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In this paper, we employ the theory of Lagrangian coherent structures for three-
dimensional vortex eduction and investigate the effect of large-scale vortical structures
on the turbulent/non-turbulent interface (TNTI) and entrainment of a gravity current.
The gravity current is realized experimentally and different levels of stratification are
examined. For flow measurements, we use a multivolume three-dimensional particle
tracking velocimetry technique. To identify vortical Lagrangian coherent structures
(VLCSs), a fully automated three-dimensional extraction algorithm for multiple flow
structures based on the so-called Lagrangian-averaged vorticity deviation method is
implemented. The size, the orientation and the shape of the VLCSs are analysed
and the results show that these characteristics depend only weakly on the strength
of the stratification. Through conditional analysis, we provide evidence that VLCSs
modulate the average TNTI height, consequently affecting the entrainment process.
Furthermore, VLCSs influence the local entrainment velocity and organize the flow
field on both the turbulent and non-turbulent sides of the gravity current boundary.

Key words: turbulent mixing, stratified turbulence, gravity currents

1. Introduction
The flow in the vicinity of the sharp interface that is widely observed to form

between a turbulent flow and non-turbulent surroundings, e.g. a chimney plume
issuing into quiescent air, has received considerable attention in the literature over
the last decades (e.g. Dimotakis 2000; Holzner et al. 2008; da Silva et al. 2014).
Among others, the main motivation for these studies stems from the fact that, across
turbulent/non-turbulent interfaces (TNTIs), fluid is continuously incorporated into the
turbulent flow, a process known as turbulent entrainment. The entrainment rate has
direct bearing on mixing properties and global dynamics of the flow and is therefore

† Email address for correspondence: neamtu@ifu.baug.ethz.ch
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Lagrangian coherent structures and entrainment in a gravity current 825

of high relevance and interest in many applications, e.g. jet, wake and boundary layer
flows.

To date, much research has focused on small-scale properties of the entrainment
process (see e.g. Westerweel et al. 2005; Holzner & Lüthi 2011; Silva, Zecchetto &
da Silva 2018) and it is now well established (Mathew & Basu 2002; Westerweel
et al. 2009) that the process by which non-turbulent fluid initially acquires vorticity is
of viscous nature, as originally envisioned by Corrsin & Kistler (1954). However, the
overall entrainment rate is known to be independent of viscosity or, in other terms, of
the Reynolds number (see e.g. Tritton 1988; Tsinober 2009). It is therefore believed
that structures at larger scales act to cancel the Reynolds-number dependence of the
small-scale process. That is to say, even though locally non-turbulent fluid becomes
turbulent via viscous diffusion of vorticity, the overall entrainment is imposed by
fluid motion at larger scales which control the surface area of the TNTI (Townsend
1980; Sreenivasan, Ramshankar & Meneveau 1989). Recently, Lee, Sung & Zaki
(2017) used conditional analysis to show that the TNTI surface area of a turbulent
boundary layer increases in the vicinity of large-scale motions (LSMs). However, a
similar observation is missing for other flows, far from the wall, and at present it is
not clear how the fluid motion near the TNTI is related to the vortical structures in
the flow. Da Silva & dos Reis (2011) visualized the vortical structures near the TNTI
of a turbulent planar jet. They suggested that the large-scale vortices ‘sitting’ on the
TNTI are mostly defining its shape. Moreover, they conclude that the characteristic
vorticity jump of the TNTI, as well as its thickness, is imposed by the radial vorticity
distribution of these structures.

Nevertheless, progress in our understanding of the relation between the large-scale
vortical structures and TNTI has been hampered by the arbitrariness in the ‘vortex’
structure definition. Often structures are extracted based on arbitrary thresholds and
based on quantities that are not invariant to a change of the system of reference, i.e.
they are not objective. Newly developed Lagrangian methods (for a review, see Haller
(2015)) for vortex identification constitute a promising tool to overcome this issue.

Since the initial work of Haller & Yuan (2000), the theory of Lagrangian coherent
structures (LCSs) has aimed to identify vortical structures – referred to hereinafter
as vortical Lagrangian coherent structures (VLCSs) to distinguish them from other
types of LCSs – using dynamical systems approaches, overcoming the arbitrariness
that characterizes the classical non-objective methods, such as Q- (Hunt, Wray
& Moin 1988), ∆- (Chong, Perry & Cantwell 1990) and λ2-criteria (Jeong &
Hussain 1995). LCS approaches are mostly based on stretching requirements (Haller
2015) and identify highly coherent, ‘black hole’ type material regions with high
accuracy, but at substantial computational cost (see e.g. Haller & Beron-Vera 2013;
Hadjighasem & Haller 2016). Recently, a less computationally expensive approach
has been developed that replaces the stretching-based coherence requirement with
rotational coherence. This method uses a new dynamic version of the classic polar
decomposition introduced in Haller (2016) and identifies the initial positions of VLCSs
as tubular level surfaces of the so-called Lagrangian-averaged vorticity deviation
(LAVD). Haller et al. (2016) identified vortical structures, using LAVD-based methods,
in two-dimensional (2-D) and three-dimensional (3-D) flow fields. However, as
highlighted by Haller et al. (2016), a fully automated implementation of LAVD
methods for multiple 3-D coherent structures is still missing.

In the present work, we seek to implement a 3-D VLCS extraction method based on
the LAVD theory of Haller et al. (2016) and apply it to experimental data of a gravity
current. The gravity current constitutes an interesting flow case for two reasons. On
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FIGURE 1. (Colour online) Sketch of the experimental set-up. The blue area indicates the
gravity current (lighter turbulent fluid) that flows along the top wall of the tank. At the
bottom, heavy fluid is resupplied to make up for the entrained flux, while mixed fluid
spills out of the tank through the outlet at the top end of the tank. The four 3-D PTV
investigation domains are indicated by red rectangles.

the one hand, it has important practical applications, e.g. river plumes, katabatic winds
and oceanic overflows. On the other hand, the entrainment rate across the TNTI varies
with the ratio between the buoyancy and the flow shear strengths, represented by the
Richardson number, Ri. This allows us to investigate how the properties of the TNTI
vary to accommodate the entrainment variation with Ri and how these properties are
related to the VLCSs in the proximity of the TNTI.

The paper is organized as follows. In § 2 we describe the experimental measure-
ments, together with the TNTI identification and VLCSs eduction methods. Then in
§ 3 we characterize the VLCSs and analyse their relationship with the TNTI and the
entrainment process. The article closes with the discussion and conclusions in § 4.

