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ABSTRACT

Unobtrusive sensing is receiving much attention in recent years,
as it is less obtrusive and more privacy-aware compared to other
monitoring technologies. Human activity recognition is one of the
fields in which unobtrusive sensing is heavily researched,, as this
is especially important in health care. In this regard, investigating
WiFi signals, and more specifically 802.11n channel state informa-
tion, is one of the more prominent research fields. However, there
is a challenge in scaling it up. Transfer learning is rarely applied,
and when applied, it is done on filtered/modified data or extracted
features. This paper focuses on two aspects. First, convolutional
networks are used across multiple participants, days and activities
and analysis is done based on these results. Secondly, it looks into
the possibility of applying transfer learning based on raw chan-
nel state information over multiple participants and activities over
multiple days. Results show channel state information is accurate
for single participants (F;-score of 0.90), but sensitive to different
participants and fluctuating WiFi signals over days (F;-score of
0.25-0.35). Furthermore, results show both clustering and transfer
learning can be applied to increase the performance to 0.80 when
using minimal resources and retraining.
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1 INTRODUCTION

Monitoring the world unobtrusively is increasingly desirable and
possible, due to evolving technologies enabling smaller and smarter
ways to observe the environment. It allows a safer, healthier and
more comfortable life(style) as they allow continuous monitoring of
activities, physiological and mental state. These pervasive systems
are also often applied in other fields, such as monitoring animal
behaviour or structural degradation.

Audiovisual techniques (based on cameras and microphones)
and wireless sensor networks (in- and on-body sensors) are es-
tablished solutions for the aforementioned continuous monitoring
challenges. An advantage of audiovisual techniques over wireless
sensor networks is that collected data is often easily interpretable
by humans, especially images. This also causes the biggest down-
side: due to being easily interpretable images, there are privacy
concerns. This is where the wireless sensor networks are superior:
they add a layer of anonymity, as data is less easily interpretable
and often requires (complex) algorithms or machine learning to
interpret. While wireless sensor systems are less obtrusive when
it comes to privacy, they are more physically obtrusive compared
to audiovisual techniques. This is due to the required sensor being
located in or on the body.

An interesting field that recently found more traction is remote
sensing. Remote sensing measures the effects of an activity or event
on the environment, rather than the activity or event itself (like
wireless sensor networks). There is thus no need for in- nor on-body
sensors. An increasingly popular technique for remote sensing is
analyzing radio waves, especially channel state information [15]
(CSI). It takes advantage of the multipath effect in wireless net-
works and gives insight in the propagation of packets between the
transmitter and receiver over different subcarriers and antenna
pairs.

Health care is an important societal pillar, struggling with in-
creasing demands and fewer funds. Therefore, research often looks
into applying remote sensing in this field. It has been shown that
indoor localization [6, 16, 18], measuring physiological signals
[11, 13, 17, 20], human identification [2, 12], and general human
activity recognition/gesture detection [1, 7, 21, 22] are achievable
by using CSI. The performances of such systems is comparable to
the existing wearable wireless sensor systems. However, the user-
friendliness and privacy-awareness of remote systems is higher due
to providing a physically unobtrusive alternative to these wearables.

Machine learning or artificial intelligence is often used to inter-
pret CSI as it is not easily interpretable by humans. Deep learning
is applied more often due to increasingly more powerful hardware.
Especially convolutional neural networks (CNNs) have proven to
be effective in interpreting CSI [1, 6, 12, 16, 19, 22]. A CNN takes an
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input for which the spatial and structural information is important
(usually an image) and filters it through multiple convolutional or
supportive layers (pooling or dropout) in order to extract features
and ultimately classify or predict this information based on these
features.

However, training these CNNs is usually a time- and energy-
consuming task, as they are often contain millions of parameters
to train. An alternative to retraining is using existing networks
and applying transfer learning. With transfer learning most of the
network is viewed as a black box and only the last few layers are
retrained. A few deep convolutional neural networks exist that can
be used for transfer learning, such as AlexNet [10] and VGG [14].
These are usually trained on millions of images and only require
the last layer(s) to be retrained. Bu et al. [1] used the aforemen-
tioned VGG-16 and VGG-19 for feature extraction. Another way
to implement is by data synthesis: creating custom data to train
networks for new situations [21]. This often requires retraining the
entire network, although it is also possible to only retrain the later
layers.

