
forest degradation program. Our study explores the combination of readily available and rela-
tively cheaper unmanned aerial vehicle (UAV) (4-cm resolution) and multispectral Pleiades
(50-cm resolution) images for species classification robustness in view for carbon estimation
through object-based image analysis. The images are resampled and used to evaluate the effect
of combining multispectral Pleiades image on the accuracies of segmenting UAV images for tree
crown projection area (CPA) estimation and species classification. RGB images from a UAV
platform are processed in a photogrametric software and combined with the near-infrared band
of a Pleiades image to get a UAV-Pleiades image composite. The images are segmented using the
ESP 2 tool and the segmentation accuracy compared using a paired t-test. The segmented tree
crowns are classified using random trees (RT), support vector machines (SVM), and maximum
likelihood (ML) classifiers, and the classification accuracies of the three classifiers are compared
using the McNemar’s chi-squared test. Our study demonstrates a 93.5% accuracy of segmenting
UAV-Pleiades image composite, which is significantly higher than the 84.8% accuracy of seg-
menting UAV images (p < 0.05). Also an 84% classification accuracy of UAV-Pleiades image
composite is significantly higher than the 54% classification accuracy of the UAV images
(p < 0.05). Of the three classifiers used, the classification accuracies of SVM and RT are sig-
nificantly higher (p < 0.05) than that of the ML classifier. Given the significantly high accuracies
observed from this study for tree CPA extraction and tree species classification, carbon/above
ground biomass modeling is possible with significantly high accuracy using the combination of
multispectral Pleiades and UAV images. © 2019 Society of Photo-Optical Instrumentation Engineers
(SPIE) [DOI: 10.1117/1.JRS.13.034530]

Keywords: unmanned aerial vehicle; multispectral Pleiades; segmentation; tree-species;
identification.

Paper 190072 received Jan. 31, 2019; accepted for publication Aug. 29, 2019; published online
Sep. 28, 2019.

1 Introduction

Tree species diversity is an important parameter to understand and comprehensively describe a
forest ecosystem. Tree species-specific information gives an index of forest biodiversity and
ecosystem services, including carbon sequestration. Spatial heterogeneity in species composition
and stand structure of forest play a sensitive role in accurate carbon estimation.1 Forests play a
significant role in climate regulation2 and share 80% of the total exchange of carbon between the
atmosphere and the terrestrial ecosystem.3
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Forest aboveground carbon is about 50% of the above ground biomass (AGB).4 AGB is the
mass of all the organic matter in plant tissues above the soil, including stem, branches, foliage,
bark, and seeds.5 There is a growing need for consistent forest biomass monitoring, in the context
of sustainable livelihood, ecosystem services, and reducing emissions from deforestation and
forest degradation (REDD+). Under the REDD+ program, member nations must estimate their
baseline carbon stocks, monitor, record, and verify any changes due to the implementation of
their emission reduction programs to benefit financially.6,7 To ensure comprehensive and sus-
tainable forest management, carbon assessment methods need to capture tree species-specific
information.8

Approaches to biomass and carbon estimation include field measurements, GIS-based
assessments, and remote sensing.9 Field assessment for species identification and biomass esti-
mation is too costly and practically impossible. GIS-based methods extrapolate existing forest
inventory volume data to biomass using wood density. The extrapolation may induce large
errors. Passive remote sensing-based methods rely on the reflectance of the tree crowns recog-
nized from the image and use the statistical relationship between satellite extracted tree param-
eters [crown projection area (CPA), diameter at breast height (DBH), and tree height (H)] and
ground-based measurements for biomass estimation,5,10,11 using species-specific allometric
equations.

The relationship between CPA and DBH for tree species is essential for estimating above-
ground carbon. The relationship is built using the CPA extracted from the remotely sensed
image. Once the CPA is known, DBH and related biomass can be calculated.12–15 However, the
relation between DBH, CPA, and biomass is species specific, depends on specific wood density,
fueling the need to accurately identify tree species within the forest.

High-resolution active sensors such as GeoEye, Worldview, IKONOS, BirdsEye, and
Quickbird have been used to identify tree species, extract forest inventory parameters for indi-
vidual tree species and vegetation classification,16 and carbon estimation.17,18 Nevertheless,
images from these platforms do not perform well in species identification. Furthermore, tem-
poral availability and continuation of these missions is an issue, creating gaps in forest and
carbon monitoring efforts. Also the cost of images from these platforms prohibits communities
from reaping the benefits of maintaining their forest under the UN REDD+ program.
Multispectral Pleiades data on the other hand are relatively cheaper and readily available with
four bands including the near-infrared (NIR) band for differentiating vegetation types. The
drawback with Pleiades datasets is that the images lack in spatial resolution for scene
description.