2. Methods
2.1. Experiments

The gravity current data presented here were collected using the experimental
apparatus developed in Krug et al. (2013). This set-up is sketched in figure 1 and
was designed to create a gravity current along the top of an inclined glass tank,
which can be tilted between 0 and 90◦ and whose dimensions are 2 m long and
0.5 m wide and high. The gravity current was realized by the continuous injection of
a light fluid (a mixture of water and ethanol) along the top wall of the tank into a
denser ambient fluid (a mixture of water and sodium chloride). As outlined in detail
in Krug et al. (2014), a proper preparation of the solutions provides the desired
density difference, while keeping the same refractive index in the two solutions.
The latter is a crucial requirement for optical measurement techniques. During the
experiment, the flow rate of the light fluid is driven by a water pump, measured
via a flowmeter and its feedback is implemented as a closed-loop control. In this
way, a constant flow rate is guaranteed throughout the entire experiment. The natural
transition to turbulence of the light fluid via Kelvin–Helmholtz instabilities requires
an impracticably long tank (for a discussion, see Krug et al. (2013)). It was therefore
preferred to force the transition to turbulence at the inlet by means of a diffuser
equipped with rotating flapping grids. In previous experimental studies by Krug et al.
(2013) and Odier, Chen & Ecke (2014), it was shown that with this system the
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Ri0 Ri10 Ri20

U0 (cm s−1) 10 10 10

1ρ0 (g l−1) 0 2.1 4.1
α (deg.) 0 10 5
d (cm) 5 5 5
Re0 =U0d/ν 5000 5000 5000
Ri0 = g′d sin α/U2

0 0 0.10 0.20
η (mm) 0.23 0.29 0.31
L (cm) 1.00 0.96 1.00
lsk (cm) 5.21 3.60 3.16
uη (cm s−1) 0.43 0.34 0.32
ReL = u′L/ν 152 107 102

TABLE 1. Overview of flow parameters for the three flow cases. The subscript 0
indicates the inflow parameters.

turbulence characteristics at a location sufficiently ‘far’ from the inlet, as in the case
of the present study, are independent of the inflow turbulence. The ambient entrained
fluid was gently resupplied along the bottom of the tank to replenish entrained fluid.
As noted by Krug et al. (2013), the particular value of the flow rate of the ambient
fluid does not influence the entrainment rate; however, a proper choice of it avoids
large-scale recirculation within the tank.

In this paper, we present results for three different flow cases. They differ in the
initial density difference between the two solutions 1ρ0 and the tank inclination α.
An overview of the flow parameters is presented in table 1. To compute the inflow
Reynolds number, Re0, and the inflow Richardson number, Ri0, we used the inlet
height d and the mean inflow velocity U0. Note that the label of the flow cases
designates the respective value of Ri0. As shown by Ellison & Turner (1959), a
gravity current adjusts itself to an equilibrium Ri number that depends only on the
inclination of the tank α. Recently, Negretti, Flòr & Hopfinger (2017) demonstrated
that, for a gravity current at the onset of the turbulence, the equilibrium Richardson
number depends also on the inflow interfacial Richardson number. Maintaining a
constant inflow velocity U0, we varied 1ρ0 such that the resulting flow is close to
the equilibrium state near the inflow. This was guided by the numerical results of
Krug et al. (2017b) and van Reeuwijk, Holzner & Caulfield (2019).

2.2. Measurements
Flow measurements were performed using three-dimensional particle tracking
velocimetry (3-D PTV). In order to capture a large investigation volume while
maintaining a fine spatial resolution, which is crucial for the VLCS extraction
method used here, we performed measurements using four separate 3-D PTV
systems. Their individual measurement domains were then stitched together in the
streamwise direction. Each 3-D PTV system consisted of one high-speed camera
(Mikrotron EoSens) equipped with a four-way image splitter to mimic a classical
four-camera set-up, which allowed a continuous recording of 120 s. The light
source for illumination was a diode-pumped Nd:YLF laser (Quantronix, Darwin
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FIGURE 2. (Colour online) (a) Three-dimensional fluid trajectories colour-coded with the
norm of the vorticity for the flow case Ri20. The time period shown here is equivalent
to three turnover times (defined in § 2.4) of the largest eddies. The four alternated red
and blue rectangular outlines represent the four 3-D PTV observation volumes. (b) The
corresponding 3-D VLCSs, represented by blue tubular surfaces (boundaries) surrounding
one-dimensional (1-D) curves (centres), and the TNTI of the gravity current (red open
surface). The region above the TNTI is turbulent, whereas below the flow is irrotational.

Duo, 527 nm). As flow tracers, we used neutrally buoyant polyamide particles with
a mean diameter of 100 µm (manufactured by Evonik Industries, Germany).

Each single 3-D PTV system covered an observation volume of approximately
9 cm × 9 cm × 4 cm in the x (streamwise), y (wall-normal) and z (spanwise)
directions, respectively. The fields of view of the individual PTV systems overlapped
for approximately 2 cm to track particles continuously across the different observation
volumes. The start of the measurement volume was located approximately 50 cm away
from the inlet and covered roughly 31 cm in the streamwise direction (figure 2). For
each observation volume, it was possible to track up to 3000 particles simultaneously.
This corresponds to a mean interparticle distance of approximately 3.5 mm, equivalent
to roughly 10η, with η= (ν3/ε)1/4 being the Kolmogorov microscale, where ν is the
kinematic viscosity and ε = u′3/L is the local dissipation. Here, u′ is the root mean
square (r.m.s.) of the velocity fluctuation and L is the integral length scale of the
turbulence, evaluated as the integral of the autocorrelation function of the streamwise
velocity along x. The turbulence level was quantified through the integral Reynolds
number ReL = u′L/ν (table 1). As can be observed, the stable stratification reduces
the turbulence level. Reference length and time scales were evaluated at a height
of approximately 7 cm from the top wall, a location that is far from the wall but
still sufficiently far from the strongly intermittent region close to the TNTI. The
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spatial resolution achieved in our experiments is not sufficiently accurate to resolve
the Kolmogorov scale. However, it was considered adequate for the purposes of the
present work and a suitable compromise between a large enough spatial domain and
spatial resolution. As shown by Krug et al. (2017b), the smallest convolutions of
the TNTI are of the order of 10η and the TNTI geometry is therefore sufficiently
captured by our measurements. The LCS extraction method explained below is based
on vorticity. Given that the vorticity is somewhat under-resolved in our measurements,
the extracted VLCSs represent those of a filtered velocity field, where we neglect the
effect of Kolmogorov-sized eddies. The time resolution was set to 250 Hz, which
oversamples approximately 20 times τη, with τη = (ν/ε)

1/2 being the Kolmogorov
time scale. We applied a temporal Savitzky–Golay filter with a span of 0.5τη to the
velocity data. This reduced experimental noise due to position uncertainty of tracked
tracer particles (Lüthi, Tsinober & Kinzelbach 2005; Wolf et al. 2012).

A well-known feature of experimental particle tracking data is that particle
trajectories have variable length and may be partly interrupted due to, for example,
optical occlusions. However, the LCS extraction method explained below requires
un-interrupted trajectories. We therefore interpolated the Lagrangian velocity data
on an Eulerian grid with a spacing of 5η. Subsequently we advected fluid particles
numerically from these Eulerian velocity fields. A similar procedure has been applied
for example by Ouellette (2012). In figure 2, we show samples of numerically
computed fluid trajectories. To estimate the error of numerically calculated fluid
particle trajectories, we used the longest measured trajectories and computed the
r.m.s. distance between particle positions at the end of the trajectories. For one
full flow-through time of the entire volume, we obtained an acceptable value of
approximately one Kolmogorov length scale.