1.1 Challenges and contribution

To the authors’ best knowledge, little to no research has gone into
the stability and scalability of raw CSI over the same and different
participants over multiple days. While performances are usually
shown for all activities, little to no differentiation is made between
participants or days to investigate effects on CSL

Most research in human activity recognition and CSI focuses on
the classification, rather than cross-validation. It focuses often on
different participants and environments, but the machine learning
techniques are often retrained for each participant and/or environ-
ment and then compared. Leave-x(-subject)-out cross-validation is
often not considered, let alone the stability of channel state infor-
mation over different days and participants. The main challenge
lies in scaling existing solutions up, without requiring the entire
neural network to be retrained.

Filtering, extracting features and training entire CNNs is both
time- and energy-consuming. It is important that as less filtering,
feature extracting and (re)training is needed for a real-time, easy-to-
use and scalable solution. Other research focuses mainly on either
filtering or feature extraction, which in IoT applications cost consid-
erable energy. Furthermore, pooling layers in convolutional neural
networks provide some basic filtering (such as either smoothing
out signals or focusing on the maxima). Being able to adapt CNNs
quickly and without filtering or feature extraction is therefore de-
sirable.

The contributions of this paper are to:

o Show the effects of different days and participants on the
stability of channel state information by comparing F;-scores

o Show how transfer learning can be applied to raw channel
state information to improve performances with minimal
time and resources

2 RELATED WORK

CNN s have been proven to be a useful tool when dealing with CSI
and human activity recognition. Hsieh et al. [6] applied a multi-layer
perceptron and a 1-dimensional CNN for localization by dividing a
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rectangular room into two dimensional blocks where each block is
a class. Accuracy is reported to be high (90% and up) when using
CSI and excluding RSSI. Wang et al. [16] applied a residual neu-
ral network (ResNet [5]) consisting of multiple ResNet layers to a
dual-task CNN for both activity recognition and indoor localization
for 6 activities at 16 indoor locations. An accuracy was reported of
88% and 95% was reported for activity recognition and indoor lo-
calization, respectively. Wang et al. [18] estimated angle-of-arrival
information from the extracted phase of the CSI. These were con-
verted to images and classified using a CNN for localization.

A combination between CNNs and CSI can be found in the pa-
pers of Tang et al. [21] and Bu et al. [1]. However, there is a main
difference between both. Tang et al. trained a roaming model for
new environments based on synthesised data. This synthesised data
was generated from extracted features available from existing data.
Statistical analysis is applied to evaluate the data and provide con-
sistent data. Based on this analysis, a certain time for walking and
a fixed number of activities need to be performed. The difference
here is that this paper deals CNNs and a less controlled environ-
ment (unknown number of activities performed). Furthermore, it
removes the use for statistical analysis or any form of filtering and
feature extraction.

Bu et al. used an existing CNN, namely VGG-16/19 [14]. First, the
gathered CSI was denoised and converted into grayscale images.
These grayscale images are used to . This paper is different as it
treats the CSI differently. Here, it is considered as structured and
spatial dependent data, rather than a grayscale image. This reduces
preprocessing time. Furthermore, this paper considered raw data,
instead of denoised data, and it considers a multitude of participants
over multiple days.

It is important to stress that this paper does not attempt to per-
form accurately, but rather to explore and evaluate other solutions
requiring less filtering, feature extraction and retraining.
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Figure 1: Layout of the experiment studio, including visual-
ization of performed activities

3 DATA ACQUISITION

In order to produce a dataset that is reminiscent of day-to-day
living, an actual living area was used (Figure 1). A mini-PC and
an access point (TP-LINK AC1750) were used to collect CSI. The
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Figure 2: Configuration of the CNN, where L is the amount of layers, k kernel size, ps pool size and s strides

distance between the mini-PC and access poin (AP) was approxi-
mately 2.5 meters and the height difference approximately a meter.
The mini-PC was equipped with the Intel Ultimate Wi-Fi Link 5300
NIC in order to run the Linux CSI Tool [4]. The mini-PC and AP
were connected over a 802.11n 2.4 GHz network (client mode). The
mini PC pinged the AP and the CSI of the response was recorded.
Furthermore, packets were transmitted using 48 Mbps using 3x3
MIMO and 64QAM(1/2).

