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1.1 Ecological importance of plants traits 
Understanding the spatial and temporal dimensions of plant traits in the face 
of global environmental change is critical to assessing the health and spatial 
planning of fragile ecosystems. Plant traits such as foliar nitrogen (N), leaf 
mass per area (LMA), chlorophyll (Cab), equivalent water thickness (EWT) and 
specific leaf area (SLA) are essential indicators of the quality and health of 
vegetation (Knox et al., 2010; Mutanga et al., 2005). Nitrogen is a key element 
in chlorophyll (0.2 - 6.4 % by dry weight) and in enzymes (i.e. ribulose-1.5-
biphosphate (RuBP) carboxylase and phenolyenolpyruvate (PEP)) essential for 
photosynthesis and subsequently carbon fixation in C3 and C4 plants 
respectively (Cho et al., 2013; Gibson, 2008; Schlemmer et al., 2013). As a 
source of protein for herbivores, foliar nitrogen content is known to determine 
the distribution and foraging behaviour of wildlife (Hassall et al., 2001; 
Schweiger et al., 2015). LMA and its reciprocal SLA together with leaf carbon 
content reflect the plant economic spectrum with regard to nutrients uptake, 
light harvesting and carbon sequestration (Martin and Thomas, 2011; Poorter 
et al., 2009). Cab is an important bio-indicator for assessing plant physiological 
status and photosynthetic capacity (Malenovský et al., 2013). EWT, on the 
other hand, provides information on plant water status (Yao et al., 2014). 
Temporal changes in plant traits influence ecosystem biogeochemical cycling 
(Fisher et al., 2012) and ecosystem productivity (Casas et al., 2014). The 
significance of leaf traits in ecosystem structure, functioning and provision of 
ecosystem services prompted the realisation that leaf traits are a critical 
component of essential biodiversity variables (EBVs) (Skidmore et al., 2015). 
Understanding the spatio-temporal dimension of these leaf traits improves the 
monitoring and conservation of EBVs towards the Aichi Biodiversity Targets 
(Pereira et al., 2013). 

1.2 Vertical heterogeneity in leaf traits across the 
canopy 

Plant traits do not exclusively exhibit variation over Cartesian space and time 
but also show changes across the vertical canopy profile. Plant physiology 
studies have demonstrated that leaf trait content vary relative to the position 
of the leaf in a plant canopy (Huang et al., 2011; Huang et al., 2014; LÖTscher 
et al., 2003; Wang et al., 2005). The vertical heterogeneity in leaf traits 
content across canopy is known to improve plant photosynthetic capacity and 
light use efficiency (Li et al., 2013). Two complementary theories, i.e. the 
optimisation (Hirose and Werger, 1987) and coordination (Chen et al., 1993) 
theories attempt to explain the mechanism responsible for the vertical 
heterogeneity in leaf traits across the canopy. 
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1.2.1 Optimisation theory 

The optimization theory is hinged on three principles i.e. (1) the irradiance of 
a leaf at a given canopy depth (2) the distribution of leaf traits especially N 
relative to the depth of the canopy (3) the photosynthetic activity of a leaf as 
a function of irradiance and leaf traits concentration (Hirose and Werger, 
1987). The theory postulates that plants allocate N based on light distribution 
pattern within the canopy. Plants allocate more N to the upper illuminated 
leaves that receive the highest photon flux density compared to lower shaded 
leaves (Li et al., 2013). This intrinsic mechanism optimizes the total canopy 
photosynthetic capacity (Field, 1983). Although the optimization theory is 
widely accepted in plant physiology domain, it has received criticism for 
oversimplification and lack of realistic underpinning biological mechanism 
(Chen et al., 1993).  

1.2.2 Coordination theory 

The coordination theory explains that the vertical heterogeneity in leaf traits 
distribution is an attempt by plants to maintain a balance between Rubisco-
limited rate of carboxylation (Wc) and electron transport-limited rate of 
carboxylation (Wj) (Chen et al., 1993). The two processes depend on leaf traits 
content and the rate of photosynthesis (Li et al., 2013). The driving force for 
the allocation of leaf traits especially N within a canopy is the variation between 
leaf N content at a given time and the N required to bring Wc and Wj into a 
balance (Chen et al., 1993). The theory infers that the primary objective of 
vertical heterogeneity in N distribution is not to maximise canopy 
photosynthesis but rather an inherent mechanism to enhance internal balance 
(Dreccer et al., 2000).  
 
Although the two theories improve our understanding of the vertical 
heterogeneity in leaf traits across the canopy, the impact of vertical canopy 
position on leaf spectral properties and retrieval of leaf traits across multiple 
species over the growing season has received little attention.  

1.3 Remote sensing plant traits 
Conventional methods of leaf traits measurements involve destructive 
harvesting and transportation of large foliar samples from discrete plots to 
laboratories for analysis (Ling et al., 2014; van Deventer et al., 2015). These 
conventional methods are costly as they require huge amounts of laboratory 
chemicals to extract nutrient constituents in addition to the high human 
resources required to collect and process the samples (Shengyan et al., 2002). 
Although these flaws cannot be completely eliminated in remote sensing leaf 
traits, the remote sensing procedure requires sufficient samples (>30) to 
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calibrate a parsimonious and robust model that can be used to explicitly 
quantify leaf traits repeatability over large spatial extents.  
 
Based on the knowledge and identification of spectral features that are 
sensitive to variation in foliar biophysical and biochemical properties a number 
of studies (Christensen et al., 2004; Ciganda et al., 2012; Curran et al., 2001; 
Darvishzadeh et al., 2008c; Delegido et al., 2010; Delegido et al., 2014; Dutta 
et al., 2015; Eitel et al., 2010; Ferwerda and Skidmore, 2007; Haboudane et 
al., 2004; Haboudane et al., 2002; Main et al., 2011; Malenovsky et al., 2013; 
Mutanga and Skidmore, 2007; Quanzhou et al., 2014; Ramoelo et al.; Ramoelo 
et al., 2013) have utilized empirical and physical models based on in-situ, air- 
and spaceborne remote sensing measurements to retrieve vegetation 
properties in different ecosystems with varying level of success. Empirical 
models explore the parametric and non-parametric statistical relationship 
between spectral features [reflectance, derivatives (first and second), 
vegetation indices, depth and width of absorption features] and foliar nutrients. 
Although statistical models are easy and faster to compute, they are associated 
with problems of transferability over space and time as in most instances the 
relationship between spectral data and leaf traits is sensor- site-, time, and 
biome specific (Clevers and Kooistra, 2012; Darvishzadeh et al., 2008b). 
Moreover, statistical models characterizing the relationships between spectral 
data and foliar biophysical and biochemical properties are not grounded in 
physical theory (Kokaly et al., 2009). Physical models on the other hand 
rigorously simulate light absorption and scattering inside vegetation canopies 
accounting for leaf biochemical composition, canopy structural properties and 
background soil based on radiation transfer theory (Homolová et al., 2013). 
However, the inversion process of physical models is computationally 
demanding and associated with 'ill-posed problem' (Weiss et al., 2000) i.e. 
where the inversion solution is not always unique, as various combinations of 
canopy parameters may yield almost similar spectra (Atzberger and Richter, 
2012), resulting in uncertainties in model predictions (Pasolli et al., 2015). 
Although, a number of studies have successfully retrieved plant biochemical 
and physical properties in different ecosystems using physical models very little 
is known on how the heterogeneity in leaf traits across the canopy affect 
modelling of leaf optical properties and retrieval of leaf traits using physical 
models such as PROSPECT.  

1.4 Upscaling leaf traits to canopy level 
There is often a mismatch of spatial scales at which in-situ and in-vitro traits 
are measured and the field of observation of remote sensing instruments. This 
mismatch requires scaling leaf traits from leaf level to canopy scale (Homolová 
et al., 2013). The mean leaf traits weighted relative to the abundance of 
dominant species are often multiplied by LAI (m2 m2) or foliage biomass (g m2) 
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to obtain a canopy-integrated value that corresponds to canopy reflectance 
observed by the sensor (He and Mui, 2010b). In most instances, the weighted 
mean traits are determined from samples collected from the sunlit upper 
canopy (Gara et al., 2019). This approach is centred on the implicit assumption 
that foliage material dominates canopy reflectance and variability in leaf traits 
across the vertical canopy profile is ‘insignificant’. This assumption is hinged 
on the theory that the absorption of incoming photosynthetically active 
radiation (PAR) follow a bell-shaped function positive skewed to the upper 
canopy (Kropff and Goudriaan, 1994). On this basis, the contribution of leaf 
traits from the shaded lower canopy is considered ‘invalid’ in canopy traits 
modelling (Roelofsen et al., 2013). However, the validity of this approach 
remains unknown for other leaf traits outside photosynthetic pigments. To this 
end, there is an imperative need to explore the effect of upscaling approaches 
and expression methods on canopy traits modelling. This knowledge can 
provide a baseline of understanding how deep into the canopy do sensors 
observe. 

1.5 Research Objectives  
The principal aims of this study were to: 

i. Examine the effect of vertical canopy position on leaf spectral 
properties and traits across multiple species 

ii. Examine the effect of leaf position within a canopy on the performance 
of the PROSPECT model in modelling leaf optical properties and 
retrieval of leaf traits across the growing season 

iii. Evaluate the effect of leaf-to-canopy upscaling approaches on 
modelling canopy traits using in-situ hyperspectral and simulated 
Sentinel-2 measurements 

iv. Examine the effect of canopy traits expression on modelling canopy 
traits using Sentinel-2 MSI across the growing season.  

1.6 Study area 
Objectives i and iii (Section 1.5) were addressed based on hyperspectral 
measurements conducted in a controlled laboratory environment using short 
plants purchased from the local nursery. In order to understand the validity of 
results obtained in the laboratory, we collected samples in Bavaria Forest 
National Park (BFNP), Germany (Fig 1.1) to address objective ii and iv. 
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Figure 1.1 The location of Bavaria Forest National Park in Germany. Overlaid on the 
Park is Sentinel-2 satellite imagery of 13 July 2017. 
 
BNFP is part of the mixed temperate Bohemian forest ecosystem. The Park is 
approximately 24 218 ha in size, with elevation stretching from 600 to 1453 m 
(Heurich et al., 2010a). Annual precipitation ranges from 1200 to 1800 mm 
and the park experience a mean annual temperature of ~5ᴼ C. The evergreen 
Norway spruce (Picea abies) and deciduous European beech (Fagus sylvatica) 
are the dominant trees species, while white fir (Abies abies), sycamore maple 
(Acer pseudoplatanus), and mountain ash (Sorbus aucuparia) are the less 
dominant species in the park (Heurich et al., 2010b). 

1.7 Thesis outline 
This thesis consists of six chapters including introduction, four core chapters 
and a synthesis. Chapter 1 provides a background of the research, objectives 
and thesis outline. The four core chapters are scientific outputs published (2) 
or submitted (2) to peer-reviewed international (ISI) journals. The four core 
chapters were conducted at three different levels of investigation, i.e. leaf 
level, canopy level and landscape level.  
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Leaf level 
Chapter two and three were conducted at leaf level using leaf hyperspectral 
data measured using a field spectroradiometer coupled with an Integrating 
Sphere. Chapter 2 examines the ability of leaf optical properties to track 
variability in leaf traits across the vertical profile using Partial Least 
Discriminatory Analysis (PLS-DA). Chapter 3 sought to examine whether the 
position of a leaf in a canopy affects the performance of PROSPECT in modelling 
leaf optical properties and the retrieval of leaf Cab, EWT and LMA across the 
growing season. 
 
Canopy level 
Chapter 4 explores the use of in-situ canopy hyperspectral measurements and 
simulated Sentinel-2 data measured in a laboratory using short potted plants. 
The chapter examined the effect of different approaches of upscaling leaf traits 
to canopy level on modelling canopy traits (LMA, chlorophyll, nitrogen and 
carbon).  
 
Landscape-level 
Chapter 5 examined the effect of canopy traits expression on modelling canopy 
traits (LMA, chlorophyll, nitrogen and carbon) using Sentinel-2 multispectral 
data across the growing season in BFNP. In addition to understanding the effect 
of canopy traits expression, the chapter explores the capability of Sentinel-2 
MSI to map the spatio-temporal variation in canopy traits across the landscape. 
 
Findings of the four core chapters are synthesized in Chapter 6. Finally, Chapter 
6 concludes the thesis by discussing the implications of the results obtained in 
the core chapters and future research avenues. 
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Chapter 2 
 
Impact of vertical canopy position on leaf 
spectral properties and traits across multiple 
species 
   

                                          
 This chapter is based on: 
Gara, T.W., Darvishzadeh, R., Skidmore, A. K., Wang, T. (2018). Impact of Vertical 
Canopy Position on Leaf Spectral Properties and Traits across Multiple Species. Remote 
Sensing, 10, 346 
 
Gara, T. W., Darvishzadeh, R., Skidmore, A. K., & Wang, T. Leaf spectral properties track 
variability in leaf traits across the canopy vertical profile: Poster presented at 10th EARSeL 
SIG Imaging Spectroscopy Workshop 19-21 April 2017, Zurich, Switzerland 
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Abstract  
Understanding the vertical pattern of leaf traits across plant canopies provide 
critical information on plant physiology, ecosystem functioning and structure 
and vegetation response to climate change. However, the impact of vertical 
canopy position on leaf spectral properties and subsequently leaf traits across 
the entire spectrum for multiple species is poorly understood. In this study, we 
examined the ability of leaf optical properties to track variability in leaf traits 
across the vertical canopy profile using Partial Least Square Discriminatory 
Analysis (PLS-DA). Leaf spectral measurements together with leaf traits 
(nitrogen, carbon, chlorophyll, equivalent water thickness and specific leaf 
area) were studied at three vertical canopy positions along the plant stem: 
lower, middle and upper. We observed that foliar nitrogen (N), chlorophyll 
(Cab), carbon (C), and equivalent water thickness (EWT) were higher in the 
upper canopy leaves compared with lower shaded leaves, while specific leaf 
area (SLA) increased from upper to lower canopy leaves. We found that leaf 
spectral reflectance significantly (P ≤ 0.05) shifted to longer wavelengths in 
the ‘red edge’ spectrum (685–701 nm) in the order of lower > middle > upper 
for the pooled dataset. We report that spectral bands that are influential in the 
discrimination of leaf samples into the three groups of canopy position, based 
on the PLS-DA variable importance projection (VIP) score, match with 
wavelength regions of foliar traits observed to vary across the canopy vertical 
profile. This observation demonstrated that both leaf traits and leaf reflectance 
co-vary across the vertical canopy profile in multiple species. We conclude that 
canopy vertical position has a significant impact on leaf spectral properties of 
an individual plant’s traits, and this finding holds for multiple species. These 
findings have important implications on field sampling protocols, upscaling leaf 
traits to canopy level, canopy reflectance modelling, and subsequent leaf trait 
retrieval, especially for studies that aim to integrate hyperspectral 
measurements and LiDAR data. 
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2.1 Introduction 
Leaf traits play a key role in ecosystem structure, functioning and resilience 
(Diaz et al., 2004) and ecophysiology (Reich et al., 2003). They improve our 
understanding of evolutionary and phylogenetic relationships among different 
forms of biota (Winemiller et al., 2015) as well as the parameterization of 
dynamic global biogeochemical models and nutrient budget simulations 
(Scheiter et al., 2013). Based on the realization that leaf traits are a critical 
component of essential biodiversity variables (EBVs) (Skidmore et al., 2015), 
quantifying leaf traits improves our conservation and spectroscopic monitoring 
efforts of EBVs towards the Aichi Biodiversity Targets (Pereira et al., 2013). 
 
Field spectroscopy provides a cost-effective and practical means to monitor 
EBVs and ecosystem functioning with a capacity to upscale to airborne and 
satellite imagery. Multi- and hyper-spectral sensors afford a comprehensive 
spectral information that has provided a cost effective opportunity to; estimate 
foliar biochemistry (Ferwerda and Skidmore, 2007; Kokaly, 2001), quantify 
plant biophysical properties (Darvishzadeh et al., 2008b; Dusseux et al., 
2015), identify plant species (Mariey et al., 2001; Schmidt and Skidmore, 
2003) and assess plant physiological status over space and time (Rapaport et 
al., 2015). Basically, two approaches [i.e., empirical (statistical) and physical 
models (radiative transfer models-RTM)] are often employed to link spectral 
signatures and field measured leaf traits. Empirical approaches explore 
parametric and non-parametric statistical relationships between spectral data 
or features and leaf traits (Verrelst et al., 2015a). Physical models on the other 
hand, rigorously simulate light absorption and scattering inside vegetation 
canopies accounting for leaf traits composition, canopy structural properties 
and soil background based on radiation transfer theory (Homolová et al., 
2013). Although these spectroscopic approaches for studying plant traits are 
promising, many efforts have been placed on the spectra-trait relationship for 
mature, sunlit leaves at the top-of-canopy. The implicit assumption is that 
variability in leaf traits content and leaf spectral properties within a canopy are 
very small and consequently, top-of-canopy foliar samples are representative 
of the canopy as a whole (Thomas et al., 2008). To this end, the vertical 
heterogeneity in leaf traits across the canopy is often not accounted for in most 
modelling approaches. However, the distribution of leaf traits within vegetation 
canopies is complex and often varies across the canopy vertical profile 
especially in resource constrained ecosystems (Li et al., 2013). 
 
The distribution of leaf traits content across the canopy vertical profile is 
indicative of the strategies plants use to optimize critical metabolic processes 
such as photosynthesis (Coble et al., 2016b). Plants exhibit higher nutrient 
stoichiometry in the upper illuminated leaves that receive higher photon flux 
density compared to lower canopy shaded leaves (Hirose and Werger, 1987). 
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The vertical distribution of leaf traits particularly nitrogen content is an attempt 
to maintain a balance between the RuBisCO-limited rate of carboxylation and 
electron transport limited rate of carboxylation (Chen et al., 1993). Plants are 
also known to absorb foliar nutrients from older leaves located in the lower 
canopy and translocate the nutrients to the upper canopy leaves for protein 
repair and maintenance of a metabolic balance (Hikosaka, 2005). These 
intrinsic mechanisms result in marked effects on leaf morphological, chemical 
as well as physiological traits across the canopy vertical profile (Weerasinghe 
et al., 2014) and subsequently influence whole canopy spectral reflectance (He 
et al., 2016). In light of this background, we hypothesize that leaf spectral 
properties track variability in leaf traits across the canopy vertical profile. 
 
Although the concept of vertical heterogeneity in leaf morphological, chemical 
and physiological traits is well documented in plant physiology domain (Coble 
et al., 2016b; Weerasinghe et al., 2014), to date few studies (Khavaninzadeh 
et al., 2015; Liu et al., 2015; Ma and Upadhyaya, 2018; Van Wittenberghe et 
al., 2014) have examined the impact of canopy vertical position on leaf spectral 
properties in addition to assessing the ability of leaf optical properties (in VNIR, 
SWIR spectral domain) to track variability in leaf traits across the canopy 
vertical profile for multiple species across the entire spectrum. One of the 
possible reasons related to limited or lack of studies thereof is the inadequacy 
and complexity in collecting field measurements at different canopy positions 
to characterize the vertical heterogeneity in leaf spectral properties and leaf 
traits (Li and Wang, 2013a). A few studies that have attempted to understand 
the leaf traits-spectra interactions across the canopy have not only restricted 
their work on understanding the effect of canopy position on the empirical 
relationship between crops’ leaf spectra, and their Cab and nitrogen content but 
also focused on the wavelengths before 1100 nm (Liao et al., 2013; Yu et al., 
2015). For example, Ma and Upadhyaya (2018), examined the effects of leaf 
position on tomato leaf optical properties at only two wavelengths i.e., 660 and 
730 nm. To this end, spectral discrepancies across the canopy vertical profiles 
need to be fully characterized across the whole spectrum and across multiple 
species outside crops. Simultaneous measurement of leaf optical properties 
together with a suite of leaf traits across the canopy require attention for 
improved understanding of the spectra-traits interaction across the canopy 
vertical profile. Understanding the effect of vertical heterogeneity on leaf 
spectral properties does not only offer a promising path in canopy reflectance 
modelling using multi-layer radiative transfer models (RTM) but also has a 
strong implication on within-canopy sampling and leaf traits upscaling to 
canopy and subsequently landscape level. For instance, Wang and Li (2013) 
demonstrated that vertical heterogeneity in leaf dry matter per unit area, Cab, 
water and dry matter contents have a significant effect on simulated canopy 
reflectance and subsequently inversion of multiple-layer canopy radiative 
transfer model. Sprintsin et al. (2012) also demonstrated that upscaling leaf 
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traits to canopy scale based on the ‘big leaf’ (sunlit only) and ‘two leaf’ (sunlit 
plus shaded) upscaling models, can have a profound effect on gross primary 
productivity estimations against flux tower measurements. Their study 
demonstrated that the exclusion of the photosynthetic contribution of shaded 
leaves can underestimate the canopy photosynthesis estimations by over 70% 
in highly clumped forest stands. In this regard, a detailed understanding on 
the impact of vertical canopy position on leaf traits content and spectral 
reflectance properties is imperative and has broad implications on leaf traits 
upscaling to canopy level and their subsequent retrieval or estimation. 
 
This study aims at examining the effect of canopy vertical position on leaf 
spectral properties across multiple species. We studied the impact of canopy 
position on leaf spectral properties to assess the capability of leaf optical 
properties to track variability in leaf traits across the vertical canopy profile. 
We also aimed at identifying key spectral wavebands that are influential in the 
discrimination of leaf samples into the three groups of canopy position. We 
hypothesize that the influential spectral wavebands match wavelength 
absorption features associated with the measured leaf traits. 

2.2 Materials and Methods 

2.2.1 Species description 

We selected four plant species with different leaf forms and canopy structure 
to examine the impact of canopy vertical position on leaf spectral properties 
and traits at leaf level. The selected species were Camellia japonica (n = 10, 
mean height 83.71 ± 4.75 cm), Ficus benjamina (n = 10; mean height 82.07 
± 4.27 cm), Chamaedorea elegans (n = 10; mean height 88.5 ± 4.75 cm) and 
Fatshedera lizei (n = 10; mean height 88.93 ± 1.53 cm). C. japonica is an 
evergreen broad-leaved woody plant whose flowers are bisexual and disposed 
in racemes. The leaf blade length for C. japonica range between 5 and 10 cm 
and a mature C. japonica can reach a height of 6 m. F. benjamina is also an 
evergreen shrub with pendulous branches bearing glossy, elliptic, slender 
pointed ovate leaves. A mature F. benjamina plant can reach 30m in height 
while the leaf blades can extend up to 8 cm. C. elegans is an evergreen palm 
with slender, solitary or clustered stems bearing slender stalked, pinnate 
leaves. The leaf blade length for C. elegans range between (six) 6 and 12 cm 
and the plant can reach 4 m at maturity. F. lizei is a hybrid between Fatsia 
japonica and Hedera helix. F. lizei is characterized by large, leathery, palmately 
lobed leaves and small flower in globose panicles. The plant can grow up to 4 
m in height and its leaf blades range between 7 and 25 cm at maturity. All the 
plants used in this study were purchased from a local nursery. 
 



Impact of vertical canopy position on leaf spectral properties 

14 

2.2.2 Experimental setup 

Considering that plants obtained from the nursery were pre-treated with 
fertilizer, we changed the potted soil to a new homogenized mixture of seven 
parts of poor-nutrient sand soil to two parts of fertile loamy soil. After changing 
the potting soil, three soil nitrogen treatments (high, medium and low) were 
administered to 40 plants. For the high (n = 13) and medium (n = 14) 
treatment groups, 2.9 g and 0.9 g per pot were supplied per pot respectively, 
while for the low (n = 13) treatment no fertilizer was supplied. The fertilizer 
was administered once a week over a four-week period after which plants were 
left to acclimatize for another four weeks without fertilizer treatment. The three 
soil nitrogen treatment were administered in order to create variation in leaf 
traits and subsequently leaf spectral properties among the different potted 
plants. The potted plants were kept under artificial light and at a normal room 
temperature of 21 °C. Three overhead halogen lamps of 50 W each were used 
for illumination. To minimize the effect of a microclimate the pots were 
randomly placed in the experimental room and rotated after every two days. 
Care was taken to avoid plants shading one another. 

2.2.3 Leaf spectral measurement 

For each leaf sample measurement, approximately three (3) gram of fresh 
leaves (between six to ten leaves - depending on leaf size and weight) were 
randomly sampled from the upper, middle and lower canopy vertical layers for 
each plant (Fig 2.1). At each of three canopy layers, leaf samples were picked 
from both the outer and interior canopy in all directions. The three layers were 
determined based on the height of a plant along the stem. We divided the 
canopy into three layers for two reasons. Firstly, the plants used in this study 
were relatively short (mean height ~85 cm) to identify and characterize more 
than three canopy layers. Secondly, three canopy layers match forestry and 
agronomic standards in reporting research in canopy layers (Whitehurst et al., 
2013; Wilkes et al., 2016). The leaves picked from the three canopy layers 
were stored in a portable cooler and all laboratory measurements were 
performed within two hours of leaf picking. Leaf directional hemispherical 
reflectance from 350 to 2500 nm for each sample was measured using an ASD 
FieldSpec-3 Pro FR spectroradiometer coupled with an ASD RTS-3ZC 
Integrating Sphere. To minimize spectral noise, the spectroradiometer was set 
to average two hundred scans into a single spectrum per each spectral 
measurement. The spectra were calibrated for dark current and stray light 
following the Integrating Sphere User Manual instructions (ASD, 2008). During 
spectral measurements, care was taken to avoid leaf primary veins. Spectral 
measurements of leaves constituting a sample were averaged to a single 
spectrum that represented the spectra of each sample. In total spectral 
reflectance measurements were performed on 120 samples (40 plants × 3 
canopy layers). A moving second order Savitzky-Golay filter (Savitzky and 
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Golay, 1964) with a frame size of 11 was applied on each sample spectra to 
minimize instrument noise. Due to the low signal-to-noise ratio for 
wavelengths after 2200 nm as well as spectral bands before 400 nm, the 
spectra were cropped to 400–2200 nm range. Therefore, 1801 spectral bands 
were retained for further analysis 
 

 
 

Figure 2.1 The demarcation of the three canopy layers. 

2.2.4 Leaf traits measurement 

Following measurement of leaf spectral properties, the following leaf traits 
were measured; leaf chlorophyll content (Cab), leaf nitrogen content (N), leaf 
carbon content (C), fresh weight, dry weight and leaf area. Consequently, 
equivalent water thickness (EWT) and specific leaf area (SLA) were then 
retrieved. For each sample the average leaf chlorophyll content (Cab: μg/cm2) 
was determined using a CCM-300 chlorophyll content meter (Opti-Sciences, 
2011). After measuring the Cab, fresh weight (Fw g) for each sample was 
determined using a digital scale at an accuracy of 0.01 g. We also measured 
the leaf surface area (LA cm2) of each sample using an AMH 350 area meter 
(ADC-BioScientific, 2013). The samples were then oven-dried for 72 hours at 
65 °C to determine dry weight (Dw g). Specific leaf area (SLA cm2/g) and 
equivalent water thickness (EWT cm) were calculated using the following 
formulas: 

SLA (cm2/g) = LA/Dw (2.1) 
EWT (cm) = Fw − Dw/LA (2.2) 
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where: Dw, Fw and LA are sample dry weight, fresh weight and leaf area 
respectively. 
 
Leaf N and C (% dry weight) were determined by dry combustion using the 
Perkin Elmer 2400 CHNS/O Elemental Analyzer (Perkin-Elmer, 2005). Prior to 
determining leaf N and C content using the elemental analyzer leaves 
representing a sample were shredded and grounded to a fine and 
homogeneous powder using a mortar and pestle to pass through a 180 μm 
mesh screen. The sample powder was placed in tin capsules for N and C 
analysis. We duplicated twenty-five percent of samples and run an acetanilide 
standard after every ten to fifteen samples to constantly monitor the system 
calibration and integrity. Results from the elemental analyzer were obtained 
on a dry mass ash-included basis (Meerdink et al., 2016). We then converted 
the mass-based N obtained from the elemental analyzer to the area-based N 
by dividing mass-based N of each sample by dry mass per unit area (Wang et 
al., 2015a). 