2.3. TNTI identification and local entrainment velocity
Following previous work, the identification of the TNTI was done using a threshold
on the enstrophy field, ω2

= ω · ω, where ω is the vorticity vector (see e.g. Holzner
et al. 2008; Krug et al. 2015). The TNTI location is then defined by an isosurface
corresponding to a specific ω2

th threshold. In the present investigation, the threshold
was fixed at ω2

th = 2.5 s−2 just above the noise level of the data. This value is very
close to those chosen by Krug et al. (2015) for the same flow and by Wolf et al.
(2012) for a turbulent jet. The local velocity propagation of the TNTI surface with
respect to the fluid particles, the entrainment velocity vn, was estimated using the
direct approach, presented by Wolf et al. (2012). In their approach, vn is computed
from

vn = vω2
th
− vf , (2.1)

where vω2
th

is the local velocity of TNTI and vf is the local flow velocity. To determine
vω2

th
, we used the positions of the ω2

th isosurface at consecutive time steps. Similar to
the velocity data, we also applied a temporal filter to the measured TNTI interface
locations to remove occasional spurious outliers in the irrotational region.

2.4. VLCSs eduction
The detection of the Lagrangian coherent vortices is based on LAVD theory. We recall
the definition of LAVD,

LAVDt
t0(x0)=

∫ t

t0

|ω(x(s, x0), s)− ω̄(s)| ds, (2.2)
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where ω is the vorticity along fluid trajectories, ω̄ is its spatial average and x(t, x0)
denotes the fluid trajectory starting at x0 at time t0. According to Haller et al. (2016),
a rotational Lagrangian coherent vortex is defined as an evolving material domain
filled with a nested family of tubular surfaces of LAVDt

t0(x0) with outward-decreasing
LAVD values. The boundary of the VLCS is the outermost tubular level surface,
whereas its centre is the innermost member of the LAVD level-surface family.
LAVD-based methods have been successfully applied in the past to 2-D data of
satellite oceanic velocity fields and direct numerical simulation of forced turbulence,
as well as to 3-D data of the ocean model ‘SOSE’ (Haller et al. 2016). Prior
applications of the detection method to 3-D data utilized the physics and geometry of
the problem to simplify the extraction of the structures. For example, the 3-D vortex
extracted by Haller et al. (2016) from the ‘SOSE’ model is a single vertically oriented
structure. In the present study, we implemented this method for extraction of multiple
3-D vortical structures without prior knowledge on the physics or geometry. Our
algorithm can be described as a two-step procedure. In the first step, we compute
1-D curves representing the centre of the structures, and in a second step, we
determine the boundaries of the VLCSs.

In Haller et al. (2016), the centres of VLCSs are defined by 1-D ridges of the
LAVD field. In general, the computation of 1-D ridges in three dimensions is a
challenging task. In the present work, we address this task by extending the 2-D
‘gradient climbing’ algorithm proposed by Mathur et al. (2007) to three dimensions.
This algorithm uses the property that trajectories computed on the gradient field of
a scalar quantity tend to accumulate along the ridges of the scalar field. The final
position of these trajectories can be exploited to determine 1-D candidates for ridge
identification. Our ridge extraction algorithm is implemented as follows:

(i) For any initial time t0, we determine narrow regions in the neighbourhood of
ridges where the magnitude of the ∇LAVD is higher than a predefined threshold
and use points inside these regions as the initial conditions for computing
numerically the solutions x0(t) of the gradient dynamical system:

dx0

dt
=∇LAVDt0+T

t0 (x0), (2.3)

where t denotes the time and ∇ denotes the spatial gradient with respect to the
initial position x0. The solution x0(t) takes the initial conditions to the closest
ridge along the local gradient field of the LAVD.

(ii) For a given initial condition, the computation of the corresponding solution
x0(t) is stopped if the following two conditions hold: (a) the Hessian matrix
∇

2LAVDt0+T
t0 (x0(t)) has at least two negative eigenvalues (a prerequisite for a

point to be on a ridge), and (b) the angle between the eigenvector et0+T
t0 (x0(t))

corresponding to the smaller-in-norm eigenvalue of the Hessian matrix
∇

2LAVDt0+T
t0 (x0(t)) and ∇LAVDt0+T

t0 (x0(t)) shows no appreciable change (a sign
of closeness to a nearby ridge). For large enough T , the eigenvector et0+T

t0 (x0(t))
will be approximately tangent to a ridge.

(iii) To determine the ridge candidates, we use the final positions of the solutions x0(t)
and select among them only points with a sufficiently close neighbouring point.
To this end, we use a predefined threshold on the distance between two points.

(iv) We then group together points belonging to the same ridge and order them. To
order the points, we sort them in ascending order with respect to their x, y and
z coordinates and select among the three sets the one that minimizes the curve
arclength.
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FIGURE 3. (Colour online) Example of VLCS extraction. In (a), the final position of the
solution x0(s) of (2.3) is shown. The blue dots are selected for the ridge construction,
whereas the red ones are discarded. In (b), in blue, the connection of the points selected
in (a) and its smooth fitting curve (red) are shown. The corresponding VLCS is shown
in (c).

(v) Finally, we smooth the ridges. By parametrizing their x, y and z coordinates with
respect to the arclength, we fit them with a cubic smoothing spline.

In figure 3, we show an example of the application of the last three steps described
above. In this case, part of the points in ridge proximity are not aligned along a 1-D
curve (figure 3a). We therefore select only points with sufficiently close neighbouring
points, sort them (blue curve in figure 3b) and apply a smoothing cubic spline (long
blue curve in figure 3c).

After computing the centres of structures, we determined their boundaries using the
following steps:

(i) For each point of a given ridge, we erect pointwise normal planes to the ridge
curve and determine the in-plane outermost almost-convex LAVD contour that
encircles the point. These curves are 1-D curves in three dimensions.

(ii) We then use these curves to build the VLCSs boundaries. This is achieved
for every pair of nearby curves by using the MATLAB function ‘convhull’ to
compute the lateral surface connecting them.

In figure 3(c), we show the result of the application of these steps to the ridges
shown in figure 3(b). The second step of the construction of the boundaries of the
VLCS is slightly different from the one described in Haller et al. (2016) in that
these authors use tubular level surfaces of a fixed LAVD value. We observed that
tubular LAVD level surfaces typically enclosed only part of the LAVD ridges. That
is, although perfectly aligned to the structure’s centre and enclosed by almost-convex
contours, part of the ridge remained outside of the structure (see the example in
figure 4a), which is why we preferred to use the union of almost-convex contours. To
give an impression of how the method performs on our data, we show several VLCSs
in figure 2(b). These are composed of tubular surfaces enclosing 1-D curves (centres),
in the proximity of the TNTI, represented in the form of an open surface. Here, the
portion of the volume above the TNTI, where the VLCSs are located, corresponds to
the turbulent part, whereas the lower side corresponds to the irrotational flow. While
some of the structures lie ‘far’ from the TNTI, others are located close to it. The
latter appear to shape the interface locally, as can be gleaned from figure 4(c). This
aspect will be investigated further in § 3.2.

In the following, we discuss the effect of the extraction time 1t on the detected
VLCSs, to explain how 1t was chosen for the present data. We remark that, for short
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FIGURE 4. (Colour online) (a) VLCS reconstruction following the algorithm of Haller
et al. (2016) (green inner surface) and the modified algorithm introduced here (blue outer
surface). (b) Schematic of VLCS dimensions. (c) Schematic representation of R⊥, VLCS
(blue) cross-sectional size and R′, the distance between VLCS centre and the TNTI (red).