Unmanned aerial vehicles (UAVs) are platforms capable of carrying sensors for monitoring
and mapping the environment and natural resources. According to Ref. 19, UAVs come with
varied capabilities and constitute an essential source of relatively cheaper remote sensing data
for applications in many fields, including but not limited to agriculture, forestry, mining, urban
planning, and land management. UAVs can be of fixed wing or rotary blade and can carry RGB,
multispectral and hyperspectral sensors, or even Lidar depending on the weight of the UAV.20

Species identification has been carried out using high-resolution optical UAV images.21,22

The extraction of tree structural parameters23–26 for carbon estimation has been performed using
high-resolution imagery from optical UAV. The results from the mentioned studies have been
promising. UAVs capture images with high spatial resolution, and when equipped with multi-
spectral sensors, they provide high spectral resolution images required for segmentation and
species identification in the process of object-based image analysis (OBIA). However, multi- or
hyperspectral sensors are more expensive than the UAV itself. For this reason, most UAVs use
low-cost RGB camera sensors, which produce images with a high spatial but low spectral res-
olution from which species recognition is challenging.

Accurate species discrimination requires high spectral resolution, whereas a precise descrip-
tion of texture and shape (in segmentation) needs high spatial resolution.27 However, the inability
of a single imaging sensor to completely capture all the necessary information for detecting an
object or classify a scene is the reason for the full exploitation of multisource data integration and
advanced image analytical or numerical procedures.27 Image integration is a process of exploit-
ing the strengths of two or more images from the same or different sensors to achieve better
results. Most studies involving image integration have done so through one of the many fusion
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methods, which end up with spectral and or spatial distortions.28,29 Image fusion combines and
mixes relevant information from a set of images into a single, more informative and complete
image.30 Few studies have simply integrated images by combining or layer stacking relevant
bands for segmentation and species identification.

This paper explores the potential of combining a high spatial resolution image from the UAV-
RGB platform with the NIR band from relatively inexpensive multispectral Pleiades image for
accurate tree crown segmentation and species classification, as a prerequisite for forest carbon
estimation.

2 Description of Study Area and Dataset

2.1 Description of Study Area

This study was conducted within a nature reserve in Amstelveen village. Amstelveen is a rural
area with landscape composed of forest patches and agricultural fields, close to the city of
Gronau in Germany. It is at the boundary of the Netherlands and Germany, situated at longitude
32558395m E and 5782262m N of UTM 32 N, ETRS89.

As can be seen in Fig. 1, eight forest blocks can be found in the area, five of which were
considered for this study due to the available secondary data on tree species and DBH. The
blocks with red polygons were used for this study. The forest blocks have both coniferous
and deciduous trees, with different species densities. beech (Fagus sylvatica), Scots pine
(Pinus sylvestris), Oak (Quercus robur and Quercus petraea), Alder (Alnus sp), Douglas fir
(Pseudotsuga menziesii), European hornbeam, and birch (Betula sp) are the most common tree
species in the Amstelveen area.31,32 The tree crowns are at the same canopy level, with spaces in-
between. Block 1 is an open forest mainly dominated by Scots pine. Blocks 2–6 are dense mixed
forest stands, with tree crowns of different sizes, and at different canopy levels. Each of these
blocks consists of more than two tree species.

Fig. 1 The study area showing forest blocks selected for this research.
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2.1.1 Species occurrence

The bar chart in Fig. 2 shows the occurrence of tree species within the Amstelveen area. From the
existing data, a total of 391 trees were extracted. From 391 trees, the dominant species are Fir
(36%), birch (19%), Oak (17%), and Scots pine (13%). The other tree species have been
recorded in <10% of the samples.

2.2 Dataset

This study made use of remotely sensed data from UAVand Pleiades platforms, in combination
with field data. UAV images were captured between August and September 2016 at a flight
height of 80 m above the tree canopy (100 m above ground), with 80% and 70% forward and
side overlap, respectively, using DJ Phantom 4 UAV. Multispectral Pleiades image of the same
area with 50-cm resolution captured in September 2014 was sourced from the remote sensing
lab in the Faculty of Geo-information Science and Earth Observation (ITC). Field data on tree
species, location, and DBH were collected from existing dataset provided by Erdbrügger.31

3 Methods

The study had three phases; UAV data acquisition and processing, image segmentation, and
classification, as shown in Fig. 3. The methods employed in the different phases of this project
are presented in sections following the flow chart.

3.1 Data Acquisition

The Pleiades dataset was provided by the ITC. The dataset is orthorectified panchromatic and
multispectral (RGB and NIR) images. UAV flights were performed over the 209.2 ha study area
after the establishment of eight adequately distributed and appropriately located ground control
points (GCPs). The locations of GCPs were measured using the differential Global Navigation
Satellite System Leica CS 15, a necessity to optimize the rigidity of the bundle block adjustment
(BBA) during image orientation. The flight was conducted with a forward and side overlap of
85% and 70%, respectively. The camera model on board the UAV was GR_GRLENS_18.3_
4928 × 3264 (RGB), and the flight height was 80 m above the tree canopy (100 m above the
ground). A total of 662 images were collected for processing.