From the received packets, the CSI is extracted. This is shaped
in a N;xN,xN; matrix, with N; being the number of transmitters,
N; being the number of receivers and N being the number of
subcarriers. For this research, the dimensions of the matrix were
thus 3x3x30. With a rate of 20 Hz and a sampling time of 5 seconds,
this means that a total of 100 packets per trial per activity were
recorded (not accounting for any packet loss or corrupted files).

Data was collected from 9 different participants over 6 multiple
days. In total, 16 experiments were conducted: 9 experiments with
9 different participants over 3 days (denoted as d € {1, 2,3}) and
6 experiments with 2 different participants over 3 days (denoted
as d € {6,7,8}). These participants had strongly different char-
acteristics, which cannot be shared due to privacy concerns. The
9 participants for d € {1, 2,3} were asked to perform 6 activities
freely, meaning they were allowed to change the way they per-
formed these activities and move freely in the experiment area
(Figure 1a-f). The 2 participants for d € {6,7, 8} were asked to per-
form the 5 activities (jumping excluded due to health concerns) on
a fixed location and in a similar pattern, by watching the recorded
activities of d = 6 on a screen.

The dataset and metadata are available at the 4TU.ResearchData
under the CC BY-NC-SA license with the DOI 10.4121/uuid:42bffa4dc-
113c-46eb-84a1-c87b6a31a99f and contains 407978 data points spread
over 6 days, 9 different participants and 6 activities [9].

4 METHODOLOGY

4.1 Preprocessing

No preprocessing in terms of filtering or feature extraction was done.
This is due to the fact that a CNN was chosen and by performing
preprocessing, the number of features it can learn from is potentially
reduced. The focus of current research is mostly on preprocessing
in order to decrease training time and/or increase accuracy, but this
adds time preparing the data while pooling layers can account for
basic filtering.
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Shaping the data for the input layer (l;;, = (w, h.d)) of the CNN
is also part of preprocessing, with w being the width, h being the
height and d being the depth. As mentioned before, the CSI is shaped
as a 3x3x30 matrix. It is expected that there are 100 packets per
trace. However, this is not the case due to packet loss and corrupted
files. Instead, an input length of 70 packets was considered, as more
than 98% of all frames had more than a 100 packets. Therefore, the
input of a single trial can be seen as a 4-dimensional matrix with
size 70x3x3x30.

As mentioned before, [;, requires a 3-dimensional matrix. There-
fore, the final input matrix was shaped to be 70x30x9. where 70 is
the trace length, 30 the number of subcarriers and 9 the different an-
tenna pairs. This essentially means that equally indexed subcarriers
of different antenna pairs are adjacent to each other.

4.2 Convolutional neural network

Several deep CNNs are available (such as VGG [14] and AlexNet
[10]) for transfer learning. These networks are often trained on a
large and diverse dataset on powerful hardware for days or even
weeks, making them a powerful tool to use in object detection or
image processing. However, in this research the choice was made
to design a custom CNN. The main reason is that the images these
neural networks are trained on are significantly different compared
to signals: these networks are usually trained on images containing
objects or even art, but not so much on an abstract representation
of signals. For example, an image can have any width or height,
but will have an input depth of either 1 or 3 (grayscale and RGB),
whereas the input layer in this research has a depth of 9. Another
reasons is that it is desired to have a fully customizable CNN that
can be trained from scratch multiple times with different parameters
to compare, something not easily achievable by the aforementioned
larger networks.

4.2.1 Configuration. The configuration of the used CNN can be
found in Figure 2. The activation function used after pooling was
the tanh activation and batch normalization was used between
every pooling and convolution. For each convolution except the
last, same padding was applied. The last convolutional layer was
done with valid padding, in order to get a 1x1x/ output. The number
of epochs for training was 1000 for random initialization and 600
for transfer learning. A learning rate of 1 x 1073 and batch size of
16 were found to be optimal (trade-off between accuracy, loss and
training time) during tuning of the CNN. The optimization used
was Adam [8].
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4.2.2  Weight initialization and training. For the training, validation
and testing set, a split of 65/20/15 was made, respectively. The
convolutional network was trained for each possible combination
of participant and days (including clustering) a total of 10 times
using the Glorot uniform initializer [3]. This resulted in several
thousand different sets of weights. Out of these, the optimal weights
per classification or cross-validation task were used.

