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Abstract— Ambulatory sensing of gait kinematics using iner-
tial measurement units (IMUs) usually uses sensor fusion filters.
These algorithms require measurement updates to reduce drift
between segments. A full body IMU suit can use biomechanical
relations between body segments to solve this. However, when
minimising the sensor set, we lose a lot of this information. In
this study, we explore the assumptions of zero moment point
(ZMP) as a possible source of measurement updates for the
sensor fusion filters. ZMP is otherwise utilised for humanoid
gait in robots. In this study, first, the relation between the
ZMP and centre of pressure (CoP) is studied using a GRAIL
system, consisting of opto-kinetic measurements. We find that
the mean distance over the gait cycle between ZMP and CoP is
10.54+1.2% of the foot length. Following this, we show how these
results could be used to improve measurements in a minimal
IMU based sensing setup.

I. INTRODUCTION

Ambulatory estimation of gait measures is useful in under-
standing gait patterns in healthy subjects, and also recovery
in people with gait impairment [1]. One possible ambulatory
method is to use Inertial Measurement Units (IMUs). IMUs
consists of 3D accelerometers, and 3D gyroscopes, and are
small and wearable. They can be used to estimate full body
kinematics, and also kinetics, if a full body suit of IMUs is
used [2], [3].

IMUs have also been widely explored for minimal sensing
of gait [4]. Several algorithms including machine learning
and sensor fusion approaches have been applied in order to
estimate spatial and temporal parameters from a small set of
IMUs [5], [6]. Sensor fusion approaches derive movement
velocity and position of the segment they are attached to.
However, they are affected by drift. Additionally, the IMUs
do not have a sense of relative distance between each
segment. In a full body setup, biomechanical constraints are
used to solve this issue [2]. However, in a minimal sensing
setup, such as IMUs on the feet, this may cause the two feet
to drift apart from each other. This issue has been solved
either as a problem with inequality constraints [7], or using
biomechanical constraints based on the inverted pendulum
model of human motion [6].

The theory of Zero moment point (ZMP) has been ex-
tensively used to balance gait in humanoid systems [8]. It
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Fig. 1. Measurement setups used in this study. (a) is the GRAIL platform
and (b) is the ForceShoe™.

assumes that for a stable gait pattern, the moments around
the centre of mass (CoM) are zero. Solving this assumption,
we can derive relations between ZMP, CoM, and distances
between the feet. This could be potential information that
would reduce drift in the sensor fusion approaches. There-
fore, in this study, we explore the assumptions of ZMP to
identify biomechanical constraints that would be useful as a
measurement update for sensor fusion filters. First, we study
the differences between ZMP and the reference center of
pressure (CoP) for walking in two conditions; normal and
a casted condition. This is measured in an opto-electronic
setup. Using the same setup, we test a relation derived from
the ZMP that could provide relative distances between each
foot and CoM. Further, we show an IMU example to describe
steps to implement the ZMP in IMU based sensor fusion
approaches.

II. METHOD

A. Measurement Setup

Seven healthy female subjects were asked to walk on the
GRAIL (Motekforce Link, The Netherlands). As can be seen
in Fig. 1 (a), the GRAIL consists of a split belt treadmill
with force plates and ten VICON motion capture cameras
to collect gait biomechanics. The setup measured the 3D
ground reaction forces and also the 3D kinematics of the
body positions. The subjects’ average age was 22.9+1.4
years, height was 1.78+0.06 m, and weight was 73.4+5.4
kg . The subjects were asked to walk for 5 minutes on the
treadmill at 1.2 m/s. After this, a plaster technician casted the
right foot of the subject and they were asked to walk again
for 5 minutes at the same speed on the treadmill. Casting was
done to induce asymmetry in gait. The institutional ethical
review board of the Vrij University Amsterdam approved the
experimental procedure in this study. All subjects provided
written informed consent.
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B. Centre of Mass

Schepers et al. [9] used a complementary filter algorithm
to estimate low and high frequency components of CoM from
the 3D forces and moments measured from the ForceShoe™
(Fig. 1 (b)). Here, we apply the algorithms to measurements
from the GRAIL, as it has been validated against the CoM
estimations using segmental kinematics [9]. Additionally, as
we use the ForceShoe™ in the later part of the study, the
same algorithms are applied here. The first stage estimates
CoM from both foot kinetic and kinematic information by
low pass filtering the CoP to estimate the position of CoM.
The total body CoP is estimated as follows from the force
measurements on the GRAIL.

