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Abstract— Thermal actuation can reduce deterioration of the
imaging quality due to wafer heating. Because the placement of
thermal actuators is critical for the performance of the resulting
control system, a method to aid the design of an actuator layout
is developed. Optimal actuator shapes are computed as the
solution of an optimization problem that involves input and
state constraints. The resulting actuator shapes have a clear
physical interpretation for the next-generation wafer scanners
and numerical results seem to indicate that the designed
actuator shapes might be unique.

I. INTRODUCTION

A crucial step in the production of Integrated Circuits (ICs)
is the projection of the pattern of electronic connections
on a silicon wafer coated with a photoresist. The light
source used to project the pattern on the wafer causes the
wafer to heat up and expand, which leads to a deteriorated
imaging quality. With the critical dimensions of the projected
pattern approaching the subnanometer range, wafer heating
has become a determining factor for the quality of the
produced ICs (see e.g. [1], [2], [3]).

The effect of wafer heating can potentially be mitigated
by applying a thermal actuation heat load to the wafer. Such
actuation heat load will be generated by thermal actuators
that are placed above the wafer. Clearly, the placement
of these actuators is critical for the performance of the
resulting control system. Therefore, the design of such a
thermal actuator layout is an important (but nontrivial) task.
In particular, such a design should be able to reduce the
deformations in the wafer below a certain treshold by using
only a small amount of heating power. Furthermore, many
types of actuators can only heat or only cool. Therefore,
deciding which areas of the wafer should be heated and
which areas of the wafer should be cooled is an important
design decision.

The design of such an actuator layout can be considered
as an input selection problem for which many methods have
been developed (see e.g. [4], [5]). Because information about
the heat load generated by the expose light is available,
methods that can use this information seem most natural
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for this problem. Such methods have been proposed by Al-
Sulaiman and Zaman [6] and Cao, Biss, and Perkins [7].
For every input set, both methods evaluate a quadratic cost
function similar to the one used in the Linear Quadratic
Tracking (LQT) (see e.g. [8]). An advantage of this approach
is that input constraints can be included. However, the
application of these methods to the wafer heating application
leads to two main problems.

The first problem is that the physics of the problem is
essentially governed by Partial Differential Equations (PDEs)
which means there is a very large number of possible actuator
layouts, even after spatial discretization by, for example, the
Finite Element (FE) method. Therefore, evaluating the cost
function for every input set is computationally intractable.
Some recent publications show that evaluating the cost func-
tion for every input set is not necessary when the problem
formulation is changed. For example, Boulanger and Traut-
man [9] have developed a method to place point actuators
to minimize an LQT cost function for the one-dimensional
Korteweg-de Vries-Burgers equation by solving a system of
nonlinear equations using Newton iteration. Also the work
of Privat, Trélat, and Zuazua [10] and Kalise, Kunisch, and
Sturm [11] is worth mentioning in this context. In both
papers, an optimal actuation restriction problem is studied,
i.e. the question “if actuation can only be applied in a certain
fraction of the considered spatial domain, actuation in which
area of the domain is most effective?” is answered. In [10], an
analytic solution for one-dimensional parabolic equations is
derived and in [11], a gradient-based optimization algorithm
is proposed and applied to two-dimensional problems. The
approach in [10] can also be applied to the optimal actuator
shape design problem considered in this paper. In contrast
to the optimal actuation restriction problem, actuation can
now be applied in the whole design domain but is required
to have a fixed shape of which the intensity varies over time.
This problem can also be considered as a combined plant and
control design problem (see e.g. [12]), in which the shape of
the actuation heat load is considered as part of the plant and
the intensity as a control input. The optimal actuator shape
design problem is considered in this paper.

The second problem is that the relation between the
weightings in the cost function and the achieved imaging
quality is not easily determined. In practice, the designer
needs to meet a certain performance, i.e. the deformation
on the wafer surface needs to be below a certain tolerance.
However, tuning the weights in the LQT cost function such
that this goal is achieved is not straightforward and will
require many iterative designs. It is therefore convenient to
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formulate the required imaging quality as constraint. This
leads to a state-constrained optimization problem and, to the
best of our knowledge, actuator design problems have always
been studied without state constraints.