4.3 "Plain" classification and cross-validation

This means no adjustments are made to the weights after training:
either the network is completely trained from scratch with ran-
domly initialized weights, or an unmodified model is being used for
cross-validation. Three categories are identified, for each of which
the F-score is calculated based on the resulting confusion matrices.
For all categories, all possible classifications and cross-validations
were made. A distinction was made between d € {1,2,3} and
d € {6,7,8}, except for individual classifications (which included
all participants over all days).

4.3.1 Individual classification. The different sets are all from the
same distribution, namely a specific individual (no overlap between
the sets). Individual classifications are used as ground truth, as these
classifications compared to later classifications for cross-participant
and days. An example of individual classification is training, vali-
dating and testing on the same participant (5-fold cross-validation,
10 repetition).

4.3.2  Cross-participant validation. Using the optimized weights
found for each participant in the previous section, the activities of
all other participant are classified. This is done within the same day
and across different days, but a distinction is made between these
two in Section 5.1.2. An example of cross-participant validation on
the same day is training and validating on p = 1 and then trying to
classify p = 2 for d = 1, whereas an example of cross-participant
on a different day is training and testingonp = 1ond = 1 and
then testing on p = 1 on d = 2. Subsets of the data were used for
testing (5-fold, 10 repetitions).

4.3.3 Clustered classification and cross-validation. Clustered partic-
ipants are used for training. These newly trained models are used to
classify and validate the activities of each involved participant. Clus-
tering also comes with a distinction: excluding (leave-one-subject-
out cross-validation) and including (5-fold cross-validation) training
samples from the validated participant. From these classifications
and (cross-)validations, the same accuracy metrics as before are
analyzed. An example of included-clustered is training and testing
on p = (1,2,3) and classify p = 1 on d = 1, whereas an example of
excluded-clustering is testing on p = (1, 2) and classify p = 3 on
d=1.

4.4 Transfer learning

Transfer learning is often applied to decrease training time, while
using fewer resources. It takes the weights of a trained CNN (with
y hidden layers) which has already been trained on a comparable
dataset and view the first n hidden layers as a black box (thus n < y).
These n hidden layers are frozen and the weights of the final y — n
layers are trained using the new dataset (usually the fully-connected
layers). The assumption here is that the first n hidden layers extract
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features (such as edges) which are comparable between the datasets.
The y — n final layers combine these basic features to detect more
complex features.

For this research, the fully-trained networks were retrained with
20% of the data from the new participant, evenly spread across
different activities to not create a bias. A look is taken at the effect of
retraining different layers. The evaluation metric here are averaged
the Fi-scores, together with the number of epochs and training
time. Transfer learning is applied over all appropriate combinations,
with a distinction for d € {1,2,3} and d € {6,7, 8}.

5 RESULTS AND DISCUSSION

Figure 3 shows the results of all classifications and cross-validations
for different categories. This is elaborated in section 5.1. The number
in brackets is the total number of classifications the boxplots are
based on, excluding the number of repetitions (10). The top and
bottom rows show information for d € {1,2,3} and d € {6,7, 8},
respectively.

5.1 "Plain" classification and cross-validation

5.1.1 Individual classifications. For classification of individuals, the
Fj-scores are high (Figure 3a,f). Higher averages are found for d €
{6,7,8} (0.9303) compared to d € {1, 2,3} (0.7917). This could be
due to the later days having one less class to classify, but retraining
the first three days with only 5 classes resulted in comparable results.
More likely this is caused by participants performing the activities
more similar to the other days. The lowest scores are recorded for
d = 2, likely because participants were allowed the most freedom
when it came to walking around and performing activities. For all
participants, clapping and waving are the hardest to differentiate,
likely as both are smaller, less distinctive movements with the
forearms.

For cross-participant validation (Figure 3b,c,g,h), the F;-scores
drop to 0.2998 for d € {1,2,3} and to 0.4023 for d € {6,7,8} on
average for all combinations. However, a differentiation can be
made between cross-participant validation on the same day and
across different days.