2.2.5 Statistical analysis  

2.2.5.1 Impact of canopy vertical position on leaf spectral properties 
and traits 

To understand the impact of canopy vertical position on leaf spectral 
properties, we examined whether there was a statistical difference between 
mean leaf spectral reflectance of the three canopy positions at each wavelength 
across the entire electromagnetic spectrum (400–2200 nm). We also examined 
whether leaf traits vary across the canopy vertical profile. Variability in leaf 
spectral reflectance and leaf traits were performed for both individual species 
and for the pooled dataset. Differences in mean leaf spectral reflectance (per 
wavelength), as well as leaf traits at the three canopy positions, were tested 
using a one-way analysis of variance (ANOVA) with canopy position as a fixed 
factor. We tested the null hypothesis that there was no significant difference 
in leaf spectral reflectance of different canopy positions at every spectral 
wavelength; Ho: μ1 = μ2 = μ3 versus the alternative hypothesis that there was 
a difference; vis: Ho: μ1 ≠ μ2 ≠ μ3. The mean leaf spectral reflectance for the 
upper, middle and lower layers at every spectral wavelength is denoted by μ1, 
μ2, and μ3, respectively. Following a significant ANOVA test, Tukey Honest 
significance difference (HSD) post-hoc tests (Tukey, 1949) were performed on 
the leaf spectral reflectance data and leaf traits respectively. Post-hoc tests 
were computed to highlight pairwise differences in both leaf spectral 
reflectance and leaf traits for all possible pairs (upper vs. lower, middle vs. 
upper, middle vs. lower) of the three canopy positions. Tukey HSD post hoc 
test accounts for type I error by reducing the significant level of each test such 
that the group-wise type I error rate remains at a selected level, in this case, 
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α = 0.05 (Quinn and Keough, 2002). The multiple comparisons highlights leaf 
traits and wavelengths that significantly vary between each pair of canopy 
positions (upper vs. lower, middle vs. upper, middle vs. lower) with minimal 
error (Carvalho et al., 2013). The ANOVA and Tukey HSD post hoc tests were 
performed using R 3.4.1 for Windows. 

2.2.5.2 Discriminating leaf samples into respective canopy positions 
groups 

While the ANOVA and Tukey HSD post hoc test for difference in means between 
groups, discriminatory analysis can be used to classify and identify key 
variables that maximize assignment of objects to their defined group. We set 
out to identify and confirm whether influential spectral wavebands in the 
discrimination of leaf samples into the three vertical canopy positions matches 
the wavelength absorption features associated with the measured leaf traits. 
Identification of influential wavebands that match spectral absorption features 
of the traits provide an opportunity to assess whether leaf optical properties 
track variability in leaf traits across the vertical canopy profile. We used a 
bootstrapped Partial Least Squares-Discriminant Analysis (PLS-DA) to identify 
key wavebands that influence the spectral separatibility of leaf samples into 
the three canopy positions groups. Bootstrapping with 1000 replicates was 
used to train the PLS-DA model. PLS-DA is a classification technique that fuses 
Partial Least Square regression and the properties of discriminant analysis for 
identification of the variables that enhance the separation or classification of 
different groups (Wold et al., 2001). PLS-DA aim to discriminate the response 
matrix (Y) by means of a predictive matrix (X) utilizing a set of orthogonal 
components (so-called latent variables) that maximizes the co-variance 
between matrices (X) and (Y) (Makvandi et al., 2016). The Y matrix in our 
study represents the three canopy position (upper, middle and lower), while 
the X represents the spectral reflectance (400–2200 nm). This technique is 
suitable for high dimensional and collinear datasets such as hyperspectral 
measurements. Prior to model calibration, we randomly split our dataset into 
model calibration (70%) and external validation (30%). The model calibration 
dataset was used to develop the PLS-DA model to discriminate the leaf 
samples. The model was then applied on the 30% external validation dataset 
that was never used in the development of the model to determine the 
performance of the model. The number of latent variables (nlv) were 
determined by maximizing the accuracy of the PLS-DA model i.e., the model 
with the maximum accuracy was considered to have the optimum number of 
latent variables (Pereira et al., 2016). We used the variable importance of 
projection (VIP) to determine the influence of each waveband on the 
discrimination of the leaf samples into their defined vertical canopy position 
group. VIP scores greater than one (1) were regarded as influential in the 
classification procedure. The PLS-DA analysis was performed using R 3.4.1 for 
Windows using the classification and regression (caret) package (Kuhn, 2008). 
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2.3 Results 

2.3.1 Characteristics of leaf traits 

Table 2.1 summarizes the characteristics of leaf traits across the three canopy 
levels. N ranged from 3.15 × 10−5 to 4.04 × 10−4 μg/cm2 whereas Cab varied 
from 24.86 to 72.85 μg/cm2. SLA spanned a ten-fold range of values (53.67–
530.21 cm2/g), while the range of C was only limited between 37.96 and 
47.55%. EWT ranged from 0.00545 to 0.0275 cm. Generally, N, Cab, C, and 
EWT increased from the lower to the upper canopy while SLA decreased with 
increasing canopy depth. 

2.3.2 Impact of canopy position on leaf spectral properties  

Leaf spectral reflectance significantly (P ≤ 0.05) shifted to longer wavelengths 
in the ‘red edge’ spectrum in the order of lower > middle > upper (Fig 2.2) for 
the pooled species data. The spectra significantly shifted to longer wavelengths 
in wavebands 685–701 nm (Fig 2.3). Moreover, mean leaf spectral reflectance 
displayed a consistent descending pattern in the order of lower > middle > 
upper canopy layers in the visible spectrum (400–700 nm; Fig 2.2). Spectral 
variations in the ‘red edge’ and visible spectrum demonstrated a significant (P 
≤ 0.05) increase in Cab and N observed from the lower to the upper canopy 
layer (Table 2.1). At longer wavelengths, leaf spectra for the upper canopy 
leaves consistently exhibited relatively low reflectance values around 1450 and 
1940 nm compared to leaf spectra for the middle and lower canopy sections 
(see inserts Fig 2.2). 
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Table 2.2 Summary of pairwise variation in leaf traits per species and within pooled 
data per each canopy position pair. Significant p-value at 0.1 *, 0.05 ** and 0.01 *** 
are indicated. 

  Canopy Position Combination 

Species Trait Middle vs. 
Lower 

Upper vs. 
Lower 

Middle vs. 
Upper 

F. benjamina N 0.219 0.000 *** 0.04 ** 
 Cab 0.68 0.025 ** 0.14 
 SLA 0.79 0.025 ** 0.10 * 
 C 0.12 0.002 *** 0.18 
 EWT 0.11 0.623 0.49 

C. japonica N 0.92 0.002 *** 0.000 *** 
 Cab 0.81 0.12 0.029 ** 
 SLA 0.72 0.912 0.467 
 C 0.96 0.933 0.99 
 EWT 0.18 0.984 0.23 

C. elegans N 0.89 0.000 *** 0.000 *** 
 Cab 0.28 0.002 *** 0.06 * 
 SLA 0.66 0.000 *** 0.000 *** 
 C 0.34 0.05 ** 0.56 
 EWT 0.06 * 0.013 ** 0.77 

F. lizei N 0.11 0.6 0.51 
 Cab 0.000 *** 0.000 *** 0.94 
 SLA 0.05 ** 0.67 0.007 *** 
 C 0.08 * 0.07 * 0.99 
 EWT 0.14 0.006 *** 0.35 

Pooled N 0.516 0.02 ** 0.24 
 Cab 0.71 0.051 * 0.51 
 SLA 0.493 0.075 * 0.63 
 C 0.048 ** 0.0009 *** 0.39 
 EWT 0.93 0.083 * 0.035 ** 

N = nitrogen, Cab = chlorophyll, SLA = Specific leaf area, C = carbon, EWT equivalent 
water thickness. 
 
This spectral variation relates to relatively higher EWT observed for the upper 
leaves for the pooled dataset (Table 2.1). A Tukey HSD post hoc test revealed 
significant (P ≤ 0.05) pairwise difference in leaf spectra only between the upper 
and lower canopy layers within the 685–701 nm spectral range (Fig 2.3). This 
pairwise difference in spectra confirmed the significant differences observed 
for most traits especially between the upper and lower canopy layers (Table 
2.2). 
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Figure 2.2 Mean leaf spectral reflectance at each canopy position for the pooled dataset. 
Note that the red-edge shifts to longer wavelengths with increasing Cab. 
 

 
Figure 2.3 Variation in leaf spectral reflectance at different canopy positions for the 
pooled dataset (ANOVA test) (A); and pairwise variation in leaf spectral reflectance at 
different canopy positions (B). 
 
An ANOVA test showed that spectral response varied among species, resulting 
in species-dependent leaf spectral properties across the canopy vertical profile. 
Generally, for all the species studied leaf spectral reflectance was consistently 
higher for the lower canopy layer in the visible spectrum (Fig 2.4)—a result 
confirmed by the ANOVA test (Fig 2.5A) followed by the Tukey HSD post hoc 
test (Fig 2.5B–E). The descending spectral reflectance trend in the visible 
spectrum (lower > middle > upper) was more pronounced for F lizei, 
F.benjamina and C elegans. This pattern is similar to the one observed for the 
pooled species data. C. Japonica exhibited a small variation in the visible 
spectrum between canopy layers—reflecting a small variation in Cab observed 
in Fig 2.6. We found no significant variation in leaf spectra for C. japonica in 
the NIR spectral domain, and this reflects variation in C observed for this 
species which was not statistically significant (P > 0.05). In the SWIR spectral 
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domain especially in wavebands centered around 1950 nm, leaf spectra for C. 
japonica and C. elegans decreased in the order of lower > middle > upper 
canopy layers (Fig 2.4 C,D). The descending pattern in leaf spectra in these 
wavebands was statistically significant (P ≤ 0.05) for C elegans (Fig 2.5 E), 
while for C. japonica the descend was significant between the upper layer 
against the middle and lower canopy layers respectively (Fig 2.5 D). The trend 
observed for C. japonica and C. elegans conform to the trend observed for the 
pooled species data. Leaf spectra for the lower canopy layer for F. lizei and F. 
benjamina exhibited significantly low reflectance values in the SWIR spectral 
domain compared to the upper and middle canopy layers (Fig 2.4A, B). 
 

 
Figure 2.4 Species-specific mean leaf spectral reflectance at each canopy position for 
F. lizei (A), F. benjamina (B), C. japonica (C) and C. elegans (D). 
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Figure 2.5 Species- specific ANOVA test for mean leaf spectral reflectance at three 
canopy positions (A) and pairwise t-test of mean leaf spectral reflectance at three canopy 
positions for F. lizei (B), F. benjamina (C), C. japonica (D) and C. elegans (E). Dark 
circles indicate spectral wavebands that were significantly different (P ≤ 0.05) for each 
pairwise comparison. 

 
Figure 2.6 Graphical matrix showing variation in leaf functional traits across the vertical 
canopy profile for the studied species as well as for the pooled dataset (fifth column). 
Error bars represent standard errors. 

2.3.3 Variation in leaf functional trait content across the 
vertical canopy profile 

Cab, N, and C demonstrated a significant (P ≤ 0.05) ascending pattern in order 
of lower > middle > upper canopy layers for individual species as well as the 
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pooled dataset (Fig 2.6). This demonstrated that upper canopy leaves 
contained higher trait content than shaded lower canopy leaves. Among all, it 
was noted that F. lizei demonstrated a contrasting pattern for N, with high 
foliar N values in the middle layer compared to the bottom and upper layer. 
SLA was observed to be generally lower in the upper canopy layers compared 
to middle and lower layers. Again it was noted that F. lizei demonstrated 
significantly (P ≤ 0.05) low SLA values in the middle layer compared to the 
upper and lower layers. EWT exhibited contrasting patterns among species. 
For example, C. elegans and F. lizei demonstrated a significant (P ≤ 0.05) 
increase in EWT values in the order of lower > middle > upper. In contrast, C. 
Japonica and F. Benjamina demonstrated low EWT values in the middle layer 
compared to bottom and upper canopy layers. Details of leaf traits comparison 
across the canopy at the species level and pooled dataset based on the Tukey 
HSD post hoc test are shown in Table 2.2. Prominent variability in leaf traits 
existed between the upper and lower layers of the canopy than any other 
canopy layer pair. 

2.3.4 Discriminating leaf samples into respective canopy 
positions groups 

Leaf samples were successfully discriminated into their defined vertical canopy 
position groups with an overall accuracy of 64 % based on nine (9) latent 
variables (Table 2.3) using PLS-DA.  
 
Table 2.3 PLS-DA model calibration and performance. 

Model Internal Validation External Validation 

N Ncal Nval nlv Accuracy (%) (S.D) Accuracy (%) 

120 84 36 9 72 (8.3) 64 
 
N is total number of samples, Ncal is number of samples used for 
calibration, Nval is the number of samples used for validation and nlv is 
the number of latent variables, accuracy is the overall accuracy (%) while 
SD is the standard deviation 
Key wavebands that were influential in the spectral discrimination of leaf 
samples into their defined vertical canopy position groups were identified as 
400–761, 1372–1407, 1902–1989 and 2106–2170 nm (Fig 2.7). These 
wavebands had VIP scores greater than the significant threshold of one (1)—
demonstrating the strong influence on the classification procedure. Highly 
influential spectral wavebands (i.e., with VIP score > 2) were identified in the 
visible spectrum (around 507 nm) and in the red-edge spectrum (around 721 
nm). Other influential spectral wavebands matched with wavelength regions of 
known leaf water (1372–1407) and as well as SLA and N (1902–1989 and 
2106–2170 nm) absorption features. The influential wavebands (VIP score > 
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1) exhibit key wavebands in the discrimination of leaf samples into the three 
vertical canopy positions. 

 
Figure 2.7 Key wavelengths that enhance leaf sample discrimination. Canopy position 
was used as the discriminant factor. 

2.4 Discussion 

2.4.1 Effect of canopy position on leaf spectral properties and 
leaf traits 

In this study, we explored the impact of vertical canopy position on leaf spectral 
properties and subsequently leaf traits on multiple species across the entire 
spectrum. We report discrepancies in leaf spectral properties across the vertical 
canopy profile of multiple species indicating that leaf spectral properties reflect 
variability in leaf traits content within a canopy. Results from this study 
demonstrated that leaf spectra significantly (P ≤ 0.05) shifted to longer 
wavelengths in the ‘red edge’ spectrum (685–701 nm) when the data from four 
studied species were pooled (Fig 2.2 and 2.3). Spectral shifts in the ‘red edge’ 
spectrum reflected an increase in Cab and N in the order of lower > middle > 
upper canopy layers observed in Fig 2.6 and Table 2.2 for the pooled dataset. 
Although earlier studies have also demonstrated that wavelengths in the ‘red-
edge’ spectral region are sensitive to variations in Cab and foliar N content 
(Clevers and Gitelson, 2013; Li et al., 2014; Mutanga and Skidmore, 2007), 
however spectral shifts in the red edge across vertical canopy profile were not 
examined. Results observed in the “red edge’ spectrum are related to Ma and 
Upadhyaya (2018) who demonstrated that reflectance at 730 nm for the upper 
canopy leaves was significantly lower compared to the lower shaded leaves. 
However, Ma and Upadhyaya (2018) did not use the full leaf spectrum but 
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focused on optical properties variations at 660 and 730 nm only. In the visible 
spectrum, mean leaf spectral reflectance decreased in the order of lower > 
middle > upper canopy layers (Fig 2.2). This ascending pattern in leaf spectral 
reflectance in the visible spectrum concurred with the significant increase in 
Cab and N content from the lower to the upper canopy observed in Fig 2.6 for 
the pooled dataset. The leaf spectral reflectance pattern observed in the visible 
spectrum concur with results obtained by Yu et al. (2015) in a study performed 
in pepper plants. However, the spectral discrepancies in the visible spectrum 
of the pepper plants were only related to measured foliar N as a suite of other 
traits were not measured. Allocating more foliar N and Cab to the upper canopy 
leaves is known to improve plant photosynthetic capacity and light use 
efficiency by 20% and 30% respectively (Homolová et al., 2013). Our 
observation demonstrates the ability of leaf spectral properties to track 
variation in foliar nutrients particularly Cab and N across the vertical canopy 
profile.  
 
Leaf spectra for all the studied species were consistently higher for the lower 
canopy layer compared to the upper and middle canopy layers in the visible 
spectrum (Fig 2.4). The spectral discrepancy in the visible spectrum reflected 
a significant increase in Cab and N from the lower to the upper canopy for 
almost all the species studied (Fig 2.6). However, C. japonica exhibited a small 
change in spectral reflectance in the visible spectrum. This could be explained 
by the more open canopy characterizing the C. Japonica canopy, which allows 
more light to reach the lower canopy layers. Anten and Ackerly (2001) 
observed that defoliation in C. elegans canopies significantly increased Cab and 
subsequently light-saturated photosynthesis per unit leaf area for the newly 
exposed leaves. Contrary to the spectral patterns observed in the visible 
spectrum in our study, Khavaninzadeh et al.(2015), observed that leaf 
reflectance measured using a three band RGB camera increased significantly 
from the lower to upper canopy in a study conducted in an area characterized 
by high levels of air pollution. In this regard, changes in leaf optical patterns 
as a function of canopy height can be used as a proxy of vegetation strain to 
stress factors such as air pollution. 
 
Results from our study demonstrated that only C. elegans leaf spectral 
reflectance (Fig 2.4D) increased concomitantly with its SLA (Fig 2.6) which 
may be explained by the species ability to adjust traits content across their 
vertical canopy profile (Chazdon, 1986). Generally, spectral analysis at 
species-specific level revealed significant spectral discrepancies outside the 
visible and ‘red edge’ spectral regions (Fig 2.5A). The spectral discrepancies in 
the NIR and SWIR varied among species, resulting in species-dependent leaf 
spectral properties across the vertical canopy profile. Variation in spectral 
response between species can be explained by different growth strategies 
employed by plants which potentially influence the allocation and 
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immobilization of leaf traits across the canopy profile. However, the trend 
observed for N and SLA absorption features (centered on 2000 nm) especially 
between the lower and upper canopy layers was more or less similar across all 
species (Fig 2.5). 
 
Influential wavebands in the spectral separatibility of leaf samples 
demonstrated the ability of leaf optical properties to track variation in leaf traits 
across the vertical canopy profile (Fig 2.7). Spectral wavebands between 400–
761 nm, especially the more pronounced peaks (i.e., VIP scores > 2) in the 
visible spectrum (507 nm) and red edge spectrum (721 nm) are known to be 
strongly influenced by foliar Cab and N (Curran, 1989; Li et al., 2014). The 
1372–1407 nm spectral wavebands are sensitive to leaf water content (EWT), 
while variation in the SWIR 1902–1989 nm and 2106–2170 nm have been 
identified to be sensitive to protein, N, dry matter and its reciprocal SLA (Ali et 
al., 2016). These observations imply that leaf traits do not only vary with the 
phenological stage of a plant (Meerdink et al., 2016), but also with the light 
environment (micro climate) within the vertical canopy profile (Coble et al., 
2016b). The position of a leaf within the canopy especially between sunlit and 
shaded leaves is known to influence the concentration of leaf traits such as N, 
C, and SLA, which are strongly related to the photosynthetic capacity of 
vegetation (Li et al., 2013). The spectral match observed between key 
wavebands in leaf samples discrimination and spectral absorption features of 
leaf traits across the vertical canopy profile demonstrated that leaf spectral 
reflectance has the ability to explain the impact of vertical canopy profile on 
leaf traits. High influential wavebands match wavelength regions of Cab, EWT, 
and N absorption features. 
 
The vertical heterogeneity in leaf traits can be explained by two ecological 
mechanisms i.e., the optimization and coordination theories. The optimization 
theory (Hirose and Werger, 1987) explains that plants develop an intrinsic 
mechanism to allocate more N to the upper illuminated leaves which receive 
the highest photon flux density compared to lower shaded leaves (Li et al., 
2013). This mechanism optimizes total canopy photosynthetic as nitrogen-rich 
(30–50% N) enzyme i.e., ribulose-1.5-biphosphate (RuBP) carboxylase and 
phenolyenolpyruvate (PEP) responsible for carbon fixation in C3 and C4 plants 
respectively are deployed to commensurate light conditions within the canopy. 
Upper canopy leaves are therefore characterized by a higher density of 
mitochondria per cell area (Tissue et al., 2002) and increased rates of carbon 
gain (Weerasinghe et al., 2014) to support increased metabolic demands. The 
coordination theory further explains that the vertical heterogeneity in leaf traits 
especially N is an attempt by plants to maintain a balance between the Rubisco-
limited rate of carboxylation (Wc) and electron transport-limited rate of 
carboxylation (Wj) (Chen et al., 1993). The driving force for the allocation of N 
within a canopy is the variation between leaf N content at a given time and the 
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leaf N content that is required to bring Wc and Wj into a balance (Chen et al., 
1993; Li et al., 2013). The ascending pattern in leaf traits content may also be 
attributed to the interaction between leaf age and light acclimatization. 
Previous studies demonstrate that in fast-growing and broad-leaf evergreen 
species newly developing foliage often overshadow older leaves resulting in 
marked changes in light availability to older leaves and subsequently affecting 
leaf biochemical properties (Niinemets, 2007). In addition, shading is also 
known to result in accelerated ageing, senescence and increased leaf turnover 
(Hikosaka, 2005). Leaf senescence in the lower canopy induces re-mobilization 
of foliar nutrients particularly N to the upper canopy leaves. Moreover, 
Hikosaka and Hirose (2000) observed that leaf N and photosynthetic capacity 
decrease with leaf life span in C. japonica canopies. This mechanism results in 
an increased gradient in leaf traits content across the vertical canopy profile 
(Kull and Kruijt, 1999). As such, this study demonstrated that leaf spectral 
properties track dynamics in leaf traits across the vertical canopy profile as 
observed in Fig 2.7. Significant variations in the spectrum were observed 
especially in the red edge spectrum for the pooled dataset. This observation is 
consistent with our understanding of leaf physiology within plant canopies. 

2.4.2 Implication to remote sensing of plant traits 

Our results have important implications on within-canopy sampling and scaling 
up strategies of leaf traits to canopy and landscape scales, especially for 
studies that are conducted in environments where foliage material from the 
lower canopy influences canopy reflectance. This study put into perspective 
upscaling methods such as the direct extrapolation (He and Mui, 2010a) that 
apply leaf traits-spectra relationship observed at leaf level to canopy scale by 
assuming that all leaves within a plant canopy have the same trait content 
(Peterson et al., 1988). Our results indicate that leaf samples from different 
canopy layers exhibit different traits content and are subsequently spectrally 
distinct. This observation implies that failure to account for the vertical 
heterogeneity in key traits across the vertical canopy profile can potentially 
lead to considerable inaccuracies in leaf traits upscaling and subsequently leaf 
traits estimation especially at canopy scale (Luo et al., 2016). For example, a 
recent study by Coble et al. (2016b) demonstrated that canopy photosynthesis 
estimated from models that do not account for the vertical variation in leaf 
traits, particularly N and dry matter content, overestimated the canopy 
photosynthesis by over 60%. However, before exploring the effect of vertical 
heterogeneity on the leaf to canopy upscaling approaches, it is imperative to 
understand the spectra-traits interaction at leaf level. Leaf spectra-traits 
interaction at leaf level provides an opportunity to understand the mechanism 
without the influence of canopy structure [i.e., leaf area index (LAI), canopy 
height, etc.], soil background and viewing geometry on the spectral reflectance 
(Wang et al., 2017). An improved understanding on the effect of vertical 
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heterogeneity of traits on spectral properties across the vertical canopy profile 
is also critical in improving our understanding, designing and parameterization 
of robust multi-layer RTM that is able to simulate canopy reflectance with 
minimal error (Wang and Li, 2013). Improving the design and performance of 
such models requires the understanding and ability to disentangle and quantify 
the relative contribution of each canopy layer to the top of canopy reflectance. 
This study also has implications for studies that aim to integrate hyperspectral 
measurements and LiDAR data to understand the three dimensional (3D) 
variability in leaf traits across vegetation canopies (Zhu et al., 2017). 

2.5 Conclusions 
The effect of vertical canopy position on leaf spectral properties and leaf traits 
content across multiple species is not well documented. In this study, we 
examined the effect of vertical canopy position on leaf traits and leaf spectral 
properties across multiple species. We also assessed the ability of leaf optical 
properties to track variability in leaf traits across the vertical canopy profile. 
Results of this study demonstrate that vertical canopy position is a significant 
source of variation in leaf spectral properties and traits content. We observed 
that leaf spectra significantly shifted to longer wavelengths in the ‘red edge’ 
spectrum when data from all species were pooled together. The spectral shift 
reflected an increase in leaf traits content especially Cab and N in the order of 
lower > middle > upper canopy layers. At species-specific level leaf, spectral 
responses outside the visible spectrum varied, resulting in species-dependent 
leaf spectral properties across the vertical canopy profile. Key wavebands that 
are influential in the discrimination of leaf samples into their defined canopy 
positions match wavelength regions of Cab, EWT, SLA, and N absorption 
features-which significantly varied across the vertical canopy profile. This 
observation demonstrated the capability of leaf optical properties to track 
variability in leaf traits across the vertical canopy profile. We, therefore, 
conclude that changes in foliar nutrients translate into changes in vegetation 
spectral properties across the vertical canopy profile. These findings have 
implications on within-canopy sampling, leaf traits upscaling, interpretation 
and use of data in species trait databases. Future studies should aim to 
understand how the vertical heterogeneity in leaf traits affects the estimation 
of plant traits from hyperspectral measurements at canopy scale. 
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Chapter 3 
 
Leaf position within a canopy affects the 
performance of PROSPECT in retrieval of leaf 
traits throughout the growing season 
 
 
 
 
  

                                          
 This chapter is based on Gara, T.W., Darvishzadeh, R., Skidmore, A. K., Wang, T and 
Huerich, M. (2019) Evaluating the performance of PROSPECT in retrieval of leaf traits 
throughout the growing season. International Journal of Applied Earth Observation and 
Geoinformation 83: 101919.  
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Abstract 
Leaf traits and subsequently leaf spectral properties depend on leaf 
phenological stage and light conditions within a canopy. The PROSPECT 
radiative transfer model has been extensively and successfully used to retrieve 
leaf traits for mature, sunlit leaves at peak vegetation growth, i.e. summer. 
However, research on the quantification of leaf traits using PROSPECT across 
the canopy vertical profile throughout the growing season is still lacking. 
Therefore, this study aims at examining the effect of leaf position on the 
performance of the PROSPECT model in modelling leaf optical properties and 
retrieving leaf chlorophyll content (Cab), equivalent water thickness (EWT), and 
leaf mass per area (LMA) throughout the growing season. To achieve this 
objective, we collected 588 leaf samples from the upper and lower canopies of 
deciduous stands over three seasons (i.e., spring, summer and autumn) in 
Bavaria Forest National Park, Germany. Leaf traits including Cab, EWT and LMA, 
were measured for all the samples, and their reflectance spectra were obtained 
using an ASD FieldSpec-3 Pro FR spectroradiometer coupled with an 
Integrating Sphere. We subsequently inverted the PROSPECT model to 
retrieved Cab, EWT and LMA using the look-up-table (LUT) approach. Our 
results consistently demonstrated that leaf samples collected from the lower 
canopy achieved a stronger match between measured and PROSPECT 
simulated reflectance spectra, especially in the NIR spectrum compared to leaf 
samples collected from the upper canopy throughout the growing season. This 
observation concurred with the pattern of Cab and EWT retrieval accuracies 
across the canopy i.e. the retrieval accuracy for the lower canopy was 
consistently higher (NRMSE = 0.1-0.2 for Cab; NRMSE = 0.125-0.16 for EWT) 
when compared to the upper canopy (NRMSE = 0.122 - 0.269 for Cab; NRMSE 
= 0.162 -0.0.258 for EWT) across all seasons. In contrast, LMA retrieval 
accuracies for the upper canopy (NRMSE = 0.146 - 0.184) were higher 
compared to the lower canopy (NRMSE = 0.162 - 0.239) for all seasons except 
for the spring season. For all the leaf traits examined in this study, the range 
in retrieval accuracy between the upper and lower canopy was greater in 
summer (compared to other seasons). We report for the first time that 
although the PROSPECT model provides reasonable retrieval accuracy of Cab, 
EWT and LMA, variations in leaf biochemistry and morphology through the 
vertical canopy profile affects the performance of the model over the growing 
season. Findings of this study have important implications on field sampling 
protocols and upscaling leaf traits to canopy and landscape level using multi-
layered physical models coupled with PROSPECT. 
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3.1 Introduction 
Plants traits, such as leaf chlorophyll content (Cab), leaf mass per area (LMA) 
and equivalent water thickness (EWT) play a key role in understanding 
ecosystem functional processes, such as primary productivity and nutrient 
cycling. Specifically, Cab is a key bio-indicator of plant health and 
photosynthetic capacity (Evans and Poorter, 2001; Lichtenthaler et al., 1996), 
while LMA reflects the plant economic spectrum strategy with regard to 
nutrients uptake, light harvesting and carbon sequestration (Poorter et al., 
2009). EWT, on the other hand, provides information on plant water status 
(Yao et al., 2014). Consequently, routine measurement of leaf traits is valuable 
to assess progress towards the Aichi Biodiversity Targets set by the Convention 
on Biological Diversity (CBD) (Pereira et al., 2013; Skidmore et al., 2015). 
 