In this paper, a method to compute the optimal actuator
shape and corresponding (scalar) actuator intensity is pre-
sented. The method can deal with input constraints which re-
flect that thermal actuators can typically only heat or cool and
state constraints which guarantee a specified imaging quality.
A gradient-based optimization algorithm is used to find the
optimal actuator shape and control input simultaneously. The
method is applied to a two-dimensional thermomechanical
wafer heating model. The obtained actuator shape has a clear
physical interpretation.

The remainder of this paper is structured as follows. In
Section II, the wafer heating physics are described and the
optimal actuator shape design problem is formulated. In Sec-
tion III, the optimization procedure is discussed. In Section
IV, the resulting actuator shapes are presented. Finally, in
Section V the conclusions are formulated and discussed.

II. PROBLEM FORMULATION

A. Wafer heating model

A wafer is a silicon disk which typically has a radius
of 300 mm and a thickness of 0.7 mm which is placed
on a supporting structure. Because the wafer is thin, the
temperature variations along the thickness are negligible and
the temperature field in the wafer can be considered to be
a function of the in-plane Cartesian coordinates (x,y) and
time t. Assuming the supporting structure has a constant
temperature T0, the temperature increase in the wafer T is
the solution of the two-dimensional heat equation

ρcH
∂T
∂ t

= kH
(

∂ 2T
∂x2 +

∂ 2T
∂y2

)
−hcT +Q, (1)

where ρ , c, k, and H are the mass density, heat capacity,
thermal conductivity, and thickness of the wafer, respectively,
hc models the cooling to the supporting structure, and Q =
Q(x,y, t) is the applied heat load that results from the expose
light and the thermal actuators, i.e. Q = Qexp + Qact. The
heat load Qexp is induced by the exposing light that projects
the pattern of electronic connections on the wafer and has
a power Pexp [W] which is uniformly applied over the slit
Ωslit ⊂ R2 (the red area in Fig. 1 with length L and width
W ) which moves with a constant velocity v in the positive
y-direction. The actuation heat load Qact will be discussed
further in the next subsection. Since the area in which the
heat load is applied is small compared to the wafer, the
spatial domain (x,y) ∈ R2 is considered to be infinite. Time
runs from 0 to te, where te is the time it takes to scan a
single field of the wafer which typically contains 100 fields.
The wafer temperature is initially equal to T0, i.e. the initial
condition is T (x,y,0) = 0.

Because the considered domain is infinite and the applied
heat load is moving, it is convenient to consider a moving
coordinate system (x,ζ , t) = (x,y− vt, t) in which the heat
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y

Fig. 1: The heat load (red) that is applied to the wafer (gray)

load is fixed. In these new coordinates, (1) becomes (see
e.g. [13, Chapter 11])

ρcH
(

∂T
∂ t
− v

∂T
∂ζ

)
= kH

(
∂ 2T
∂x2 +

∂ 2T
∂ζ 2

)
−hcT +Q. (2)

The mechanical model used to predict the resulting
in-plane displacement fields is based on linear strain-
displacement relations and the plane-stress relations for an
isotropic material. It is assumed that inertia effects are neg-
ligible, which is a standard assumption in thermomechanical
models (see e.g. [14]). The resulting model in ζ -coordinates
takes the form

EH
1−ν2

(
∂ 2dx

∂x2 +
1−ν

2
∂ 2dζ

∂ζ 2 +
1+ν

2
∂ 2dζ

∂x∂ζ

)
− ksdx

=
αEH
1−ν

∂T
∂x

, (3)

EH
1−ν2

(
∂ 2dζ

∂ζ 2 +
1−ν

2
∂ 2dx

∂x2 +
1+ν

2
∂ 2dx

∂x∂ζ

)
− ksdζ

=
αEH
1−ν

∂T
∂ζ

, (4)

where dx = dx(x,ζ , t) and dζ = dζ (x,ζ , t) are the displace-
ment fields in x- and ζ -direction, respectively, E, ν , and α

are the Young’s modulus, Poisson’s ratio, and coefficient of
thermal expansion of the wafer, respectively, and ks accounts
for the stiffness of the supporting structure. Note that there
is a one-sided coupling from the thermal to the mechanical
domain.

B. Optimal actuator shape design problem

The actuation heat load Qact has one fixed shape of which
the intensity varies over time, i.e.