5.1.2  Cross-participants validation. Training across different par-
ticipants on the same day lowered the F;-score to an average of
0.3483 and 0.4879 for d € {1,2,3} (Figure 3b) and d € {6,7,8}
(Figure 3g), respectively. It can be seen that jumping and falling
are very challenging classes to classify, with Fi-scores ranging the
entire 0 — 100% range. On the other hand, walking, clapping and
sitting are more stable and thus smaller boxplots. Walking and
sitting score highly compared to the other classes (0.4 — 0.6 on
average), which is likely due to the similar motion regardless of the
day and participant: sitting is completely passive and walking is
done in a same manner for all humans. Clapping and waving score
lower compared to the other classes (0.2 — 0.3 on average). This is
likely as they are minor movements and very similar to each other,
especially between different participants.

For cross-participants validation on different days, we can see
the same 10% difference between d € {1, 2,3} (Figure 3c) and d €
{6,7,8} (Figure 3h): 0.2512 and 0.3832, respectively. Overall, the
same implications can be found here as for classification on the
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Figure 3: Boxplot of F;-scores over 10 trials for individual (a,f), cross-participant on same day (b,g), cross-participants over
different days (c,h), classified clustering over all participants on a day (d,i) for d € {1, 2,3} (top) and for d € {6,7, 8} (bottom);
(e) shows excluded-clustering for same days for d € {1,2,3} and (j) shows training for participants on d € {6,7} and cross-
validating d = 7,8 (no overlap). n denotes the number of classifications.

same day: clapping and waving are the hardest to classify (lowest
Fj-scores), whereas walking and sitting have the highest F;-scores.

In both cases, there is a difference of 10% between cross-validation
of participants on the same and different days, likely caused by i) a
combination of training for one less class and ii) it being the same
participants performing the same activities. While preliminary re-
search showed the same performance for 5 and 6 activities, Figure
3b indicates that jumping is a very challenging activity to classify,
compared to the other activities. It is likely that this contributes to
the lower accuracy among the two.

5.1.3  Clustered classification and cross-validation. A differentiation
can be made for two cases in clustered participants: classification
and cross-validation. Figure 3d,i show classification (thus including
the tested participant) for d € {1,2,3} (d) and d € {6,7,8} (i). An
increase can be seen compared to cross-participant validation, but
the average performance (0.7817) is still lower than individual clas-
sification. This is likely due to the additional participants added to
training acting as adding noise for any given classification. Once
again, it can be seen that clapping and waving are the classes with
the lowest Fi-scores. Interestingly, jumping and falling both per-
form well. This is likely due to every person falling and jumping
differently: it is hard to differentiate these similar activities from
only one given participant to another, but including training sam-
ples of each participant makes this doable. As expected, d € {6,7, 8}
once again performs better (0.9180), likely due to the participants
being the same.

Figure 3e shows F;-scores for cross-validating participants on the
same day with excluded-clustering (d € {1, 2, 3}). The average Fi-
score is 0.5901, which is lower than the classified clustering (Figure
3d), which is to be expected as the participant is excluded. However,
the performance is better than training on a single participant
on the same day and classifying activities of other participants
(Figure 3b). This implies that when training with more data from
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different participants, performances can be increased of participants
excluded from the training set. However, it is likely that the opposite
holds true, as well: adding more participants could also lower the
accuracy eventually, due to there being too many different ways of
performing an activity.

5.1.4  Same participant over different days. Figure 3j shows the F;-
scores of training for p = 1,2 on d = 6,7 and then classifying the
activities of this same participant on d = 8. The average F;-score
over all activities is 0.7143, which is lower than the clustered data
for the same day (Figure 3i), but higher than cross-participant on
both the same day Figure 3g and different days Figure 3h.

Also, the boxplots are smaller compared to the aforementioned
situations, meaning that the F;-scores are clustered more. This im-
plies that a correlation can be seen across the same participants over
different days, which is a lesser case for different participants over
different days Figure 3e. The lower F;-score compared to individual
classification (Figure 3f) shows there are significant fluctuations on
the CSI over time.

5.2 Transfer learning

Figure 4a-c shows the effect of retraining different layers of the
CNN for different classification tasks (cross-participant on the same
day, cross-participant over different days and same participant over
different days), whereas 4d shows the average time needed to retrain
layers. Note that what is shown is not the accuracy, but rather the
F;-scores after training for a certain number of epochs.

