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Abstract. The paper develops an abstract (over-approximating)
semantics for double-pushout rewriting of graphs and graph-like objects.
The focus is on the so-called materialization of left-hand sides from
abstract graphs, a central concept in previous work. The first contri-
bution is an accessible, general explanation of how materializations arise
from universal properties and categorical constructions, in particular par-
tial map classifiers, in a topos. Second, we introduce an extension by
enriching objects with annotations and give a precise characterization of
strongest post-conditions, which are effectively computable under certain
assumptions.

1 Introduction

Abstract interpretation [12] is a fundamental static analysis technique that
applies not only to conventional programs but also to general infinite-state sys-
tems. Shape analysis [30], a specific instance of abstract interpretation, pioneered
an approach for analyzing pointer structures that keeps track of information
about the “heap topology”, e.g., out-degrees or existence of certain paths. One
central idea of shape analysis is materialization, which arises as companion oper-
ation to summarizing distinct objects that share relevant properties. Materializa-
tion, a.k.a. partial concretization, is also fundamental in verification approaches
based on separation logic [5,6,24], where it is also known as rearrangement [26],
a special case of frame inference. Shape analysis—construed in a wide sense—has
been adapted to graph transformation [29], a general purpose modelling language
for systems with dynamically evolving topology, such as network protocols and
cyber-physical systems. Motivated by earlier work of shape analysis for graph
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transformation [1,2,4,27,28,31], we want to put the materialization operation
on a new footing, widening the scope of shape analysis.

A natural abstraction mechanism for transition systems with graphs as states
“summarizes” all graphs over a specific shape graph. Thus a single graph is used
as abstraction for all graphs that can be mapped homomorphically into it. Fur-
ther annotations on shape graphs, such as cardinalities of preimages of its nodes
and general first-order formulas, enable fine-tuning of the granularity of abstrac-
tions. While these natural abstraction principles have been successfully applied
in previous work [1,2,4,27,28,31], their companion materialization constructions
are notoriously difficult to develop, hard to understand, and are redrawn from
scratch for every single setting. Thus, we set out to explain materializations
based on mathematical principles, namely universal properties (in the sense of
category theory). In particular, partial map classifiers in the topos of graphs
(and its slice categories) cover the purely structural aspects of materializations;
this is related to final pullback complements [13], a fundamental construction
of graph rewriting [7,25]. Annotations of shape graphs are treated orthogonally
via op-fibrations.

The first milestones of a general framework for shape analysis of graph trans-
formation and more generally rewriting of objects in a topos are the following;:
D> A rewriting formalism for graph abstractions that lifts the rule-based rewriting
from single graphs to abstract graphs; it is developed for (abstract) objects in a
topos.
> We characterize the materialization operation for abstract objects in a topos
in terms of partial map classifiers, giving a sound and complete description of
all occurrences of right-hand sides of rules obtained by rewriting an abstract
object. — Sect. 3
> We decorate abstract objects with annotations from an ordered monoid
and extend abstract rewriting to abstract objects with annotations. For the
specific case of graphs, we consider global annotations (counting the nodes
and edges in a graph), local annotations (constraining the degree of a node),
and path annotations (constraining the existence of paths between certain
nodes). — Sect. 4
> We show that abstract rewriting with annotations is sound and, with addi-
tional assumptions, complete. Finally, we derive strongest post-conditions for
the case of graph rewriting with annotations. — Sect. b

Related work: The idea of shape graphs together with shape constraints was pio-
neered in [30] where the constraints are specified in a three-valued logic. A similar
approach was proposed in [31], using first-order formulas as constraints. In part-
ner abstraction [3,4], cluster abstraction [1,2], and neighbourhood abstraction
[28] nodes are clustered according to local criteria, such as their neighbourhood
and the resulting graph structures are enriched with counting constraints, sim-
ilar to our constraints. The idea of counting multiplicities of nodes and edges
is also found in canonical graph shapes [27]. The uniform treatment of monoid
annotations was introduced in previous work [9,10,20], in the context of type
systems and with the aim of studying decidability and closure properties, but
not for abstract rewriting.
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2 Preliminaries

This paper presupposes familiarity with category theory and the topos structure
of graphs. Some concepts (in particular elementary topoi, subobject and partial
map classifiers, and slice categories) are defined in the full version of this paper
[8], which also contains all the proofs.

The rewriting formalism for graphs and graph-like structures that we use
throughout the paper is the double-pushout (DPO) approach [11]. Although it
was originally introduced for graphs [16], it is well-defined in any category C.
However, certain standard results for graph rewriting require that the cate-
gory C has “good” properties. The category of graphs is an elementary topos—an
extremely rich categorical structure—but weaker conditions on C, for instance
adhesivity, have been studied [14,15,21].

Definition 1 (Double-pushout rewriting). A production in C is a span of
monos L «~ I — R in C; the objects L and R are called left- and right-hand
side, respectively. A match of a production p: L «—~ 1 — R

to an object X of C is a mono mp: L — X in C. The L<—TI—R
production p rewrites X to'Y at my (resp. the match mr] (PO) | (PO) [mr
my, to the co-match mg: R — YY) if the production and X+—C—Y
the match (and the co-match) extend to a diagram in C,

shown to the right, such that both squares are pushouts.

In this case, we write X 228 Y (resp. (L 7% X) 2 (R™EY)). We also write
X P if there exists an object Y such that X Z2£Y and X £ Y if the specific
match my, is not relevant.