Qact(x,ζ , t) = B(x,ζ )u(t), (5)

where B(x,ζ ) is the actuator shape and u(t) is the intensity.
The idea behind (5) is that B(x,ζ ) will indicate where heaters
or coolers should be placed. Note that the shape B(x,ζ ) is
described in the moving ζ -coordinate system, which means
that the designed actuator shapes are fixed to the expose
load Qexp and move w.r.t. the wafer. Also note that the
representation (B,u) of Qact is clearly nonunique. One easily
sees that for example (−2B,−u/2) is a representation of the
same actuation heat load B(x,ζ )u(t). Part of this nonunique-
ness is removed by normalizing the actuator shapes B(x,ζ )
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to have unit L1-norm, which means that B(x,ζ ) has unit
[1/m2] so that u(t) has unit [W]. The remaining freedom
to scale B(x,ζ ) and u(t) by −1 will be removed below. It
should be emphasized that although the representation (B,u)
is nonunique, this discussion does not demonstrate that the
resulting (single-shape) actuator heat load B(x,ζ )u(t) is not
unique. Whether the single-shape actuator heat load is unique
is an open question, which will be discussed more later on.

The goal is to design an optimal actuator shape B(x,ζ )
and the intensity u(t). These should satisfy the following
five conditions:
• Since thermal actuators can often only heat or only cool,

it is required that the sign of the intensity u(t) does
not change over time, which means that the sign of
the actuator shape B(x,ζ ) will indicate which locations
should be heated and which locations should be cooled
and overlap of heaters and coolers is avoided. It is thus
required that for all 0≤ t ≤ te

u(t)≥ 0. (6)

• For practical reasons, the actuation heat load should not
interfere with the projection of patterns on the wafer.
Therefore, the actuation heat load cannot be applied in
the slit, i.e. for all (x,ζ ) ∈Ωslit

B(x,ζ ) = 0. (7)

• The applied actuator heat load results in a sufficiently
good imaging quality. This is achieved when the defor-
mation in the slit is below a certain threshold δslit, i.e.
for all (x,ζ ) ∈Ωslit and 0≤ t ≤ te

d2
x (x,ζ , t)+d2

ζ
(x,ζ , t)< δ

2
slit. (8)

• The actuation heat load prevents slip between the wafer
and the supporting structure, which means that the
displacements in the whole wafer surface should be
below threshold δslip, i.e. for (x,ζ ) ∈ R2 and 0≤ t ≤ te

d2
x (x,ζ , t)+d2

ζ
(x,ζ , t)< δ

2
slip. (9)

• The applied actuator heat load is minimal, i.e. the
actuation heat load has minimal (squared) L2-norm

J0 =
∫ te

0

∫∫
R2

Q2
act(x,ζ , t) dx dζ dt. (10)

It will be convenient to write (8) and (9) as one inequality

d2
x (x,ζ , t)+d2

ζ
(x,ζ , t)< δ

2
max(x,ζ ), (11)

where δmax(x,ζ ) = min{δslit,δslip} when (x,ζ ) ∈ Ωslit and
δmax(x,ζ ) = δslip otherwise. The problem is thus to minimize
the cost functional J0 in (10) over all actuator shapes B(x,ζ )
and intensities u(t) subject to (6), (7), and (11).

III. OPTIMIZATION PROCEDURE

Finding a solution to the optimization problem formulated
in the previous section is not trivial, particularly because of
the nonlinear state constraint on the resulting displacements
in (11). Therefore a two-step optimization procedure is
proposed in which two considerably simpler optimization

problems that only involve linear input constraints need to
be solved. In the first step, it is attempted to find an actuator
shape B(x,ζ ) and intensity for which the constraints (6),
(7), and (11) are satisfied. Note that depending on the values
of δslit and δslip such a solution might not exist and that it
is not trivial to find such a solution. In the second step, the
admissible solution found in the first step is used as a starting
point for the minimization of the cost functional J0 in (10)
subject to the constraints (6), (7), and (11).