Fzi-CoPyyy
Fz1+ Fz,

FZ,T . COPax,r

CoP,, =
Fz,+ Fz,

(D

All variables in (1) are a function of time. Equation (1)
is depicted in the global frame with Z axis positive upwards
along the vertical, and X positive along the walking direction.
Here, subscript r and [/ stand for the right and left foot
respectively, and subscript ax corresponds to either X or Y
axes. F, refers to the force in the Z axis. The CoP,, is then
low pass filtered at 0.4 Hz to obtain the CoM,, r.r [9].

The second algorithm estimates CoM from kinetic infor-
mation alone by double integration of the net forces based
on Newton’s second law. The acceleration of the body mass
Mpody at the CoM is given as follows.

F

Mpody

acoMm = +g 2
Here, F is the net force vector acting on the body, and g is
the gravitational acceleration. The change in CoM position
over time was derived from integrating the ac,ps twice. This
results in xc,ps Which was high pass filtered with a cut off
at 0.4 Hz to obtain CoM,, gr. This is the same cut off
as that of CoM, r’s low pass filter. The CoM,, 1r and
CoMg mr are fused using a complementary filter to obtain
the trajectory of CoM.

C. Zero Moment Point

The theory of ZMP assumes that the moment around the
CoM is zero for a stable walking trajectory. Here, ZMP is a
point on the ground, such that the cross product of the vector
(r) joining the CoM and ZMP and the ground reaction force
vector (F) is zero. This gives us the following equations:

rxF=0 3)
(CoM — ZMP) oy - Fz = (CoM — ZMP), - F, (4)
ZMPyy = CoMy — (7 - 522) (5

In 4), ZM Py is zero as it lies on the floor, and rz
is estimated as height of pelvis from the GRAIL system.
Therefore, (5) provides ZMP positions in X and Y axes. This
is then compared with the CoP estimated from the treadmill
force plates using (1).

D. Application of Zero Moment Point

The relation between ZMP and CoM as shown in (5) can
be utilised as additional information about relative distance
between the feet and CoM. Therefore, they can be used as
measurement updates for a sensor fusion filter, if the other
variables are known. For example, during swing phase of
the left foot, the CoP of the body will lie under the right
foot. Without pressure insoles, it is not straight forward to
measure CoP of each foot. However, the foot positions can
be estimated using an IMU on each foot [10], and CoM can
be tracked using a pelvis IMU [11]. Here, we can provide
an estimate for the right foot during left foot swing phase
as:

Fax
7y ) (6)

Here, pos, » is position of the right foot, and subscript s/
denotes instances of left foot swing phase. We have assumed
that the differences in ZMP and foot position is trivial.
Subsequently, we can derive an estimate for the left foot
during the swing phase of the right foot (sr).

POSazx,r = OOMa:c,sl - (TZ :

Faw
Iy

We then compare pos,; , and pos,,;,; with the true foot
positions at the respective instances (s/ and sr).

DPOSqz, 1 = COMa:z:,sr -

) (7

(rz -

E. Example using IMUs

We show a possible application of (6) and (7) in practice
by describing a preliminary measurement. A subject (male,
71 kg, 1.78 m tall, and 25 years old) is asked to walk with the
ForceShoes™ for 10 m in a straight line. There is an IMU
on each foot. We apply the sensor fusion filter of Weenk
et al [10] to the measurements by the IMU. This includes
their prediction models, and measurement updates such as
zero velocity update, and zero height update. However, we
skip the measurement updates from the ultrasound sensor, as
this includes relative foot distance information. Therefore, we
obtain foot positions, pos®¥  and posZ’f’l. These will have
drifted due to noise, due to absence of any relative distance
information. Then, we estimate reference CoM trajectory
using forces measured by the ForceShoes™ [9]. Further, we
apply (6) and (7) to the CoM estimated, in order to estimate
posf;%, and posZT,, respectively. Here, we assume 7, is a
constant line, with a value equal to the subject’s pelvis height
during quiet standing. We plot the trajectories of interesting
parameters and comment on how this could be used in a
sensor fusion setup.

F. Analysis of Results

We compare the ZM P,, measured in (5) with the CoP
measured from the treadmill force plates in GRAIL. Then,
we compare the error as a percentage of subject’s foot length
8% with Herr et al [12]. Following this, we compare posg
and pos,,; from (6) and (7) with foot positions measured
by VICON in GRAIL. For each of these, we test if the
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Fig. 2. Comparison of the mean trajectories of the zero moment point (ZMP) in dashed line and centre of pressure (CoP) in solid line for a normalised
gait cycle. The cycle begins with right heel strike and ends with the subsequent right heel strike. The cycle is the average cycle for all subjects. The shaded
regions show the standard deviation. The left column shows the normal condition and the right column shows the casted condition. The first row shows
the trajectory in the X axis and the bottom row shows the trajectory in the Y axis.

differences are statistically significant using a two tailed t-
test. Following this, we plot the trajectories of the interesting
parameters in our example (Section II-E) with the IMUs.