Field data for the same area collected in 2016 were used to continue the study. Data har-
monization and extraction made use of GIS operations like query, editing of attribute tables,
coordinate reconciliation, overlays, spatial joins, and data export. The extracted point data of
tree species and location were overlaid on the orthophoto to confirm with the described fifteen
plot locations and tree identities in five of the blocks. According to the lineage of the 2016 data, a

Fig. 2 Numbers of each tree species recorded within the study area.
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circular plot-based design was used for data collection.31 All trees with DBH greater than 10 cm
were recorded within a 500-m2 circular plot (12.5-m radius). Tree species, DBH, and location
were recorded. Trees with a DBH less than 10 cm were not recorded because their contribution
to biomass is assumed to be negligible.33

3.2 Pleiades Data Processing

The study area was extracted (masked) from the multispectral Pleiades image with a georefer-
enced shapefile of the study area. The multispectral Pleiades image with the 50-cm resolution
was resampled to 30-cm resolution in ArcMap to ensure that pixel corners from UAV and
Pleiades coincide. The nearest neighbor resampling algorithm was chosen because it preserves
pixel values.34,35

3.3 UAV Data Processing

The UAV images were processed using structure from motion, the photogrammetric process of
constructing the three-dimensional structure of the scene, and camera position by analyzing the
sequence of images.36 The UAV images were processed in Pix4D. Once loaded into the pix4D
software, the images go through initial processing, point cloud densification, and finally the
generation of digital surface model (DSM) and orthomosaic.

The initial processing begins with tie-point detection, description, and matching for image
calibration. A sample of points is iteratively drawn from the pool of matched tie points and used
to create a model that determines the best relative orientation of the images. This iterative process
called random sample consensus reduces reprojection errors during image orientation.37 Once
the images are sufficiently oriented, GCPs are loaded to optimize the calibration and give the
images absolute orientation (geolocation on the ground).

Fig. 3 The different steps involved in the project: (a) UAV data acquisition and processing,
(b) segmentation, and (c) classification.
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In the second processing phase, the software runs an automatic aerial triangulation with BBA
at multiscale mode or half the image size and optimal conditions for point cloud generation and
densification.

DSM and orthomosaic were generated in the last processing phase by triangulation, speci-
fying product resolution as default setting (1× ground). Triangulation preserves the character-
istics of points from the original image.38

The resolution of the UAVorthophoto was high (3.4 cm) and had some noise. It was filtered
with a low-pass filter in ArcMap 10.6 and resampled to 30 cm using the nearest neighbor algo-
rithm. Resampling to 30 cm was done because this resolution has been reported to be suitable for
segmentation of tree crowns.32 Filtering removed small objects that induce noise, whereas resam-
pling with the nearest neighbour preserves the spectral information of pixels making up each tree
crown and prepares the resolution for better segmentation.

3.4 Formation of UAV-Pleiades Image Configuration

UAV-Pleiades image configuration was assembled by layer stacking the red, green, and blue
(RGB) bands from the UAV, with the NIR band from the Pleiades image into one raster image
using the composite band tool in ArcMap 10.6. This procedure was successful when all the
bands to be layer stacked were in the same image depth (8 unsigned or 16 unsigned bits).

3.5 Image Segmentation

Segmentation identifies homogenous areas in an image based on shape, colour, size, and groups
them into specific objects called segments.39 There are many different segmentation algorithms,
among which multiresolution is powerful when dealing with very high-resolution images.40 The
multiresolution segmentation algorithm was used in this study, and the optimal scale parameter
for segmentation was done using the ESP2 tool. This tool automatically segments each image
configuration into three levels, corresponding to levels of homogeneity. In this process, the tool
calculates local variance of objects for each level (mean standard deviation of objects for each
level). The rate of change in local variance per iteration is then plotted against increasing scale
value to show the optimum scale value for image segmentation. Figure 4 shows the local variance
graph for the segmentation of the open forest block in the study area.

The red line represents the local variation in the image objects from pixel level, whereas the
blue line represents the rate of change in local contrast as the object size increases, and the
vertical dotted grid lines are the optimal scale for each scene. As can be seen from the graph,
the local variance jumps high at the start as the size of objects increases due to the high resolution
of the image,41 whereas the rate of change is in the opposite direction, slowly because of the
scene (forest).

Fig. 4 Local variance, rate of change versus scale parameter for optimal image segmentation
using ESP2 tool.
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The default parameters (step sizes for each of the three levels, shape, and compactness) in
ESP2 tool were inappropriate for segmenting the tree crowns within the forest blocks. In addition
to varying the shape and compactness parameters, the step level sizes were iteratively varied to
obtain proper segmentation. The best segmentation levels for each forest block were exported as
shapefile, smoothed polygon for accuracy assessment in ArcMap.

The entire study area was divided into forest blocks because of differences in forest structure
and also to reduce image size for faster processing. The blocks were numbered 1–6. Five of the
blocks are those from which field data were collected in 2016, whereas block 2 had no recorded
field data.

3.6 Image Classification

Object-based supervised image classification is in recent times used for the classification of very
high-resolution images.42,43 Among the most popular classification algorithms for tree species
classification are maximum likelihood (ML), random forest, random tree (RT), and support vec-
tor machine (SVM) classifiers.44–46 These classifiers operate using similar principles; use training
samples, validation samples, and vote of the plurality to finally classify an object into a specific
class.47 In this study, RT, SVM, and ML classifiers were used and implemented in ArcMap.