A. Finding an admissible solution

To find an admissible solution, the minimization of the
following cost functional is considered

J1 =
∫ te

0

∫∫
R2

[
d2

x (x,ζ , t)+d2
ζ
(x,ζ , t)−δ

2
max(x,ζ )

]+
dx dζ dt, (12)

where the function [·]+ : R→ R is defined by

[a]+ =

{
a when a≥ 0,
0 otherwise. (13)

Note that the integrand only contributes to the value of J1
when d2

x (x,ζ , t) + d2
ζ
(x,ζ , t)− δ 2

max(x,ζ ) > 0, so when the
maximally allowed displacement is exceeded. Furthermore,
note that J1 ≥ 0 and that J1 = 0 implies that the maximally
allowed displacement δmax(x,ζ ) is not exceeded. Finally,
note that J1 is convex (but not strictly convex) in the
displacement fields dx and dζ , and by linearity of (2)–(4)
also convex in the applied heat load Qact.

An admissible solution J1 = 0 can thus be found by mini-
mizing J1 subject to the constraints (6) and (7). In general, a
solution resulting in J1 = 0 is not unique. When a minimum
where J1 > 0 is found the situation is more involved. Without
the requirement that the applied heat load Qact consists of a
single actuator shape (see (5)), the convexity of J1 in Qact
implies that the value of local minimum is unique (see e.g.
[15]) so it is guaranteed that no admissible solution exists.
However, with the actuation heat load of the form (5) it has
not been proven that no admissible solution exists.

B. Finding the optimal solution

As already mentioned, the admissible solution found
by the procedure from the previous subsection is clearly
nonunique and will typically not be the solution with minimal
L2-norm in (10) as is required. A barrier functional J2 is used
to assure that the constraint (11) remains satisfied during
the optimization process. The barrier functional is defined
as J2 = ∞ when the constraint (11) is not satisfied for any
(x,ζ ) ∈ R2 and 0≤ t ≤ te and otherwise as

J2 =
∫ te

0

∫∫
R2

(
δ 2

max(x,ζ )
δ 2

max(x,ζ )−d2
x (x,ζ , t)−d2

ζ
(x,ζ , t)

)p

dx dζ dt, (14)

where the power p > 1 should be chosen such that points
(x,ζ , t) for which the margin in (11) is small affect the value
of J2 significantly more than points for which the margin in
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(11) is large. In particular, the value p = 3 used in Section
IV assures that points for which the margin in (11) is below
4% contribute a 1000 times more than points for which the
margin in (11) is larger than 50%. Now consider

J0 +wJ2, (15)

where w > 0 is a weight that is chosen such that J0 and
wJ2 are of similar magnitude. Minimizing (15) subject to
the constraints (6) and (7) yields a solution to the optimal
actuator shape design problem.

Note that J2 is convex in Qact, so that the cost functional
J0 +wJ2 is strictly convex in Qact which means that without
the requirement that Qact consists of a single actuator shape
the optimized actuation heat load is unique (see e.g. [15]).
Furthermore, it follows that minimizing J0 +wJ2 for a fixed
actuator shape B(x,ζ ) yields a unique optimal intensity u(t)
and minimizing J0 +wJ2 for a fixed intensity u(t) yields a
unique actuator shape B(x,ζ ) . Uniqueness of the single-
shape actuator heat load B(x,ζ )u(t) has not been proven.
However, it has been observed for several design problems
that different starting points and different optimization algo-
rithms all converge to the same applied heat load B(x,ζ )u(t),
which suggests that the optimal actuator shape is in fact
unique (at least for the considered wafer heating problem).

C. Optimization algorithm

To use the method from the previous two subsections,
two optimization problems with a convex cost functional
J = J(B,u) and linear input constraints need to be solved.
Such problems are typically solved by gradient-based op-
timization (see e.g. [15]). Note however that in both cases
the optimization runs over two unknowns, the actuator shape
B(x,ζ ) and the intensity u(t), that appear as a product.
Because of this unusual form the optimization program was
coded in MATLAB and no existing software was used.

First, the temperature field T (x,ζ , t), the displacement
fields dx(x,ζ , t) and dζ (x,ζ , t), and the actuator shape B(x,ζ )
are expressed in terms of FE shape functions. The Galerkin
method then leads to the spatial discretization of the gov-
erning equations (2)–(4) and the cost functionals in (10),
(12), and (14). For the numerical integration over time a
fixed step size fourth-order Runge-Kutta solver is used.
For both optimization problems formulated in the previous
subsections, the sensitivities ∇BJ(B,u) and ∇uJ(B,u) are
computed using adjoint states (see e.g. [16] or [17]).