Leaf traits and their leaf spectral properties are strongly controlled by leaf 
phenological stage and light conditions within a canopy (Yang et al., 2016). 
Leaf traits are known to change as a function of time during  the growing 
season within a year (Behrman et al., 2015). Moreover, changes in abiotic 
factors, such as temperature, rainfall and photo-period result in changes in the 
leaf physiological, biochemical and morphological traits (Coble et al., 2016a). 
However, leaf traits do not only exhibit seasonal changes but also changes as 
a result of different light conditions such as between the sunlit, upper and 
shaded lower canopy (Gara et al., 2018a). Illuminated upper canopy leaves 
display higher nutrient stoichiometry when compared to shaded lower canopy 
leaves (Weerasinghe et al., 2014). For example, Yang et al. (2016) 
demonstrated that shaded leaves display lower Cab, nitrogen and  LMA when 
compared to sunlit leaves. The variation in leaf traits across the canopy vertical 
profile is important in maintaining an equilibrium between the ribulose-1.5-
bisphosphate (RuBP) - limited rate of carboxylation and the electron transport 
- limited rate of carboxylation (Chen et al., 1993). These intrinsic mechanisms 
result in marked effects on leaf morphological, chemical as well as physiological 
traits across the canopy vertical profile and subsequently result in variations in 
leaf optical properties (Qiu et al., 2018). Plants are also known to translocate 
foliar nutrients as leaves age, moving nutrients from lower canopy leaves to 
the upper canopy leaves for protein repair and maintenance of a metabolic 
balance (Hikosaka, 2005). In this regard, capturing seasonal variations in leaf 
traits throughout the vertical canopy profile is critical for understanding 
dynamics in terrestrial ecosystem structure and functioning. 
 
Several leaf traits databases aimed at understanding forest structure and 
functioning have been established based on in situ and in vivo trait 
measurements (Kattge et al., 2011; Poschlod et al., 2003). Although these 
conventional methods provide accurate measurements, they are expensive, 
time-consuming and particularly challenging for quick and repeated 
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measurements. Field spectroscopy, on the other hand, has a capacity to 
augment conventional methods by indirectly retrieving leaf traits from spectral 
measurements (Carvalho et al., 2013). This approach is cost-effective and 
allows repeated assessments over time with a capacity to upscale to airborne 
and satellite imagery. Essentially two approaches, empirical (statistical) and 
physical models (radiative transfer models-RTM) are employed to establish a 
relationship between leaf traits and spectral  measurements (Verrelst et al., 
2015a). Empirical models explore parametric and non-parametric statistical 
relationship between leaf traits and vegetation spectra or derivatives such as 
vegetation indices (Darvishzadeh et al., 2012). Although statistical models are 
relatively easy to calibrate, they are associated with challenges of 
transferability because in most instances the relationship between spectral 
data and leaf traits is sensor, site, time, and biome dependent (Verrelst et al., 
2014). Moreover the performance of statistical models can be affected by the 
representativeness of the set of reference samples used for calibration (Pasolli 
et al., 2015). The development of physical models or radiative transfer models 
(RTMs) on the other hand has improved our understanding of the interaction 
between radiation and foliage material. Physical models, rigorously simulate 
light absorption and scattering based on radiation transfer theory and are thus 
transferable across sites and biomes (Homolová et al., 2013). However, the 
main challenge of physical models is that they often require a number of inputs 
for parameterization, which subsequently result in computation and model 
inversion sophistication (Zhang and Wang, 2015).  
 
A number of RTMs have been developed to model leaf spectral properties and 
subsequently retrieve leaf traits through inversion. These models include 
PROSPECT (PROpriétés SPECTrales) (Feret et al., 2008; Jacquemoud and 
Baret, 1990; Jacquemoud et al., 1996), LIBERTY (Leaf Incorporating 
Biochemistry Exhibiting Reflectance and Transmittance Yields) (Dawson et al., 
1998), N flux models (Allen and Richardson, 1968), ray tracing models 
(Govaerts and Verstraete, 1998) and stochastic models (Maier et al., 1999). 
Most of these physical models except PROSPECT have received relatively 
limited use within the vegetation spectroscopy community. This is mainly 
because they require a large number of input variables that are laborious and 
time consuming to measure and subsequently pose a challenge in model 
inversion.  The PROSPECT model has been widely used to retrieve leaf traits 
from simulated hemispherical reflectance and transmittance spectra in 
different vegetation communities (Barry et al., 2009; Malenovský et al., 2006; 
Renzullo et al., 2006; Zhang et al., 2007). One advantage of the PROSPECT 
model is that it can be intricately coupled with canopy radiative models, such 
as SAILH to retrieve leaf traits at canopy and landscape level (Si et al., 2012; 
Tripathi et al., 2012; Verhoef, 1984). In spite of its popularity, robustness and 
transferability, studies that have examined the effect of leaf position on the 
performance of PROSPECT in modelling leaf spectral properties and retrieval of 
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leaf traits throughout the growing season are lacking. Although an attempt to 
retrieve Cab through the vertical canopy profile  using the PROSPECT model was 
demonstrated by Demarez (1999) and Zhang et al. (2007), very little is known 
on how the PROSPECT model perform with regard to retrieval of other key 
radiation absorbers, i.e. LMA and EWT across the canopy and throughout the 
growing season. More specifically, no study has attempted to evaluate the 
effect of leaf position within a canopy on the modelling of leaf spectral 
properties across a growing season using PROSPECT. Previous studies have 
mainly focused on the retrieval of leaf traits for mature, sunlit leaves at peak 
vegetation growth, i.e. summer (Ali et al., 2016; Wang et al., 2015b). 
Therefore, this study sought to examine the effect of leaf position within a 
canopy on the performance of the PROSPECT model in modelling leaf optical 
properties and retrieval of leaf traits, specifically chlorophyll content (Cab), 
equivalent water thickness (EWT) and leaf mass per area (LMA) across 
throughout the growing season. 

3.2 Materials and methods 

3.2.1 Study area and field data collection 

To examine the effect of leaf position within a canopy on the performance of 
PROSPECT for modelling leaf spectral properties and retrieving leaf traits 
across the canopy throughout the growing season, we collected leaf samples 
from Bavarian Forest National Park (Fig 3.1). The Park is part of the Bohemian 
forest ecosystem and is located in south-eastern Germany (49ᴼ31'19"N and 
13ᴼ12'9"N). The Park covers a total area of approximately 24 218 ha. Elevation 
stretches from 600 to 1453 m (Heurich et al., 2010a). The climate is temperate 
with annual precipitation ranging from 1200 to 1800 mm (of which 
approximately 50% is snow), and a mean annual temperature of between three 
(3) and 6ᴼ C. The Park is characterized by acidic and poor nutrient soil. The 
dominated tree species in the park are mainly the evergreen Norway spruce 
(Picea abies) (67%) and deciduous European beech (Fagus sylvatica) (24.5%). 
Other less dominant species include white fir (Abies abies) (2.6%), sycamore 
maple (Acer pseudoplatanus) (1.2%), and mountain ash (Sorbus aucuparia) 
(3.1%) (Cailleret et al., 2014).  
 
Field data were collected for three seasons, i.e. spring, summer and autumn 
of 2017. Spring data were collected between mid-May and mid-June, while 
summer field data were collected from mid-July to mid-August, and the autumn 
field data were collected between mid-September and mid-October. Sampling 
sites were randomly generated in deciduous and mixed vegetation stands 
based on the vegetation map provided by the Department of Conservation and 
Research, Bavarian Forest National Park (Silveyra Gonzalez et al., 2018). Most 
of the sample plots were located along the permanent transects designed for 
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Biodiversity Research (Fig 3.1). In the field, we used a hand-held Global 
Positioning System with an error of ±5m to navigate to the sampling sites. At 
each sampling site, a north-oriented plot of 30 m × 30 m was demarcated 
using a tape measure. We also recorded the centre location of each plot, using 
a Leica GPS 1200 (at an accuracy of less than 1 m after post-processing). 
 

 
Figure 3.1 Map of the Bavaria Forest National park and the location of the park in 
Germany. Sampling points are overlaid on a natural colour composite of Sentinel-2 
satellite imagery of 13 July 2017. Black lines are the permanent flying transects 
boundaries designed for biodiversity research. 
 
In total 588 leaf samples were collected from twenty-six deciduous and mixed 
vegetation sample plots across the three seasons. Species name and sample 
sizes for each season are shown in Table 3.1.  Leaf samples were separately 
collected from the upper (n = 294) and lower canopy (n = 294) of each 
sampled tree. The average height of sampled trees was 24.4±7.52 m 
(measured using a Nikon Forestry 550 hypsometer). Leaf samples from the 
sunlit, upper canopy were shot from the top one meter canopy using a 
crossbow, whilst leaf samples from the lower canopy were collected from the 
shaded, lowest living branch of the canopy using an extendable pair of 
secateurs (Arellano et al., 2017; Atherton et al., 2017). Sampling was 
performed on three to five trees with a diameter at breast height greater than 
10 cm. A marker was placed on each sampled tree to facilitate tree 
identification for subsequent seasonal field measurements. Collected leaf 
samples were immediately measured for Cab using CCM-300 chlorophyll 
content meter (Opti-Sciences, 2011). The leaf samples were then wrapped with 
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moist paper towels and zip-locked in polythene bags. The leaf samples were 
then transported in a cooler with ice packs within 6 hours to the laboratory for 
further measurements (Atherton et al., 2017). Although the composition of our 
samples were heavily skewed to the European beech (92.86%), analysis with 
or without the other collected species (constituting 7.14%) did not alter the 
pattern in leaf traits retrieval accuracy across the canopy throughout the 
growing season (Appendix: Table A1). Therefore, all analyses were performed 
including all the species.   
 
Table 3.1 Distribution of collected samples by species across the three seasons 
Species Scientific name Spring Summer Autumn Total  
European 
beech 

Fagus sylvatica 156 194 196 546 

Sycamore 
maple 

Acer pseudoplatanus 6 12 12 30 

Elm spp Ulmus minor 2 2 2 6 
Common 
rowan 

Sorbus aucuparia 2 2 2 6 

Total  166 210 212 588 

3.2.2 Laboratory measurement 

3.2.3 Leaf trait measurements  

The following leaf traits were measured in the laboratory; fresh weight (Fw g), 
dry weight (Dw g) and leaf surface area (LA). Fresh weight for each sample 
was determined, using a high precision digital scale at an accuracy of 0.01g. 
The leaf samples were then scanned, using AMH 350 area meter to determine 
the leaf surface area (ADC-BioScientific, 2013). The leaf samples were oven 
dried at 65ᴼC until a constant weight was attained after approximately 72 hours 
and then their dry weight was measured (Gara et al., 2018b). Subsequently, 
EWT and LMA were calculated using the following formula: 
 

EWT (cm) = Fw−Dw/LA  (3.1) 
 

LMA (g/cm2) = Fw/LA (3.2) 
 
where: Dw, Fw and LA are the dry weight, fresh weight and leaf area of each 
sample, respectively. The summary and variation of measured traits are shown 
in Fig 3.2. 

3.2.4 Leaf reflectance spectra measurement 

Leaf directional hemispherical reflectance from 350 to 2500 nm for each 
sample was measured, using an ASD FieldSpec-3 Pro FR spectroradiometer 
coupled with an ASD RTS-3ZC Integrating Sphere. To minimize spectral noise, 
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the spectroradiometer was set to average two hundred scans into a single 
spectrum per each spectral measurement (Ali et al., 2016). Radiance 
measurements were converted to reflectance against scans of a calibrated 
white spectralon panel (with approximately 99% reflectance). During spectral 
measurements, care was taken to avoid leaf primary veins. The spectral 
reflectance measurements were corrected for dark current and stray light 
following the Integrating Sphere User Manual instructions (ASD, 2008). 
Spectral measurements of 5-10 leaves (depending on leaf size and weight) 
constituting a sample were averaged to a single spectrum to represent the 
sample. A moving second order Savitzky-Golay filter with a frame size of 11 
was applied to each sample reflectance spectra to minimize instrument noise 
(Savitzky and Golay, 1964). Due to the low signal-to-noise ratio for 
wavelengths beyond 2200 nm as well as spectral bands before 400 nm, the 
reflectance spectra were cropped to 400–2200 nm range. Therefore, 1801 
spectral bands were retained for further analysis. All required laboratory 
measurements were completed on the same day of sample collection. 

3.2.5 Calibration of the PROSPECT model 

The PROSPECT leaf optical properties model is a radiative transfer plate model 
for simulating leaf directional-hemispherical reflectance over the optical 
domain of 400-2500 nm (Jacquemoud and Baret, 1990). The PROSPECT model 
idealizes a leaf as elementary layers characterized by absorbing and scattering 
properties (Feret et al., 2008). The model requires four input parameters 
including leaf structure index (Nstruc), leaf chlorophyll content (Cab, µg/cm2), 
leaf water content (EWT, cm) and leaf dry matter content (LMA, g/cm2). 
PROSPECT has been widely validated for the retrieval of leaf traits across a 
variety of species especially for mature, sunlit leaf samples at peak vegetation 
growth, i.e. summer (Ali et al., 2016; Li and Wang, 2013b; Malenovský et al., 
2006; Wang et al., 2015a). However, in this study we assess the effect of leaf 
position in the vertical canopy profile on the performance of PROSPECT for 
modelling leaf spectral properties and retrieval of leaf traits across canopy 
positions through a growing season. To achieved a higher accuracy in the 
retrieval of inputs parameters the dimension of the LUT has to be sufficiently 
large (Combal et al., 2003; Tang et al., 2007).  
 



Chapter 3 

39 

 
Figure 3.2 Seasonal variation in measured Cab, LMA and EWT across canopy positions 
(UC and LC represent upper and lower canopy respectively) 
 
We therefore used the improved (1 nm) and recalibrated PROSPECT 4 model 
(Feret et al., 2008) in forward mode to generate a LUT with 250 000 leaf 
spectral reflectance simulations. We used PROSPECT 4 instead of later versions 
because we did not measure leaf carotenoid and anthocyanins content, which 
are input parameters in PROSPECT 5 and PROSPECT D (Feret et al., 2008; 
Féret et al., 2017). The ranges of the PROSPECT input variables (Table 3.2) 
were selected guided by prior information gathered from field-collected data. 
Specifically, the range of input parameters used for PROSPECT calibration were 
based on field collected data widened by 10% of their respective means. In 
order to preserve a relationship that existed between field-measured LMA and 
EWT (r = 0.66, p = 0.00, Fig 3.3), the PROSPECT model was run by generating 
input variables (LMA and EWT) using  a multivariate normal distribution 
function based on the mean and covariance matrix of their field measured 
values. For the N structure index, we used the same range presented by Ali et 
al. (2016) who retrieved N for similar species in the same study area. It is 
often a prerequisite to calibrate the physical and optical constants, such as 
refractive index and absorption coefficients of the PROSPECT model to the 
target experimental data. However, in this study, we validated the suitability 
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of the original PROSPECT model to simulate field measured reflectance spectra 
by computing the RMSE between measured and simulated reflectance spectra. 
The generated RMSE (Fig 3.5a) was generally lower than reported in the 
literature (Feret et al., 2008; Sun et al., 2018). Therefore, we used the 
PROSPECT model without re-calibrating the physical and optical constants (Ali 
et al., 2016). 

 
Figure 3.3 Correlation between EWT and LMA for field-collected data 
 
Table 3.2: Ranges of the leaf variables used to build the LUT with the size of 250 000-
reflectance spectra 
Parameter unit min max mean SD 
Leaf structure parameter (N) --- 1 2.22 1.52 0.15 
Total leaf chlorophyll content 
(Cab) 

µg/cm2 2 
 

67 
 

36.57 10.6 

Equivalent water thickness 
(Cw) 

cm 0.0025
 

0.015 
 

0.0015 0.0066 

Leaf mass per area (Cm) g/cm2 0.0015 0.014 0.0016 0.0053 

3.3.1 Inversion of the PROSPECT model 

There are a number of inversion approaches that can be used to assess the 
performance of RTMs in modelling leaf spectral reflectance and retrieving leaf 
traits. The main inversion methods are iterative optimization, neural networks 
and look-up table (LUT) (Sun et al., 2018; Wang et al., 2015a). Optimization 
algorithms and neural networks search for the ‘best fit’ between measured and 
simulated spectra by successive input variable iteration (Verrelst et al., 
2015a). The overall performance of optimization algorithms depends on the 
initial guess (Preidl and Doktor, 2011). The main challenge with optimization 
algorithms is that they computationally demanding and time-consuming when 
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inverting large look-up tables. The LUT inversion approach on other hand is 
based on querying the LUT using a merit function (Liang, 2007). The function 
essentially minimize the summed difference between measured and simulated 
spectra across the selected wavelength. The LUT approach has an advantage 
over other inversion methods because it is computationally efficient and 
guarantee finding global minima (Rivera et al., 2013; Sehgal et al., 2016). 
Previous studies have also demonstrated that the inversion technique has a 
minor influence on the inversion results (Buddenbaum and Hill, 2015; Kimes 
et al., 2000). The main factors that influence the performance of model 
inversion are the spectral range considered for target constituent and the 
signal to noise ratio of the spectra (Feret et al., 2008). In this study, we 
therefore used the widely used LUT approach to assess the performance of the 
PROSPECT model in modelling leaf spectral properties and retrieval of leaf 
traits. The best match between simulated spectra to each measured reflectance 
spectra is determined by calculating and finding the lowest root mean square 
error (Eqn 3.3) of the unconstrained non-linear multivariate function 
(Darvishzadeh et al., 2012). In practice, model inversion involves finding the 
parameter vector θ = [N, Cab, LMA, EWT] that minimizes the merit function J 
(θ). 

n
simmesJ  

  


2
)(  (3.3) 

 
Where 𝜌𝑚𝑒𝑠 and 𝜌𝑠𝑖𝑚 are measured and simulated spectral reflectance 
respectively, 𝑛 is the number of wavelengths (λ) i.e. 1801 used in this study. 
The selection of single best fitting spectra may not be the optimal strategy of 
inverting the LUT as this is prone to ill-poseness (Darvishzadeh et al., 2012). 
In this study, we observed that using a single best fitting spectral or multiple 
solutions (i.e. mean of the best 10, 50 and 100 solutions) did not affect the 
pattern of leaf traits retrieval accuracy (Appendix: Fig A1-A3). 

3.3.2 Model Performance Assessment 

To assess the performance of the PROSPECT model inversion in simulating leaf 
spectral reflectance of leaf samples collected at different canopy positions, we 
examined the agreement between the measured and the best-match 
reflectance spectra simulated by the PROSPECT model using the root mean 
square error (RMSE). We also compared leaf traits retrieved from the 
PROSPECT model against the field-measured ones using the coefficient of 
determination (R2), RMSE and normalized root mean square error (NRMSE = 
RMSE/range).   
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3.3 Results 

3.3.1 PROSPECT performance in reflectance spectra 
simulation across canopy positions throughout the 
growing season 

The effect of leaf position on the performance of LUT inversion was initially 
evaluated based on the agreement between simulated and measured 
reflectance spectra. Generally, the PROSPECT model inversion yielded 
reflectance spectra that closely matched the measured spectra for both the 
upper and lower canopy across all seasons and throughout the entire spectrum 
(Fig 3.4). However, some variation were observed, for example, there were 
relatively higher peaks of spectra mismatch in wavelengths 490-530, 700-789 
and 1500-1680 and 1880-1895 nm for the pooled dataset (Fig 3.5a). Across 
seasons and canopy positions, the peak in the 490-530 nm spectrum was 
observed for the autumn dataset. The RMSE peak in the ‘red-edge’ spectrum 
remains prominent for all the three seasons, with the highest RMSE observed 
for spring followed by summer and then autumn seasons. High errors in the 
1500-1680 nm wavelengths were observed across all seasons. The RMSE in 
the NIR were lowest in autumn and highest in spring (Fig 3.5b). The lower 
canopy demonstrated a better match between simulated and measured 
reflectance spectra compared to the upper canopy, especially in the NIR (800-
1300; Fig 3.4, 3.5c) and SWIR across all seasons (Fig 3.5d-f). Spectral 
disagreement in the ‘red edge’ between the upper and lower canopy was higher 
in the spring (Fig 3.5d) and summer (Fig 3.5e) when compared to autumn (Fig 
3.5f). A prominent spectral mismatch was observed in wavelengths centred at 
515 nm for the autumn season, which is absent in spring and summer, 
respectively. 
 

 
Figure 3.4 Mean measured and simulated leaf reflectance spectra for the upper and 
lower canopy for all samples used in the study. The spectral mismatch between 
measured and simulated reflectance is greater for the upper canopy compared to the 
lower canopy leaf samples (see inserts). 
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Figure 3.5 Variation in RMSE between measured and simulated leaf reflectance for 
pooled dataset (a), seasons (b), leaf position (c); and leaf position for spring (d), summer 
(e) and autumn (f). 

3.3.2 PROSPECT performance in leaf traits retrieval across 
canopy positions throughout the growing season 

Leaf traits retrieved via the PROSPECT model inversion were compared to leaf 
traits measured in the field. Results show that the retrieval accuracy for Cab 
was higher for the lower canopy (NRMSE= 0.103) when compared to the upper 
canopy (NRMSE = 0.122) across all seasons (Fig 3.6). The retrieval accuracy 
of Cab for the lower canopy consistently outperformed that of the upper canopy 
for each season. The difference in Cab retrieval accuracy between upper canopy 
and lower canopy was small in spring (NRMSE = 0.209 and NRMSE = 0.2 for 
lower and upper canopy respectively) when compared to summer (NRMSE = 
0.269 and NRMSE = 0.199 for lower and upper canopy respectively) and 
autumn (NRMSE = 0.1 and NRMSE = 0.14 for lower and upper canopy 
respectively respectively). Across seasons, Cab was retrieved with higher 
accuracy in autumn (NRMSE = 0.112) when compared to spring (NRMSE = 
0.195) and summer (NRMSE = 0.219). 
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Figure 3.6 Retrieval accuracies of the leaf chlorophyll content (Cab) across canopy 
positions throughout the growing season. 
 
Results of the study show that EWT for the lower canopy was retrieved with 
higher accuracy (NRMSE = 0.125) when compared to the upper canopy 
(NRMSE = 0.188) across all seasons (Fig 3.7). Upper canopy EWT was 
retrieved with low accuracy (NRMSE = 0.162 for spring, NRMSE = 0.24 for 
summer and NRMSE = 0.258 for autumn) when compared to low canopy 
(NRMSE = 0.128 spring, NRMSE 0.16 = summer and NRMSE = 0.129 autumn) 
across all seasons. The difference in EWT retrieval accuracy between the upper 
and lower canopy widened as the season progressed with a huge difference 
observed in summer. Generally the retrieval accuracy of EWT was high in 
spring (NRMSE = 0.13), compared to summer (NRMSE = 0.172) and autumn 
(NRMSE = 0.168). The pattern of EWT retrieval accuracy between the upper 
and lower canopy follow a similar trend observed for Cab. 
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Figure 3.7 Retrieval accuracies of EWT across canopy positions throughout the growing 
season. 
 
The retrieval accuracy for LMA was higher for the upper canopy (NRMSE = 
0.154) compared to lower canopy (NRMSE = 0.176) across all seasons (Fig 
3.8). A similar trend was also observed for summer (NRMSE = 0.146 and 
NRMSE= 0.213) and autumn (NRMSE = 0.174 and NRMSE = 0.239). In 
contrast, lower canopy LMA for spring was retrieved with higher accuracy 
(NRMSE = 0.162) when compared to the upper canopy (NRMSE = 0.184) for 
the same season. The difference in LMA retrieval accuracy between the upper 
canopy and the lower canopy was wide in summer and autumn compared to 
spring. Generally, LMA was retrieved with higher accuracy in summer (NRMSE 
= 0.148) when compared to spring (NRMSE = 0.154) and autumn (NRMSE = 
0.158). The difference in retrieval accuracy of LMA across seasons was small 
however the summer season exhibited a better fit (R2 = 0.82). 
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Figure 3.8 Retrieval accuracies of the leaf mass per area (LMA) across canopy positions 
throughout the three growing seasons. 

3.4 Discussion 

3.4.1 Does the position of a leaf within a vertical canopy 
profile affects modelling leaf spectral reflectance 
throughout the growing season? 

The PROSPECT model exhibited the capability to reconstruct leaf reflectance 
spectra across the canopy throughout the growing season. The stronger 
agreement between measured and simulated reflectance spectra observed for 
the lower canopy leaves compared to the upper canopy leaves (Fig 3.4 and 
3.5) can be attributed to difference in leaf morphological traits, such as specific 
leaf area (SLA) and LMA between leaf samples collected from the two canopy 
layers. These morphological differences  have been reported to complicate the 
modelling of leaf optical properties and subsequently retrieval of leaf traits (Qiu 
et al., 2018). Field data used in this study evidently demonstrated high SLA 
values for leaf samples collected from the lower canopy when compared to the 
upper canopy leaf samples  throughout the growing season (Fig 3.9), implying 
that generally upper canopy leaves are thicker compared to lower canopy 
leaves. Leaf reflectance decreases when a leaf thickens due to the increase in 
the quantity of light intercepting tissue (Demarez, 1999).  
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The relatively high RMSE between measured and simulated leaf reflectance in 
wavebands centred around 510, 740 and 1590 and 1885 nm across seasons 
and canopy positions, imply that these wavebands are either not well measured 
or modelled by the PROSPECT model. The spectral mismatch in these 
wavebands has been observed even for re-calibrated PROSPECT models. For 
example, Li and Wang (2011) observed RMSE of up to 0.06 in the ‘red edge’ 
and SWIR spectral regions after recalibrating the PROSPECT 4 model. The 
lower RMSEs between measured and simulated leaf reflectance  in the ‘red 
edge’ spectrum for autumn in comparison to spring and summer can be 
ascribed to the sensitivity of the ‘red edge’ spectrum when the distribution of 
foliar nutrients within the leaf volume become uniform during senescence in 
the autumn season (Maillard et al., 2015). This observation reflects the subtle 
sensitivity of the PROSPECT model to variation in chlorophyll content at peak 
vegetation growth, which potentially has an effect on retrieval accuracy of Cab 

during the summer season. To the best of our knowledge, our study provides 
the first preliminary understanding on the effect of leaf position within a vertical 
canopy profile on the performance of PROSPECT model by inspecting the 
spectral match between measured and simulated leaf reflectance spectra 
throughout the growing season. 
 

 
Figure 3.9 Variation in SLA across canopy positions throughout the growing season. (UC 
and LC represent upper and lower canopy respectively). 

3.4.2 Effect of leaf position on the retrieval accuracy of leaf 
 traits throughout the growing season 

The higher accuracy of retrieval of Cab obtained for leaf samples collected from 
the lower canopy compared to the upper canopy throughout the growing 
season (Fig 3.6) can be attributed to the distribution of chloroplasts within a 
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leaf that affects absorption and transmittance of radiation by leaf chlorophyll 
pigments. Most of the chloroplasts for upper sunlit leaves are clumped in the 
palisade layer whilst for shaded leaves, the chloroplasts are evenly distributed 
between the palisade and spongy mesophyll layer (Adds et al., 1997). We 
speculate that the evenly distributed chloroplast in shaded lower canopy leaves 
improves the sensitivity and interaction of radiation and chlorophyll pigments. 
The widest differences in Cab retrieval accuracy between upper and lower 
canopy coincided with the period of maximum leaf chlorophyll content (Fig 
3.2). This observation can be attributed to the manifestation of the shadow 
effect on the lower canopy resulting in a reduction in photosynthetically active 
radiation (PAR) reaching to the lower canopy. The position of a leaf across the 
canopy vertical profile is a key determinant of its pigment content and 
subsequently photosynthetic capacity (Arellano et al., 2017). The illuminated 
upper canopies are known to display high pigment content to commensurate 
the high relative irradiance received. The least retrieval accuracy of Cab across 
all seasons (i.e. summer (NRMSE = 0.219) coincided with the season of high 
leaf chlorophyll content (Fig 3.2). This observation is in agreement with the 
findings of Zhang et al. (2007) who obtained the lowest accuracy in the 
retrieval of Cab  in summer, using the PROSPECT model in sugar maple stands. 
The seasonal distribution of chlorophyll pigments within a leaf can be linked to 
poor leaf chlorophyll retrievals obtained in summer. During peak vegetation 
growth, chlorophyll and other nutrients are confined in chloroplast cells, and 
these cells are organized in a clumped manner. As leaves senescence, 
chloroplast degrades, and the chlorophyll pigments together with other 
nutrients like leaf protein are released in remobilizable form  and become 
uniformly distributed across the leaf volume (Carrión et al., 2014). This 
phenomenon, therefore, improves the interaction between radiation and leaf 
nutrients that are freely and uniformly distributed across the leaf volume.  
 