The segmented layers were exported from eCognition with five and eight features in the
attribute table for UAV and UAV-Pleiades image configurations, respectively. These features
represent segment statistics that would be used for classification in ArcMap. The RT, SVM,
and ML classifiers in ArcMap require segmented raster as input. For this reason, each feature
was extracted by conversion to a segmented raster layer. Features were normalized to avoid
attributes with numerically higher ranges from dominating those with numerically lower ranges
during classification.48 Linearizing each feature also avoids numerical difficulties during calcu-
lations of segment statistics by the algorithm. Each feature was normalized to have values
between 0 and 1, using raster calculator with the expression as follows:

EQ-TARGET;temp:intralink-;sec3.6;116;411normalized feature ¼ ðfeature value −minimum valueÞ
ðmaximum value −minimum valueÞ :

Normalization also gave each feature the characteristic normal distribution, which makes
training and classification faster.49,50 All normalized features were layer stacked to create a seg-
mented raster layer (a requirement for implementing the classification algorithms in ArcMap)
with the number of bands corresponding to the number of features used. Among the layer stacked
features, four were selected for classification of UAV (mean values of red, green, blue, and stan-
dard deviation), whereas eight were selected for classification of UAV-Pleiades (1, red; 2, green;
3, blue; 4, NIR; 5, mean brightness; 6, compactness; 7, roundness; and 8, standard deviation).

Two sets of training and reference data were digitized in ArcMap based on field data.
Training samples were randomly selected, but the digitizing was done such that each sample
is a pure representation of the class it represents. Five classes were used: birch, beech, Scots
pine, water, and shadow. From the UAV image, 30, 21, 20, 19, and 14 samples of Scots pine,
birch, water, beech, and shadow were collected, respectively. On the other hand, 41, 28, 20, 4,
and 29 samples of Scots pine, birch, water, beech, and shadow were, respectively, collected from
the UAV-Pleiades image. Samples for each class were merged for each image configuration to
obtain a value for each class. All classifiers used the same training and validation data set con-
taining five classes (birch, beech, Scots pine, water, and shadow) for the same image configu-
ration. Class separability of the training samples was done using the mean layer statistics. As can
be seen in Fig. 5, the plotted ban statistics show that the four classes can be better separated in
bands (layers) 1 and 2 for the UAV layer. Within band two, there is a possible mixing of beech
and Scots pine.

On the other hand, the four classes are separated within bands 2, 3, 4, and 5 for the UAV-
Pleiades image as shown in Fig. 6. In bands 2, 3, and 5, there is a possible mixture of birch and
Scots pine, whereas in band 4, all classes are well separated.

With the training data from each image configuration, all three classifiers were trained to
generate respective classifier definition files, which were later used for classification. In the case
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of RT classifier, the number of trees or subset was set to 500 (number of subsets created, clas-
sified, and results averaged to get final classification), with a maximum number of samples and
sample depth left as default. For SVM, the number of subset per class was set at 500. This
number refers to the number of subsets that need to be classified and averaged to get the final
classification. These settings were chosen after some iterations.

A vector (shapefile) was created from the classified segments (raster files) and crossed with
the segments from eCognition in a spatial joint. The created vector file was the joint feature and
the segments from eCognition were target feature. This process created a vector file containing
information on class values and species name.

3.7 Segmentation Accuracy Assessment

Evaluating the quality of segmentation is essential for the validation of the OBIA process. The
best way to measure segmentation accuracy depends on the consequences of any segmentation
error. In this study, segmentation is done to estimate tree CPA, an input in species-specific
allometric equations for carbon estimation. The consequence of segmentation error is either
an overestimation or underestimation of CPA and thus carbon of tree species. For this reason,
segmentation accuracy was assessed using area estimation techniques,39 in a three-step pro-
cedure described in Ref. 51, and as shown in the equations as follows:

Fig. 6 Comparing class separability between the different image layers (bands) for UAV-Pleiades
segmented raster layer. (1, red; 2, green; 3, blue; 4, NIR; 5, mean brightness; 6, compactness;
7, roundness; and 8, standard deviation).

Fig. 5 Comparing class separability among the layers in the UAV layer stack raster (1, red;
2, green; 3, blue; and 4, standard deviation).
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EQ-TARGET;temp:intralink-;e001;116;723oversegmentation ¼ 1 −
areaðADi ∩ ARiÞ

areaðADiÞ ; (1)

EQ-TARGET;temp:intralink-;e002;116;685undersegmentation ¼ 1 −
areaðADi ∩ ARiÞ

areaðARiÞ ; (2)

EQ-TARGET;temp:intralink-;e003;116;649total detected error ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðOSÞ2 þ ðUSÞ2

2

r
; (3)

where ADi is the area of detected objects that are in a one-to-one spatial relationship with refer-
ence polygons, ARi is the area of reference polygons, and area (ADi ∩ ARi) is the area of refer-
ence polygons that have been correctly segmented.