In both minimization problems, the actuator shape and
intensity are updated alternately by the projected gradient
method (see e.g. [17] or [18]). For example, the next iterate
for the actuator shape B(i+1) = B(i+1)(x,ζ ) is computed as

B(i+1) = ΠB

(
B(i)−hB∇BJ(B(i),u(i))

)
, (16)

where ΠB is the projection on the set of actuator shapes
that satisfy (7), u(i) = u(i)(t) is the i-th iterate of the control
input, and hB > 0 is the step size that is determined based
on a second-order Taylor series expansion

J(B(i+1),u(i))≈ J(B(i),u(i))+G(i)
B hB +

1
2

H(i)
B h2

B, (17)

where G(i)
B < 0 and H(i)

B > 0 contain the gradient and Hessian
information, respectively. Starting from hB =−G(i)

B /H(i)
B , hB

is halved until J(B(i+1),u(i)) < J(B(i),u(i)). After that, the
intensity u(i) is updated in the direction −∇uJ(B(i+1),u(i))
by a similar procedure. The convergence criterion is that the
relative changes in cost functional J, actuator shape B, and
intensity u should all be below a tolerance tol after both B
and u have been updated.

It should be noted that the actuator shape B(x,ζ ) is not
enforced to have unit L1-norm during the update process
because allowing this scaling freedom does not result in
conditioning problems since either the actuator shape B(x,ζ )
or the intensity u(t) is fixed during every update step. The
normalization ‖B‖L1 = 1 can easily be achieved after the
optimum has been found by rescaling B(x,ζ ) and u(t).

IV. RESULTS

To construct the FE model, the infinite domain (x,ζ ) ∈
R2 is truncated to (x,ζ ) ∈ [−2L,2L]× [−3vte,2vte], which is
chosen such that the temperature increase at the edges of the
domain is negligible. The FE model uses linear quadrilateral
elements and has 1323 nodes, of which 252 are located inside
the slit so that the actuator shape B(x,ζ ) is described by 1071
nodal values. The time interval [0, te] is discretized using 100
uniformly distributed time points.

The used parameter values are given in Table I. Note
that an actuation heat load will be designed that achieves
a maximal deformation in the slit of δslit = 2 nm, which is a
reduction of a factor 2 compared to the maximal deformation
of 4.1 nm that occurs without actuation. Also observe that
δslip = 3.67 nm is exceeded without actuation, which means
actuation is needed to prevent slip.

Fig. 2 illustrates the design procedure described in the
previous section. Starting from the initial guess in Fig. 2(a)
where the actuator shape B(x,ζ ) = 0 and the intensity is
u(t) = 105 [W], minimizing J1 in (12) leads to the admissible
design in Fig. 2(b). This design is then used to initialize
the optimization procedure for J0 +wJ2, which leads to the
design in Fig. 2(c). Note that the normalization ‖B‖L1 = 1 is
applied in Figs. 2 and 3, unless B(x,ζ ) = 0.

The designed optimal actuator shape in Fig. 2(c) can be
explained by our physical understanding of the wafer heating
problem. The actuator shape B(x,ζ ) shows that the cooling
is applied around the slit. Note that having Qact = −Qexp
would result in zero deformations because no net heat load
is applied. However, the constraint (7) excludes this solution.
The cooling around the slit in Fig. 2(c) attempts to have some
of this effect while respecting the constraint (7). A more
surprising aspect of the shape in Fig. 2(c) is the heating
applied in the area where ζ > 0. To understand this, recall
that the expose load moves in the positive y-direction, which
means that during the scanning of the field the heat applied
by the expose light is accumulating behind the heat load,
so in the area where ζ < 0. The thermal expansion due to
this heating pushes the slit in the positive ζ - (or y-)direction.
The actuation heat load applied in the area where ζ > 0 now
creates thermal expansion in front of the slit, which pushes
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(a) Initial guess

(b) Admissible design

(c) Optimal design

Fig. 2: Actuator shapes B(x,ζ ) and intensities u(t) that are
used as initial guess in the optimization (a), that are obtained
after searching for an admissible solution (b), and that are
obtained after minimizing the actuation effort (c). The white
area in the center of the actuator shape is the slit Ωslit in
which actuation is not possible.