ITII. RESULTS

Fig. 2 shows the normalised trajectories of ZMP and
COP in the X and Y axes for both conditions: normal and
casted. The graph shows the normalised gait cycle averaged
over all subjects. The shaded regions show the standard
deviation of the trajectories. The first column denotes the
normal condition and the second column denotes the casted
condition. Each row corresponds to one axis in the global
frame. The mean absolute RMS of the differences between
the ZMP and CoP over the complete cycle is shown in table
I for both conditions. No statistically significant difference
was found between the two variables. In table II, we compare
the mean RMS of the distance between the ZMP and CoP
across the gait cycle normalised by foot length (5%) with
that of Herr et al [12]. Further, in table III, the mean RMS
of the differences between the pos,., and pos,,; and
respective foot positions from GRAIL is shown for normal
and casted walking conditions. It was found that only posy,,
during casted walking was not significantly different from the
respective reference foot positions.

Finally, in Fig. 3, we see the trajectories of interesting
parameters from a top-down view. The two triangles denote
the starting foot positions. Both feet start at 0 m in the
walking direction. The left foot starts at 0.2 m along the Y
axis. The red dotted line represents the true CoM trajectory
estimated from the ForceShoes™ [9] from start to end of
10 m. The dark green dotted line is the trajectory of the
poszuf) ;» and the blue dotted line is the pos}l”f’r trajectory.
These are estimated from the sensor fusion filter of Weenk
et al [10]. They can be clearly seen to drift over time as
they do not have information about relative distances. The
intermittent solid lines denote the foot positions estimated

from the CoM using ZMP assumption. Here, the yellow
lines denote the pos>™,, measured at sr and solid green lines

ax,l’
denote the pos?™ ., measured at sl.
ax,r

TABLE I
MEAN RMS OF THE DIFFERENCES BETWEEN ZERO MOMENT POINT AND
CENTRE OF PRESSURE OVER A GAIT CYCLE

- X Axis Y Axis
Normal (cm) | 2.8 203 | 0.8 0.2
Casted (cm) 3604 | 1.44+03

TABLE II

MEAN DISTANCE BETWEEN ZERO MOMENT POINT AND CENTRE OF
PRESSURE ACROSS GAIT CYCLE NORMALISED BY FOOT LENGTH (5%)

- Herr et al. [12] | This study
Normal (%) 14 +2 105 £ 1.2
Casted (%) — 135+ 1.5

TABLE I

MEAN RMS OF DIFFERENCE BETWEEN p0Sq; AND REFERENCE FOOT
POSITIONS AT RESPECTIVE INSTANCES. (*: p < 0.05)

- Posx.i posy,i PosXx.r posy,r
Normal (cm) | 9.5 + 0.8% | 1.3 4+ 0.3* 9.3 £0.6* 1.9 £ 0.5*%
Casted (cm) | 89 £ 1.4% | 1.5+ 04% | 12.8 £ 1.8* 28 £09

IV. DISCUSSION

In practice, (3) is not valid. The moments around the
CoM oscillate around zero [12, Fig. 3]. Upper body angular
rotations also cause moments around the CoM. This is a
missing component in (3). However, here we look at how
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Fig. 3.

Different trajectories from the example with IMUs in Section II-E are plotted. The dark green dotted line and blue dotted lines are the left and

right foot trajectories respectively, estimated from the algorithm of Weenk et al [10] from the foot IMUs. The red dotted line is the reference centre of
mass (CoM) estimated by the ForceShoe™ . The solid yellow lines are possible estimates for left foot during right swing phase, and solid green lines are
possible estimates for the right foot during left swing phase. These are estimated using the CoM and zero moment point assumptions. The triangles denote

the starting position of the two feet.

the ZMP and CoP agree, during straight walking, where the
moments around the CoM may be really small.

Fig. 2 shows that there is close overlap between the
trajectories of ZMP and CoP for the normalised gait cycle.
The gait cycle begins with right heel strike and we can see
the transition of the CoP from left to the right foot. The
CoP falls completely under the right foot around 15% of the
gait cycle. Following the left swing phase, we notice the left
heel strike around 50% of the gait cycle, as the CoP starts
to move towards the left foot. The trajectory continues to
the next right heel strike which is the end of the gait cycle.
Looking closer, we observe that the standard deviation of
the trajectories (both ZMP and CoP) are smaller during the
transition from one foot to the other. In both normal and
casted conditions, the trajectory of ZMP is closer to the CoP
in the Y axis during these transition (double stance) phases,
when compared to the swing phases. This could suggest that
the moments around the CoM are smaller during double
stance phase, thereby showing lower differences in the ZMP
and CoP trajectories during these instances.