Results of our study demonstrate contrasting patterns in seasonal retrieval 
accuracies of LMA and EWT across canopy positions. We expected LMA and 
EWT to display similar seasonal retrieval patterns across the canopy, mainly 
because these two traits co-vary on the leaf economic spectrum, i.e. EWT 
facilitates transportation of nutrients and is a key regulator of photosynthesis 
and subsequently the amount of dry matter content accumulated in a leaf 
(Asbjornsen et al., 2011; Waring and Landsberg, 2011). Statistically, LMA and 
EWT demonstrated a positive co-variance and strong correlation (r = 0.66, p 
= 0.00, Fig 3.3). Previous studies reported that EWT is probably easier to 
retrieve via PROSPECT inversion due to its dominance and well-elaborated 
specific absorption features compared to LMA (Feret et al., 2008; Jiang et al., 
2018; Wang et al., 2011). The high EWT retrieval accuracies obtained for the 
lower canopy in comparison to the upper canopy throughout the growing 
season conform to the variation in spectral matching between measured and 
simulated reflectance spectra for the two canopy layers especially in key water 
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absorption wavebands [970, 1200 and 1400 nm (Curran, 1989)]. The pattern 
in EWT retrieval accuracy across canopy positions and seasons can be 
explained by the high wax-cuticle load that characterize upper canopy leaves 
in a bid to prevent photo-damage, especially at peak vegetative growing 
season that is characterized by increased radiation amounts (Bouzoubaâ et al., 
2006; Jacoby et al., 1990). High wax-cuticle load conceal the interaction 
between radiation and leaf biochemical constituents especially in the NIR/SWIR 
optical domain resulting in complex relationship with reflected light (Barry et 
al., 2009; Féret et al., 2018).  
 
Contrary to EWT retrieval accuracy patterns across seasons and canopy 
positions, we observed that the retrieval accuracy of LMA for the upper canopy 
outperformed that of the lower canopy for all the seasons except the spring. 
This observation does not reflect the discrepancies in spectral matching 
between measured and PROSPECT simulated reflectance spectra observed in 
Fig 3.4 and 3.5 especially for wavelengths in the NIR and SWIR reported to be 
sensitive to LMA variations (Baret and Fourty, 1997; Feret et al., 2008). 
Several reasons can be ascribed to the contrasting pattern in LMA retrieval 
accuracies across the canopy throughout the growing season. Firstly, LMA is 
often retrieved with relatively low accuracy because the high specific 
absorption coefficients of water which conceal the effect of LMA spectral 
response (Jacquemoud et al., 1996; Riano et al., 2005). Secondly, LMA 
consists of a wide range of constituents, such as protein, lignin, cellulose, 
starch, sugar and lipids (Qiu et al., 2018). The specific absorption coefficient 
spectrum used in the PROSPECT model is considered a weighted average of 
the molecular absorption spectra of these constitutes (Jacquemoud et al., 
1996). This approach is likely to induce uncertainties, especially in wavelengths 
of high LMA absorption as different components of these constituents can yield 
different specific absorption coefficients of LMA. Thirdly, thicker leaves or 
leaves of higher LMA values tend to have denser tissues and less air space, 
which results in diverse leaf internal structure and complex light scattering 
(Demarez, 1999). Finally, although it has been demonstrated earlier that the 
SWIR (especially between 2100-2300 nm) is more sensitive to LMA (Wang et 
al., 2011), our spectral reflectance data had low signal to noise ratio in this 
spectrum. Retrieval of LMA did not show similar patterns to Cab and EWT 
retrieval across the canopy, it was generally retrieved with higher accuracy 
(NRMSE = 0.145 for the pooled dataset) compared to previous studies that 
used the PROSPECT model in the same ecosystem. For example, Ali et al. 
(2016) reported an NRMSE of 0.23 while Wang et al. (2015a) reported an 
NRMSE of 0.22 for LMA retrieved using the PROSPECT inversion based on 53 
sunlit leaf samples collected in summer. The relatively lower accuracy reported 
in these studies could be ascribed to a small sample size (n = 53 compared to 
588 samples in this study) used for model validation. To our knowledge, our 
work provides the first attempt to examine the effect of leaf position within a 
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vertical canopy profile on the performance of the PROSPECT model when 
retrieving leaf traits throughout a growing season. 

3.4.3 Implications on plant traits spectroscopy 

Results presented in this study have implications on modelling leaf optical 
properties and retrieval of foliar traits especially using multi-layer canopy 
radiative models (Kuusk, 2001). The conventional approach of sampling foliar 
material exclusively from the sunlit upper canopy has recently become a 
contentious approach in remote sensing vegetation canopies. Recent studies 
demonstrate that the vertical heterogeneity in leaf chlorophyll, water and dry 
matter content have a significant effect on canopy reflectance measured by 
remote sensing instruments (Wang and Li, 2013; Yang et al., 2017; Zhao et 
al., 2017). The vertical heterogeneity in leaf traits is known to affect re-
absorption and scattering of radiation within vegetation canopies, and 
subsequently, the top of canopy reflectance measured by remote sensing 
instruments (Verhoef and Bach, 2007). Our previous study (Gara et al., 2018b) 
also demonstrated that incorporating leaf traits from the shaded lower canopy 
improve the modelling accuracy of dry matter related canopy traits such as 
canopy LMA, nitrogen and carbon using in-situ hyperspectral measurements. 
Results presented in the current study demonstrate that the position of a leaf 
affects the performance of the PROSPECT model and the retrieval of its input 
parameters. This observation implies that failure to account for the vertical 
heterogeneity in leaf traits between sunlit upper and shaded lower leaves 
together with their optical properties might introduce significant uncertainties 
in modelling canopy reflectance and retrieval of canopy traits (Li et al., 2018b; 
Yang et al., 2017). These results are particularly relevant to the vegetation 
spectroscopy community considering that the PROSPECT model is coupled with 
widely used canopy RTMs such as INFORM (Schlerf and Atzberger, 2006) and 
SAILH (Jacquemoud et al., 2009).  

3.5 Conclusion 
Our results demonstrated a strong agreement between the measured and 
PROSPECT simulated reflectance spectra for leaves from the lower canopy 
compared to the upper canopy, especially in the NIR spectral region, 
throughout the growing season. This pattern concurred with the higher 
retrieval accuracy of Cab and EWT for the lower canopy compared to the upper 
canopy throughout the growing. Variations in Cab and EWT retrieval accuracy 
across the canopy vertical profile can be linked to seasonal changes in leaf 
biochemistry and morphology especially SLA. On the contrary, the LMA 
retrieval accuracy pattern did not reflect the spectral match observed between 
the upper and lower canopy. This implies that there is further need to separate 
and model respective constituents of LMA to improve PROSPECT stability and 
credibility. We conclude that the PROSPECT model provides reasonable 
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retrieval accuracies for Cab, EWT and LMA from reflectance spectra across 
canopy position throughout the growing season. However, our results for the 
first time demonstrated seasonal variation in retrieval accuracy of leaf traits 
via PROSPECT model inversion through a vertical canopy profile. Our results 
points out the potential source of uncertainties in the retrieval of leaf traits 
using the widely used PROSPECT model. 
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Chapter 4 
 
Leaf to canopy upscaling approach affects the 
estimation of canopy traits 
 

  

                                          
 This chapter is based on Gara, T.W., Skidmore, A. K., Darvishzadeh, R., Wang, T. 
(2019) Leaf to canopy upscaling approach affects the estimation of canopy traits. 
GIScience & Remote Sensing, 56, 554-575. 
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Abstract  
Leaf traits are often upscaled to canopy level using sunlit leaf samples collected 
from the upper canopy. The implicit assumption is that the top of canopy 
foliage material dominates canopy reflectance and the variability in leaf traits 
across the canopy is very small. However, the effect of different approaches of 
upscaling leaf traits to canopy level on model performance and estimation 
accuracy remains poorly understood. The principal aim of this study is to 
examine the effect of different approaches when upscaling leaf traits to canopy 
level on model performance and estimation accuracy using spectral 
measurements (in-situ canopy hyperspectral and simulated Sentinel-2 data) in 
short woody vegetation. To achieve this, we measured foliar nitrogen (N), leaf 
mass per area (LMA), foliar chlorophyll and carbon together with leaf area 
index (LAI) at three vertical canopy layers (lower, middle and upper) along the 
plant stem in a controlled laboratory environment. We then upscaled the leaf 
traits to canopy level by multiplying leaf traits by LAI based on different 
combinations of the three canopy layers. Concurrently, in-situ canopy 
reflectance was measured using an ASD FieldSpec-3 Pro FR spectrometer, and 
the canopy traits were related to in-situ spectral measurements using partial 
least square regression (PLSR). The PLSR models were cross-validated based 
on repeated k-fold, and the normalized root mean square errors (NRMSEcv) 
obtained from each upscaling approach were compared using one-way analysis 
of variance (ANOVA) followed by Tukey's post hoc test. Results of the study 
showed that leaf-to-canopy upscaling approaches that consider the 
contribution of leaf traits from the exposed upper canopy layer together with 
the shaded middle canopy layer yield significantly (p < 0.05) lower error 
(NRMSEcv < 0.2 for canopy N, LMA and carbon) as well as high explained 
variance (R2 > 0.71) for both in-situ hyperspectral and simulated Sentinel-2 
data. The widely-used upscaling approach that considers only leaf traits from 
the upper illuminated canopy layer yielded a relatively high error (NRMSEcv> 
0.2) and lower explained variance (R2 < 0.71) for canopy N , LMA and carbon. 
In contrast, canopy chlorophyll upscaled based on leaf samples collected from 
the upper canopy and total canopy LAI exhibited a more accurate relationship 
with spectral measurements compared with other upscaling approaches. 
Results of this study demonstrate that leaf to canopy upscaling approaches 
have a profound effect on canopy traits estimation for both in-situ 
hyperspectral measurements and simulated Sentinel-2 data in short woody 
vegetation. These findings have implications for field sampling protocols of leaf 
traits measurement as well as upscaling leaf traits to canopy level especially in 
short and less foliated vegetation where leaves from the lower canopy 
contribute to the canopy reflectance.  
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4.1 Introduction 
Essential biodiversity variables (EBVs) such as leaf traits play a key role in 
ecosystem structure, functioning and parameterization of dynamic 
biogeochemical models and nutrient budget simulations (Scheiter et al., 2013). 
For example, leaf chlorophyll content is a critical leaf trait in assessing plant 
physiological status (plant health and/or phenological stage) as well as a 
plant's photosynthetic capacity (Malenovský et al., 2013). Foliar nitrogen (N) 
is a key element in chlorophyll (~6% by weight) (Kokaly et al., 2009) and in 
enzymes responsible for carbon fixation i.e. ribulose-1.5-biphosphate (RuBP) 
carboxylase and phenolyenolpyruvate (PEP) essential for photosynthesis in C3 
and C4 plants, respectively (Cho et al., 2013; Gibson, 2008; Schlemmer et al., 
2013). In addition, leaf mass per area (LMA) and carbon content  mirror the 
plant economic spectrum with regard to nutrients uptake, light harvesting and 
carbon sequestration (Martin and Thomas, 2011; Poorter et al., 2009). An 
improved understanding of leaf traits is critical in characterizing, monitoring 
and simulating ecosystem biogeochemical fluxes over space and time. In this 
regard, leaf traits are a critical component of ecosystem functional and 
structural diversity - proxies of essential biodiversity variables (EBVs) 
(Skidmore et al., 2015). Therefore, estimating leaf traits improves the 
conservation and monitoring efforts of EBVs fluxes towards the Aichi 
Biodiversity Targets (Pereira et al., 2013).  
 
Remote sensing provides a cost-effective and practical means of estimating 
and monitoring leaf traits for biodiversity conservation (Kissling et al., 2017). 
Field spectroscopy and satellite multispectral data such as Sentinel-2 are 
critical primary data sources that can improve quantitative estimation and 
monitoring of foliar traits (Chemura et al., 2018). Essentially, two modelling 
approaches [i.e. empirical (statistical) and physical models (radiative transfer 
models-RTM)] are employed to estimate field measured leaf traits from 
spectral data. Empirical models explore parametric and non-parametric 
statistical relationships between spectral data or indices and field measured 
leaf traits using statistical techniques such as stepwise regression and partial 
least squares regression (Verrelst et al., 2015a). Physical models, on the other 
hand, apply radiation transfer laws to explicitly simulate light absorption, 
transmittance and scattering inside vegetation canopies by accounting for leaf 
traits content, canopy structural properties and soil background (Croft et al., 
2015; Yi et al., 2014). Quantitative leaf traits that are related or matched to 
spectral measurements based on these modelling approaches are often 
determined from leaf samples collected from dominant and co-dominant 
species within sampling units (Homolová et al., 2013). The leaf traits expressed 
either in mass (concentration) or area (content) based units are then upscaled 
to the canopy level using two techniques, i.e. the direct extrapolation and 
canopy integrated approaches (He and Mui, 2010a). The direct extrapolation 
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approach applies the relationship between leaf traits and reflectance or 
vegetation indices observed at leaf level directly to the canopy level (Yoder and 
Pettigrew-Crosby, 1995). The basic assumption of the direct extrapolation 
method is that trait content or concentration of leaves across the vertical 
canopy profile is homogeneous (Peterson et al., 1988). However, the direct 
extrapolation approach is not commonly used because it does not account for 
canopy structure - a key variable that drives canopy reflectance (Knyazikhin et 
al., 2013). The canopy integrated method on the other hand upscale leaf traits 
to canopy level by accounting for LAI or foliage biomass. The plant traits at 
canopy level are then regressed against canopy reflectance measured using a 
field spectroradiometer or airborne and satellite multispectral sensors. In both 
upscaling approaches, leaf samples for determining traits are often collected 
from the sunlit top-of-the canopy layer, especially in highly foliated forest 
canopies. The assumption underlying this widely used approach is that the 
vertical variation in leaf traits across the canopy is small and leaves at the top 
of the canopy dominate canopy reflectance and thus represents the whole 
canopy (Thomas et al., 2008). However, in short woody vegetation the foliage 
material across the vertical profile significantly contributes to the canopy 
spectral signal (Roelofsen et al., 2013). This phenomenon complicates leaf 
sampling protocols because ‘top of canopy’ sampling becomes less valid. To 
this end, establishing an ecologically meaningful canopy trait value that 
corresponds to the overall canopy spectral signal is critical when estimating 
and mapping canopy traits.  
 
The distribution of leaf trait content across vegetation canopies is complex and 
often varies across the vertical canopy profile (Gara et al., 2018a; Hirose et 
al., 1989). Plants often exhibit higher nutrient content in the upper canopy and 
on illuminated leaves that receive increased radiation amounts (Chen et al., 
1993; Weerasinghe et al., 2014). The variation in leaf traits across the canopy 
vertical profile is an established plant physiological mechanism designed to 
maintain an equilibrium between the RuBisCo-limited rate of carboxylation and 
electron transport limited rate of carboxylation (Chen et al., 1993). Recent 
research on multiple-layer radiative transfer models (MRTM) have shown that 
the vertical heterogeneity in foliar traits (LMA, chlorophyll and water) have a 
significant influence on simulated canopy reflectance and subsequent retrieval 
of canopy traits especially in low to moderately foliated canopies (Li and Wang, 
2013a; Wang and Li, 2013). Moreover, previous studies demonstrated that 
canopies of similar foliage material (e.g., LAI or biomass) can yield significantly 
different canopy reflectance across the whole spectrum (Darvishzadeh et al., 
2008a). This observation has been linked to variation in confounding factors 
such as leaf trait heterogeneity within a canopy (Li et al., 2013; Luo et al., 
2016). Related studies have also demonstrated that the "big leaf" (sunlit leaves 
only) upscaling approach underestimates canopy gross primary production by 
up to 70 % in highly clumped forest stands compared to the "two leaf" (sunlit 
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plus shaded leaves) approach (Sprintsin et al., 2012). The "big leaf" approach 
does not account for the vertical variability in leaf traits and assumes that a 
sunlit leaf in the upper canopy represent the whole canopy, while the "two leaf" 
approach requires information on the vertical variability in leaf traits based on 
both sunlit and shaded leaves (Mercado et al., 2006). Within the framework of 
the “big leaf” and “two leaf” upscaling approaches, we explored different 
combinations of leaf trait-LAI upscaling scenarios from three vertical (upper, 
middle and bottom) canopy layers in short woody vegetation in a laboratory 
setup. To the best of our knowledge, the effect of these upscaling 
conceptualizations are poorly understood and remain untested in canopy traits 
estimation using in-situ hyperspectral measurements or simulated satellite 
data. To this end, we, therefore hypothesize that leaf to canopy upscaling 
approaches have a significant effect on the relationship between canopy traits 
and spectral measurements and subsequently estimation accuracy of canopy 
traits. 
 
The principal aim of this study is to evaluate the effect of different approaches 
of upscaling leaf traits (foliar N, LMA, chlorophyll, and carbon) from leaf to 
canopy level on model performance and estimation accuracy using spectral 
measurements (in-situ canopy hyperspectral and simulated Sentinel-2 
multispectral data) and partial least squares regression. A number of upscaling 
approaches based on different LAI and leaf trait mathematical combinations 
were computed and used to calibrate a PLSR model, with the intention of 
assessing the accuracy of canopy traits estimation. Prior to ascertaining the 
effect of upscaling approaches, we tested whether leaf traits significantly vary 
across the canopy vertical profile.  

4.2 Materials and methods 

4.2.1 Species description 

Four plant species of different leaf form and canopy structure, representing 
tropical and temperate biomes, were used to evaluate the effect of leaf to 
canopy upscaling approaches on model performance and estimation accuracy 
using in-situ hyperspectral and simulated Sentinel-2 multispectral data. We 
selected the following plant species; Camellia japonica (n = 24, mean height 
83.71±4.75 cm), Ficus benjamina (n = 24; mean height 82.07±4.27 cm), 
Chamaedorea elegans (n = 24; mean height 88.5±4.75 cm) and Fatshedera 
lizei (n = 24; mean height 88.93±1.53 cm). Further description of the plant 
species used in this study can be found in Gara et al, (2018a). All the plants 
used in this study were purchased from a local nursery.  
  



Leaf to canopy upscaling approach affects estimation of canopy traits 

58 

4.2.2 Experimental setup 

Since the plants purchased from the nursery were assumed to be pre-treated 
with fertilizer, we changed the pot-soil to a new homogenized mixture of seven 
parts of nutrient-poor sand soil to two parts of fertile loamy soil. After changing 
the potting mix, we administered three soil nitrogen treatments (high, medium 
and low) to the ninety-six (96) plants used in this study. For the high (n = 32) 
and medium (n = 32) treatment groups, 2.9 g and 0.9 g per pot were supplied 
respectively, while no fertilizer was applied to the low treatment (n = 32). 
Further details on the experimental setup is provided in Gara et al (2018a). 

4.2.3 Canopy spectral measurements 

Canopy spectral reflectance from 350 to 2500 nm were measured in a 
controlled remote sensing laboratory using an ASD FieldSpec-3 Pro FR 
spectrometer. The walls and ceiling of the laboratory were coated with black 
material in order to minimize any ambient light or reflection, thus minimizing 
the effect of diffuse radiation and lateral flux (Darvishzadeh et al., 2009). Three 
pots of the same species and soil treatment were used to form a canopy as 
shown in a schematic presentation in Fig 4.1A. In order to create a canopy, 
the three pots were placed in fixed positions within a 60 cm by 60 cm soil bed. 
A fiber optic probe with a field of view of 25˚ was mounted on a tripod at nadir 
and positioned 90 cm above the soil bed, thus creating a field of view (FOV) 
with a diameter of 40 cm on the soil surface. A halogen light bulb (235 W) 
positioned 1.2 m from the canopy was used to supply illumination on the 
canopy. All canopy spectral measurements were calibrated with a Spectralon 
white reference panel. The sensor’s FOV was completely covered with foliage 
material; hence the effect of the background soil was minimized. After each 
canopy spectral measurement, the soil bed was rotated 45˚ in order to average 
out the differences in canopy orientation and to minimize the possible 
bidirectional reflectance distribution function (BRDF) effects (Darvishzadeh et 
al. 2008; 2009). Consequently, the spectral reflectance of 32 canopies were 
measured. To minimize noise in the canopy reflectance spectra, a moving 
second order Savitzky-Golay filter (Savitzky and Golay, 1964) with a frame 
size of 11 was applied to each sample reflectance spectra. Wavelengths before 
400 nm and after 2200 nm were too noisy and were thus removed from the 
dataset. Therefore, 1801 spectral bands were retained for subsequent analysis.  
 
The canopy reflectance spectra measured using the ASD spectroradiometer 
were convolved to the spectral band configurations of Sentinel-2 multispectral 
instrument based on the sensor spectral response function. To account for 
environmental and instrument uncertainties in natural satellite operating 
system, we added a random Gaussian (white) noise component of 20% to the 
convolved spectra (Richter et al., 2009; Verrelst et al., 2014). Sentinel-2 is a 
Multi-Spectral Instrument (MSI) operated by the European Space Agency 
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(ESA). The Multi-Spectral Instrument (MSI) on board Sentinel-2 is composed 
of 13 spectral bands ranging from 400 to 2400 nm with a grain size ranging 
from 10-60 m and a swath width of 290 km (European Space Agency, 2010; 
Hill, 2013). The mission has two identical multispectral sensors (Sentinel 2A 
and 2B) in orbit delivering a revisit time of three to five days (Aschbacher and 
Milagro-Pérez, 2012). 

 
Figure 4.1 Positioning of plant vessels in the field of view (A) and the demarcation of 
the three canopy layers considered in the experiment (B). 

4.2.4 Determining LAI and leaf traits  

After measuring canopy reflectance spectra, the canopy was divided into three 
vertical layers, i.e. upper, middle and lower, as shown in Fig 4.1B. The three 
layers were determined based on the height of a canopy along the stem. We 
divided the canopy into three layers for three reasons. First, the plants used in 
this study were relatively short (mean height ~85 cm) in order to clearly 
identify more than three canopy layers. Second, identifying less than three 
canopy layers could have been insufficient to understand the effect of leaf traits 
vertical heterogeneity on canopy traits estimation. Finally, three canopy layers 
match forestry and agronomic standards in reporting research in canopy layers 
(Whitehurst et al., 2013; Wilkes et al., 2016). Foliage material belonging to 
each canopy layer were harvested. The LAI for each canopy layer was 
measured as the cumulative leaf surface area of leaves making up a canopy 
layer divided by the field of view. Care was taken to eliminate leaves outside 
the field of view. The total surface area of the leaves were measured using a 
LI-3100C area meter. The calibration of the LI-3100C area meter was routinely 
checked against a metal surface of known surface area. Representative leaves 
(approximately 3 g) from foliage material of each canopy layer were randomly 
sampled for leaf traits measurement. Leaf chlorophyll content (Cab μg/cm2) 
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was measured using a CCM-300 chlorophyll content meter (Opti-Sciences, 
2011). After measuring chlorophyll, a digital scale at an accuracy of ~0.01 g 
was used to determine the fresh weight for each sample. We also scanned the 
leaf surface area (LA cm2) of each sample using an AMH 350 area meter (ADC-
BioScientific, 2013). The samples were then oven-dried at 65 oC until at 
constant weight was attained after approximately 72 hours after which dry 
weight was measured. The leaf mass per area (LMA, g/cm2) was determined 
by dividing dry weight by fresh leaf area.  
 
After determining LMA, leaf samples were prepared for nitrogen and carbon 
analysis by grinding them to a fine and homogeneous powder using a mortar 
and pestle to pass through a 180 μm sieving and mesh screen. Approximately 
2 mg of each sample powder was placed in aluminium capsules for nitrogen 
and carbon analysis using the Perkin Elmer 2400 CHNS/O Elemental Analyzer 
(Perkin-Elmer, 2005). We duplicated 25% of samples and ran an acetanilide 
standard after every ten to fifteen samples to constantly monitor the system 
calibration and reliability. The nitrogen and carbon results from the elemental 
analyzer were obtained on a dry mass ash-included basis (Meerdink et al., 
2016). We therefore multiplied the mass-based nitrogen and carbon by LMA of 
each sample to obtain area based nitrogen and carbon content (Wang et al., 
2015a). 

4.2.5 Upscaling leaf traits to canopy level 

Using the LAI of each canopy layer, we explored different approaches for 
upscaling foliar nitrogen, LMA, chlorophyll and carbon to canopy level as 
described in Table 1. It is important to note that although the study aimed to 
assess five primary upscaling approaches (i.e., A-E, Table 4.1), we also used 
several secondary upscaling approaches (F-L) to explore the relative effect of 
each layer on the spectral signal observed at the top of the canopy, even if 
these secondary approaches are not necessarily practical in terms of field 
sampling. For example, upscaling option F requires measuring LAI of the top 
and bottom canopy layers, which is a challenge especially in environments 
characterized by tall trees. However, such an upscaling approach assists in 
assessing the contribution of the middle layer. 

4.2.6 Statistical analysis  

The effect of different leaf to canopy upscaling approaches on canopy traits 
estimation were assessed using partial least squares regression (PLSR) and 
validated using repeated k-fold cross validation. In this study we used PLSR 
for the following reasons; 1) it is more stable and suitable for high dimensional 
and collinear datasets such as a hyperspectral dataset (Wold et al., 2001); 2) 
it reduces model overfitting by decomposing spectral data into non-collinear 
latent variables especially when the number of predictor variables is more than 
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the number of observations (Carrascal et al., 2009); 3) it provides an 
opportunity to generate an error matrix for the internal validation subset 
(Kuhn, 2008; Wakeling and Morris, 1993); 4) it is computationally fast and 
statistically efficient and is widely used in leaf traits estimation using spectral 
data (Neinavaz et al., 2016; Ramoelo et al., 2011; Roelofsen et al., 2013; 
Serbin et al., 2014; Shiklomanov et al., 2016; Ullah et al., 2014).  
 