First, the retraining of different amount of layers is considered.
It is important to note that layers are counted from the back and
only the fully-connected and convolutional layers are included. So,
1 Conv + FC means the fully-connected and last convolutional layer
are retrained. As this network only has 3 convolutional layers, 3
Conv + FC means the entire network was retrained. Regular means
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Figure 4: Graph showing effect of transfer learning on F;-scores over 600 epochs for (a) cross-participant, same day; (b) cross-
participant, different day; (c) same participant, different days; (d) shows average calculation time for retraining.

no layers were retrained and regular classification was performed,
which explains the straight line.

Understandably, retraining the entire network (3 Conv + FC)
achieves the highest performance. Interesting to note is that in
some cases the performance is higher when training on a pretrained
network than one initialized with random weights. This is even
achieved after only 200 epochs, whereas a randomly initialized
network requires at least 600 epochs to stabilize. This is explainable
by the fact that the weights of the pretrained network are already
based on the same type of structural data, which in this case is
a 3-dimensional matrix containing raw CSI. This does imply that
in order to achieve better performances, new networks should be
trained on an existing network for better results.

However, it is more interesting to look at the partially retrained
networks. In all cases, retraining the last convolutional layer to-
gether with the fully-connected layer (1 Conv + FC) results in the
lowest increase in performance. This is likely the case as changing
only the last convolutional layer results in confusion: the first two
layers extract features, which suddenly match less with the newly
trained third layer. The performance is still improved, likely as the
final layer is still more fitted towards the new participant. In most
cases, retraining two convolutional layers (2 Conv + FC) results in
similar performance as retraining only one. Different participants
across different days being the exception, as this one clearly out-
performs retraining the fully connected layer (with and without
the last convolutional layer).

The most interesting case to consider is retraining just the fully-
connected layer: it can be seen that this increases the accuracy
significantly when using raw CSI. Especially in the case of cross-
participants on both the same and different days, for which the
improvement is 25—30% when considering only the fully-connected
layer (FC(128)) is retrained - which is in most cases comparable
to both retraining the last two convolutional layers with the fully-
connected layer. However, different participants on different days
hold a lower performance. This is likely due to a combination of
different participants and a different day both affecting the CSI
significantly.

In all cases, the performance increase caps out after approxi-
mately 200 epochs (for two cases even after 100). This means that a
higher accuracy can be achieved using up to three times less epochs.
The time denoted in 4d is based on 600 epochs and would likely be
1.5 to 2 times less for the optimum of 100-200 epochs.
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6 CONCLUSION AND FUTURE WORK

First, this paper shows the stability of raw CSI over multiple partici-
pants and days. Several different types of activities were performed,
some closely related and some completely different. It is shown that
the classification difficulty of different activities remain consistent
over time: activities that are harder to distinguish remain so re-
gardless of the participant and different days. This implies that it is
not based on the participant, but rather on the activity. The overall
accuracy decreases over different participants and days, showing
that raw CSI is not transferable due to different characteristics of
participants and fluctuations in the WiFi signal over days.

Secondly, it is shown working with raw CSI and CNNs for hu-
man activity recognition over different participants and days seems
promising when applying transfer learning. For individual clas-
sification without transfer learning the Fj-scores are on average
85-90%. This can be increased to 90-95% when applying transfer
learning. However, the biggest increase comes when applying trans-
fer learning to different participants and same participants over a
time period. When applying no transfer learning, F;-scores were as
low as 25-30%. However, with transfer learning this was improved
to 80-85% by retraining only the last fully-connected layer.

This research also shows that it is beneficial to either retrain
the entire network or only the last fully-connected layer. This is
important, as it allows for solutions which do not require denoising,
specific feature extraction, or data synthesis. Combining the fact
that no preprocessing is needed and only the fully-connected layer
needs to be retrained with minimum effort, this allows smaller and
more energy-efficient processing of raw CSI on IoT devices.

However, there are some limitations and suggestions for fu-
ture research. Future research should focus on tests with more
fully-connected layers, as these are the more flexible layers. Convo-
lutional layers tend to find the important features, whereas fully-
connected layers combine these to the output. More fully-connected
layers could potentially result in more flexibility and a higher in-
crease in performance.

A limitation to CNNs is that their input size is fixed, so only
frames of a specific length can be analysed. This may not be trouble
some for solutions which record specific data, but it is potentially
limiting to solutions that only analyze registered events (e.g. in
edge intelligence).
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