The accuracy assessment made use of manually digitized polygons obtained for each block
from the filtered and resampled orthophoto. 54 polygons were delineated for block 3, 52 for
block 5, 123 for block 1, 70 for block 6, and 51 for block 4. A spatial join between reference
polygons and the segmented layer was done in ArcMap to identify segmented polygons in a
spatial relationship with the reference polygons based on a join count >0. Selection by attribute
of polygons from the output based on join count different from zero was made and the results
exported as a layer. The reference polygons were used as target features, whereas the segmented
layer was joined feature in a spatial join operation. Upon getting the layer of segmented polygons
in spatial contact with the reference layer, an intersection was performed with the reference
polygon layer to get under segmented and over the segmented area. A field was added to the
attribute table of the intersection output and area (ADi ∩ ARi) was obtained by calculating
geometry. The area of reference polygon layer represents “ARi” in the equation above, whereas
the area of spatial join output represents “ADi.” With ADi, ARi, and (ADi ∩ ARi), over-
segmentation, under segmentation (US), and total detected error were calculated.

Three blocks were selected to investigate a significant difference in the accuracy of segment-
ing UAV and UAV-Pleiades image configurations. Using the same reference polygon layer for
each block, spatial join, and the intersection was performed with the respective segmented layers.
The resulting area from the outputs (intersection) was extracted for corresponding segments
and a two-tailed t-test performed at 95% confidence level. For the t-tests to be performed, the
extracted data were checked for normality,52 using skewness and kurtosis z-values. Also the
assumption for a homogenous variance was investigated using Levene’s F-test.

3.8 Classification Accuracy Assessment

Accuracy assessment is a comparison between a detailed map and some reference information
assumed to be correct, following acceptable rules consistently.53 The accuracy of a classification
can be judged using accuracy parameters such as overall accuracy (OA), per-class accuracy
(CA), producer, and consumer accuracies. The rules to consistently observe in the process
include the choice of quality index appropriate given the purpose of each study, sampling unit,
strategy, and sample size.53,54 In this study, the classification was done on a segmented layer with
the purpose of accurately linking segments (CPA) to tree species for the modeling of DBH and
AGB at the species-specific level. Based on the defined goal, sampling units were chosen as
polygons (CPA), and the sample size was proportional. Since the segments (CPA) represents
a spatial entity that needs to be given identity in the classification process, the area was chosen
as the most important index for accuracy.55

Through a spatial query between the segmented layer and the reference polygon layer, a
subset of segmented polygons was exported as a test polygon layer. In a spatial join between
reference polygons layer and the test polygons layer, class values were transferred from reference
to test polygons. A total of 20 samples were taken for Scots pine (692.7 m2), birch (1604.1 m2),
and water (3087 m2), whereas 10 and 15 samples were taken for beech (743.5 m2) and shadow
(4103.9 m2), respectively. An intersection between final test polygons layer and the classified
polygons was performed, and the output used to extract correctly and wrongly classified area
for each tree species. A selection query by attribute {gridecode = 1 (2; 3; : : : n) AND class =
1 (2; 3; : : : n)} was performed, and the area of each species correctly and wrongly classified was
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calculated. The values were input into the confusion matrix for classification accuracy
assessment.

A selection by location query was performed between a reference layer and each of the clas-
sified layers to extract samples from each layer for comparison. A spatial joint was done with the
three layers, reference, and exported test segments from each classified layer. The class values
from corresponding segments in both classified layers were judged against those from the refer-
ence layer, and a 2 × 2 confusion matrix was created. A statistical test was performed to infer a
significant difference in the classification of different classifiers using the McNemar test as
described in Ref. 56. This test is based on chi-square (z2) statistics computed from the two error
matrices given as

EQ-TARGET;temp:intralink-;sec3.8;116;616Z2 ¼ ðf12 − f21Þ2∕ðf12 þ f21Þ;

where f12 is the number of cases wrongly classified by classifier one but correctly classified by
classifier 2, and f21 is the number of cases correctly classified by classifier one but wrongly
classified by classifier 2. From the McNemar test, if the z-score is >1.96 at 95% confidence
level, then the differences in classification results are statistically significant.

4 Results

4.1 Effect of Adding Multispectral Pleiades Image on Tree Crown
Segmentation Accuracy of UAV

As shown in Fig. 7, the segmentation results of blocks 6 (dense mixed forest with large tree
crowns) and 5 (dense mixed forest with closed canopy) show some cases of over and US.
However, a quantitative assessment is presented below.

Fig. 7 Visual comparison of UAV (a and b) and UAV-Pleiades (c and d) segmentation using
blocks 6 and 5 (a and c) are block 6 UAV and UAV-Pleiades, respectively, while b and d are
block 5 (UAV and UAV-Pleiades, respectively).
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As can be seen in Table 1, the UAV-Pleiades image shows highest segmentation accuracy in
block 5 (93.5%) and lowest in block 1 (64.2%), compared to the UAV with 84.8% and 84.4% in
blocks 5 and 1, respectively. The addition of Pleiades image seems to have enhanced segmen-
tation accuracy in the case of blocks 4, 6, and 5.

To test the hypothesis of no significant difference in the mean area segmented from UAVand
UAV-Pleiades image configurations, a student t-test was performed. As can be seen in Table 2,
the distributions of the data extracted from best segmentation of the image categories are suffi-
ciently normal to conduct a student t-test,52 except in the case of the UAV-Pleiades segments for
block 3. However, a log transformation of the UAV-Pleiades block 3 data made it significantly
normally distributed (skewness ¼ 0.07, <j2.0j). Their skewness z-value (<j2.0j) and kurtosis
z-value (<j9.0j) of the other blocks are within acceptable range.