PLSR projects the explanatory variables (canopy reflectance spectra) into new 
orthogonal latent variables that explain the most variance in the original 
predictors (Geladi and Kowalski, 1986). The dependent variable (canopy traits) 
is then regressed against the optimal number of latent variables (Wold et al., 
2001). The number of latent factors selected for the PLSR model was 
determined by minimizing the cross validated root mean square error (RMSECV) 
generated from the repeated k-fold cross validation. In order to avoid 
overfitting and maintain model parsimony, we restricted the number of latent 
factors to a maximum of 10% (three) of the sample size i.e. 32 canopies (Bian 
et al., 2010; Marcoulides and Saunders, 2006; Wold et al., 2001). Repeated 
k-fold cross validation was used to proficiently exploit on our small dataset (n 
= 32). Five folds repeated 20 times (100 iterations) were used in the cross 
validation procedure. The repeated k-fold cross validation procedure iteratively 
splits the data set (n=32) into five semi-equal partitions or blocks randomly. 
At each iteration, k-1 partitions were used to train the PLSR model while the 
left out partition were used for validation. 
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Table 4.1: Leaf to canopy upscaling approaches 
Upscaling 
approach 
ID 

Description Formula 

A mean leaf traits across the three 
canopy layers ×  total canopy LAI ൭

1
n

∗ ෍ trait
୧ୀଵ,ଶ,ଷ

൱ ∗ ෍ LAI
ଵ,ଶ,ଷ

 

B mean leaf traits of the top two 
canopy layers × total canopy LAI ൭

1
n

∗ ෍ trait
୧ୀଵ,ଶ

൱ ∗ ෍ LAI
ଵ,ଶ,ଷ

 

C leaf traits of the top canopy layer 
× total canopy LAI 

traitଵ ∗ ෍ LAI
ଵ,ଶ,ଷ

 

D canopy traits weighted by LAI of 
each of the three canopy  layers 

෍ LAI୧

୧ୀଵ,ଶ,ଷ

∗ trait୧ 

E canopy traits weighted by LAI of 
the top two layers 

෍ LAI୧

୧ୀଵ,ଶ

∗ trait୧ 

F canopy traits weighted by the LAI 
of the top and bottom canopy 
layers 

෍ LAI୧

୧ୀଵ,ଷ

∗ trait୧ 

G canopy traits weighted by LAI of 
the middle and bottom canopy 
layer 

෍ LAI୧

୧ୀଶ,ଷ

∗ trait୧ 

H leaf traits for the top canopy layer 
× LAI of the top canopy layer 

LAIଵ ∗ traitଵ

I leaf traits for the middle canopy 
layer × LAI of the middle canopy 
layer 

LAIଶ ∗ traitଶ

J leaf traits of the bottom canopy 
layer × LAI of the bottom layer 

LAIଷ ∗ traitଷ

K mean leaf traits of the top and 
bottom layers × total canopy LAI ൭

1
n

∗ ෍ trait
୧ୀଵ,ଷ

൱ ∗ ෍ LAI
ଵ,ଶ,ଷ

 

L mean leaf traits of the middle and 
bottom canopy layers × total 
canopy LAI 

൭
1
n

∗ ෍ trait
୧ୀଶ,ଷ

൱ ∗ ෍ LAI
ଵ,ଶ,ଷ

 

1, 2, and 3 represents upper, middle and lower canopy layers respectively, 

trait = leaf traits 
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Table 4.2 Summary statistics of the leaf to canopy upscaling approaches 
 

 
Leaf to canopy upscaling approach 

 A B C D E F G H I J K L 

Canopy N 
(g/m2) 

min 0.79 0.97 1.04 0.69 0.48 0.5 0.29 0.28 0.12 0.09 0.8 0.49 
max 20.24 21.9 16.92 22.88 19.53 9.23 19.2 5.75 15.88 6.47 16.61 22.21 
mean 6.95 7.55 6.95 7.33 5.69 3.65 5.31 2.01 3.68 1.63 6.3 6.95 
SD 5.6 6.2 5.16 6.06 5.21 2.63 4.8 1.59 3.93 1.53 4.74 6.12 

 min 9.62 10.77 12.25 9.83 6.13 6.88 5.14 3.36 2.18 2.11 9.41 8.3 

Canopy LMA 
(g/m2) 

max 78.47 79.24 71.41 81.53 66.33 37.39 65.41 19.86 50.21 17.53 74.17 82 
mean 30.23 30.89 30.31 30.69 22.77 16.85 21.75 8.93 13.83 7.92 26.61 30.19 
SD 19.13 19.85 17.83 19.7 16.54 8.59 15.4 5.26 12 4.95 17.8 30.11 

Canopy Cab 
(g/m2) 

min 1.14 1.15 1.13 1.14 0.71 0.77 0.65 0.26 0.33 0.14 1.13 1.15 
max 5.13 5.17 5.31 5.12 4.04 2.66 3.53 1.59 2.56 1.11 5.18 5.03 
mean 2.18 2.19 2.17 2.19 1.58 1.24 1.56 0.63 0.95 0.61 2.17 2.19 
SD 1.08 1.10 1.13 1.08 0.91 0.45 0.87 0.28 0.69 0.26 1.08 1.05 

Canopy Carbon 
(g/m2) 

min 1.21 1.58 1.68 1.11 0.77 0.8 0.46 0.46 0.2 0.14 1.28 0.74 
max 79.21 83.87 61.17 89.07 75.26 32.05 75.26 18.13 61.45 14.19 65.54 88.23 
mean 18.64 20.09 17 19.76 15.69 9.1 14.72 5.03 10.65 4.07 16.36 19.45 
SD 22.63 24.73 18.53 24.45 20.71 9.5 19.37 5.77 15.55 4.64 18.46 25.16 

 
This process was repeated iteratively k times (100 times in our case) until all 
the partitions were used for validation as well for calibration. In order to 
minimize bias on the estimate based on the composition of samples making up 
each partition the resampling procedure of the dataset was repeated twenty 
times. In the end, a total of 100 model runs were performed for each canopy 
trait.  
 
The cross validated R2cv, and normalized RMSE (NRMSEcv= RMSEcv/range) 
between the predicted and measured canopy trait values were used to evaluate 
the performance of each PLSR model for each leaf to canopy upscaling 
approach. For canopy chlorophyll content modelling we used canopy 
reflectance spectra within the visible and red edge region (400-790 nm) as this 
spectral region is sensitive to variation in chlorophyll content (Kumar et al., 
2001). However, for the other canopy traits (N, LMA and carbon) we used the 
whole spectrum (400-2200 nm) as these traits do not have a defined spectral 
feature and are related to other compounds distributed across the whole 
spectrum (Curran, 1989). 
 
To evaluate the effect of different leaf to canopy upscaling approaches on 
canopy traits estimation, we compared the mean NRMSEcv of the 100 model 
runs for each upscaling approach using one-way ANOVA with the upscaling 
approach as a fixed factor. We then used Tukey's HSD post hoc test to perform 
a pairwise comparison of the upscaling approaches. Prior to the PLSR modelling 
process, independent variables (spectra) and dependent (leaf traits) variables 
were mean-centered. All PLSR analyses were performed in R 3.3.3 for Windows 
using the classification and regression (caret) package (Kuhn, 2008).  
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4.3 Results 

4.3.1 Exploratory data analysis of foliar traits and in-situ 
hyperspectral data across the canopy vertical profile  

Foliar N, chlorophyll and carbon content significantly (p < 0.05) increased from 
the lower to the upper canopy layer, while the LAI of the middle canopy layer 
was significantly (p < 0.05) higher compared to LAI of the lower and upper 
canopy layers (Fig 4.2). LMA generally increased from lower to upper layers. 
However, LMA did not significantly (p > 0.05) vary across the three canopy 
layers.  

 
Figure 4.2 Variation in leaf traits and LAI across the canopy vertical profile. 
 
Table 4.2 shows the descriptive statistics of the four canopy traits based on 
the different leaf to canopy upscaling approaches described in Table 1. Canopy 
N (F = 6.21, p = 0.00), canopy LMA (F =10.24, p = 0.00), canopy chlorophyll 
(F =16.5, p = 0.00), canopy carbon (F =13.48, p = 0.00) significantly varied 
across the upscaling approaches based on a one-way ANOVA test. Moreover, 
the range of canopy traits computed from each of the upscaling approaches 
were different (Table 4.2). For example, the canopy traits based on top of 
canopy trait content (upscaling approach C – in bold, Table 4.2) had a limited 
range compared to the range of the other primary upscaling approaches 
especially for canopy N, LMA and carbon. The range of canopy traits could 
potentially affect the strength of the relationship between canopy spectral 
measurements and canopy traits. The mean canopy spectral reflectance 
flanked by the standard deviation for the thirty-two canopies is shown in Fig 
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4.3. Increased variations in the canopy spectral reflectance can be observed in 
the NIR (750 -1350 nm) and SWIR (1400-1850 nm)  

 
Figure 4.3 The mean and standard deviation of canopy spectral reflectance for the 
thirty-two canopies used for analysis. 

4.3.2 Effect of upscaling approach on model prediction using  
in-situ canopy hyperspectral measurements 

Fig 4.4 shows prediction accuracies (NRMSEcv) of the twelve upscaling 
approaches for canopy N, LMA, chlorophyll and carbon based on the repeated 
k-fold PLSR modelling for both in-situ hyperspectral measurements and 
simulated Sentinel-2 multispectral data. An analysis of the primary upscaling 
approaches indicate that upscaling approach A (mean leaf traits across the 
three canopy layers × total canopy LAI), B (mean traits of the top two canopy 
layers × total canopy LAI), D (leaf traits weighted by the LAI of each canopy 
layer) and E (leaf traits weighted by the LAI of the top two canopy layers) 
consistently yielded higher retrieval accuracy (NRMSEcv < 0.2) and higher 
explained variance (Table 4.3) compared to upscaling approach C (upper of 
the canopy traits × total canopy LAI; NRMSEcv = 0.23, 0.22, and 0.22 for 
canopy N, LMA and carbon, respectively). It is worthwhile to note that 
upscaling approach A exhibited relatively higher model stability based on the 
limited range of the yielded NRMSEcv. A Tukey HSD post hoc test demonstrated 
that the NRMSEcv distribution obtained from upscaling approach C (leaf traits 
of the upper canopy layer × total canopy LAI) was significantly (p < 0.05) 
higher compared to the NRMSEcv obtained from the other primary upscaling 
approaches especially for canopy N, LMA and canopy carbon (Fig 4.5). The 
NRMSEcv generated from upscaling approaches A, B, D and E for canopy N, 
LMA and carbon were not significantly (p > 0.05) different from each other 
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demonstrating that they yield comparable retrieval accuracies and ultimately 
outperformed upscaling approach C.  

 
Figure 4.4 Prediction accuracies (NRMSEcv) of each upscaling approach for the four 
traits. The boxplots are based on the repeated k-fold cross validation PLSR 100 
iterations.  
 
By contrast, canopy chlorophyll content exhibited a different pattern compared 
to the other canopy traits estimation models. Canopy chlorophyll content 
upscaled based on leaf samples collected from the upper canopy and total 
canopy LAI (upscaling approach C) exhibited a better relationship (R2CV = 0.68, 
NRMSEcv= 0.24) against in-situ canopy hyperspectral measurements 
compared to other canopy chlorophyll upscaling approaches (Fig 4.4, Table 
4.3). It is important to note that although upscaling approach C produced a 
higher retrieval accuracy in canopy chlorophyll estimation; it yielded 
comparable prediction errors to other primary upscaling approaches i.e. the 
generated (NRMSEcv) were not statistically different (p > 0.05, Fig 4.5). 
Although there were no statistical differences in the generated NRMSEcv among 
the canopy chlorophyll estimations, it is worthwhile to note that all leaf to 
canopy upscaling approaches generated high errors (NRMSEcv > 0.23) 
compared to canopy N, LMA and carbon using in-situ hyperspectral 
measurements. 
 
Upscaling approaches that included both LAI and traits of the middle layer (i.e. 
A, B, D, E, G, I and L) yielded low NRMSEcv especially for canopy N, LMA and 
carbon. Although the middle canopy layer demonstrated a strong influence on 
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retrieval accuracy of canopy traits, a combination of the middle and upper 
canopy layers (upscaling approach R2cv: A = 0.78, B = 0.76, D = 0.79 and E = 
0.73) generally outperforms the combination of middle and bottom canopy 
layer (R2cv: G = 0.74, L = 0.7) for canopy N estimations (Table 4.3) using 
hyperspectral measurements. However, upscaling approaches that excludes 
the middle canopy layer yielded lower explained variance e.g. (R2cv: F = 0.64, 
K = 0.62). We observed that upscaling approach B (mean traits of the top two 
layers × total canopy LAI), K (mean traits of the top and bottom layers × total 
canopy LAI) and L (mean traits of the middle and bottom layers × total canopy 
LAI), - all computed based on total canopy LAI, yielded different explained 
variance (R2cv: B= 0.65, K= 0.64 and L= 0.7) and prediction errors (NRMSEcv: 
B = 0.2, K = 0.19 and L = 0.17) for canopy LMA estimations. A similar pattern 
can also be observed regarding the relationship between canopy N or carbon 
and in-situ hyperspectral measurements. For practical purposes, this implies 
that leaf traits and LAI of the top two canopy layers are key and contribute 
significantly to canopy spectral reflectance. 
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Figure 4.5 Pairwise comparison of the upscaling approaches based on the Tukey’s HSD 
post hoc test. Values in each cell indicate the p-value of each pairwise comparison. White 
and black cells represent significant and non-significant pairwise comparison, 
respectively (α = 0.05). 
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4.3.3 Effect of upscaling approach on model prediction using 
simulated Sentinel-2 data  

Generally, upscaling option C yielded the lowest retrieval accuracy for canopy 
N (NRMSEcv = 0.23), LMA (NRMSEcv = 0.22) and C (NRMSEcv = 0.21) compared 
to the other primary upscaling approaches (A, B, D and E) (see Fig 4.4) using 
simulated Sentinel-2 dataset. The NRMSEcv generated from upscaling approach 
C were significantly (p < 0.05) different from NRMSEcv generated the other 
primary upscaling approaches (A, B, D and E) in canopy N, LMA and carbon 
estimations (Fig 4.5). No significant difference (p > 0.05) in NRMSEcv were 
observed between upscaling options A, B, D and E implying they yield 
comparable results for canopy N, LMA and carbon estimations. The generated 
R2cv, confirmed that upscaling approaches A, B, D and E outperformed 
upscaling approach C for canopy N, LMA and carbon estimations (Table 4.4). 
In contrast, upscaling approach C yielded the highest retrieval accuracy for 
canopy chlorophyll estimation compared to upscaling approaches A, B, D and 
E. On average, upscaling approach C yielded the lowest NRMSE (NRMSEcv = 
0.17; Fig 4.4) and highest R2 (R2cv = 0.62; Table 4.4) compared to other 
upscaling options for canopy chlorophyll estimation. However, the generated 
NRMSEcv were not statistically significantly different (p > 0.05) between 
upscaling approach C and the other primary upscaling approaches i.e. A, B, D 
and E (Fig 4.5).  
 

Similar to the results observed for canopy trait estimation using in-situ 
hyperspectral measurements, functional attributes (leaf traits and LAI) of the 
top two canopy layers imposed a strong influence on canopy N, LMA and carbon 
estimations using simulated Sentinel-2 data. For example, upscaling approach 
I (leaf traits and LAI of the middle canopy layer) outperformed upscaling 
approaches H (leaf traits and LAI of the top canopy layer) and J (leaf traits of 
the bottom canopy layer and × LAI of the bottom canopy layer) for canopy N, 
LMA and carbon estimation (Fig 4.4). For canopy chlorophyll estimation 
upscaling approach H (NRMSEcv = 0.18) outperformed upscaling approach I 
(NRMSEcv = 0.23) demonstrating that the top layer imposes a strong influence 
on canopy chlorophyll estimation from simulated Sentinel-2 data (Fig 4.4). 
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Table 4.3 Performance of PLSR reflectance models based on in-situ hyperspectral 
measurements 

 Canopy N Canopy LMA Canopy Cab Canopy Carbon 

UA nlv R2cv±SD nlv R2cv±SD nlv R2cv±SD nlv R2cv±SD 

A 2 0.78±0.15 2 0.66±0.18 2 0.65±0.27 3 0.76±0.11 

B 2 0.76±0.16 2 0.65±0.19 2 0.64±0.28 3 0.77±0.12 
C 2 0.60±0.22 2 0.58±0.17 2 0.68±0.25 2 0.71±0.14 
D 2 0.79±0.15 2 0.67±0.17 2 0.64±0.27 3 0.79±0.14 
E 2 0.73±0.14 2 0.63±0.16 3 0.57±0.28 3 0.74±0.1 
F 2 0.64±0.18 2 0.6±0.21 2 0.61±0.3 3 0.76±0.17 
G 2 0.74±0.2 2 0.65±0.22 2 0.64±0.26 3 0.78±0.18 
H 2 0.57±0.24 2 0.48±0.2 2 0.38±0.27 2 0.64±0.2 

I 2 0.68±0.16 2 0.63±0.24 2 0.56±0.25 3 0.74±0.16 
J 2 0.49±0.23 1 0.51±0.29 2 0.5±0.26 3 0.66±0.24 

K 2 0.62±0.19 2 0.54±0.16 2 0.64±0.23 3 0.62±0.11 
L 2 0.7±0.16 2 0.6±0.16 2 0.6±0.27 3 0.72±0.15 

UA: Upscaling approach, nlv: number of latent variables, SD: standard deviation 
 
Table 4.4 Performance of PLSR reflectance models calibrated based simulated 
Sentinel-2 

 Canopy N Canopy LMA Canopy Cab Canopy Carbon 

UA nlv R2
cv±SD nlv R2

cv±SD nlv R2
cv±SD nlv R2

cv±SD 
A 3 0.73±0.15 3 0.62±0.17 3 0.59±0.24 2 0.73±0.19 
B 3 0.73±0.16 3 0.62±0.19 3 0.56±0.28 2 0.73±0.15 

C 3 0.53±0.2 3 0.53±0.21 3 0.62±0.2 2 0.67±0.17 
D 3 0.71±0.18 3 0.59±0.23 3 0.57±0.23 2 0.75±0.18 
E 3 0.68±0.16 2 0.57±0.21 3 0.5±0.24 2 0.70±0.15 
F 2 0.52±0.27 3 0.51±0.27 3 0.55±0.24 2 0.7±0.18 
G 3 0.67±0.24 3 0.59±0.25 3 0.57±0.24 2 0.75±0.16 
H 3 0.49±0.22 2 0.43±0.25 3 0.35±0.26 2 0.6±0.19 
I 3 0.64±0.17 3 0.57±0.21 3 0.5±0.27 2 0.71±0.18 
J 2 0.39±0.32 2 0.36±0.26 3 0.42±0.25 2 0.61±0.25 
K 3 0.6±0.17 3 0.5±0.2 3 0.57±0.25 2 0.52±0.18 
L 3 0.70±0.15 3 0.56±0.19 3 0.53±0.27 3 0.66±0.15 

UA: Upscaling approach, nlv: number of latent variables, SD: standard deviation 

4.4 Discussion  
This study set out to examine the effect of different approaches of upscaling 
foliar N, LMA, chlorophyll and carbon from leaf to canopy level on model 
performance and estimation accuracy using in-situ canopy hyperspectral 
measurements and simulated Sentinel-2 data. Results of this study 
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demonstrate that leaf to canopy upscaling approaches have a profound effect 
on the estimation of canopy traits. In comparison to other upscaling 
approaches the widely-used product of top of canopy traits and total canopy 
LAI (upscaling approach C) consistently underperformed (NRMSEcv > 0.2) 
compared to other primary upscaling approaches (NRMSEcv < 0.2) that 
consider the contribution of leaf traits content from the shaded middle and 
lower canopy layers (Fig 4.4). This demonstrates that functional attributes (LAI 
and leaf traits) of the top canopy layer did not completely control the spectral 
reflectance observed by the sensor. Upscaling approaches that include 
functional attributes of the top and middle canopy layers (upscaling approaches 
B, E) significantly, (p < 0.05) improved the estimation accuracies of the canopy 
traits (Fig 4.5). However, upscaling approaches that considered functional 
attributes of the three layers (upscaling approach A and D) yielded comparable 
results to upscaling approaches that considered traits of the top two layers 
(upscaling B and E; Fig 4.4 and 4.5). The inclusion of functional attributes (leaf 
traits and LAI) of the lower canopy layer did not significantly improve the 
estimation accuracy of canopy traits. This demonstrates that canopy 
reflectance observed by a sensor is not necessarily generated by the entire 
canopy. The obscured foliage material of the lower canopy contributed less to 
the canopy spectral signal (Roelofsen et al., 2013). This observation can be 
linked to the problem of saturation in reflectance and vegetation indices with 
increasing amount of vegetation (Mutanga and Skidmore, 2004; Prabhakara et 
al., 2015). Saturation occurs when spectral reflectance or indices reach an 
asymptotic level beyond which any further increase in vegetation biomass or 
LAI does not result in a significant change on the spectral signal or index (Liang 
et al., 2015). This problem may lead to inaccurate and underestimation of 
canopy traits in high LAI or biomass environments (Thenkabail et al., 2000).  
 
In contrast to observations made on canopy N, LMA and carbon, canopy 
chlorophyll estimations exhibited an improved relationship with upscaling 
approach C (leaf traits of the top canopy layer and total LAI) (Fig 4.4). 
Upscaling approach C yielded the highest R2cv and lowest NRMSEcv in canopy 
chlorophyll estimations for both in-situ hyperspectral measurements (R2cv = 
0.68 and NRMSEcv = 0.24) and simulated Sentinel-2 data (R2cv = 0.62 and 
NRMSEcv =0.17). The top layer proved to have a strong influence on canopy 
chlorophyll estimation for both spectral datasets. This observation concurs with 
previous studies (Gitelson et al., 2005a; Verrelst et al., 2010) that demonstrate 
that canopy reflectance (especially in the visible spectrum) is strongly 
influenced by chlorophyll content of the upper canopy layer due to strong 
chlorophyll sensitivity within the visible spectrum. However, the explained 
variance and model accuracy generated from upscaling approach C for canopy 
chlorophyll estimations for both spectral datasets were not significantly 
different (p > 0.05) from the other primary upscaling approaches that consider 
the contribution of the exposed top canopy layer together with the shaded 
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middle and bottom layers (Fig 4.5). In this regard, estimation of both dry 
matter related traits (i.e. N, LMA and carbon) and leaf pigments such as 
chlorophyll need to consider the vertical variation in leaf traits for improved 
prediction and mapping of these traits at landscape and regional landscapes. 
It is important to note that a number of studies report a wide range of 
explained variances in leaf traits estimation ranging from as low as 46% for 
canopy N (Ramoelo et al., 2015a) to as high as 92% for canopy chlorophyll 
(Clevers and Gitelson, 2013) using in-situ hyperspectral measurements and 
simulated Sentinel-2 multispectral data. Most of these studies do not generally 
provide detailed description of how the leaf traits were upscaled to canopy 
level. Our results suggest that the approach used to upscale foliar traits from 
leaf-to-canopy level is a potential source of uncertainty in canopy trait 
estimation especially in less foliated vegetation biomes where foliage material 
from the lower canopy contributes to the canopy reflectance. 
 
To understand the relative influence of leaf traits and LAI for each canopy layer 
on model performance and estimation accuracy, different upscaling 
combinations of foliar traits and LAI were explored (Table 4.1). Our results 
indicate that the middle layer had a key effect on the estimation of N, LMA and 
carbon from in-situ canopy hyperspectral measurements and simulated 
Sentinel-2 data. Leaf-to-canopy upscaling approaches that excluded functional 
attributes of the middle layer (e.g. upscaling approaches F, H and J) resulted 
in low explained variance (R2cv = 0.6, 0.48 and 0.51) and estimation accuracy 
(NRMSEcv = 0.2, 0.21 and 0.27), compared to upscaling approaches such as G 
and I (R2cv = 0.65 and 0.63 and NRMSEcv = 0.15, 0.16 respectively) that 
included functional attributes of the middle layer in canopy LMA estimation 
using in-situ hyperspectral measurements (Fig 4.4, Table 4.3 and 4.4). A 
similar pattern was also observed in canopy N; carbon model estimations using 
either in-situ hyperspectral measurements or simulated Sentinel-2 data (Fig 
4.4). This observation can be ascribed to the high LAI values of the middle 
layer (Fig 4.2), which ultimately controlled canopy radiation dynamics (Wang 
and Li, 2013). 
 
Results of this study also indicated the effect of leaf traits vertical heterogeneity 
on canopy traits estimation from spectral data. This was shown when different 
combination of leaf traits from the three canopy layers were explored whilst 
LAI remained invariant. For example, upscaling approach B (mean traits of the 
top two layers × total canopy LAI), K (mean traits of the top and bottom layers 
× total canopy LAI) and L (mean traits of the middle and bottom layers × total 
canopy LAI) were all computed based on total canopy LAI, however they 
generated different explained variances and NRMSEcv for N, LMA and carbon. 
For instance, upscaling approaches B, K and L yielded R2cv of 0.76, 0.62 and 
0.7 for in-situ hyperspectral measurements and 0.73, 0.6 and 0.7 for a 
simulated Sentinel-2 dataset for canopy N prediction models. The average of 
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leaf traits of the top and middle canopy layers (B) resulted in a higher R2cv 
(0.76 and 0.73 for in-situ hyperspectral and simulated Sentinel-2 data), while 
the combination of the middle and bottom (upscaling approach L) resulted in 
explained variance dropping by 6% and 3% respectively for in-situ 
hyperspectral and simulated Sentinel-2 respectively. However, the exclusion 
of the leaf traits content of the middle layer (upscaling approach K) resulted in 
a further decrease in explained variance by 8 and 10% for in-situ hyperspectral 
and simulated Sentinel-2, respectively. A similar pattern can also be observed 
for canopy LMA or carbon for both in-situ hyperspectral measurements and 
simulated Sentinel-2 data. This result indicate that leaf traits of the top and 
middle canopy layers together with their respective LAI drive canopy 
reflectance observed by the sensor. This result conforms to Wang and Li’s 
(2013) observation that the vertical heterogeneity in leaf chlorophyll, water 
and dry matter content variation have a significant effect on simulated canopy 
reflectance. This observation is also in agreement with Luo et al. (2016) who 
demonstrated that the top three layers of ~ 2 meters high wetland reeds were 
key in canopy N prediction using vegetation indices computed from in-situ 
hyperspectral measurements. In this regard, the vertical variation in both LAI 
and leaf traits have an effect on the relationship between canopy reflectance 
and the canopy traits. This imply that large uncertainties can be presented in 
canopy parameter estimations if information on the vertical variation of key 
traits is not incorporated in the modelling approach.  However, as LAI is often 
measured as total canopy LAI (Peng et al., 2017), significant consideration 
should, therefore be placed on leaf traits that vary across the canopy.  
 
Results obtained in this study are similar to observations of earlier studies 
(Coble et al., 2016b; Mercado et al., 2006; Sprintsin et al., 2012) that reported 
that the “big leaf” approach underestimates quantification of total canopy 
processes such as total canopy photosynthesis and gross primary productivity 
compared to the “two leaf” approach. The “big leaf” approach assumes that 
unshaded, sunlit leaves in the upper canopy represents the whole canopy 
metabolic processes, while the ‘two leaf’ approach accounts for canopy 
metabolic processes based on both sunlit and shaded leaves. Sprintsin et al. 
(2012) observed that gross primary production models calibrated based on the 
big leaf upscaling approach consistently yielded low explained variance and 
accuracy in gross primary productivity modelling across different vegetation 
biomes against flux tower measurements. Their study demonstrated that the 
exclusion of the photosynthetic contribution of the shaded leaves could 
underestimate canopy gross photosynthesis productivity by over 70% in highly 
clumped vegetation stands. In light of this background, the "big leaf" is closely 
related to upscaling approach C that only considered leaf traits of the upper 
layer. The "two leaf" approach closely resemble the other primary upscaling 
approaches (A, B, D and E) that factor in the contribution of foliage material 
from both the exposed upper layers and the shaded lower layers. This 
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observation demonstrate that canopy reflectance observed by a sensor 
constitutes contribution of all foliage material within the canopy.   
 
Importantly, our study examines the effect of upscaling leaf traits from the leaf 
to canopy level using in-situ canopy hyperspectral and simulated Sentinel-2 
data. Results obtained in this study can be tested in forests or woodlands where 
foliage from the lower canopy contributes to canopy reflectance. Partitioning 
the total canopy LAI into sunlit and shaded layers following methods such as 
those proposed by Chen  et al. (1999) and subsequently collecting leaf samples 
from both sunlit and shaded layers are critical in examining the contribution of 
each canopy layer in canopy trait estimations. Hence, the effect of separating 
LAI and leaf samples into sunlit and shaded on canopy traits estimation using 
airborne or satellite data need further investigation. 

4.5 Conclusion 
In this study, we evaluated the effect of different approaches of upscaling leaf 
traits to the canopy level on the accuracy of estimation of canopy N, LMA, 
chlorophyll and carbon from in-situ hyperspectral measurements and 
simulated Sentinel-2 reflectance data. Through a robust sampling procedure, 
we determined leaf traits from different vertical canopy positions and applied 
various weighted averages to examine how various canopy components affects 
the estimation of canopy traits from in-situ canopy hyperspectral and simulated 
Sentinel-2 data. Based on the results we conclude that:  
 

i. Leaf-to-canopy upscaling approaches yield significantly different 
canopy traits values. The range (max-min) of the canopy traits varies 
depending on the upscaling approach used. 

ii. Leaf-to-canopy upscaling approaches that consider the contribution of 
both the exposed upper canopy leaves together with the shaded lower 
canopy leaves results in improved prediction of canopy nitrogen, LMA 
and carbon from both in-situ canopy hyperspectral measurements and 
simulated Sentinel-2 data. However, the same pattern does not hold 
true for canopy chlorophyll.   

iii. The widely used upscaling approach that considers leaf traits from the 
exposed top of the canopy yields a better accuracy for canopy 
chlorophyll estimation from in-situ canopy hyperspectral 
measurements. However, the prediction errors obtained among the 
canopy chlorophyll upscaling approaches were not significantly 
different (p > 0.05).  