1t/t∗ 0 1 2 3 4

VVLCS/L3 0.28 0.41 0.41 0.37 0.39

TABLE 2. Average volume of the single VLCS, VVLCS, for different extraction times of
the flow case Ri20.

extraction times, in the limit of 1t→ 0, VLCSs tend to their Eulerian counterparts
(see Haller 2015). In this case, the material coherence is guaranteed only instanta-
neously, in the sense that there is no certainty that an Eulerian structure remains
coherent over any observation time 1t> 0. On the contrary, for very long extraction
times, no coherent structure can survive since the material coherence is limited in time
for unsteady flows. For the vortical structures investigated here, the relevant temporal
scale is the large eddy turnover time, which can be estimated as t∗ = L/u′.

For the measurement set-up adopted in this work, there is a natural upper limit for
1t. This is related to the residence time of a fluid particle in the observation volume
(i.e. the time spent by a particle inside the measurement volume). For the portion of
the measurement volume closer to the wall, we observed that the residence time varies
between one and four turnover times. In order to set the extraction time in formula
(2.2), we tested different 1t values between zero (Eulerian proxy) and the maximum
(4t∗) and investigated their effect in terms of VVLCS, the average volume of a single
VLCS. As can be observed in table 2, VVLCS is weakly influenced by the extraction
time, at least in the range t∗ 61t 6 4t∗. The same applies to other properties related
to the size, the shape and the orientation of the VLCSs (not shown). The extraction
time has a considerable impact on the number of structures that can be extracted
using our measurement set-up. As 1t increases, the number of trajectories entirely
contained in the observation volume decreases drastically. This reduces the available
volume for the VLCS extraction and thus the number of structures that can be educed.
As a consequence of this and observing that the extraction time appears to influence
only weakly the characteristics of VLCSs, we opted to use 1t= t∗. We checked that
qualitatively all results and conclusions remain the same for longer extraction times,
albeit with reduced statistics.

2.5. VLCS size and orientation
Given the three-dimensionality of VLCSs investigated here, we defined three
characteristic dimensions (figure 4b): one along the VLCS’s rotation axis and two
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FIGURE 5. (Colour online) Average VLCS dimensions (a) and their growth rates (b) as
functions of the initial Richardson number Ri0.

in the cross-section. The two cross-sectional sizes are measured as follows. At each
point of the centreline of the structure, we computed the pointwise perpendicular
plane to the centreline. We then evaluated the intersection between this plane and
the VLCS’s boundary and we fitted an ellipse to the intersection points. By taking
the average of the minor and major axes of the fitted ellipses, we assigned to each
VLCS: R⊥1 (the minor) and R⊥2 (the major cross-sectional size). The third dimension,
Rω, is given by the length of the axis of rotation. As can be observed in figure 2(b),
some of the vortices are truncated in the rotation axis direction by the boundaries of
the measurement domain. In such a case, we made an estimation of Rω based on a
quadratic fit. The fit was done in one dimension using the average values between
R⊥1 and R⊥2 along the rotation axis and using the zero crossing of the fitted curve.
That is, we assumed that Rω is finite and represented by the spatial distance between
two cross-sections with zero area.

The orientation of the VLCSs was assessed by computing the average unit vector
n tangent to the axis of rotation.

3. Results
3.1. VLCS geometrical properties

The average size parameters of the VLCSs as a function of the initial Richardson
number Ri0 are presented in figure 5(a). Here, the three dimensions are normalized
by the integral length scale of turbulence L, which is almost constant for all the flow
cases (see table 1). From figure 5(a), together with the observation that L is almost
constant with Ri0, it follows that the mean dimensions of the VLCSs do not vary
significantly with the stratification. The cross-sectional average sizes R⊥1 and R⊥2 are
equal to approximately 0.6L and 0.95L. This gives an idea of the shape of the cross-
section of the structures, which on average is an ellipse with eccentricity of roughly
0.6. The average size of the third dimension, the axis of rotation Rω, is of order 7L. If
the two cross-sectional sizes are ordered as a consequence of their construction, the
third dimension is technically free to vary, i.e. it can be smaller or larger than R⊥1
and R⊥2. However, it is evident from figure 5(a) that the rotation axis of the VLCS
is on average the longest one. The conclusion from this observation is that most of
the structures appear to have a tubular shape. The inset in figure 5(a), in which we
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show the probability density functions (p.d.f.s) of the three size parameters for Ri20,
gives an impression about their distribution.

The VLCS dimensions presented in figure 5(a) are measured at the initial time t0
of their extraction. Solving the equation of motion between an initial time t0 and
a final time t0 + δt for the particles constituting the centres and the boundaries of
the VLCSs, it is possible to advect the structures under the flow evolution and to
evaluate their final size, and hence their growth rates, dR/dt. Here, δt was chosen to
be equal to the extraction time. The growth rates of the cross-sectional sizes were
evaluated computing R⊥1 and R⊥2 as described in § 2.5 at the final time t0 + δt. The
growth rate of the axis of rotation was determined by the continuity equation, given
that for a material structure dR⊥1/dt + dR⊥2/dt + dRω/dt = 0. An alternative way to
determine dRω/dt is to compute it by directly estimating Rω as described in § 2.5 at
t0 (respectively t0 + δt). However, we preferred the use of the continuity equation in
order to avoid the inaccuracies introduced by the estimation approach of Rω when
the structure is not fully contained in the observation volume. In figure 5(b), we
display the average growth rates of the VLCS dimensions as a function of Ri0. The
growth rates corresponding to the minor axis and to the rotation axis are positive in
sign, and thus these axes increase their sizes in time, whereas the growth rate of the
major axis is negative. The positive growth of the rotation axis implies a predominant
stretching of the vortical structures along the rotation axis. In general, the picture that
emerges is that, under the flow evolution, the VLCSs are typically stretched and their
cross-section tends towards a more isotropic shape compared to their initial conditions.

Further, figure 5(b) shows clearly that the growth rates diminish as Ri0 increases.
Thus, the stratification reduces the average VLCS compression (of the intermediate
axis) and stretching (of the smallest and the rotation axis dimensions). We also note
that for all Ri0 the magnitude of average growth rates is rather small and of the
order of the Kolmogorov velocity scale magnitude uη (see table 1), meaning that
the VLCSs are on average not very strongly stretched. This result confirms our
expectations, since by definition VLCSs are materially coherent structures that are
not supposed to undergo very significant deformation under flow evolution.

In figure 6, we present the orientation of the rotation axis of the VLCSs.
Specifically, we plot the joint p.d.f.s of two components of the unit vector tangent
to the axis of rotation of the VLCSs. Since there is no obvious choice in which
direction the tangent vector should point, we show the absolute values of the two
components.

For all the flow cases, the joint p.d.f.s are biased towards values of nx≈ 1. That is,
the structures exhibit a preferential orientation in the streamwise direction. Similarly,
there is a sizeable probability to observe VLCSs oriented along the spanwise direction
(nz ≈ 1), whereas the probability of the wall-normal orientation (nx ≈ nz ≈ 0) is not
significant. As the Richardson number increases, the spanwise orientation gains some
more importance at the expense of the streamwise one (figure 6c).