(a) Initial guess

(b) Admissible design

(c) Optimal design

Fig. 3: Actuator shapes B(x,ζ ) and intensities u(t) that are
used as initial guess in the optimization (a), that are obtained
after searching for an admissible solution (b), and that are
obtained after minimizing the actuation effort (c). The white
area in the center of the actuator shape is the slit Ωslit in
which actuation is not possible.

3793



TABLE I: Parameter values

ρ 2329 [kg/m3]
c 705 [J/kg·K]
H 0.775 [mm]
k 149 [W/K·m]
hc 1500 [W/m2· K]
Pexp 3.2 [W]
L 26 [mm]
W 4.6 [mm]
te 0.136 [s]

E 167 [GPa]
ν 0.3 [-]
ks 1.21 ·1012 [N/m3]
δslit 2 [nm]
δslip 3.67 [nm]
p 3 [-]
w 105 [W2/m4]
tol 10−5 [-]

the slit back in the negative ζ - (or y-)direction, thus reducing
the total deformation that will be observed in the slit.

Fig. 3 shows the designed actuator shapes B(x,ζ ) and
intensities u(t) that are obtained when the initial actuator
shape is chosen as B(x,ζ ) = cos(πx/L)cos(πζ/(vte)) [1/m2]
and the initial intensity as u(t) = 105 [W] (note that this
initial guess does not satisfy ‖B‖L1 = 1 and is rescaled in Fig.
3(a)). When comparing the results in Figs. 2 and 3, it is clear
that the obtained admissible solutions in subfigures (b) are
different but that the optimal solutions in subfigures (c) look
very similar. The fact that the actuator shapes and intensities
are different in subfigures (b) illustrates that there are indeed
many admissible solutions that satisfy the constraints (6),
(7), and (11) and the particular solution that is found after
minimizing J1 depends on the initial guess that is used.
This is also reflected by the fact that J1 is not a strictly
convex function in the applied actuator heat load Qact, which
indicates the minimizer is not unique. It is remarkable that
the optimal designs in subfigures (c) are very similar. This
suggests that the single-actuator shape solution might be
unique for the considered problem, but at the moment there
is no theoretical support for this claim.

Actuator shape designs for the considered FE model with
1323 nodes can be made conveniently on a normal laptop.
The running times will obviously depend on the initial guess.
The results in Fig. 2(b) were obtained after one update of
the actuator shape B(x,ζ ) which took 5s. Obtaining the
optimized actuator shape in Fig. 2(c) required 393 updates
of B(x,ζ ) and u(t) which took about 32 minutes. Starting
from the initial guess in Fig. 3(a) 8 updates of B(x,ζ ) and
u(t) (which took 41s) were needed to obtain the profile in
Fig. 3(b) and 577 updates of B(x,ζ ) and u(t) (which took
43 minutes) were needed to obtain the profile in Fig. 3(c).

V. CONCLUSIONS AND DISCUSSIONS

An approach to design optimal actuator shapes and cor-
responding intensities for the wafer heating problem has
been proposed. The method has been demonstrated to design
optimal actuator shapes for the scanning of a single field on
a wafer for a model in two spatial dimensions.

It should be noted that the method has great flexibility and
can be applied to many variations of the problem considered
in this paper that are relevant for the design of an actuator
layout. For example, it is easy to extend the presented method
to design actuator shapes that can only heat (i.e. add the
constraint B(x,ζ )≥ 0) or actuator shapes that can only cool
(i.e. add the constraint B(x,ζ )≤ 0). By reformulating the FE

model it is also possible to consider fields near the edge of
the wafer and the scanning of multiple fields.

As noted before, the uniqueness of the single-shape ac-
tuator heat load B(x,ζ )u(t) has not been proven. However,
the numerical results in Section IV seem to indicate that
the algorithm always converges to the same applied actuator
heat load B(x,ζ )u(t). A proof of such claim seems chal-
lenging because the structure of the problem is similar to
a (constrained) low-rank approximation problem (see e.g.
[19]). The understanding of such problem is currently rather
limited compared to the well-known unweighted low-rank
approximation problem.

Note that the proposed design does not take into account
uncertainties such as the reflection of the wafer and the
cooling rate to the supporting structure (hc in (1) and (2)).
We intend to design a feedback control system that can
compensate for such uncertainties in a future work.
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