We therefore, conclude that sampling methods that intend to use remote 
sensing measurements to upscale leaf traits, especially dry matter related leaf 
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traits, need to account for the vertical heterogeneity in leaf traits across plant 
canopies for improved canopy traits estimation and mapping. As this study was 
conducted in the laboratory setup with relatively short shrubs, it is important 
to ascertain whether similar results can be obtained in high-foliated forests 
using airborne or satellite spectral measurements. 
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Chapter 5 
 
Knowledge on the vertical heterogeneity in 
leaf traits is essential for accurate modelling 
of canopy trait content using seasonal 
Sentinel-2 imagery 
   

                                          
 This chapter is based on Gara, T.W., Skidmore, A. K., Darvishzadeh, R., Wang, T. and 
Heurich Marco (Under review after first revision) Knowledge on the vertical heterogeneity 
in leaf traits is essential for accurate modelling of canopy trait content using seasonal 
Sentinel-2 imagery. ISPRS Journal of Photogrammetry and Remote Sensing  
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Abstract 
Leaf traits at canopy level (hereinafter canopy traits) are conventionally 
expressed as a product of total canopy leaf area index (LAI) and leaf trait 
content based on samples collected from the exposed upper canopy. This 
traditional expression is centered on the theory that absorption of incident 
photosynthetically active radiation (PAR) follow a bell-shaped function skewed 
to the upper canopy. However, the validity of this theory has remained 
untested for a suite of canopy traits in a temperate forest ecosystem across 
multiple seasons using multispectral imagery. In this study, we examined the 
effect of canopy traits expression on modelling canopy traits using Sentinel-2 
multispectral data across the growing season in Bavaria Forest National Park 
(BFNP), Germany. To achieve this, we measured leaf mass per area (LMA), 
chlorophyll (Cab), nitrogen (N) and carbon content and LAI from the exposed 
upper and shaded lower canopy respectively over three seasons (spring, 
summer and autumn). Subsequently, we estimated canopy traits using two 
expressions i.e. the traditional expression-based on the product of LAI and leaf 
traits content of samples collected from the sunlit upper canopy (hereinafter 
top-of-canopy expression) and the weighted expression - established on the 
proportion between the shaded lower and sunlit upper canopy LAI and their 
respective leaf traits content. Using a Random Forest machine-learning 
algorithm, we separately modelled canopy traits estimated from the two 
expressions using Sentinel-2 spectral bands and vegetation indices. Our results 
showed that dry matter related canopy traits (LMA, N and carbon) estimated 
based on the weighted canopy expression yield stronger correlations and 
higher prediction accuracy (generally NRMSECV < 0.19) compared to the top-
of-canopy traits expression across all seasons. In contrast, canopy chlorophyll 
estimated from the top-of-canopy expression demonstrated strong fidelity with 
Sentinel-2 bands and vegetation indices (RMSE < 0.48 µg/cm2) compared to 
weighted canopy chlorophyll (RMSE > 0.48 µg/cm2) across all seasons. We 
also developed a generalized model that explained 52.57 - 67.82% variation 
in canopy traits across the three seasons. Using the most accurate Random 
Forest model for each season, we demonstrated the capability of Sentinel-2 
data to map seasonal dynamics of canopy traits across the park. Results 
presented in this study revealed that canopy trait expression can have a 
profound effect on the modelling the accuracy of canopy traits using satellite 
imagery throughout the growing seasons. These findings have implications on 
model accuracy when monitoring the dynamics of ecosystem functions, 
processes and services. 
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5.1 Introduction 
Effects of land use change; climate change and variability on terrestrial 
ecosystems are critical to the accurate characterization and quantification of 
essential biodiversity variable (EBVs). Knowledge on ecosystem functions such 
as primary productivity and nutrient cycling provide an opportunity to assess 
the health and adaptation capacity of vegetation ecosystems in face of global 
environmental change (Pettorelli et al., 2016). Plant traits such as leaf mass 
per area (LMA), chlorophyll content (Cab), leaf nitrogen (N) and leaf carbon are 
important in understanding ecosystem processes, functions and services over 
space and time. For instance, Cab is a critical indicator of plant vigour, 
phenological stage and photosynthetic capacity (Kalacska et al., 2015; 
Lichtenthaler and Buschmann, 2001). Leaf dry matter and carbon content 
quantitatively express the plant economic spectrum strategy in terms of 
nutrients uptake and use, light harvesting and carbon sequestration (Niinemets 
et al., 1999). Foliar N is an important element in Cab and a constituent in 
enzymes responsible for atmospheric carbon fixation (Archontoulis et al., 
2011; Clevers and Gitelson, 2013). 
 
Variations in leaf physiological, biochemical and morphological properties 
strongly rely on the phenological stage of vegetation. Leaf traits change over 
time through the growing season due to shifts in diurnal temperature and 
rainfall (Behrman et al., 2015; Workie and Debella, 2018). In addition, leaf 
traits also exhibit change due to variation in light environments within a canopy 
such as moving from the sunlit upper to shaded lower canopy (Coble et al., 
2016b). Irradiated leaves from the upper canopy display higher nutrient 
content compared to leaves from the shaded lower canopy. For example, Gara 
et al.(2018a) observed that sunlit upper canopy leaves display higher content 
of chlorophyll, nitrogen, LMA, EWT and carbon compared to shaded leaves of 
the lower canopy. The vertical heterogeneity in leaf traits across the canopy 
can be as much as the phenological variation. The vertical heterogeneity in leaf 
traits assists in maintaining an equilibrium between the limited rate of 
carboxylation and the electron transport - limited rate of carboxylation (Chen 
et al., 1993). These key metabolic processes result in marked differences in 
morphological, chemical as well as physiological traits between leaves across 
the vertical canopy domain (Weerasinghe et al., 2014). Plants translocate foliar 
nutrients during senescence from lower canopy leaves to the upper canopy 
leaves. The translocation of foliar nutrients to the upper canopy is essential for 
protein repair and subsequently increase the density of mitochondria per cell 
area to commensurate the increasing amount of incoming PAR and optimize 
the photosynthetic capacity of the whole plant (Hikosaka, 2005). As such, 
accounting for the effect of vertical heterogeneity on foliar traits in spatio-
temporal modelling of canopy traits is important for improved understanding 
of terrestrial ecosystem structure and functioning. 
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Remote sensing increasingly play a pivotal role in monitoring dynamics of foliar 
traits over space and time (Moreno-Martínez et al., 2018). In-situ plant traits 
measured from the leaf samples of dominant and co-dominant species within 
sampling plots can be retrieved from air- or space borne spectral 
measurements (Homolová et al., 2013). Considering that the traits are 
determined at leaf level, there is often a need to match spatial scales of in-situ 
measured leaf traits and remote sensing data via upscaling approaches. There 
are two approaches of upscaling leaf traits to canopy scale i.e. the direct 
approach and the canopy integrated approach (He and Mui, 2010b). The direct 
approach relates leaf trait content measured at the leaf level to satellite data 
without integrating any canopy structural parameter. The direct approach 
procedure is based on the premise that exposed foliage material controls 
variation in canopy reflectance and thus sunlit leaves from the upper canopy 
resemble the entire canopy (Peterson et al., 1988). The canopy integrated 
approach on the other hand upscales leaf traits to canopy level by accounting 
for canopy structural parameters such as LAI or crown biomass. The widely 
used canopy integration approach expresses canopy traits as a product of total 
canopy LAI and leaf traits content based on leaf samples collected from the 
sunlit upper canopy (top-of-canopy expression). This approach is centered on 
the theory that the absorption of incident photosynthetically active radiation 
(PAR) follows a bell-shaped function sharply skewed to the upper canopy 
(Kropff and Goudriaan, 1994). This infers that the upper canopy controls 
canopy radiation dynamics especially with regard to the amount of reflected 
radiation measured by multispectral sensors. On this basis, the contribution of 
leaf trait content of shaded leaves from the lower canopy to above canopy 
reflectance is considered ‘insignificant’. However, this theory provides no 
information on the contribution of the shaded canopy on estimation of canopy 
traits especially in temperate forests throughout the growing season. A 
question therefore arises on whether the theory is valid for other leaf traits 
that control variation in other portions of the electromagnetic spectrum outside 
the visible spectrum remains unanswered. We hypothesize that leaf traits 
content from the shaded lower canopy plays a significant contribution to 
canopy reflectance. Establishing an ecologically meaningful canopy trait value 
that corresponds to the signal measured by the multispectral instrument is 
critical in estimating and mapping foliar nutrients at both canopy and landscape 
scale (Roelofsen et al., 2013). To this end, we hypothesize that canopy traits 
estimated based on a weighted average between the sunlit upper and shaded 
lower canopy layers (weighted canopy expression) may improve the accuracy 
of canopy trait models.  
 
This study therefore seeks to examine the effect of canopy traits expression 
on modelling canopy traits using Sentinel-2 multispectral data across the 
growing season in a temperate forest. Firstly, we examined the correlation 
between Sentinel-2 spectral data and canopy traits estimated from the two 
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canopy expressions. Secondly, we examined variation in estimation accuracy 
of canopy traits estimated from the two canopy expressions using Sentinel-2 
data. Thirdly, we explored the development of a generalized model that 
captures variation in canopy traits across the growing seasons. Finally, we 
mapped the variation in canopy traits using the best performing model for each 
season. 

5.2 Materials and methods  

5.2.1 Study area 

Field measurements were conducted over three seasons of 2017 in Bavarian 
Forest National Park (BNFP) (Fig 5.1). BNFP is part of the Bohemian Forest 
Ecosystem. The Park is approximately 24 218 ha in size, with elevation 
stretching from 600 to 1453 m (Heurich et al., 2010a). Annual precipitation 
ranges from 1200 to 1800 mm and the park experience a mean annual 
temperature of ~5ᴼ C. The evergreen Norway spruce (Picea abies) (67%) and 
deciduous European beech (Fagus sylvatica) (24.5%) are the dominant trees 
species, while white fir (Abies abies) (2.6%), sycamore maple (Acer 
pseudoplatanus) (1.2%), and mountain ash (Sorbus aucuparia) (3.1%) are the 
less dominant species in the park (Cailleret et al., 2014) 

5.2.2 Field data collection and laboratory measurements 

Field campaigns were conducted during three seasons, i.e. spring, summer and 
autumn of 2017. Spring data (32 plots) were collected from mid-May to mid-
June, while summer field data (40 plots) were collected between mid-July and 
mid-August, and the autumn field data (40 plots) were collected from mid-
September to mid-October. We randomly generated sampling sites in 
broadleaf, conifer and mixed vegetation stands based on a vegetation map 
provided by the Department of Visitor Management and National Park 
Monitoring, Bavarian Forest National Park (Silveyra Gonzalez et al., 2018). Our 
sample plots were mainly located within the belt transects designed for 
biodiversity research (Bässler et al., 2009) (Fig 1). In the field, we navigated 
to the sampling sites using a hand-held Global Positioning System (GPS). At 
each sampling site, a north-oriented plot of 900 m2 (30 m × 30 m) was 
demarcated. We then used a Leica GPS 1200 to measure the precise centre 
location of each plot (at sub-meter accuracy after post-processing). 
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Figure 5.1: The location of Bavaria Forest National Park in Germany and the spatial 
distribution of sample plots overlaid on a Sentinel-2 satellite imagery of 13 July 2017. 
Black dotted lines demarcate the boundary of the biodiversity research transects. 
 
Within each plot the following forest structural variables were measured: leaf 
area index (LAI), stem density, crown diameter, canopy closure and stand 
height. LAI was measured using a Li-Cor LAI- 2200 plant canopy analyzer. 
Each plot level LAI was computed based on three reference samples of above 
canopy radiation (above canopy readings) measured in a nearby open area 
and five below canopy readings were measured within the plot. Stem density 
per hectare was determined based on the number of trees with each plot. The 
height of each tree was estimated using a Nikon Forestry 550 hypsometer.  
 
We then separately collected foliar samples from the exposed upper and 
shaded lower canopy of each sampled tree. In total, we collected 1 104 leaf 
samples across the three seasons. A cross bow was used to shoot leaf samples 
from the sunlit, upper canopy (Ali et al., 2016), whilst an extendable pair of 
secateurs was used to clip leaf samples from the lowest living branch (Arellano 
et al., 2017; Atherton et al., 2017). Within each plot, sampling was performed 
on five trees with a diameter at breast height greater than 10 cm. We labelled 
the trees to enable identification during subsequent seasonal field 
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measurements. Immediately after collecting the samples we measured leaf 
chlorophyll using CCM -300 chlorophyll content meter (Opti-Sciences, 2011). 
We then wrapped the leaf and needle samples with moist paper towels and zip-
locked them in polythene bags. The samples were then transported to the 
laboratory in a cooler with ice packs within 6 hours of collection (Atherton et 
al., 2017). 
 
Leaf mass per area (LMA, g/cm2), leaf carbon (Carbon, g/cm2), nitrogen (N, 
g/cm2) and SLA (cm2/g) were measured in the laboratory. LMA and SLA were 
retrieved from fresh weight and leaf area as outlined in Gara et al (2018b). 
Leaf nitrogen and carbon were determined using the Perkin Elmer 2400 
elemental analyzer. Mass based carbon and nitrogen obtained from elemental 
analysis were converted to area based by multiplying by LMA (Wang et al., 
2015a). Further details on the laboratory procedure and analysis are provided 
in Gara et al (2018a). 

5.2.3 Determining plot-level leaf trait 

Determining mean leaf trait per plot for a mono-species stand is relatively 
straightforward compared to a multi-species stand. The mean leaf traits of a 
mono-species plot is determined by merely averaging leaf trait content of 
collected samples. However, for a multi-species plot there is need to determine 
a weighted mean leaf trait content relative to the abundance or foliage biomass 
of each species within a plot (Homolová et al., 2013). This approach caters for 
the wide variation in leaf traits content between species within stands. In this 
study, we computed the plot-level mean trait for the multi-species plots 
following a procedure described by Wang et al., 2018. The procedure was 
executed to determine the mean leaf traits content for both sunlit and shaded 
leaf traits. Essentially, we calculated foliage biomass of each tree species within 
each plot using established allometric equations (Widlowski et al., 2003). The 
mean leaf trait content for each plot (LTplot) was weighted relative to fraction 
of foliage biomass of each species (Eqn 5.1). 
 

LT୮୪୭୲ ൌ ∑ LT୧
୬
୧ୀଵ ∗ fFB୧ (5.1) 

 
Where LTi is the average leaf trait for species i within a plot, fFB is the foliage 
biomass fraction of species i and n is the number of species. 
The foliage biomass fraction was computed using the following formula (Eqn 
5.2) 

fFB୧ ൌ
୤୆୧୭౟ୗ୐୅౟

∑ ୤୆୧୭౟ୗ୐୅౟
౤
౟సభ

  (5.2) 

ƒBio the foliage biomass fraction of species i and SLA is the average specific 
leaf area for species i 
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5.2.4 Canopy traits expression 

In this study, we explored two canopy trait expressions i.e. top-of-canopy and 
weighted canopy trait. Top-of-canopy expression multiplies leaf trait content 
of samples collected from the sunlit upper canopy with total canopy LAI. The 
weighted canopy trait expression computes canopy trait value for each field 
plot as the weighted sum of LAI and leaf traits for the sunlit and shaded canopy 
(Eqn 5.3). 

∑ LAI୧ ∗ trait୧୧ୀଵ,ଶ  (5.3) 

where 1 and 2 represents sunlit and shaded canopy layers respectively and 
trait is leaf traits for each canopy layer 
 
To execute the weighted canopy trait expression we partitioned the total 
canopy LAI into sunlit fraction and shaded fraction using mathematical 
formulae (Eqn 5.4 and 5.5) following previous studies (Chen Jing et al., 2012; 
Sprintsin et al., 2012; Wu et al., 2017). 
 

LAIୱ୳୬ ൌ
ଵିୣ୶୮ቀି

ౡ∗ಈ∗ైఽ౅౪౥౪
ౙ౥౩ሺ౏ౖఽሻ

ቁ

௞ ୡ୭ୱ ሺௌ௓஺ሻ⁄
 (5.4) 

LAI-LAI=LAI suntotshade  (5.5) 

Where k = extinction coefficient, Ω is clumping index, SZA is solar zenith angle, 
LAItot is canopy total LAI, LAIsun is sunlit fraction, LAIshade is shaded fraction. 
We used an extinction coefficient of 0.7, 0.5 and 0.6 for broadleaf, conifer and 
mixed plots respectively following Chen et al.,(2012). The clumping index for 
each plot was measured using a LAI 2200 canopy analyzer (Fang et al., 2018). 
The solar zenith angle was extracted from the Sentinel-2 MSI metadata.  

5.2.5 Satellite imagery data and preprocessing 

Geometrically corrected top of atmosphere reflectance data of Sentinel-2 Multi-
spectral Instrument (MSI, Level 1C) were downloaded from Copernicus Open 
Access Hub (https://scihub.copernicus.eu/). We downloaded Sentinel-2 
images that coincided with the field data collection. For spring, we used a 
Sentinel-2 image acquired on 13 June 2017, while for summer we used a 
Sentinel-2 image acquired on 13 July 2017. For autumn, we used a Sentinel-2 
image acquired on 26 September 2017. The multi-spectral instrument on board 
Sentinel-2 MSI data consists of 13 spectral bands spanning from the visible 
through the NIR to SWIR at a spatial resolution ranging from 10 to 60 m and 
a swath width of 290 km. Atmospheric correction was performed using 
Sen2Cor module in Sentinel Application Platform (SNAP). After atmospheric 
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correction, we resampled the 20 m spatial resolution bands (bands 5, 6, 8A, 
11 and 12) to 10 m using the nearest neighbour analysis. In this study, bands 
1 (coastal aerosol), 9 (water vapour), and 10 (SWIR cirrus) designed for 
atmospheric analysis were not used for analysis. For the spring and autumn 
images, we used the output of the Sen2Cor’s Scene Classification to mask out 
pixels classified as saturated or defective, cloud shadow, medium to high cloud 
probability and thin cirrus.  
 
After pre-processing Sentinel-2 data for each season, we computed a number 
of vegetation indices as shown in Table 5.1. These vegetation indices were 
selected guided by their performance in estimating of leaf traits as reported in 
previous studies (Chemura et al., 2018; Main et al., 2011; Stagakis et al., 
2010). To harmonize spatial scales of canopy traits values measured in the 
field against satellite data, we extracted the reflectance of a plot as the average 
of nine (3 × 3) pixels centered on the plot centre. 
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Table 5.1 Vegetation indices evaluated in this study 
Index Formula S2 

bands 
Reference 

Normalized difference 
Vegetation Index (NDVI) 

ሺ𝑁𝐼𝑅 െ 𝑅𝐸ሻ/ሺ𝑁𝐼𝑅 ൅ 𝑅𝐸ሻ
 

B5, 
B8 

Gitelson 
and 
Merzlyak, 
(1994);  
Rouse et 
al., (1973) 

Red-edge Chlorophyll 
Index (CIrededge) 

NIR RE3⁄ െ 1 B7, 
B8 

Gitelson et 
al., (2005b) 

Corrected Transformed 
Vegetation Index (CTVI) 

ሺNDVI ൅ 0.5ሻ ∗ NDVI ൅ 0.5 B5, 
B8 

Perry and 
Lautenschla
ger, (1984) 

Renormalized NDVI 
(rNDVI) 

ሺNIR െ Rሻ/ሺ√NIR ൅ R B4, 
B8 

Gitelson 
and 
Merzlyak 
(1994) 

Simplified Canopy 
Chlorophyll Index 
(SCCCI) 

ሺNDVI ∗ RE3ሻ/NDVI B5, 
B7, 
B8 

Barnes et 
al., (2000) 

Sentinel-2 Red-edge 
Position (SREP) 705 ൅ 35 ∗

NIR ൅ R
2 െ RE

RE2 െ RE1
 

B4, 
B5, 
B6, 
B8 

Frampton 
et al., 
(2013) 

Inverted Red-edge 
Chlorophyll Index (IRECI) 

ሺNIR െ Rሻ ሺRE2 RE1ሻ⁄⁄ B4, 
B5, 
B6, 
B8 

Frampton 
et 
al.,(2013) 

Modified Chlorophyll 
Absorption Ratio Index 
(MCARI) 

൫ሺRE1 െ Rሻ െ 0.2 ∗ ሺB5 െ B3ሻ൯ ∗ ሺB5 B4ሻ⁄  B3, 
B4, 
B5 

Daughtry et 
al.,(2000) 

Transformed Chlorophyll 
Absorption in Reflectance 
Index/Optimized Soil-
Adjusted Vegetation 
Index (TCARI/OSAVI) 

3ሾሺRE1 െ RE3ሻ െ 0.2ሺRE1 െ GሻሺRE1 R⁄ ሿ

ሺ1 ൅ 0.16ሻሺNIR െ Rሻ/ሺNIR ൅ R ൅ 0.16ሻ
 B3, 

B4, 
B5, 
B7, 
B8 

Daughtry et 
al., (2000) 
Rondeaux 
et al., 
(1996) 

Global Environmental 
Monitoring Index (GEMI) 

nሺ1 െ 0.25nሻ െ ሺR െ 0.125ሻ/ሺ1 െ Rሻ
Where n = ሾ2ሺNIRଶ െ Rଶሻ ൅ 1.5NIR ൅
0.5Rሿ/ሺNIR ൅ R ൅ 0.5ሻ 

B4, 
B5, 
B8 

Pinty and 
Verstraete, 
(1992) 

5.2.6 Correlation analysis between Sentinel-2 bands and 
canopy traits 

Prior to modelling canopy traits using the Random Forest algorithm, we used 
a Pearson’s Correlation Coefficient to examine correlations between Sentinel-
2 reflectance data and canopy traits estimated from the two canopy 
expressions.  The correlation analysis explores how the canopy traits estimated 
from the two canopy expressions relate to the satellite data. 

5.2.7 Modelling canopy traits using Sentinel-2 data 
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A machine learning algorithm, Random Forest (RF) validated using repeated k-
fold cross-validation procedure was used to examine the effect of canopy traits 
expression on model performance and prediction accuracy. In this study we 
used the powerful machine learning RF algorithm because: i) it is more stable 
and equipped to handle collinear datasets such as satellite dataset (Shi et al., 
2018) ii) it generates an error matrix for internal validation and allow assessing 
the importance of each predictor variable (Breiman, 2001; Rodriguez-Galiano 
et al., 2012) iii) it is computationally efficient and has been used widely in 
vegetation spectroscopy (Mutanga et al., 2012; Ramoelo et al., 2015b; Yan 
and de Beurs, 2016). RF employs an iterative bagging technique in which the 
number of trees (ntree) are independently constructed using a subset 
randomly selected from the training samples (Breiman, 2001). The respective 
nodes are partitioned based on the best performing input variables (mtry). To 
select the best ntree and mtry values that predicts canopy traits with the lowest 
RMSE, we optimized the RF models based on the cross-validated RMSE. We 
tested ntree from 500 to 2500 at 500 interval, while a mtry of 1-10 was 
assessed for models independently developed using vegetation indices and 
Sentinel 2 spectral bands as co-variates. For models that combined bands and 
vegetation indices as predictors variables, a mtry of 1-20 was evaluated.   
 
The k-fold cross validation procedure was used to randomly partition the 
dataset into ten equal blocks. For each model run, k-1 of the folds were used 
to calibrate the model while the other fold was reserved as ‘out of bag’ to 
estimate the prediction error and compute a variable importance vector. This 
procedure was repeated 10 times until all data partitions were exhaustively 
used for both calibration and validation data. To eliminate bias on the estimate 
based on the composition of each partition, we repeated the k-fold data 
resampling procedure 10 times. Therefore, 100 models (10-fold cross 
validation repeated 10 times) were simultaneously calibrated and validated 
using this procedure. The final model was thus a mean of the 100 models. The 
robust Mean Decrease Accuracy (%IncMSE) which estimates the increase in 
mean square error of prediction when a variable is permuted whilst other 
remain invariant was used to assess the importance of predictor variables 
(Breiman, 2001). The most important predictor variable yield high values of 
%IncMSE. 
 
The generalized RF model was developed based on pooled data for the canopy 
traits and Sentinel data for all the three seasons. The pooled data dataset (n= 
102) was randomly split into model calibration (65%) and external validation 
(35%) dataset. To ensure an even distribution of canopy traits in both the 
calibration and validation datasets, we sorted and randomly sampled data from 
each quartile for each season. Similar to seasonal models explained above the 
calibration dataset was internally validated using repeated k-fold cross 
validation and then the final model was externally validated on the external 
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data that was never used in model calibration. Prior to Random Forest modeling 
the independent and dependent variable were all mean-centered. 
 
The coefficient of determination (R2), root mean square error (RMSE) and 
normalized root mean square error (NRMSE = RMSE/Range) were used to 
assess the performance of the Random Forest  models in  predicting the canopy 
traits using the Sentinel-2 reflectance data. The Random Forest modelling 
procedure was performed in R.3.5.1 for Windows using the classification and 
regression (caret) package. 

5.3 Results 

5.3.1 Seasonal variability in leaf traits across the vertical 
canopy profile 

The trait content (LMA, Cab, N and carbon) for leaf samples collected from the 
upper canopy were significantly (α < 0.05) higher compared with samples 
collected from the lower canopy throughout the three seasons (Fig 5.2). The 
variation in leaf traits content between upper canopy and lower canopy 
samples was more prominent in summer compared to the other seasons. This 
variation was more distinctive for the dry matter related leaf traits. Generally, 
the dry matter related leaf traits of the upper canopy demonstrated high 
seasonal variability compared to lower canopy. As expected, the mean leaf 
traits content for summer was significantly higher when compared to other 
seasons for all the leaf traits. Leaf chlorophyll content for summer showed high 
variability between upper and lower canopy compared to the other two seasons 
(Fig 5.2).  
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Figure 5.2 Seasonal variation in field measured leaf traits across the canopy vertical 
profile. Leaf traits with different letters indicate significant (α < 0.05) difference based 
on Tukey’s HSD test. 

5.3.2 Correlation between Sentinel-2 spectral data and 
canopy traits 

The strength of correlation between Sentinel-2 reflectance data and canopy 
traits varied between the two canopy traits expressions across seasons 
(Appendix Fig A4) as well as for the pooled dataset (Fig 5.3). Generally, 
canopy-level LMA, N and carbon estimated from the weighted canopy 
expression showed a stronger correlation with spectral reflectance of all 
Sentinel-2 bands compared to canopy traits estimated using the conventional 
top-of-canopy expression. The difference in correlation between canopy traits 
and Sentinel 2 spectral data in summer was wider from the red-edge 2 (RE2) 
band to the SWIR bands through the NIR bands. The SWIR bands and red-
edge 1 yielded the highest correlations (r > - 0.5, α < 0.05) with canopy LMA 
and carbon estimated using the weighted canopy expression. Canopy nitrogen 
demonstrated high correlation with the red band and red-edge 1 for the pooled 
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dataset. Canopy N estimated from both canopy expressions demonstrated poor 
correlation (-0.25 < r < 0.12) to Sentinel-2 reflectance data in the summer 
compared to the two other seasons. LMA and carbon were strongly correlated 
(r = 0.98, α < 0.05) and yielded almost similar result across seasons. 
 

 
Figure 5.3 Correlation analysis between Sentinel-2 reflectance data and canopy traits 
for the pooled dataset. 
 
In contrast, canopy chlorophyll estimated based on top-of-canopy 
expression exhibited a higher correlation with reflectance throughout 
all the Sentinel-2 bands for the pooled dataset. The difference in 
correlation was greater in the red-edge, NIR and SWIR bands. A similar 
observation is also evident for the seasonal correlations between 
Sentinel-2 spectral data and canopy chlorophyll especially in spring and 
summer (Appendix: Fig A4). In summer, canopy chlorophyll exhibited 
an increased correlation with Sentinel spectral data, especially with 
reflectance data from red edge bands and NIR (r > 0.5) compared to 
spring and autumn.  

5.3.3 Effect of canopy trait expression on model performance 

We compared the prediction accuracy of canopy traits estimated from the two 
canopy layer expression methods using RF models trained with reflectance 
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data from Sentinel-2 spectral bands and vegetation indices. Overall, canopy 
traits estimated from the weighted expressions generated lower values of 
RMSEP for all models developed for canopy LMA, N and C throughout all the 
seasons. For example, canopy LMA was estimated with an error of 120.38 and 
144.41 g/cm2 for the weighted and top-of-canopy respectively for spring using 
the optimized model (Table 5.2). In summer, canopy N was estimated with an 
error of 1.47 and 1.77 g/cm2 for weighted and top-of-canopy respectively for 
the optimized models (Table 5.3). Canopy carbon was also estimated with an 
error of 26.02 and 29.9 g/cm2 for the weighted and top-of-canopy expressions 
for the optimized models (Table 5.4). All co-variates demonstrated a similar 
prediction pattern for the canopy traits estimated from the two canopy traits 
expressions. 
 