To assess the shape of the structures, one can build a map of Rmax/Rmin and
Rint/Rmin, with Rmax, Rint and Rmin representing, respectively, the major, intermediate
and minor VLCS sizes. We should mention here that R⊥1, R⊥2 and Rω do not coincide,
respectively, with Rmin, Rint and Rmax for all the structures, although we observed in
figure 5 that this is true on average. The map is a useful tool to determine the shape
of the VLCSs. In particular, values of Rmax/Rmin and Rint/Rmin close to the origin
(1, 1) represent isotropic, sphere-like, structures. Values lying close to the abscissa
denote tubular structures, whereas values in the proximity of the bisector denote
sheet-like structures. In figure 7, we show joint p.d.f.s of the shape map. For all
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FIGURE 6. (Colour online) Joint p.d.f.s of VLCS orientation in the nx–nz plane at the
initial time of the detection of the VLCSs for Ri0 (a), Ri10 (b) and Ri20 (c). The wall-
normal component ny can be estimated from the joint p.d.f.s, remembering that n2

x + n2
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FIGURE 7. (Colour online) Joint p.d.f.s of VLCS shape in the Rmax/Rmin and Rint/Rmin
map at the initial time of the detection of the VLCSs for Ri0 (a), Ri10 (b) and Ri20 (c).

the flow cases, there is a clear prevalence of tubular structures, which persists with
increasing stratification. The three joint p.d.f.s show qualitatively similar behaviour,
with a peak of (Rmax/Rmin, Rint/Rmin) between (3, 1) and (7, 1). The peak position is
consistent with figure 5(a), in which we showed that the average value of the rotation
axis Rω is approximately seven times larger than R⊥1 and R⊥2.

3.2. Interaction between the TNTI and VLCSs
In the following, we present the relationship between the TNTI and nearby VLCSs.
Through conditional analysis, we provide evidence that the average interface height
and the local entrainment velocity are locally modulated by the presence of VLCSs.
As observed in figure 2(b), part of the VLCSs are located in the proximity of the
TNTI. We selected VLCSs that are ‘sufficiently’ close to the TNTI by computing the
ratio r between R′, the vertical distance of the centre of the VLCS with respect to
the TNTI, and R⊥, the VLCS cross-sectional average radius, defined as one-half of
the mean value between R⊥1 and R⊥2. A sample representation of R′ and R⊥ can
be found in figure 4(c). Given that in the non-turbulent region there is no vorticity,
the VLCSs cannot cross the TNTI. This implies that r cannot be smaller than one.
For the following conditional analysis, we selected structures with r smaller than a
threshold value rth= 2.5, which was fixed after testing different values and observing
qualitatively similar results.
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In a second step, for each selected structure we resampled both the instantaneous
velocity field at the initial extraction time and the LAVD field around it, onto a
uniform grid. For this operation, we positioned the frame of reference at the centre
of the VLCS and normalized the three dimensions x, y and z around the structure
with the VLCS’s cross-sectional average radius R⊥. The rationale was to have a
common frame of reference for all VLCSs and to compare flow fields around VLCSs
of the same normalized size. Taking the average of the LAVD fields around the
VLCSs, we extracted a mean representative VLCS, that is, we applied the extraction
algorithm described in § 2.4 to the average LAVD field.

Applying the same coordinate transformation to the TNTI surfaces in the proximity
of the VLCSs, we computed the conditional average height of the TNTI. Moreover, at
each location of the average height, we evaluated a mean local entrainment velocity
〈vn〉. To this end, we computed the mean of instantaneous entrainment velocities near
the structures. It is worth mentioning here that the high variance of the TNTI for
the unstratified case Ri0 did not permit us to include this flow case in our analysis,
given that the TNTI is observable in the measurement domain for a limited amount
of instances, which did not allow us to obtain a meaningful statistical analysis.

In figure 8, we present the results for Ri10 and Ri20. The centres of the structures
are represented by the continuous lines close to the origin of the frame of reference
and their boundaries by tubular surfaces enclosing them. Below the structures, the
open surfaces represent the average TNTI positions, which we colour-coded with the
average local entrainment velocity. Around each structure, we show the direction of
the average flow fields with cones that point along the velocity vector with the size
representing its magnitude.

The first observation that emerges from figure 8 is that the average VLCS is
oriented differently for the two flow cases. For Ri10, the average VLCS is oriented
in the streamwise direction (figure 8a), whereas for Ri20, the VLCS is mainly oriented
in the spanwise direction (figure 8d). In both flow cases, the TNTI is positioned at
approximately y/R≈−2 and the surface is clearly modulated by the nearby structure,
having a curvature that follows that of the VLCS’s boundaries. As the stratification
increases, the curvature of the TNTI is observed to reduce, which is consistent with
a decrease of the mean surface area of the TNTI.

In order to reveal the effect of the orientation of the VLCSs on the shape of
the TNTI, we conditioned our analysis to streamwise (figure 8b,e), respectively
spanwise, oriented structures. To this end, we compared nx and nz, evaluated as
described in § 2.5. For a given VLCS, if nx > nz, the structure is considered to be
oriented approximately in the streamwise direction; otherwise it is considered to be
oriented in the spanwise direction. From the second and third columns of figure 8, it
appears clearly that the interface shape recalls that of the VLCS boundaries having a
larger curvature in the plane orthogonal to the rotation axis of the VLCS. Consider
for example figure 8(e), in which we conditioned our analysis to VLCSs of Ri20
oriented in the streamwise direction. The curvature of the average TNTI is almost
entirely contained in y–z planes, which are orthogonal to the central axis of the
structure, while they are almost flat in the x–y planes. Similarly, the curvature of
the TNTI near the structures oriented prevalently in the spanwise direction is mostly
limited to x–z planes (see for example figure 8c). The average entrainment velocity
〈vn〉 is shown in colour on the TNTI surface. As is common practice, we normalized
vn with the Kolmogorov velocity microscale uη. Here, negative values of vn represent
entrainment of dense irrotational fluid from below into the lighter turbulent fluid.
The spatial distribution of 〈vn〉/uη on the TNTI shows a similar pattern for the two
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FIGURE 8. (Colour online) Conditional average VLCS and TNTI position for Ri10 (a–c)
and Ri20 (d–f ). The VLCS centres are represented by the continuous blue lines and
their boundaries by the tubular surfaces. The open surface is the conditioned TNTI mean
position, colour-coded with the average of the local entrainment velocity. The direction
and the size of the vectors represent the conditional average velocity field. In the first
column (a,d) the conditional analysis is made for all the structures, whereas in the second
(b,e) and the third columns (c, f ) the analysis is conditioned also on the orientation of the
structures. The structures are oriented prevalently in the streamwise direction in (b) and
(e); respectively, in the spanwise direction in (c) and ( f ).

flow cases in figure 8, with higher negative values downstream with respect to the
centre of the structure, that is to say, close to x/R⊥ ≈ 2 for the VLCSs oriented
in the spanwise direction. For the structures oriented in the streamwise direction,
〈vn〉/uη has higher negative values at the sides of the VLCSs near z/R⊥ ≈ ±2.
Corresponding to the centre of the VLCS, for (x/R⊥, y/R⊥)≈ (0, 0), higher or even
positive values of 〈vn〉/uη are observed (see e.g. figure 8d). The maximum negative
value of 〈vn〉/uη is different between the two flow conditions, diminishing (in terms
of absolute value) for increasing stratification, from 〈vn〉/uη ≈ −1 for Ri10 (figure
8a) to 〈vn〉/uη ≈ −0.5 for Ri20 (figure 8b). As previously observed, just below the
centre of the VLCSs, positive values of 〈vn〉/uη can be noticed. The existence of
regions of positive 〈vn〉/uη (detrainment) is well known. Wolf et al. (2012) showed
that vn/uη can be positive in regions with positive curvature of the TNTI (concave
curvature looking to the interface from the turbulent side). As seen in figure 2,
some of these bulges host VLCSs. As shown by others (e.g. Watanabe et al. 2014;
Krug et al. 2017a), unconditioned averages of 〈vn〉/uη are negative (entrainment), but
instantaneous positive (detrainment) values can be observed (Mistry, Philip & Dawson
2019). To interpret the latter, one can take into account the local entrainment velocity
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FIGURE 9. (Colour online) Conditioned spanwise average of the local entrainment velocity
in the proximity of the VLCSs related to figure 8(a,d).