Also Levene’s F-test was done to test the assumption of homogeneous variance. As can be
seen in Table 3, Fð11Þ ¼ 65.91, p ¼ 9.2 × 10−135, there is a significant difference in the var-
iances at 95% confidence level. Thus the null hypothesis of equal variances was rejected, and an
independent t-test with unequal variances was performed.

Table 1 Segmentation accuracy of UAV and UAV-Pleiades images using five forest blocks
(OS, oversegmentation; US, undersegmentation; and TDE, total detected error).

Block 1 Block 3 Block 4 Block 5 Block 6

UAV

OS 0.22 −0.01 0.31 −0.21 −0.27

US 0.00 0.25 0.00 0.00 0.00

TDE 0.16 0.18 0.22 0.15 0.19

Accuracy 84.36 81.97 78.20 84.80 80.94

UAV-Pleiades

OS 0.51 0.38 −0.11 −0.09 0.10

US 0.00 0.00 0.00 0.02 0.00

TDE 0.36 0.27 0.08 0.06 0.07

Accuracy 64.18 73.15 91.87 93.50 92.70

Table 2 Normality test using skewness z value for data meant for assessing the effect of image
configuration on area segmented for forest blocks 1, 3, 4, and 6. (UAV-Pl, UAV-Pleiades; Skew-z
and Kur-z are skewness and Kurtosis z-value, respectively; and SE, error).

UAV
block 1

UAV
block 3

UAV
block 4

UAV
block 6

UAV-Pl
block 1

UAV-Pl
block 3

UAV-Pl
block 4

UAV-Pl
block 6

Mean 30.42 60.25 51.23 81.31 47.54 108.59 54.34 91.40

S.E 0.84 2.80 2.57 3.14 1.55 7.02 3.14 4.13

Kurtosis 2.70 5.68 3.87 3.89 4.08 16.69 7.33 9.54

Skewness 1.36 1.98 1.82 1.67 1.60 3.44 2.12 2.33

Count 486 252 170 296 378 176 168 275

Skew-z 0.61 1.41 1.41 1.88 0.97 2.04 1.48 1.77

Kur-z 0.31 0.49 0.67 0.81 0.38 0.42 0.43 0.43

Note: The number 2.04 is in bold to indicate that the areas from segments of UAV-Pleiades block 3 are not
sufficiently normally distributed since skewness z-value is >1.98. As explained in the text that a log transfor-
mation made it sufficiently normally distributed, satisfying the condition to perform a t-test.
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In the case of UAV and UAV-Pleiades, as can be seen in Table 4, the one tail t-test with
unequal variance is associated with a significant difference between blocks 1 (p ¼ 4.93 ×
10−21), 6 (p ¼ 2.60 × 10−02), and 3 (p ¼ 1.05 × 10−16). Block 4 did not show any significant
difference (p ¼ 2.22 × 10−01) in the area segmented for both image configurations.

4.2 Classification of UAV and UAV-Pleiades Image Configurations

The classification of UAV and UAV-Pleiades images was performed using ML, RT, and SVM
classifiers in ArcMap. The classification accuracies were compared between the two image con-
figurations and across the three classifiers. The results presented in the subsequent sections.

4.3 Classification of UAV Images (Area-Based)

The detailed maps of ML, RT, and SVM classifications for forest block 4 are presented in Fig. 8.
From the maps, it can be deduced that the identification of tree species (beech, birch, and Scots
pine), and their surrounding environment from the UAV image configuration yielded good
results using the three classifiers. The RT classification produced a higher OA of 62%, compared
to 60.6% and 51.7% for SVM and ML classifiers, respectively. Errors could, however, be
visually recognized between the water and shadow classes.

As can be seen in Fig. 9, the classification of Scot pine is 44.7%, 39.3%, and 49.3% for SVM,
RT, and ML classifiers, respectively. 24.2% of beech was correctly classified by SVM and RT,
whereas ML classifier correctly classified 18.2%. All three classifiers registered an accuracy
>40% for classification of birch species. Greater than 50% of the classifications of SVM and
RT are in better agreement (kappa of 53.5% and 53.7%, respectively), whereas <50% of the
classification of ML is in better agreement (kappa of 45.7%).

Table 3 ANOVA results of Levene’s test for the theory that segmented area from the different
image configurations has equal variances.

Source of Var. SS df MS F p-value F crit.

Between groups 696807.7 11 63346.15 65.91 9.2 × 10−135 1.79

Within groups 3,477,524 3618 961.17

Total 4,174,331 3629

Table 4 Independent t -test results for the hypothesis that there is no significant difference in
the area segmented for UAV and UAV-Pleiades images at 95% confidence level.