Table I shows these differences as mean RMS of the
differences between ZMP and CoP over the whole gait cycle.
It is seen that the casting increases the error margins of the
differences. The influence of casting on asymmetry of gait
was verified by studying the step length. It was found that
there were significant differences in the step lengths on the
restricted foot before and after casting. Casting therefore,
could induce asymmetry, causing increased rotation of the
upper body to compensate for the change in walking pattern,
and therefore, we see the differences in Table 1. Table II
shows the mean distance between ZMP and CoP across the
gait cycle, normalised by foot length of the subjects. The
lower errors in this study could be due to the use of the
method of Schepers et al. [9], for estimating CoM, as both the
low and high frequency information are present. However,

this inference should be tested.

Table III shows the differences between foot positions
estimated from CoM using ZMP assumptions and true foot
positions from GRAIL system. The larger errors can be
explained by the fact that we are actually comparing ZMP
estimates from CoM with foot positions. We assume ZMP to
lie close to CoP for each foot, and in turn, assume differences
between CoP and foot positions to be trivial. Therefore,
the table III shows the error margins associated with these
assumptions. Looking closer, the table shows that the error
margins are around 9.5 cm in X axis, and about 1.6 cm in
the Y axis, for the normal walking condition. They show
larger deviations in case of casting. These margins give us
an idea of the feasibility of using ZMP based assumptions
for estimating foot positions from CoM.

In Fig. 3, we see the different trajectories of interest,
during an over-ground walking situation. Here, we see that
the feet drift away from each other as there is no relative
distance information. Therefore, we could use the estimates
of right and left feet from CoM and ZMP to reduce this drift.
Fig. 3 shows these estimates, posjgfr, and posg;’,fl, (denoted
as solid green and yellow lines) oscillating on either side
of the CoM. These lines are present only at the respective
gait phases, either during left swing, or during right swing.
This information could be used as a measurement update in
a sensor fusion filter, at the right instances. As these filters,
such as Kalman Filter, work with uncertainty margins, the
error margins (shown in table III) could be accommodated
for.

Thus, this shows that a minimal sensing system could
consist of three IMUs; one on each foot, and one at the
pelvis. The foot IMUs could track the movement of the feet
in 3D. Measurement updates such as zero velocity update
will minimise the drift in the X and Z directions [10]. The
CoM can be tracked using a pelvis IMU [11]. The ZMP
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assumptions shown in this study could be used during left
swing to estimate relative position of CoM relative to right
foot. Additionally, during right swing phase, we can estimate
CoM relative to left foot. If we fuse all this information,
we can estimate the relative positions between the two feet
during subsequent stance phases. This removes the need for
full body sensing [2], or an inter-foot distance sensor [10],
[13]. However, these assumptions need to be validated using
a separate study.

Equation (5) also requires knowledge of the height of the
CoM and forces in 3D. CoM height can be measured by
the pelvis IMU, with appropriate measurement updates [11].
Estimating forces in 3D could be solved by either using
pressure insoles, or a sensor fusion approach that measures
the rotations of the pelvis in 3D. If we assume that the body
is only in contact with the ground, then the accelerations of
the pelvis could be similar to the accelerations at the CoM.
This is simply the specific ground reaction forces in 3D.

The current method assumes that the CoM position is used
as a reference, and the estimates of the two feet could be
corrected based on (6) and (7). An alternative method is
to assume the right foot to be a reference point and then
estimate the CoM, and subsequently, left foot position.

A. Limitations and Conclusions

The measurements were done on a treadmill which result
in repetitive gait patterns. These are suitable for analysis,
although, these patterns are not present in daily life. It is
interesting to study the validity of ZMP assumptions during
overground walking, and while performing tasks of daily life,
and also asymmetric gait patterns. These evaluations would
provide some indication about its use in minimal sensing
of gait in a remote setting, or people with impaired gait.
Asymmetrical walking may require the use of a sternum
IMU to measure rotations of the upper body, to account for
possible additional moments during walking.

The errors in table III are majorly present as we compare
ZMP with reference foot positions. Therefore, a possible
solution could be to measure CoP during walking, as they
show lower errors with ZMP, as can be seen in table 1. In
an ambulatory sensing setup, these errors could be solved
by using a pressure insole to measure CoP providing more
accurate relative distances between CoM and either foot.

This study shows possible applications of using ZMP as-
sumptions to reduce the lateral drift during minimal sensing
of gait using IMUs. The next step is indeed to build a
sensor fusion algorithm (with a setup similar to II-E) that
can implement these updates iteratively. It is advised that
the assumptions are studied for different walking patterns.
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