Ri10 Ri20

RH/R⊥ 6.6 9.4

〈vn〉/uη −0.27 −0.03

TABLE 3. Average entrainment velocity and mean curvature radius of the TNTI
conditioned on the presence of VLCSs for Ri10 and Ri20.

decomposition based on the turbulent enstrophy equation introduced by Holzner &
Lüthi (2011). Based on their decomposition, 〈vn〉/uη can be locally positive if the
enstrophy destruction outweighs both the enstrophy production, which is comparatively
small in the viscous superlayer, and the viscous diffusion, which is mostly positive
in the viscous superlayer. This can lead to the reduction of the local enstrophy level
below the threshold used for the TNTI identification.

In table 3, we present the mean radius of curvature RH of the TNTI surfaces
shown in figure 8(a,d). The mean radius of curvature increases from RH/R⊥ = 6.6
for Ri10 to RH/R⊥ = 9.4 for Ri20. The effectiveness of the VLCSs to contort the
average interface reduces with increasing stratification. Although the mean radius of
curvature is not a direct measure of the surface area of TNTI, it is clear that higher
values of RH correspond to lower values of the surface area. It follows thus that the
conditioned surface area of the TNTI decreases with increasing stratification, which
is consistent with earlier work (see e.g. Krug et al. 2015). Furthermore, in table 3,
we report 〈vn〉/uη, the average of the local entrainment velocity over the TNTI
surfaces in figure 8(a,d). The average of 〈vn〉/uη exhibits a higher value for the lower
stratification passing from 〈vn〉/uη =−0.27 for Ri10 to 〈vn〉/uη =−0.03 for Ri20.

In order to further illustrate how the large-scale VLCSs influence the small-scale
entrainment, in figure 9 we show the spanwise average of 〈vn〉/uη corresponding to
figure 8(a,d). In both cases shown in figure 9, the entrainment velocity is higher in the
downstream region (x/R⊥≈ 2), and lower or even positive (figure 9b) in the proximity
of the centre of the VLCS (x/R⊥ ≈ 0). In a similar fashion to figure 8, we show
the effect of the orientation of the structures on the entrainment velocity. For Ri10
(figure 9a), it is clear that the entrainment has the same behaviour for the structures
oriented both in the spanwise and in the streamwise directions. For Ri20 (figure 9b),
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FIGURE 10. (Colour online) Flow visualization. Streamlines of figure 8, colour-coded with
the average velocity magnitude.

〈vn〉|z/uη has considerably smaller negative values, and for the structures oriented in
the spanwise direction, it has positive values around 0.2 for x/R⊥ ≈ 0.

Finally, we analyse how VLCSs near the TNTI influence the flow around them.
The impact of the VLCSs on the mean flow in the proximity of the TNTI surface is
different for the two flow conditions shown in figure 8. For Ri10, no clear influence
of the VLCSs can be observed (figure 8a). However, the spanwise-oriented structures
(figure 8c) organize the flow both inside and outside the turbulent zone. Inside the
turbulent region, the average flow field revolves around the centre of the structure,
giving rise to a rotational motion, whereas outside, it deviates towards the upstream
region. In the case of Ri20, this behaviour can be observed without the need of
conditioning on the orientation of the VLCSs (figure 8d). However, this flow pattern
is reinforced when only spanwise-oriented structures are considered (figure 8f ).

For a clearer visualization, we display in figure 10 the streamlines of the average
flow fields around the conditionally oriented structures shown in figure 8. Here, the
streamlines are colour-coded with the local velocity magnitude and the TNTI is
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represented by the grey transparent open surface, positioned below the VLCS. For
the structures oriented in the streamwise direction (figure 10a,c), the streamlines in
the non-turbulent zone appear to be rather horizontal, curving in the proximity of the
VLCS (y/R⊥≈ 0) and following the direction of the mean flow in the turbulent region.
In both cases, the magnitude of the velocity field is higher far from the TNTI, in both
the non-turbulent and the turbulent regions. When the spanwise-oriented structures are
considered (figure 10b,d), a different flow organization arises. Outside the turbulent
zone, far from the TNTI, the streamlines are again almost horizontal, similar to those
close to the streamwise-oriented structures in figure 10(a,c). However, in the turbulent
side, they follow the rotational motion induced by the VLCSs, curling up around the
structures. This is evident in figure 10(c,d), where the swirling motion due to the
presence of the structures can be clearly distinguished. For Ri20 (figure 10d), the
streamlines follow the TNTI almost tangentially. The velocities along the streamlines
forming the swirling motion inside the turbulent zone are higher for both Ri10 and
Ri20 on the upper side of the structures (y/R⊥≈±1), decreasing in the proximity of
the centre of the structures and increasing again in the non-turbulent side.

4. Discussion and summary

In this paper, we focused on the detection and characterization of Lagrangian
vortical coherent structures (VLCSs) and their influence on the turbulent/non-turbulent
interface (TNTI) and entrainment of a gravity current. Using 3-D PTV data, the
VLCSs were educed by means of the so-called Lagrangian-averaged vorticity deviation
(LAVD) method. The TNTI was identified using an enstrophy threshold, whereas its
entrainment velocity was computed through a direct method described in Wolf et al.
(2012).

In § 3.1, we described the geometrical characteristics of the VLCSs. In particular, in
figure 5(a) we observed that the average cross-sectional dimensions of the VLCSs are
of the order of the integral length scale of the turbulence L. By normalizing them with
L, almost no variation of their size with increasing stratification was noticed. Thus, the
size of the VLCSs appeared to scale with integral length scale. A similar observation
was made for the largest vortical structures near the TNTI of a turbulent jet by da
Silva & dos Reis (2011). Using a low-pressure isosurface for the structure eduction,
the authors found that the radius of what they call large-scale vortical structures is
of the order of the Taylor microscale. Furthermore, analysing the growth rates of the
dimensions of the VLCSs, we noticed that VLCSs are predominantly stretched and
in time their cross-sections tend towards a rather isotropic shape. This is reminiscent
of the predominant vortex stretching mechanism (Tsinober 2000), which has been
well known since, for example, the initial studies by Chong et al. (1990), Cantwell
(1993) and Soria, Ooi & Chong (1997) on the invariants of the velocity gradient
tensor. Through coarse-grained and filtered velocity gradient tensors, Meneveau (2011)
demonstrated that predominant stretching is discernible also at larger flow scales that
are well in the inertial range, as is the case for the ones investigated here.