Block 1
nf ¼ 486
npl ¼ 378
H0, μ1 ¼ μ2
df ¼ 589

Log (block 3)
nf ¼ 252
npl ¼ 176
H0, μ1 ¼ μ2
df ¼ 379

Block 4
nf ¼ 170
npl ¼ 168
H0, μ1 ¼ μ2
df ¼ 323

Block 6
nf ¼ 296
npl ¼ 275

H0, μ1 ¼ μ2,
df ¼ 521

t stat −9.70 −8.60 −0.77 1.95

PðT ≤ tÞ 1-tail 4.93 × 10−21 1.05 × 10−16 2.22 × 10−01 2.60 × 10−02

t -crit., 1-tail 1.65 1.65 1.65 1.65

PðT ≤ tÞ, 2-tail 9.86 × 10−21 2.11 × 10−16 4.44 × 10−01 5.20 × 10−02

t -crit., 2-tail 1.96 1.97 1.97 1.96

Significant Significant Not significant Significant (1-tail)

nf , sample size for filtered UAV image; npl, sample size for UAV-Pleiades image; and H0, null hypothesis.
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4.4 Classification of UAV-Pleiades Image Using Three Classifiers

The tree species maps from ML, RT, and SVM classifications for block 4 are presented in
Fig. 10. From the maps, it is clear that using the three classifiers, the discrimination of tree
species (beech, birch, and Scots pine) and their surrounding environment yielded good results
from the UAV-Pleiades image configuration. The SVM and RT classification produced a higher
OA of 84%, compared to the 74.8% for ML classifiers, respectively.

The classification results were best in identifying Scots pine and birch using all three methods
as shown in Fig. 11. Among the tree species, beech had the lowest classification accuracy
for all classifiers.

A comparison of CA reveals a general increase in the class accuracies recorded for UAV-
Pleiades image compared to the UAV image as shown in Fig. 12.

The addition of Pleiades to UAV image increased the classification accuracy when using
all three of the classification algorithms. The classification accuracy of UAV-Pleiades image
configuration is higher when using SVM and RT, compared to the ML classifier.

Fig. 9 CA for the classification of Scots pine (n ¼ 20), beech (n ¼ 10), birch,20 and their environ-
ment (water and shadow) using SVM, RT, and ML classifiers.

Fig. 8 (a) ML, (b) RT, (c) SVM, and (d) classification of UAV image of block 4 in ArcMap.
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Fig. 11 Class accuracies for each cover type using SVM, RT, and ML classification algorithm.

Fig. 12 Comparing the classification accuracy of UAV and UAV-Pleiades image configurations
using ML, RT, and support.

Fig. 10 (a) ML, (b) RT, (c) SVM, and (d) classifications of UAV-Pleiades block 4 in ArcMap.
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4.4.1 Classification accuracy assessment

The confusion matrix derived from the classification of both image configurations by the three
classifiers is presented in Table 5. The matrices consist of OA, the degree of agreement between
the detailed image and reality (kappa value), and CA. The kappa value, OA, and CA for UAV-
Pleiades image configuration are higher compared to that from the UAV image. The three
classifiers could identify Scots pine (Sp) and birch (Bi) from the UAV-Pleiades image with an
accuracy of >80%. RT and SVM classifiers were able to discriminate beech (Be) and birch (Bi)
species from UAV-Pleiades image with an accuracy (CA) of >60%, compared to the 14% accu-
racy recorded by ML classifier for the same UAV-Pleiades image configuration.

The UAV-Pleiades classifications were used to investigate significant differences in the
performance of the three classifiers using the McNemar test. The results are presented below.

4.5 Comparing SVM, RT, and ML Classification Results

From the classified segments, a total of 113 test segments were extracted using the reference
polygons. The McNemar’s test44 investigates if the difference in the number of misclassified test
polygons is significant. As can be seen in Table 6, the McNemar’s chi-squared statistic between
SVM and RT classifiers is <1.98 at the 95% confidence level. If the test statistic is <1.98, any
difference is not significant.56 The differences in these classifications were found not significant.
In the case of SVM and ML and between RT and ML classifiers, the McNemar’s chi-squared
statistic is >1.98. There is a significant difference in the classification of SVM and ML and
between RT and ML.

5 Discussion

5.1 Segmentation of UAV and UAV-Pleiades Image Blocks

The segmentation accuracy of the UAV-Pleiades image blocks was higher than the accuracy of
segmenting UAV image blocks. The higher segmentation accuracy of UAV Pleiades image sug-
gests that the addition of Pleiades NIR band to UAV enhanced the segmentation accuracy. The
enhancement was statistically significant in blocks 1, 6, and 3. The significant improvement
could be likened to the spatial arrangement and vertical structure of tree species within each
of these blocks. Block 1 is an open forest with mostly Scots pine, with visible crowns that are

Table 5 Comparison of the classification accuracies (%) of tree species and their environment
for two image configurations and three classifiers.

UAV UAV-Pleiades

Sp Bi Be Wa Sh OA Kappa Sp Bi Be Wa Sh OA Kappa

SVM 44.7 43.1 24 97.7 61.7 62 0.54 84.2 83.3 63.5 100 64.2 84.3 0.8

RT 39.3 44.3 24 98 61.7 62 0.54 85.3 81 65 100 63.4 84.4 0.8

ML 49.3 41 18 99.1 52.5 51.7 0.46 85 84.4 14.3 100 71.2 70.8 0.62

Sp, Scots pine; Bi, birch; Be, beech; Wa, water; Sh, shadow; OA, overall accuracy; RT, random trees; SVM,
support vector machines; and ML, maximum likelihood.