Generally, the accuracy of estimation for all canopy traits increased in the order 
of spring, summer and autumn for all models across seasons. For example, 
canopy N was estimated with an error of 1.85, 1.47 and 1.03 g/cm2 for spring, 
summer and autumn respectively. Canopy chlorophyll was estimated with an 
RMSEP of 0.48, 0.37 and 0.34 g/cm2 for spring, summer and autumn 
respectively. A similar pattern was also observed for canopy LMA and carbon. 
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Table 5.2: Performance of the Random Forest model in modelling canopy traits for the 
spring season 
 Based on sunlit canopy  Weighted canopy 

Trait Co-variates R2 (SD) RMSEP 
(SD) 

NRMSE 
(SD) 

 R2  (SD) RMSEP 
(SD) 

NRMSE 
(SD) 

LMAc Raw bands 0.66 
(0.36) 

152.5 
(90.62) 

0.15 
(0.089) 

 0.63 
(0.35) 

128.11 
(74.37) 

0.15 
(0.089) 

 VI 0.64 
(0.32) 

171.92 
(89.57) 

0.17 
(0.089) 

 0.63 
(0.35) 

145.85 
(70.75) 

0.17 
(0.084) 

 Bands + VI 0.65 
(0.34) 

158.99 
(89.64) 

0.16 
(0.089) 

 0.64 
(0.34) 

135.31 
(67.35) 

0.16 
(0.08) 

 Optimized 0.67 
(0.34) 

144.41 
(90.69) 

0.14 
(0.09) 

 0.72 
(0.33) 

120.38 
(74.45) 

0.14 
(0.08) 

Cabc Raw bands 0.55 
(0.38) 

0.55 
(0.22) 

0.23 
(0.092) 

 0.48 
(0.38) 

0.57 
(0.25) 

0.21 
(0.091) 

 VI 0.52 
(0.37) 

0.52 
(0.21) 

0.242 
(0.088) 

 0.48 
(0.36) 

0.6 
(0.26) 

0.22 
(0.094) 

 Bands + VI 0.54 
(0.37) 

0.56 
(0.22) 

0.24 
(0.09) 

 0.52 
(0.35) 

0.58 
(0.25) 

0.21 
(0.091) 

 Optimized 0.60 
(0.36) 

0.48 
(0.22) 

0.23 
(0.093) 

 0.52 
(0.36) 

0.56 
(0.26) 

0.2 
(0.093) 

Nc Raw bands 0.53 
(0.36) 

2.04 
(0.93) 

0.2 
(0.09) 

 0.56 
(0.34) 

1.93 
(1.04) 

0.18 
(0.098) 

 VI 0.53 
(0.35) 

2.22 
(0.91) 

0.21 
(0.088) 

 0.52 
(0.38) 

2.15 
(1.03) 

0.2 
(0.097) 

 Bands + VI 0.53 
(0.35) 

2.11 
(0.91) 

0.2 
(0.087) 

 0.56 
(0.38) 

2.06 
(0.95) 

0.2 
(0.09) 

 Optimized 0.61 
(0.32) 

1.97 
(0.96) 

0.19 
(0.093) 

 0.66 
(0.32) 

1.85 
(1.09) 

0.18 
(0.103) 

Cc Raw bands 0.66 
(0.35) 

71.16 
(41.51) 

0.15 
(0.088) 

 0.64 
(0.35) 

59.82 
(35.5) 

0.15(0.0
89) 

 VI 0.63 
(0.34) 

80.12 
(40.41) 

0.17 
(0.086) 

 0.64 
(0.35) 

68.7 
(33.4) 

0.17 
(0.084) 

 Bands + VI 0.64 
(0.35) 

74.43 
(40.46) 

0.16 
(0.086) 

 0.65 
(0.35) 

63.46 
(31.9) 

1.16 
(0.08) 

 Optimized 0.62 
(0.35) 

67.11 
(42.47) 

0.14 
(0.09) 

 0.66 
(0.34) 

57.97 
(34.98) 

0.15 
(0.088) 
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Table 5.3 Performance of the Random Forest model in modelling canopy traits for the 
summer season 
 Based on sunlit canopy  Weighted canopy 

Trait Co-variates R2 (SD) RMSEP 
(SD) 

NRMSE 
(SD) 

 R2  (SD) RMSEP 
(SD) 

NRMSE 
(SD) 

LMAc Raw bands 0.55  
(0.3) 

103.47 
(26.24) 

0.202 
(0.051) 

 0.64 
(0.28) 

84.89 
(25.31) 

0.21 
(0.059) 

 VI 0.52 
(0.33) 

103.63 
(30.55) 

0.202 
(0.059) 

 0.62 
(0.31) 

86.12 
(29.22) 

0.21 
(0.068) 

 Bands + VI 0.53 
(0.32) 

103.27 
(27.73) 

0.201 
(0.054) 

 0.62 
(0.32) 

85.72 
(26.59) 

0.2 
(0.062) 

 Optimized 0.57 
(0.3) 

98.01 
(25.58) 

0.191 
(0.05) 

 0.64 
(0.28) 

82.97 
(24.62) 

0.19 
(0.057) 

Cabc Raw bands 0.49 
(0.31) 

0.46 
(0.16) 

0.234 
(0.08) 

 0.44 
(0.32) 

0.45 
(0.15) 

0.24 
(0.08) 

 VI 0.60 
(0.34) 

0.4 
(0.16) 

0.2 
(0.08) 

 0.56 
(0.35) 

0.39 
(0.15) 

0.21 
(0.08) 

 Bands + VI 0.59 
(0.34) 

0.42 
(0.16) 

0.21 
(0.08) 

 0.5 
(0.37) 

0.4 
(0.17) 

0.21 
(0.09) 

 Optimized 0.62 
(0.35) 

0.37 
(0.16) 

0.19 
(0.08) 

 0.56 
(0.35) 

0.38 
(0.15) 

0.21 
(0.08) 

Nc Raw bands 0.32 
(0.32) 

1.97 
(0.72) 

0.21 
(0.08) 

 0.40 
(0.36) 

1.55 
(0.53) 

0.21 
(0.07) 

 VI 0.37 
(0.32) 

1.83 
(0.71) 

0.2 
(0.07) 

 0.38 
(0.32) 

1.52 
(0.53) 

0.21 
(0.07) 

 Bands + VI 0.36 
(0.32) 

1.86 
(0.68) 

0.2 
(0.07) 

 0.42 
(0.32) 

1.52 
(0.62) 

0.2 
(0.08) 

 Optimized 0.41 
(0.33) 

1.77 
(0.66) 

0.19 
(0.07) 

 0.48 
(0.35) 

1.47 
(0.53) 

0.19 
(0.07) 

Cc Raw bands 0.54 
(0.3) 

51.02 
(13.17) 

0.21 
(0.05) 

 0.63 
(0.3) 

41.32 
(12.55) 

0.2 
(0.06) 

 VI 0.51 
(0.33) 

51.18 
(15.3) 

0.21 
(0.06) 

 0.63 
(0.3) 

41.62 
(14.7) 

0.19 
(0.07) 

 Bands + VI 0.52 
(0.32) 

50.95 
(13.6) 

0.21 
(0.06) 

 0.65 
(0.28) 

41.68 
(11.4) 

0.2 
(0.06) 

 Optimized 0.57 
(0.28) 

49.67 
(13.39) 

0.2 
(0.054) 

 0.65 
(0.29) 

40.4 
(12.81) 

0.19 
(0.06) 

VI: Vegetation indices 
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Table 5.4: Performance of Random Forest models in modelling canopy traits for the 
autumn season 
 Based on sunlit canopy  Weighted canopy 

Trait Co-variates R2 (SD) RMSEP 
(SD) 

NRMSE 
(SD) 

 R2  (SD) RMSEP 
(SD) 

NRMSE 
(SD) 

LMAc Raw bands 0.69 
(0.31) 

68.67 
(30.4) 

0.18 
(0.08) 

 0.71 
(0.3) 

59.27 
(25.69) 

0.18 
(0.077) 

 VI 0.74 
(0.28) 

61.51 
(28.72) 

0.17 
(0.08) 

 0.74 
(0.26) 

56.28 
(21.35) 

0.17 
(0.064) 

 Bands + VI 0.71 
(0.33) 

61.81 
(30.4) 

0.17 
(0.08) 

 0.76 
(0.3) 

52.81 
(26.16) 

0.16 
(0.079) 

 Optimized 0.74 
(0.28) 

61.15 
(28.57) 

0.16 
(0.08) 

 0.74 
(0.29) 

53.64 
(24.18) 

0.16 
(0.073) 

Cabc Raw bands 0.51 
(0.34) 

0.34 
(0.11) 

0.19 
(0.06) 

 0.56 
(0.33) 

0.34 
(0.11) 

0.18 
(0.061) 

 VI 0.45 
(0.36) 

0.36 
(0.12) 

0.2 
(0.06) 

 0.51 
(0.32) 

0.35 
(0.13) 

0.19 
(0.068) 

 Bands + VI 0.47 
(0.33) 

0.35 
(0.11) 

0.19 
(0.06) 

 0.52 
(0.33) 

0.35 
(0.13) 

0.19 
(0.07) 

 Optimized 0.5 
(0.34) 

0.33 
(0.1) 

0.19 
(0.06) 

 0.58 
(0.32) 

0.34 
(0.11) 

0.18 
(0.06) 

Nc Raw bands 0.65 
(0.3) 

1.31 
(0.72) 

0.16 
(0.09) 

 0.68 
(0.32) 

1.12(0.5
5) 

0.16 
(0.08) 

 VI 0.69 
(0.31) 

1.23 
(0.76) 

0.15 
(0.09) 

 0.69 
(0.31) 

1.06 
(0.57) 

0.15 
(0.08) 

 Bands + VI 0.7 
(0.30) 

1.22 
(0.78) 

0.15 
(0.09) 

 0.69 
(0.3) 

1.04 
(0.59) 

0.15 
(0.09) 

 Optimized 0.71 
(0.3) 

1.21 
(0.79) 

0.14 
(0.1) 

 0.72 
(0.3) 

1.03 
(0.61) 

0.15 
(0.09) 

Cc Raw bands 0.7 
(0.31) 

33.51 
(14.99) 

0.18 
(0.08) 

 0.72 
(0.28) 

28.69 
(12.69) 

0.18 
(0.078) 

 VI 0.74 
(0.28) 

30.41 
(13.96) 

0.16 
(0.08) 

 0.74 
(0.27) 

27.81 
(10.32) 

0.17 
(0.06) 

 Bands + VI 0.71 
(0.32) 

30.15 
(15.19) 

0.16 
(0.08) 

 0.73 
(0.3) 

26.44 
(13.22) 

0.16 
(0.08) 

 Optimized 0.74 
(0.27) 

29.9 
(14.12) 

0.16 
(0.08) 

 0.74 
(0.28) 

26.02 
(11.97) 

0.16 
(0.07) 

VI: Vegetation indices 
 
Analysis for the pooled dataset demonstrated that the weighted canopy 
expression consistently outperformed the top-of-canopy expression method 
using both the internal and the independent external validation procedure. 
Canopy LMA estimated from the weighted canopy expression yielded a RMSEP 
of 66.86 compared to 83.92 g/cm2 obtained for the top-of-canopy expression. 
A similar pattern was also observed for canopy N (1.21 and 1.62 g/cm2 for 
weighted and top-of-canopy expression respectively) and carbon (31.88 and 
40.99 g/cm2 for weighted and top-of-canopy expression respectively). 
Chlorophyll estimated based on top-of-canopy expression yielded higher 
prediction accuracy (0.38 g/cm2) compared to canopy weighted expression 
(0.47 g/cm2) for the pooled dataset. It is important to note that the generalized 
model based on the pooled dataset underestimated canopy chlorophyll content 
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in high canopy chlorophyll content stands. This is reflected by the shift in the 
estimated canopy chlorophyll content values below the 1:1 line (Fig 5.4). 
 
Table 5.5: Performance of generalized Random Forest models in modelling canopy 
traits across all the seasons 

  Based on sunlit canopy Weighted canopy 

  Internal validation External validation Internal validation External validation 

Trait Co-variates R2 (SD) RMSEP (SD) R2  RMSEP NRMSE R2  (SD) RMSEP (SD) R2 RMSEP NRMSE 

LMAc Raw bands 0.48 (0.28) 104.44 
(25.67) 

0.54 82.33 0.173 0.52 (0.24) 90.15 
(22.88) 

0.68 68.84 0.17 

 VI 0.45 (0.27) 107.68 
(27.01) 

0.49 87.75 0.184 0.5 (0.25) 93.89 
(23.85) 

0.55 76.87 0.19 

 Bands + VI 0.49 (0.28) 103.38 
(25.18) 

0.56 82.43 0.173 0.52 (0.24) 90.5 (21.93) 0.7 61.97 0.15 

 Optimized 50.21 (0.28) 101.39 
(25.62) 

0.54 83.92 0.176 0.55 
(0.23) 

89.5 (21.6) 0.67 65.9 0.158 

Cabc Raw bands 0.45 (0.24) 0.39 (0.087) 0.43 0.447 0.27 0.41 (0.24) 0.396 (0.07) 0.42 0.51 0.28 

 VI 0.47 (0.27) 0.39 (0.11) 0.46 0.41 0.23 0.46 (0.28) 0.386 (0.09) 0.45 0.49 0.25 

 Bands + VI 0.46 (0.25) 0.389 
(0.0093) 

0.46 0.42 0.25 0.44(0.26) 0.389 (0.08) 0.43 0.494 0.27 

 Optimized 0.49 (0.26) 0.37 (0.09) 0.55 0.379 0.192 0.46 (0.27) 0.386 
(0.086) 

0.47 0.472 0.24 

Nc Raw bands 0.41 (0.26) 1.78 (0.44) 0.25 1.67 0.19 0.39 (0.26) 1.52 (0.36) 0.46 1.23 0.16 

 VI 0.41 (0.28) 1.81 (0.48) 0.34 1.56 0.18 0.42(0.27) 1.55 (0.42) 0.42 1.26 0.16 

 Bands + VI 0.40(0.28) 1.8 (0.46) 0.32 1.55 0.18 0.4 (0.26) 1.53 (0.38) 0.51 1.17 0.15 

 Optimized 0.42 (0.27) 1.75 (0.46) 0.32 1.62 0.19 0.45 
(0.26) 

1.49 (0.37) 0.53 1.132 0.144 

Cc Raw bands 0.5 (0.28) 49.88 () 0.55 40.69 0.18 0.55 (0.24) 43.37 (9.89) 0.68 31.33 0.158 

 VI 0.48 (0.27) 51.73 () 0.52 40.76 0.179 0.53 (0.24) 44.09 
(11.52) 

0.59 36.12 0.182 

 Bands + VI 0.52 (0.28) 49.78 () 0.56 39.84 0.175 0.54 (0.23) 42.66 
(11.34) 

0.71 30.74 0.155 

 Optimized 0.53 (0.27) 49.17 () 54.5 40.99 0.18 57 
(23.02) 

41.83 
(11.05) 

0.68 31.85 0.161 

VI: Vegetation indices 
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Figure 5.4: Independent validation for the pooled dataset based on the optimized 
model.   
 
Fig 5.5 indicates the significance and ranking of each predictor variables in 
modelling canopy traits for each season and for the pooled data set using the 
RF technique. It is evident that SWIR bands outranked other spectral bands in 
modelling dry matter related canopy traits. IRECI consistently ranked higher 
compared to other vegetation indices. Generally, the blue reflectance band 
ranked lowest compared to other spectral bands for canopy LMA, N and carbon 
modelling. This result concur with correlation analysis observed between the 
canopy traits and Sentinel-2 bands in Fig 5.3. For canopy chlorophyll, the red 
edge bands ranked higher. Generally, vegetation indices outranked spectral 
bands in canopy chlorophyll modelling especially in summer and for the pooled 
dataset. 

5.3.2 Mapping seasonal variation in canopy traits 

Fig 5.6 and 5.7 show the spatial and temporal variation in canopy traits 
mapped using the best performing RF models across the three seasons. 
Variations in canopy chlorophyll for the three seasons were mapped based on 
top-of-canopy expression, while variations in LMA, N and carbon were based 
on canopy traits estimated using canopy-weighted expression. A visual 
inspection of the maps display seasonal shifts in canopy traits across the three 
seasons that confirm to our knowledge on plant phenological changes. For 
example, the seasonal changes in chlorophyll show high chlorophyll content in 
summer, followed by spring and then autumn (Fig 5.6). The seasonal shifts 
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displayed in canopy chlorophyll maps and as well as for canopy LMA, N and 
carbon (Fig 5.6 and 5.7) corresponds to the seasonal variability in leaf traits 
content observed in Fig 5.2. 

5.4 Discussion 

5.4.1 Variability in in-situ leaf traits across the vertical canopy 
profile throughout the growing season 

All leaf traits measured in the field demonstrated seasonal dynamics that also 
exhibited dependence on the canopy microclimate (Fig 5.2). These dynamics 
conform to previous studies (Gara et al., 2018b; Yang et al., 2016) and with 
our understanding of vegetation physiology across the canopy vertical profile 
(Hikosaka, 2005). The seasonal dynamics are mainly a result of phenological 
shifts due to changes in the photoperiod across the growing season. As 
expected, all the traits exhibited high content in summer, which coincides with 
an increase in diurnal temperature and maximum photoperiod (Behrman et al., 
2015). The wide difference in trait content between lower and upper canopy 
leaf samples in summer for all traits can be explained by the manifestation of 
the shade effect as foliage material of the upper canopy block and absorb most 
of the incoming PAR during peak vegetative season. Until now very few studies 
(Yang et al., 2016; Zhang et al., 2007) have reported phenological dynamics 
in leaf traits across the canopy vertical profile in temperate vegetation biomes. 
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Figure 5.5: Variable ranking and optimization for the prediction of canopy traits across 
seasons and for the pooled dataset using Sentinel-2 bands and vegetation indices. The 
arrow indicate the threshold of the variable selected for the optimized model in 
descending order. 
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Figure 5.6: Spatial variation in canopy leaf mass per area and chlorophyll across 
seasons in Bavaria Forest National Park. The white parts of the map indicate pixels 
occupied by clouds and non-vegetative material such as rocks. The zoomed maps 
enhance visualization of seasonal dynamics in canopy LMA and chlorophyll. 
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Figure 5.7: Spatial variation in canopy nitrogen and carbon across seasons in Bavaria 
Forest National Park. The white parts of the map indicate pixels occupied by clouds and 
non-vegetative material such as rocks. The zoomed maps enhance visualization of 
seasonal dynamics in canopy N and carbon. 
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5.4.2 Does canopy traits expression affect the correlation and 
estimation accuracy of canopy traits from Sentinel-2 
data? 

This study presented evidence that dry matter related canopy traits (LMA, N 
and carbon) computed from the weighted canopy expression, which exploits 
the vertical heterogeneity in leaf traits, correlate well with reflectance from all 
Sentinel-2 spectral bands compared to the conventional top-of-canopy 
expression throughout the growing season (Fig 5.3). Additionally, the weighted 
canopy expression generated a higher prediction accuracy compared to top-
of-canopy expression using Sentinel-2 spectral data throughout the growing 
season (Table 5.2-4). These observations demonstrate that functional traits of 
the shaded layer significantly contribute to top of canopy reflectance measured 
by the Sentinel 2 multispectral instrument. Characterizing the canopy depth 
sensed by remote sensing instruments has remained an unsolved problem in 
vegetation spectroscopy (Ciganda et al., 2012). Results presented in this study 
imply that Sentinel-2 multi-spectral instrument senses functional traits deep in 
the canopy beyond the exposed upper canopy. This observation confirms 
earlier results by Gara et al., (2018b) who documented that dry matter related 
canopy traits (LMA, N and carbon) upscaled from the top two canopy layers 
yield higher accuracy using canopy reflectance measured with a field 
spectrometer. The current study extends this idea to a highly foliated forest 
ecosystem and presents results that demonstrate that canopy traits expression 
affects the correlation and estimation accuracy of canopy traits using satellite 
imagery data across multiple seasons.  
 
The seasonal differences in the strength of correlation between reflectance of 
Sentinel-2 spectral bands and the two canopy traits expressions can be 
explained by changes in leaf traits heterogeneity between sunlit and shaded 
leaf samples across seasons. When the heterogeneity in leaf traits content 
between sunlit and shaded canopies is lower (i.e. spring and autumn Fig 5.2), 
the two canopy expressions naturally yield almost identical canopy trait values 
and subsequently display similar correlations patterns with Sentinel 2 data. 
However, as the heterogeneity in leaf traits between sunlit and shaded 
increase, the canopy traits show higher variation in the strength of correlation 
with Sentinel-2 data as evidenced in summer (Appendix Fig A4). 
 
Generally, canopy LMA and carbon demonstrated higher correlation with red-
edge 1 and SWIR bands, while canopy N was highly correlated with red, red-
edge and SWIR spectral data. These bands also ranked higher in the variable 
importance ranking (Fig 5.5). The high relationship between SWIR and canopy 
LMA, N together with carbon concur with Kokaly et al.,(2001) who observed 
that the absorption feature centered at 2.1 μm broadens with increasing leaf 
N content. They report that the changes are a result of two absorption features 
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at 2.055 and 2.172 µm that are positioned on the shoulders of the 2.1 µm 
absorption (Kokaly et al., 2009). In this study, SWIR2 ranked higher in the 
variable importance and yielded a better correlation with canopy LMA and 
carbon compared to SWIR1. This can be explained by the Sentinel 2 spectral 
bands configuration. The SWIR2 is centered at 2190 nm and has a wider 
bandwidth (175 nm) compared to SWIR1, which is centered at 1610 nm and 
has a narrow bandwidth of 91 nm (European Space Agency,(2015). The SWIR2 
band is also contained within the wavebands (2100-2300 nm) that Wang et 
al.,(2011) observed to be sensitive to LMA using hyperspectral measurements. 
 
The high prediction accuracy obtained for all canopy traits for the autumn 
season can be explained by the distribution of nutrients within a given leaf 
volume during senescence. Experimental studies document that during 
senescence, chloroplasts degrade which results in the release of foliar nutrients 
like leaf protein and chlorophyll pigments in remobilizable form (Wada and 
Ishida, 2009). During this process these foliar nutrients become uniformly 
distributed across the leaf volume (Carrión et al., 2014). The uniformly 
distributed nutrients freely interact with radiation and can be readily sensed by 
remote sensing instruments. Previous studies also demonstrated that spectral 
absorption features especially in the SWIR spectrum are obscured by water 
absorption (Fourty and Baret, 1998). We therefore speculate that the low leaf 
water content in autumn (results not shown) enhance leaf traits sensitivity and 
subsequently improved canopy traits prediction for this season (Ramoelo et 
al., 2011). 
 
The generalized models explained 52.57 - 67.82% variability in canopy traits 
across all seasons demonstrating the capability of Sentinel 2 data in capturing 
seasonal dynamics in leaf traits. Characterizing seasonal dynamics in leaf traits 
is essential in improving our understanding of ecosystem functions, processes 
and services. Dynamics in leaf traits displayed in Fig 5.2 matches seasonal 
fluctuations in canopy traits observed on the maps (Fig 5.6 and 5.7). For 
example, the high leaf chlorophyll content observed in summer in comparison 
to other seasons corresponds with the range of canopy chlorophyll observed 
for the summer map. A similar pattern can be observed for the other the 
canopy traits studied. The matching between leaf traits content and the 
mapped canopy traits highlights the capability of Sentinel 2 data in tracking 
canopy traits seasonality and ecosystem dynamics. 
 
To the best of our knowledge, no study has explored the effect of canopy traits 
expression using a multispectral data across the entire growing season. 
Furthermore, in this study we mapped the spatial patterns of canopy traits 
repeatedly over space and time. Our study demonstrated for the first time the 
capability of Sentinel 2 data to estimate canopy LMA and carbon across 
vegetation phenophases. Previous efforts using Sentinel-2 data have mainly 
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focused on foliar chlorophyll (Clevers et al., 2017; Delloye et al., 2018; Li et 
al., 2018a; Vincini et al., 2014) and nitrogen (Chemura et al., 2018; Mutowo 
et al., 2018) for single point in time typically at the peak growing season in 
agricultural systems. Our study, also demonstrated the development of a 
generalized model that captures phenological changes in leaf traits across 
multiple seasons. This result is important for monitoring ecosystem functions 
and processes in biodiversity studies and forest management. With the 
increasing use of multispectral imagery in estimating and mapping plants traits 
there is need to standardize field sampling protocols to ensure that studies are 
comparable. The general perception that field sampling is laborious and time 
consuming provides an escape route for limited sampling procedures. 
Therefore, sampling throughout the canopy requires more consideration, 
especially if the accuracy of estimation and mapping of plant traits is to be 
further improved. 

5.5 Conclusion 
In this study, we examined the effect of canopy traits expression in modelling 
canopy traits using Sentinel-2 multispectral satellite data across the growing 
season in a temperate forest. Based on results obtained in this study we 
conclude that: 

i. Canopy traits estimated from the weighted canopy expression show 
higher correlation with Sentinel-2 bands across all seasons compared 
to canopy traits estimated from top-of-canopy expression. 

ii.  The weighted canopy expression that accounts for the heterogeneity 
in leaf traits between sunlit and shaded canopy yield a higher 
prediction accuracy using Sentinel-2 bands and vegetation indices 
across all seasons. 

iii. A generalized model that captures dynamics in canopy traits across all 
seasons can be developed using Sentinel-2 spectral data. 

iv. Sentinel-2 multispectral data can be successfully used to map 
variability in canopy traits over space and time. 

Our work demonstrated that Sentinel-2 multispectral data can accurately 
monitor the seasonal dynamics of a suite of canopy traits. This study showed 
the importance of multispectral instruments in monitoring ecosystem dynamics 
across a range of spatial and temporal scales. However, further research 
should be performed in the other biomes to ascertain the validity of results 
obtained in this study.  
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Chapter 6 
 
Synthesis: Remote sensing of foliar traits 
across the plant’s canopy 
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6.1 Introduction 
Accurate and up-to-date information of leaf traits is critical in monitoring 
ecosystem function, processes and services (Lavorel et al., 2011). Plant traits 
are critical in improving our understanding of ecosystem services and plant 
community productivity across biomes (Houborg et al., 2015). Understanding 
the spatio-temporal variations in leaf traits is vital in tracking changes in the 
cycling of nutrients within the earth system. For example, leaf traits such as 
LMA and Nmass are inputs into models such as the Community Land Model 
(Wang et al., 2014). The Community Land Model simulates past, present and 
future global climate states driven by components that include vegetation 
composition, structure, and phenology (Oleson, 2013). This, therefore, implies 
that ecosystem functioning and structure are key elements of our climate 
system (Barboni et al., 2004; Soudzilovskaia et al., 2013). Understanding foliar 
nutrient content in terrestrial ecosystem across a variety of spatial and 
temporal scales is therefore critical. 
 
Foliar nutrients do not exclusively exhibit variations over space and time but 
also changes across the vertical domain of plant canopies (Chen et al., 1993; 
Coble et al., 2016b). The vertical heterogeneity in leaf traits across canopy is 
known to improve the photosynthetic capacity of the whole canopy as plants 
allocate higher nutrient amounts to the sunlit upper canopy to maximize high 
radiation flux density intercepted in the upper canopy layers (Ellsworth and 
Reich, 1993; Li et al., 2013; Niinemets, 2007). This mechanism results in 
variation in leaf chemical, morphology and physiological properties and 
subsequently influence the optical properties of the whole canopy (Yang et al., 
2017). Previous studies demonstrate that the vertical heterogeneity in leaf 
chlorophyll, water and dry matter content have a significant effect on canopy 
reflectance measured by remote sensing instruments (Wang and Li, 2013). 
This therefore implies that capturing the vertical heterogeneity in leaf traits 
across canopy is important in reducing bias in canopy reflectance modelling 
and subsequent retrieval of plant biophysical and biochemical properties. 
 
Remote sensing provides a cost-effective and practical means of estimating 
and mapping leaf traits from canopy spectra over large spatial extents. 
Basically, three approaches (empirical, physical and hybrid) are employed to 
quantify leaf traits from remote sensing data (Verrelst et al., 2013; Verrelst et 
al., 2015b). Empirical methods explore statistical relationships between 
spectral data or features and plant traits (Hill et al., 2019). Common empirical 
methods in vegetation spectroscopy include partial least squares regression 
(Adjorlolo et al., 2015; Alvarez-Guerra et al., 2010; Martin et al., 2008), 
stepwise multiple linear regression (Kokaly and Clark, 1999; Peterson et al., 
1988) and support vector machine regression (Axelsson et al., 2013). Physical 
models, rigorously simulate light absorption and scattering inside vegetation 
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canopies accounting for leaf traits composition, canopy structural properties 
and soil background based on radiation transfer theory (Féret et al., 2011). 
Hybrid models integrate elements of empirical and physical methods. Hybrid 
models often entail calibrating statistical models especially machine learning 
algorithm using a LUT generated from physical models (Verrelst et al., 2014). 
However, understanding the performance of these methods in the context of 
vertical heterogeneity of leaf traits across the canopy has received limited 
attention. 
 