In figures 6 and 7, we showed that on average the VLCSs are of tubular shape
oriented mainly in the streamwise direction. The fact that the structures are prevalently
oriented in the streamwise direction is interesting, given that, in our flow, the mean
vorticity is oriented in the spanwise direction. A well-known picture in wall-bounded
turbulence is that an initially spanwise-oriented vortex, formed near the wall of the
boundary layer, is disturbed by an ejection event that raises part of the vortex tube
to a height where the mean flow is faster. The mean flow advects this coherent mass
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faster than the vortex tube near the wall, tilting its legs towards vertical planes, in
which they are stretched by the mean shear (Kim & Adrian 1999). We speculate that
a similar mechanism may be at the base of formation of the VLCSs investigated here.
In the mixing layer of the gravity current, initial vortices form via a Kelvin–Helmholtz
type of mechanism and are then tilted by turbulence and the mean shear. In figure 6,
we also noted that, as the stratification increases, more structures tend to be oriented in
the spanwise direction. We associate this with the mechanism described before. Indeed,
as the stratification increases, the vertical motion of the fluid is known to be reduced.
This attenuates sweeps and ejections, with the consequence that the probability to
observe spanwise-oriented structures may be higher. Moreover, the orientation of the
structures close to the TNTI was shown to be almost horizontal. This is a consequence
of the fact that the VLCSs cannot cross the interface and cannot finish or start on it.
This is in line with the findings of da Silva & dos Reis (2011) in the case of a planar
turbulent jet.

In § 3.2, we investigated the interaction between large-scale VLCSs and the TNTI,
with a focus on both elements constituting the entrainment process, namely, the TNTI
area and the local entrainment velocity. We showed that the VLCSs modulate the
TNTI height, thereby increasing the TNTI surface area. A similar observation was
done by Lee et al. (2017) for the TNTI height of a turbulent boundary layer. Here
the authors conducted a conditional analysis based on the position of LSMs, showing
that the interface is locally contorted by the LSMs. In both examples, the gravity
current and the turbulent boundary layer, it is demonstrated that the large-scale flow
structures enhance the TNTI area, thereby augmenting the entrainment flux. Moreover,
we showed that the local entrainment velocity at the smaller scales of the turbulence
is modulated by the large-scale VLCSs (figure 8). In particular, the local entrainment
velocity was seen to be higher downstream with respect to the position of the VLCSs,
decreasing and becoming even positive (detrainment) just beneath the centre of the
structure. We hypothesize that this might be connected to the presence of the VLCS,
which induces a motion tangent to the surface of the TNTI locally reducing the
entrainment rate. The visualization of streamlines of the mean velocity field supports
this idea. A similar remark was made by Bisset, Hunt & Rogers (2002) for the
instantaneous streamlines near a bulge of the TNTI of a turbulent wake. Here the
authors observed that the streamlines enter it on the turbulent side (high entrainment)
only in regions with a convex curvature of the surface as seen from the turbulent
side (see figure 15 in Bisset et al. (2002)), whereas beneath the bulge the streamlines
are almost horizontal (low entrainment or detrainment). In figure 2, we observed that
part of these bulges hosts a VLCS, which is compatible with findings in Bisset et al.
(2002). A more recent work by Mistry et al. (2019), which discusses the existence of
instantaneous detrainment zones in a turbulent jet, further supports our observations
on the detrainment near the VLCSs. Here, the authors show that, similarly to our
findings, high detrainment is observed when the fluid moves tangentially to the
interface on both sides of the TNTI.

Acknowledgements
We are grateful for financial support from DFG priority programme SPP 1881 under

grant number HA 7497/1-1.

REFERENCES

BISSET, D. K., HUNT, J. C. R. & ROGERS, M. M. 2002 The turbulent/non-turbulent interface
bounding a far wake. J. Fluid Mech. 451, 383–410.

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 T

w
en

te
 U

ni
ve

rs
ity

 L
ib

ra
ry

, o
n 

23
 S

ep
 2

01
9 

at
 0

9:
20

:5
5,

 s
ub

je
ct

 to
 th

e 
Ca

m
br

id
ge

 C
or

e 
te

rm
s 

of
 u

se
, a

va
ila

bl
e 

at
 h

tt
ps

://
w

w
w

.c
am

br
id

ge
.o

rg
/c

or
e/

te
rm

s.
 h

tt
ps

://
do

i.o
rg

/1
0.

10
17

/jf
m

.2
01

9.
63

5

https://www.cambridge.org/core
https://www.cambridge.org/core/terms
https://doi.org/10.1017/jfm.2019.635


842 M. M. Neamtu-Halic, D. Krug, G. Haller and M. Holzner

CANTWELL, B. J. 1993 On the behavior of velocity gradient tensor invariants in direct numerical
simulations of turbulence. Phys. Fluids A 5 (8), 2008–2013.

CHONG, M. S., PERRY, A. E. & CANTWELL, B. J. 1990 A general classification of three-dimensional
flow fields. Phys. Fluids A 2 (5), 765–777.

CORRSIN, S. & KISTLER, A. L. 1954 The free-stream boundaries of turbulent flows. NACA TN-3133,
TR-1244, pp. 1033–1064.

DIMOTAKIS, P. E. 2000 The mixing transition in turbulent flows. J. Fluid Mech. 409, 69–98.
ELLISON, T. H. & TURNER, J. S. 1959 Turbulent entrainment in stratified flows. J. Fluid Mech. 6

(3), 423–448.
HADJIGHASEM, A. & HALLER, G. 2016 Geodesic transport barriers in Jupiter’s atmosphere: a

video-based analysis. SIAM Rev. 58 (1), 69–89.
HALLER, G. 2015 Lagrangian coherent structures. Annu. Rev. Fluid Mech. 47, 137–162.
HALLER, G. 2016 Dynamic rotation and stretch tensors from a dynamic polar decomposition. J. Mech.

Phys. Solids 86, 70–93.
HALLER, G. & BERON-VERA, F. J. 2013 Coherent Lagrangian vortices: The black holes of turbulence.

J. Fluid Mech. 731, R4.
HALLER, G., HADJIGHASEM, A., FARAZMAND, M. & HUHN, F. 2016 Defining coherent vortices

objectively from the vorticity. J. Fluid Mech. 795, 136–173.
HALLER, G. & YUAN, G. 2000 Lagrangian coherent structures and mixing in two-dimensional

turbulence. Physica D 147 (3-4), 352–370.
HOLZNER, M., LIBERZON, A., NIKITIN, N., LÜTHI, B., KINZELBACH, W. & TSINOBER, A. 2008 A

Lagrangian investigation of the small-scale features of turbulent entrainment through particle
tracking and direct numerical simulation. J. Fluid Mech. 598, 465–475.

HOLZNER, M. & LÜTHI, B. 2011 Laminar superlayer at the turbulence boundary. Phys. Rev. Lett.
106 (13), 134503.

HUNT, J. C. R., WRAY, A. A. & MOIN, P. 1988 Eddies, streams, and convergence zones in turbulent
gas flows. NASA Tech. Rep. 89-24555.

JEONG, J. & HUSSAIN, F. 1995 On the identification of a vortex. J. Fluid Mech. 285, 69–94.
KIM, K. C. & ADRIAN, R. J. 1999 Very large-scale motion in the outer layer. Phys. Fluids 11 (2),

417–422.
KRUG, D., CHUNG, D., PHILIP, J. & MARUSIC, I. 2017a Global and local aspects of entrainment

in temporal plumes. J. Fluid Mech. 812, 222–250.
KRUG, D., HOLZNER, M., LÜTHI, B., WOLF, M., KINZELBACH, W. & TSINOBER, A. 2013

Experimental study of entrainment and interface dynamics in a gravity current. Exp. Fluids
54 (5), 1530.