Table 6 Comparison between SVM, RT, and ML classifiers using McNemar’s chi-squared
statistic.

SVM versus RT SVM versus ML RT versus ML

McNemar’s chi-squared statistic 0.6 2.8 2.5

Effiom et al.: Combining unmanned aerial vehicle and multispectral Pleiades data. . .

Journal of Applied Remote Sensing 034530-15 Jul–Sep 2019 • Vol. 13(3)

Downloaded From: https://www.spiedigitallibrary.org/journals/Journal-of-Applied-Remote-Sensing on 20 Oct 2019
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



closed within the same canopy. Addition of the NIR band from the Pleiades must have reduced
the effect of shadow that exists in the UAV image, increased spectral variation, clearly showing
boundaries that resulted in better segmentation accuracy.57 Block 6 is composed of Scots pine,
oak, birch, and beech, with each species grouped within the same canopy level. Block 3 has the
birch and Scots pine occupying specific locations and also within the same canopy level. This
spatial arrangement of tree species in these blocks, with each species occupying a particular
vertical space, might have contributed to the high segmentation accuracy. Also the addition
of the NIR band from the Pleiades must have increase spectral variations between the crowns
of tree species in these blocks and so enhance segmentation. The segmentation accuracy
associated with the addition of Pleiades to UAV is higher than the results of segmenting high-
resolution images such as Geo-eye and worldview.58,59 The differences in results might be partly
because of the ESP2 tool, which was not used in the cited cases.

5.2 Classification of UAV and UAV-Pleiades Image Blocks

The classification of different tree species in a mixed forest can be challenging using high-
resolution UAVor the multispectral Pleiades as standalone. The class accuracies for UAV image
block range from 49.3% in Scots pine to 24% in beech species for all three classifiers. The low
accuracy of classifying beech species is probably because of fewer samples of beech and high
spectral mixing between beech and Scots pine. Also the beech trees were younger, so they
mostly occupied the lower canopy and its crowns were shaded by the shadows of mature and
taller trees, causing it to be seen and classified as a shadow. The observed high accuracy in the
case of UAV-Pleiades image configuration can be explained by the sensitivity of the NIR band
from the Pleiades to species. The OA and kappa value recorded in this study for the three clas-
sifiers are higher than that discussed in some works.44,56 The higher accuracy could be due to the
high spatial resolution of images used in this study compared to the 5-m resolution of RapidEye
dataset used in the other studies. High spatial resolution images display more features and allow
the features to be differentiated, compared to lower or coarse resolution images, thus resulting
in higher classification accuracies.60–62 The classification procedure and environment may also
have had an influence. The present study performed classification in ArcMap, whereas the cited
case classified in MATLAB. This study made use of a feature normalization method as described
in Hsu et al.48 According to Ref. 49, different normalization methods may exert different effects
on different classifiers. However, the impact of feature normalization methods on classifiers was
not assessed in this work.

The McNemar test z-score <1.96 for SVM and RT, mean that there is no significant differ-
ence between the classifiers. However, the classifications of ML and SVM, and ML and RT are
significantly different at the 95% confidence level (test statistic >1.96). SVM and RT performed
significantly better than the ML. This result is in line with other works,44,56,63 stating that RT and
SVM are much better classifiers for tree species identification compared to ML. The reason
might be because SVM and RT classifiers perform multiple classifications of each object as
specified by the user, then perform a vote of the plurality to get the best classification for each
object. The iterative process minimizes chances of misclassification. Also these two classifiers
require a limited number of pure samples to get a reasonable classification.

6 Conclusions and Recommendations

This study has demonstrated the utility of combining the flexible UAVand multispectral Pleiades
images for tree CPA estimation and tree species identification. The findings assert with existing
literature that image integration has potential to enhance the accuracies of segmenting tree
crowns and classifying tree species with higher accuracies, sufficiently significant for accurate
forest carbon modeling. The procedures employed in this research are simple and easily repro-
duceable as requested by the REDD+ program. The specific conclusions from this study are
highlighted below.

1. The combination of UAVand multispectral Pleiades image (50 cm) can be used for tree
crown segmentation and tree species classification in view for carbon estimation.
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2. The addition of the NIR band from multispectral Pleiades image significantly enhanced
the accuracy of segmenting tree crowns from UAV image with 95% confidence.

3. The addition of the NIR band from multispectral Pleiades image significantly enhanced
the accuracy of classifying tree species from UAV image with 95% confidence.

4. Given the significantly high segmentation and classification accuracies, the addition of
multispectral Pleiades image (50 cm) to the UAV image for accurate modeling of carbon
and aboveground biomass would yield reliable results.

The use of a canopy height model could increase the accuracy of segmenting low- and high-
level trees, resulting in more accurate tree crown estimation. Thus this study recommends the use
of the NIR and RGB bands as separate layers with weights in eCognition and the inclusion of
canopy height model for segmentation.
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