This thesis, therefore, seek to understand the role of canopy vertical  
heterogeneity on modelling leaf spectral properties and retrieval of leaf traits. 
In addition, the thesis examines the effect upscaling approaches on the 
estimation of canopy traits using in-situ hyperspectral measurements and 
Sentinel-2 multispectral data across multiple seasons. Specifically, the 
objectives of this thesis are to: (1) examine the effect of canopy vertical 
position on leaf spectral properties and traits across multiple species, (2) 
examine the effect of leaf position within a canopy on the performance of the 
PROSPECT model in modelling leaf optical properties and retrieval of leaf traits 
across the growing season, (3) evaluate the effect of leaf-to-canopy upscaling 
approaches on modelling canopy traits using in-situ hyperspectral and 
simulated Sentinel-2 measurements, (4) examine the effect of canopy traits 
expression on modelling canopy traits using Sentinel-2 MSI across the growing 
season. The thesis synthesizes results obtained in this study by initially 
focusing on results obtained at leaf level using empirical models and physical 
models. The thesis proceeds to discussed results obtained at canopy level using 
in-situ hyperspectral measurements in a laboratory environment. The 
relevance of this study to remote sensing of plants traits at the landscape level 
is  discussed in Section 6.5. The thesis concludes by discussing possible future 
research avenues. 

6.2 Leaf level 

6.2.1 Do leaf spectral properties track variability in leaf traits 
across the canopy vertical profile? 

Leaf trait content is known to vary across the canopy vertical domain (Hirose 
and Werger, 1987). The vertical heterogeneity in leaf traits across canopy 
improves the photosynthetic capacity of the whole plant (Li et al., 2013). Sunlit 
upper canopy leaves exhibit high nutrient content to commensurate the high 
radiation amounts intercepted by foliage material of the upper canopy (Yang 
et al., 2016). This mechanism consequently results in marked effects on leaf 
morphological, chemical and physiological properties of leaf samples across the 
canopy (Weerasinghe et al., 2014). Although the vertical heterogeneity in leaf 
traits concept is well documented in plant physiological domain, the impact of 
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vertical canopy position on leaf properties across the entire spectrum for 
multiple species remains scanty. We, therefore, examined the effect of canopy 
vertical position on leaf spectral properties across multiple species. We sought 
to identify spectral wavebands that are key in the discrimination of leaf samples 
into their respective canopy layers. 
 
Leaf samples from the upper canopy exhibited higher traits content compared 
to samples collected from the lower canopy (Fig 2.6). Leaf spectral reflectance 
mirrored variation in traits content across the canopy. Leaf spectral reflectance 
shifted to longer wavelengths in the 'red edge' spectrum (685 - 701 nm) in the 
order of lower > middle > upper (Fig 2.2). The spectral shift in the red-edge 
spectrum reflected a trend in the increase of nitrogen and chlorophyll from 
lower canopy leaves to the upper canopy. The observation in the red edge 
concurs with Ma and Upadhyaya (2018) who observed that spectral reflectance 
of canopy leaves measured at 730 nm upper was significantly (p < 0.05) lower 
compared spectral reflectance of shaded leaves at 730 nm. Leaf samples were 
successfully discriminated into their respective canopy position groups with an 
overall accuracy of 64% using a bootstrapped PLS-DA (Table 2.3). Key 
wavebands (400 - 761, 1372 - 1407, 1902 -1989 and 2106 - 2170 nm [30.37% 
of wavebands]) that enhance leaf samples discrimination are documented to 
be sensitive to variation in chlorophyll, EWT, N, carbon and SLA (Curran, 
1989). Our results demonstrated the capability of leaf spectra to track 
variability in leaf traits across the canopy vertical profile. Our results have 
strong implication on leaf sampling procedures and upscaling leaf traits to 
canopy level especially in vegetation communities of low LAI. We hypothesize 
that foliage material from the lower canopy significantly contributes to canopy 
optical properties especially in vegetation communities characterised by low 
LAI. This observation implies that failure to account the vertical heterogeneity 
in key traits across the vertical canopy profile can potentially lead to 
considerable inaccuracies in upscaling leaf traits to canopy level, canopy 
reflectance modelling and subsequent retrieval of leaf traits at canopy scale. 

6.2.2 Does the position of a leaf within a canopy affect the 
performance of PROSPECT in modelling leaf optical 
properties and retrieval of leaf traits throughout the 
growing season 

A number of studies demonstrate the capability of leaf radiative transfer 
models such as the widely used PROSPECT to simulate leaf optical properties 
and subsequently retrieve leaf traits such as Cab, LMA and EWT through model 
inversion in different vegetation types (Féret et al., 2017; Jacquemoud and 
Baret, 1990; Li and Wang, 2013b; Romero et al., 2012; Wang et al., 2015a). 
The PROSPECT model is often calibrated and validated using mature, sunlit 
leaves at peak vegetation season (Ali et al., 2016; Atherton et al., 2017). 
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However, the performance of the PROSPECT to model leaf optical properties 
and retrieve leaf traits across the canopy vertical profile remains rudimentary. 
In light of this background, we examined the effect of leaf position on the 
performance of the PROSPECT in modelling leaf optical properties and retrieval 
of Cab, LMA and EWT. We collected 588 leaf samples from upper and lower 
canopies of deciduous stands over the growing season of 2017 in Bavaria 
Forest National Park. The performance of the PROSPECT model to model leaf 
optical properties and retrieve Cab, LMA and EWT was tested by generating a 
LUT of 250 000 simulations. A look-up-table (LUT) model inversion approach 
was employed to retrieve Cab, LMA and EWT for the lower canopy and upper 
canopy respectively. 
 
Results obtained in this study demonstrated a strong agreement between 
measured and simulated reflectance spectra for leaf samples collected from 
the lower canopy compared to the upper canopy across all seasons (Fig 3.4). 
The variation in agreement between measured and simulated reflectance 
across canopy can be attributed to the difference in leaf morphological traits 
such as LMA and SLA. Our field data demonstrated that upper canopy leaves 
are thicker compared to lower canopy leaves. Leaf thickness is known to have 
an effect radiation transfer within a leaf as thicker leaves are associated with 
low leaf reflectance due to increase in path length and quantity of radiation 
intercepting tissue (Demarez, 1999; Li and Wang, 2011). The mismatch 
between measured and simulated reflectance between the lower canopy and 
upper canopy leaf samples was wider in spring and summer seasons compared 
to autumn. This observation reflects the slender variation in leaf traits across 
the canopy in autumn compared to the other seasons (Fig 3.2). Cab and EWT 
for leaf samples collected from the lower canopy were retrieved with higher 
accuracy (Cab: NRMSE=0.103, EWT: =0.125) compared to leaf samples 
collected from the upper canopy (Cab: NRMSE=0.122, EWT: =0.188) (Fig 3.6 
and Fig 3.7). The higher retrieval accuracy of Cab for leaf samples collected 
from the lower canopy can be explained by the distribution of chloroplast with 
the leaf volume. Chloroplasts in upper sunlit leaves are clumped in the palisade 
layer while for shaded leaves, the chloroplasts are evenly distributed between 
the palisade and spongy mesophyll layer (Adds et al., 1997). The even 
distribution of chloroplasts within the leaf volume for the shaded lower canopy 
leaves enhance the interaction of radiation and pigments. The relatively high 
EWT retrieval accuracies obtained for the lower canopy leaf samples in 
comparison to sample collected from the upper canopy across the growing 
season, reflect on the variation in spectral matching between measured and 
simulated reflectance spectra in key water absorption wavebands [970, 1200 
and 1400 nm] (Curran, 1989). The retrieval accuracy for LMA was higher for 
the upper canopy (NRMSE = 0.154) compared to lower canopy (NRMSE = 
0.176) (Fig 3.8). This observation does not conform to the spectral matching 
observed for samples collected across the canopy. LMA consists of a number 



Synthesis  

110 

of leaf constituents, such as protein, lignin, cellulose, starch, sugar and lipids 
(Qiu et al., 2018). The PROSPECT model use a weighted average specific 
absorption coefficient of the molecular absorption spectra of these numerous 
constitutes (Jacquemoud et al., 1996). This approach has the potential of 
inducing increased bias and uncertainties, especially in wavelengths of high 
LMA absorption as the different composition of the constituents can yield 
different spectral behaviour. Our results imply that variation in leaf 
biochemistry and morphology through the canopy vertical profile potentially 
affects the performance of the PROSPECT model. Results obtained in this study 
have implications on retrieval of leaf biochemical traits at the canopy scale 
especially using multi-layer radiative transfer models. 

6.3 Canopy and landscape level 

6.3.1 Within canopy variation in leaf traits is essential for 
accurate modelling of canopy traits  

Leaf traits are often upscaled to canopy level using leaf samples collected from 
the sunlit upper canopy (Gara et al., 2019). The basis for this approach is that 
absorption of incident photosynthetically active radiation (PAR) follow a bell-
shaped function skewed to the upper canopy (Kropff and Goudriaan, 1994). 
This infers that upper canopy foliage material controls canopy radiation 
dynamics especially with regard to the amount of reflected radiation measured 
by remote sensing instruments. On this basis, the contribution of biophysical 
and biochemical properties of shaded leaves from the lower canopy is often 
considered ‘invalid’ (Yang et al., 2017). The validity of this theory to other leaf 
traits that control variation in spectral reflectance in other portions of the 
electromagnetic spectrum outside the visible wavebands remains unexplored. 
Establishing a canopy-level trait value that corresponds to the signal measured 
by the remote sensing instrument is critical in estimating and mapping foliar 
nutrients at both canopy and landscape scales with less uncertainties 
(Roelofsen et al., 2013). The principal aim of this study is to examine the effect 
of different approaches of upscaling leaf traits to canopy level on model 
performance and estimation accuracy using spectral measurements (in-situ 
canopy hyperspectral and simulated Sentinel-2 data) in short woody 
vegetation in a laboratory setup. The study proceeded to upscale this setup to 
examine the effect of canopy traits expression on modelling canopy traits using 
Sentinel-2 multispectral data across the growing season in a temperate forest 
of Bavaria Forest National Park in Germany. 
Results obtained from laboratory data showed that leaf-to-canopy upscaling 
approaches that consider the contribution of leaf traits from the exposed upper 
canopy layer together with the shaded middle canopy layer yield significantly 
(p < 0.05) lower error (NRMSEcv < 0.2 for canopy N, LMA and carbon) as well 
as high explained variance (R2 > 0.71) for both in-situ hyperspectral and 
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simulated Sentinel-2 data (Fig 4.3). The traditional upscaling approach that 
considers leaf traits from the exposed top-of-canopy yielded an improved 
accuracy in estimating canopy chlorophyll content. As this observation was 
purely based on a laboratory experiment, we tested the validity of these results 
at canopy and landscape level using Sentinel-2 multispectral data acquired in 
a high foliated forest of Bavaria Forest National Park. 
 
Using Sentinel-2 multispectral data at landscape level, our results 
demonstrated that dry matter related canopy traits (LMA, N and carbon) 
estimated based on the weighted canopy expression yield stronger correlations 
(Fig 5.3) and higher prediction accuracy (generally NRMSECV< 0.19) compared 
to the top-of-canopy traits expression across all seasons (Table 5.5). Similar 
to results obtained from laboratory data, canopy chlorophyll estimated from 
the top-of-canopy expression demonstrated strong fidelity with Sentinel-2 
bands and vegetation indices (RMSE < 0.48 µg/cm2) compared to weighted 
canopy chlorophyll (RMSE > 0.48 µg/cm2) across all seasons. These results 
reveal that sampling protocol and upscaling approach have a profound effect 
on estimating and mapping plants traits at canopy level. Our results imply that 
remote sensing instruments sense leaf traits beyond the sunlit upper canopy 
both in a laboratory and based on satellite remote sensing system. These 
results have a strong implication in modelling leaf biochemical traits using 
remote sensing. An understanding of the depth of canopy sensed by 
multispectral instruments has remained elusive over the years. The traditional 
and widely accepted approach of sampling foliar material exclusively from the 
sunlit upper canopy for remote sensing canopy traits has lately been subjected 
to scrutiny. Recent studies have also demonstrated that the vertical 
heterogeneity in leaf traits is a source of variation in canopy reflectance 
measured by remote sensing instruments (Yang et al., 2017; Zhao et al., 
2017). Canopy traits expression has a strong implication in earth system 
models such as the Community Land Model that require accurate 
characterization of key input parameters such as LMA and foliar nitrogen. In 
addition, our results are important in monitoring vegetation health for both 
cropping and forest system assessment. This is particularly demonstrated by 
the capability of the newly launched Sentinel-2 to map seasonal changes in 
leaf traits at the landscape level (Fig 5.6 and Fig 5.7).  

6.4 Practical relevance  
This thesis demonstrated the importance of vertical heterogeneity of leaf traits 
in estimating plants traits at leaf, canopy and landscape level. We showed that 
incorporating the leaf traits content of foliage material from the shaded canopy 
improves the estimation accuracy of plants traits at canopy and landscape level 
using in-situ hyperspectral measurements in the laboratory and Sentinel-2 
multispectral data at the landscape level. This observation is particularly valid 
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for dry matter related leaf traits, i.e. LMA, carbon and nitrogen. These results 
have implications on sampling protocols of leaf samples as the vegetation 
remote sensing community seek to establish a meaningful canopy trait value 
that matches canopy reflectance observed by remote sensing instruments.  
 
Accurate estimation of leaf traits at both leaf and canopy level is important to 
further our understanding of ecological processes, functions and services. In-
situ measured leaf traits and traits data archived in databases such as TRY 
have traditionally been used to understand the effect of environmental change 
on vegetation. However, challenges ranging from costs and huge spatial gaps 
have limited the use of these methods. For example, approximately 40% of 
traits entries archived in the TRY databases are georeferenced (Moreno-
Martínez et al., 2018). Augmenting in-situ trait measurements and remote 
sensing provides an opportunity to monitor ecosystem functions and structure 
towards the Aichi Biodiversity Targets. Repeated mapping of leaf traits across 
landscapes across the vegetation growing season using new multispectral 
instruments such as Sentinel-2 is important in monitoring key processes such 
as primary productivity and nutrient dynamics. The effect of global 
environmental change on the ecological system can be assessed by analyzing 
the changes in the quantitative relationship between plant traits and 
reflectance spectra. Moreover, changes in seasonal patterns of foliar traits 
provide an insight into environmental change or disturbances and assist in 
developing early warning systems of biodiversity change (Alcaraz-Segura et 
al., 2017). 
 
Results presented in this thesis also have a broader implication on the design 
and parameterization of multi-layer RTM that accounts for the vertical 
heterogeneity in leaf traits. Most RTMs used in quantitative remote sensing of 
vegetation such as PROSAIL and INFORM do not consider the vertical 
homogeneity in leaf traits content. However, the results presented in this thesis 
demonstrated significant variation in leaf traits across the canopy. Other 
studies also reported the vertical heterogeneity in biophysical and biochemical 
properties (Yang et al., 2016). Variation in leaf traits across canopy is known 
to affect re-absorption and scattering of radiation inside vegetation canopies 
and subsequently top-of-canopy reflectance (Yang et al., 2017). This 
observation implies that failure to account the vertical heterogeneity in leaf 
traits between sunlit upper and shaded lower leaf samples together with their 
optical properties might introduce significant uncertainties in modelling canopy 
reflectance and retrieval of canopy traits. 

6.5 General conclusions 
Leaf properties, i.e., traits and optical are distinct across the canopy of multiple 
species. Essentially, significant variation in leaf properties between and across 
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species across the canopy vertical profile was observed. Influential wavebands 
in the discrimination of leaf samples into their respective canopy position 
groups match absorption features of Cab, EWT, SLA and N. Our results 
demonstrated the capability of leaf optical properties to track variability in leaf 
traits across the canopy. We therefore concluded that changes in foliar traits 
across the canopies as a result of canopy microclimate translates to variation 
in leaf spectral variation. These findings have implications on leaf sampling 
within vegetation canopies and subsequent upscaling of leaf traits to canopy 
level. 
 
Although the PROSPECT model provides a reasonable simulation of leaf optical 
properties and subsequent retrieval of leaf traits, our results demonstrate that 
the performance of the PROSPECT model and retrieval of Cab, EWT and LMA is 
likely to be affected by the leaf biochemistry and morphological changes 
through the vertical canopy profile over the growing season. This observation 
implies that the calibration and designing the PROPSECT model requires further 
development. This is particularly relevant for LMA which constitute a weighted 
specific absorption coefficients of a number of leaf constituents such as lignin, 
cellulose, protein, sugar and lipids. Observations made with regard to 
PROSPECT highlight potential source of uncertainties in leaf and canopy 
reflectance simulation. 
 
This research demonstrated the effect of leaf-to-canopy upscaling approach on 
modelling leaf traits at canopy and landscape level using in-situ hyperspectral 
data and Sentinel-2 multispectral data, respectively. Based on results obtained 
in this study we conclude that leaf-to-canopy upscaling approach or canopy 
traits expressions that incorporate the contribution of both the exposed upper 
canopy leaves together with the shaded lower canopy leaves results in the 
improved prediction of canopy nitrogen, LMA and carbon both at canopy and 
landscape level. We also concluded that the new Sentinel-2 multispectral 
imagery is suitable in monitoring and mapping leaf traits at canopy level across 
multiple seasons. 

6.6 Future research avenues 
This thesis examined the role of leaf position on the heterogeneity of leaf traits 
across canopy and the retrieval of leaf traits using hyperspectral 
measurements and. We also examined the effect of leaf to canopy upscaling 
approach on the estimation of canopy traits using in-situ hyperspectral 
measurements and Sentinel-2 satellite imagery. Specifically, conclusions 
reached in the thesis are based on reflectance data measured in the optical 
domain (400-2500 nm). There is a need to explore whether other parts of the 
electromagnetic spectrum especially the thermal spectrum can improve results 
obtained in this study. 
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Considering that LiDAR has the capability of characterizing the 3D structure of 
vegetation canopies with increased accuracy. Future studies should aim 
integrating hyperspectral measurements and LiDAR data to improve our 
understanding of the 3D variation of leaf traits across vegetation canopies. 
Fusing LiDAR and hyperspectral measurements has the potential of improving 
our understanding of the spatial and vertical variability in leaf traits in 
ecosystem processes and functioning. 
 
As a result of sampling challenges, we sampled foliage material specifically 
from sunlit and shaded canopies in Bavaria Forest National Park. However, 
sampling efforts performed at short intervals of a few meters across the canopy 
can provide an explicit understanding of the depth of the canopy that controls 
canopy reflectance observed by multispectral instruments such as Sentinel-2. 
There is need to explicitly understand the depth of canopy that influences the 
canopy reflectance dynamics. 
 
This study used leaf trait data collected from plants grown in a greenhouse 
experiment as well as leaf samples collected from a temperate forest 
ecosystem. The Bavarian Forest National Park is dominated by Norway spruce 
(Picea abies) and deciduous European beech (Fagus sylvatica). Therefore, 
results obtained in this study require validation in other vegetation biomes 
using other multispectral and airborne hyperspectral sensors. 
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Appendices  
Table A.1: Retrieval accuracies of leaf traits across canopy positions throughout the 
growing season for European beech only 
 
 Cab  LMA  EWT 

Category n R2 RMSE NRMSE  R2 RMSE NRMSE  R2 RMSE NRMSE 

Pooled 546 0.83 5.78 0.115  0.78 0.00132 0.14  0.77 0.00121 0.14 

Spring 156 0.76 5.61 0.157  0.68 0.00128 0.146  0.8 0.0011 0.128 

Summer 194 0.59 6.68 0.287 0.85 0.00124 0.141 0.79 0.00129 0.172 

Autumn 196 0.79 4.89 0.116  0.8 0.00143 0.159  0.78 0.00123 0.178 

UC 273 0.83 6.42 0.131  0.63 0.00132 0.16  0.63 0.00145 0.185 

LC 273 0.82 5.06 0.108  0.79 0.00133 0.171  0.8 0.00091 0.131 

Spring UC 78 0.78 5.79 0.17  0.53 0.00136 0.182  0.71 0.00126 0.161 

Spring LC 78 0.76 5.42 0.159  0.74 0.00119 0.154  0.84 0.00086 0.135 

Summer UC 97 0.43 7.55 0.368  0.66 0.00119 0.149  0.61 0.00155 0.238 

Summer LC 97 0.55 5.68 0.344  0.86 0.00129 0.2  0.79 0.00096 0.219 

Autumn UC 98 0.75 5.64 0.138 0.66 0.00139 0.18 0.64 0.00149 0.25 
Autumn LC 98 0.85 3.99 0.103 0.81 0.00147 0.24 0.78 0.00089 0.129 

 

 
Figure A1: Distribution of retrieved Cab based on different solutions across the canopy 
throughout the growing season 
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Figure A2: Distribution of retrieved EWT based on different solutions across the 
canopy throughout the growing season 
 



Appendices 

117 

 
Figure A3: Distribution of retrieved LMA based on different solutions across the canopy 
throughout the growing season 
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Figure A4: Seasonal correlation analysis between Sentinel-2 MSI bands and canopy 
traits 
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Summary 
Understanding spatial and temporal dimension of leaf traits is key in monitoring 
ecosystem function, processes and services. Plant traits provides an insight in 
improved understanding of ecosystem services across biomes. Tracking 
changes in foliar nutrient content within the earth system is vital in assessing 
the effects and adaptation capacity of vegetation communities to climate 
change. Remote sensing provides a cost effective and practical means of 
charactering plants traits from spectra over large spatial extents. 
 
We sought out to understand the role of vertical heterogeneity in leaf traits 
across canopy in estimating foliar traits using in-situ hyperspectral 
measurements and Sentinel-2. Results presented in this thesis demonstrated 
that leaf spectral reflectance mirror variation in trait content across canopy. 
Leaf spectral reflectance shifted to longer wavelengths in the 'red edge' 
spectrum (685 - 701 nm) in the order of lower > middle > upper canopy 
positions. Key wavebands that enhance leaf samples discrimination have been 
reported to be sensitive to variation in chlorophyll, EWT, N, carbon and SLA. 
These leaf traits exhibited significant variation across the canopy vertical 
profile.  
 
Our results at field level showed that reflectance spectra of leaf samples 
collected from the lower canopy matched PROSPECT simulated reflectance 
spectra better compared to reflectance spectra measured from upper canopy 
across the growing season. Leaf chlorophyll and Equivalent Water Thickness 
for leaf samples collected from the lower canopy were retrieved with higher 
accuracy compared to leaf samples collected from the upper canopy. This 
observation imply that variation in leaf biochemistry and morphology through 
the canopy vertical profile potentially affects the performance of the PROSPECT 
model. 
 
Results obtained using in-situ canopy hyperspectral measurements and 
simulated Sentinel-2 data showed that leaf-to-canopy upscaling approaches 
that consider the contribution of leaf traits from the exposed upper canopy 
layer together with the shaded middle canopy layer yield significantly (p < 
0.05) lower error as well as high explained variance (R2 > 0.71) in the 
estimation of canopy leaf mass per area, nitrogen and carbon. At landscape 
level, canopy leaf mass per area, nitrogen and carbon estimated based on the 
weighted canopy expression yielded stronger correlations and higher prediction 
accuracy from Sentinel-2 MSI data compared to the top-of-canopy traits 
expression across all seasons. This observation imply that remote sensing 
instruments sense leaf traits beyond the sunlit upper canopy. These results 
have a strong implication in modelling leaf traits using remote sensing. We also 
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demonstrated the capability of the newly launched Sentinel-2 to map seasonal 
changes in leaf traits at landscape level.  
 
This thesis demonstrated the importance of vertical heterogeneity of leaf traits 
in estimating plants traits at leaf, canopy and landscape level. We showed that 
incorporating the leaf traits content of foliage material from the shaded canopy 
improves the estimation accuracy of plants traits at canopy and landscape level 
using in-situ hyperspectral measurements in the laboratory and Sentinel-2 
multispectral data at field level. We also demonstrate that the performance of 
the PROSPECT model and retrieval of chlorophyll, equivalent water thickness 
and leaf mass per area is likely to be affected by the leaf biochemistry and 
morphological changes through the vertical canopy profile over the growing 
season. These results are important in canopy reflectance modelling and 
retrieval of canopy traits for various application ranging from forestry to 
agriculture. 
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Samenvatting 
Het begrijpen van de ruimtelijke en temporele dimensie van bladkenmerken is 
essentieel bij het bewaken van de ecosysteemfunctie, -processen en -services. 
Plantaardige eigenschappen bieden inzicht in een beter begrip van 
ecosysteemdiensten in alle bomen. Het volgen van veranderingen in het 
nutriëntengehalte van de bladeren in het aardsysteem is essentieel voor het 
beoordelen van de effecten en aanpassingscapaciteit van 
vegetatiegemeenschappen op de klimaatverandering. Remote sensing biedt 
een kosteneffectieve en praktische manier om plantentrekken uit spectra over 
grote ruimtelijke gebieden te kenmerken. 
 
We hebben geprobeerd de rol van verticale heterogeniteit in bladkenmerken 
door de kruin te begrijpen bij het schatten van bladkenmerken met behulp van 
in-situ hyperspectrale metingen en Sentinel-2. De resultaten die in dit 
proefschrift worden gepresenteerd, toonden aan dat variatie in de spectrale 
reflectie van het bladspectrum in de eigenschappen van de bladeren over de 
kruin varieert. Bladspectraalreflectie verschoven naar langere golflengten in 
het 'rode rand'-spectrum (685 - 701 nm) in de volgorde van lagere> 
middelste> bovenste kapposities. Sleutelgordels die de bladstaafdiscriminatie 
verbeteren, zijn naar verluidt gevoelig voor variatie in chlorofyl, EWT, N, 
koolstof en SLA. Deze bladkenmerken vertoonden aanzienlijke variatie over 
het verticale profiel van de luifel. 
 
Onze resultaten op veldniveau toonden aan dat reflectiespectra van 
bladmonsters verzameld van de onderste canopy overeenkwamen met 
PROSPECT gesimuleerde reflectiespectra beter vergeleken met reflectiespectra 
gemeten vanaf de bovenkap gedurende het groeiseizoen. Bladchlorofyl en 
equivalente waterdikte voor bladmonsters verzameld uit de onderste kap 
werden met hogere nauwkeurigheid teruggewonnen vergeleken met 
bladmonsters verzameld uit de bovenste kap. Deze waarneming impliceert dat 
de variatie in bladbiochemie en -morfologie via het verticale profiel van de luifel 
mogelijk de prestaties van het PROSPECT-model beïnvloedt. 
 
Resultaten verkregen met hyperspectrale metingen in situ en gesimuleerde 
Sentinel-2 gegevens toonden aan dat blad-naar-canopy opschaling 
benaderingen die de bijdrage van bladkenmerken van de blootgestelde 
bovenste luifellaag tezamen met de gearceerde middelste luifellaag significant 
opbrengen (p <0,05) ) lagere fout en sterk verklaarde variantie (R2> 0,71) bij 
de schatting van de bladmassa van de kruin per gebied, stikstof en koolstof. 
Op landschapsniveau leverden bladluikmassa per oppervlakte, stikstof en 
koolstof geschat op basis van de gewogen canopy-expressie betere correlaties 
en hogere voorspellingsnauwkeurigheid op van Sentinel-2 MSI-gegevens 
vergeleken met de top-van-canopy-eigenschappen in alle seizoenen. Deze 
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waarneming impliceert dat teledetectie-instrumenten bladkenmerken buiten 
de zonovergoten bovenkap waarnemen. Deze resultaten hebben een sterke 
implicatie voor het modelleren van biochemische eigenschappen van bladeren 
met behulp van teledetectie. We hebben ook aangetoond dat de nieuw 
gelanceerde Sentinel-2 seizoensveranderingen in bladkenmerken op 
landschapsniveau in kaart kan brengen. 
 
Dit proefschrift heeft het belang aangetoond van verticale heterogeniteit van 
bladkenmerken bij het schatten van plantkarakteristieken op blad-, kruin- en 
landschapsniveau. We toonden aan dat het opnemen van de eigenschappen 
van bladkenmerken van bladmateriaal uit de schaduwrijke luifel de 
schattingsnauwkeurigheid van plantentrekken op luifel- en landschapsniveau 
verbetert met behulp van in-situ hyperspectrale metingen in het laboratorium 
en Sentinel-2 multispectrale gegevens op veldniveau. We tonen ook aan dat 
de prestaties van het PROSPECT-model en het ophalen van chlorofyl, 
equivalente waterdikte en bladmassa per gebied waarschijnlijk worden 
beïnvloed door de bladbiochemie en morfologische veranderingen door het 
verticale luifelprofiel gedurende het groeiseizoen. Deze resultaten zijn 
belangrijk bij het modelleren van de reflecties van de kruin en het terugvinden 
van de eigenschappen van de overkapping voor verschillende toepassingen, 
variërend van bosbouw tot landbouw. 
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