KRUG, D., HOLZNER, M., LÜTHI, B., WOLF, M., KINZELBACH, W. & TSINOBER, A. 2015 The
turbulent/non-turbulent interface in an inclined dense gravity current. J. Fluid Mech. 765,
303–324.

KRUG, D., HOLZNER, M., LÜTHI, B., WOLF, M., TSINOBER, A. & KINZELBACH, W. 2014
A combined scanning PTV/LIF technique to simultaneously measure the full velocity gradient
tensor and the 3D density field. Meas. Sci. Technol. 25 (6), 065301.

KRUG, D., HOLZNER, M., MARUSIC, I. & VAN REEUWIJK, M. 2017b Fractal scaling of the turbulence
interface in gravity currents. J. Fluid Mech. 820, R3.

LEE, J., SUNG, H. J. & ZAKI, T. A. 2017 Signature of large-scale motions on turbulent/non-turbulent
interface in boundary layers. J. Fluid Mech. 819, 165–187.

LÜTHI, B., TSINOBER, A. & KINZELBACH, W. 2005 Lagrangian measurement of vorticity dynamics
in turbulent flow. J. Fluid Mech. 528, 87–118.

MATHEW, J. & BASU, A. J. 2002 Some characteristics of entrainment at a cylindrical turbulence
boundary. Phys. Fluids 14 (7), 2065–2072.

MATHUR, M., HALLER, G., PEACOCK, T., RUPPERT-FELSOT, J. E. & SWINNEY, H. L. 2007
Uncovering the Lagrangian skeleton of turbulence. Phys. Rev. Lett. 98 (14), 144502.

MENEVEAU, C. 2011 Lagrangian dynamics and models of the velocity gradient tensor in turbulent
flows. Annu. Rev. Fluid Mech. 43, 219–245.

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 T

w
en

te
 U

ni
ve

rs
ity

 L
ib

ra
ry

, o
n 

23
 S

ep
 2

01
9 

at
 0

9:
20

:5
5,

 s
ub

je
ct

 to
 th

e 
Ca

m
br

id
ge

 C
or

e 
te

rm
s 

of
 u

se
, a

va
ila

bl
e 

at
 h

tt
ps

://
w

w
w

.c
am

br
id

ge
.o

rg
/c

or
e/

te
rm

s.
 h

tt
ps

://
do

i.o
rg

/1
0.

10
17

/jf
m

.2
01

9.
63

5

https://www.cambridge.org/core
https://www.cambridge.org/core/terms
https://doi.org/10.1017/jfm.2019.635


Lagrangian coherent structures and entrainment in a gravity current 843

MISTRY, D., PHILIP, J. & DAWSON, J. R. 2019 Kinematics of local entrainment and detrainment in
a turbulent jet. J. Fluid Mech. 871, 896–924.

NEGRETTI, M. E., FLÒR, J. B. & HOPFINGER, E. J. 2017 Development of gravity currents on
rapidly changing slopes. J. Fluid Mech. 833, 70–97.

ODIER, P., CHEN, J. & ECKE, R. E. 2014 Entrainment and mixing in a laboratory model of oceanic
overflow. J. Fluid Mech. 746, 498–535.

OUELLETTE, N. T. 2012 On the dynamical role of coherent structures in turbulence. C. R. Phys.
13, 866–877.

VAN REEUWIJK, M., HOLZNER, M. & CAULFIELD, C. P. 2019 Mixing and entrainment are suppressed
in inclined gravity currents. J. Fluid Mech. 873, 786–815.

DA SILVA, C. B., HUNT, J. C. R., EAMES, I. & WESTERWEEL, J. 2014 Interfacial layers between
regions of different turbulence intensity. Annu. Rev. Fluid Mech. 46, 567–590.

DA SILVA, C. B. & DOS REIS, R. J. N. 2011 The role of coherent vortices near the turbulent/non-
turbulent interface in a planar jet. Phil. Trans. R. Soc. Lond. A 369 (1937), 738–753.

SILVA, T. S., ZECCHETTO, M. & DA SILVA, C. B. 2018 The scaling of the turbulent/non-turbulent
interface at high Reynolds numbers. J. Fluid Mech. 843, 156–179.

SORIA, J., OOI, A. & CHONG, M. S. 1997 Volume integrals of the QA-RA invariants of the velocity
gradient tensor in incompressible flows. Fluid Dyn. Res. 19 (4), 219–233.

SREENIVASAN, K. R., RAMSHANKAR, R. & MENEVEAU, C. H. 1989 Mixing, entrainment and
fractal dimensions of surfaces in turbulent flows. Proc. R. Soc. Lond. A 421 (1860), 79–108.

TOWNSEND, A. A. R. 1980 The Structure of Turbulent Shear Flow. Cambridge University Press.
TRITTON, D. J. 1988 Physical Fluid Dynamics. Clarendon.
TSINOBER, A. 2000 Vortex stretching versus production of strain/dissipation. In Turbulence Structure

and Vortex Dynamics (ed. J. C. R. Hunt & J. Vassilicos), pp. 164–191. Cambridge University
Press.

TSINOBER, A. 2009 An Informal Conceptual Introduction to Turbulence, vol. 483. Springer.
WATANABE, T., SAKAI, Y., NAGATA, K., ITO, Y. & HAYASE, T. 2014 Enstrophy and passive scalar

transport near the turbulent/non-turbulent interface in a turbulent planar jet flow. Phys. Fluids
26 (10), 105103.

WESTERWEEL, J., FUKUSHIMA, C., PEDERSEN, J. M. & HUNT, J. C. R. 2005 Mechanics of the
turbulent-nonturbulent interface of a jet. Phys. Rev. Lett. 95 (17), 174501.

WESTERWEEL, J., FUKUSHIMA, C., PEDERSEN, J. M. & HUNT, J. C. R. 2009 Momentum and
scalar transport at the turbulent/non-turbulent interface of a jet. J. Fluid Mech. 631, 199–230.

WOLF, M., LÜTHI, B., HOLZNER, M., KRUG, D., KINZELBACH, W. & TSINOBER, A. 2012
Investigations on the local entrainment velocity in a turbulent jet. Phys. Fluids 24 (10),
105110.

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 T

w
en

te
 U

ni
ve

rs
ity

 L
ib

ra
ry

, o
n 

23
 S

ep
 2

01
9 

at
 0

9:
20

:5
5,

 s
ub

je
ct

 to
 th

e 
Ca

m
br

id
ge

 C
or

e 
te

rm
s 

of
 u

se
, a

va
ila

bl
e 

at
 h

tt
ps

://
w

w
w

.c
am

br
id

ge
.o

rg
/c

or
e/

te
rm

s.
 h

tt
ps

://
do

i.o
rg

/1
0.

10
17

/jf
m

.2
01

9.
63

5

https://www.cambridge.org/core
https://www.cambridge.org/core/terms
https://doi.org/10.1017/jfm.2019.635

	Lagrangian coherent structures and entrainment near the turbulent/non-turbulent interface of a gravity current
	Introduction
	Methods
	Experiments
	Measurements
	TNTI identification and local entrainment velocity
	VLCSs eduction
	VLCS size and orientation

	Results
	VLCS geometrical properties
	Interaction between the TNTI and VLCSs

	Discussion and summary
	Acknowledgements
	References