Given a production p and a match my, if there exist arrows X « C and
C « I that make the left-hand square of the diagram in Definition 1 a pushout
square, then the gluing condition is satisfied.

If C is an adhesive category (and thus also if it is a topos [22]) and the pro-
duction consists of monos, then all remaining arrows of double-pushout diagrams
of rewriting are monos [21] and the result of rewriting—be it the object Y or
the co-match mp—is unique (up to a canonical isomorphism).

2.1 Subobject Classifiers and Partial Map Classifiers of Graphs

A standard category for graph rewriting that is also a topos is the category of
edge-labelled, directed graphs that we shall use in examples, as recalled in the
next definition. Note that due to the generality of the categorical framework, our
results also hold for various other forms of graphs, such as node-labelled graphs,
hypergraphs, graphs with scopes or graphs with second-order edges.

Definition 2 (Category of graphs). Let A be a fized set of edge labels.
A (A-labelled) graph is a tuple G = (Vg, Eq, srca, tgtag, la) where Vg is a
finite set of nodes, Eg is a finite set of edges, srcg,tgta: Eq — Vg are
the source and target mappings and {g: Eqg — A is the labelling function.
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Let G,H be two A-labelled graphs. A graph morphism ¢: G — H con-
sists of two functions pyv: Vo — Vi, g Eq — Eg, such that for each edge
e € Eq we have srcg(pgp(e)) = ov(srca(e)), tgtu(er(e)) = pv(tgta(e)) and
lu(pr(e)) =La(e). If oy, pr are both bijective, ¢ is an isomorphism. The cat-
egory having (A-labelled) graphs as objects and graph morphisms as arrows is
denoted by Graph.

We shall often write ¢ instead of ¢y or g to avoid clutter. The graph
morphisms in our diagrams will be indicated by black and white nodes and
thick edges. In the category Graph, where the objects are labelled graphs
over the label alphabet A, the subobject classi- ) A@ A A
fier true is displayed to the right where every true: > T
A-labelled edge represents several edges, one for
each A\ € A.

The subobject classifier true: 1 »— {2 from the terminal object 1 to {2 allows
us to single out a subgraph X of a graph Y, by mapping Y to {2 in such a way
that all elements of X are mapped to the image of true.

Given arrows a,m as in the diagram in Definition 3, we can construct the
most general pullback, called final pullback complement [7,13].

Definition 3 (Final pullback complement). A pair of arrows I - F 5a
is a final pullback complement (FPBC) of another pair I = L 5 G if

’

— they induce a pullback square a

T~

— for each pullback squar@GﬂLf’—'/I'iF’g L<Tl(j—,l’
G and arrow f: I' — I such that ao f = o, (FPBC) |7 \LA/
there exists a unique arrow f': F' — F such 5 ,

f
that Bo f' = " and yo f = f' o' both hold (see G w F

the diagram to the right). 5

Final pullback complements and subobject classifiers are closely related to
partial map classifiers (see [13, Corollary 4.6]): a category has FPBCs (over
monos) and a subobject classifier if and only if it has a partial map classifier.
These exist in all elementary topoi.

Proposition 4 (Final pullback complements, subobject and partial
map classifiers). Let C be a category with finite limits. Then the following
are equivalent:

(1) C has a subobject classifier true: 1 — 2 and final pullback complements for
each pair of arrows I < L 2 G with m mono;

(2) C has a partial map classifier (F: C — C,n:Id = F).
2.2 Languages

The main theme of the paper is “simultaneous” rewriting of entire sets of objects
of a category by means of rewriting a single abstract object that represents
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a collection of structures—the language of the abstract object. The simplest
example of an abstract structure is a plain object of a category to which we
associate the language of objects that can be mapped to it; the formal definition
is as follows (see also [10]).

Definition 5 (Language of an object). Let A be an object of a category C.
Given another object X, we write X --+ A whenever there exists an arrow
from X to A. We define the language® of A, denoted by L(A), as L(A) ={X €
C| X --» A}

Whenever X € L£(A) holds, we will say that X is abstracted by A, and A
is called the abstract object. In the following we will also need to characterize a
class of (co-)matches which are represented by a given (co-)match (which is a
mono).

Definition 6 (Language of a mono). Let ¢: L — A be a mono in C. The
language of ¢ is the set of monos m with source L that factor ¢ such that the
square on the right is a pullback:

L~"s X
L(p)={m:L— X |3(¢Y: X — A) idLI (PB) lz/} (1)
such that square (1) is a pullback}. L — A

Intuitively, for any arrow (L 5% X) € L(¢) we have X € L(A) and X has a
distinguished subobject L which corresponds precisely to the subobject L — A.
In fact v restricts and co-restricts to an isomorphism between the images of L
in X and A. For graphs, no nodes or edges in X outside of L are mapped by
into the image of L in A.

3 Materialization

Given a production p : L «—~ I » R, an abstract object A, and a (possibly
non-mounic) arrow ¢: L — A, we want to transform the abstract object A in
order to characterize all successors of objects in L£(A), i.e., those obtained by
rewriting via p at a match compatible with . (Note that ¢ is not required to
be monic, because a monic image of the left-hand side of p in an object of £(A)
could be mapped non-injectively to A.) Roughly, we want to lift DPO rewriting
to the level of abstract objects.

For this, it is necessary to use the materialization construction, defined cat-
egorically in Sect. 3.1, that enables us to concretize an instance of a left-hand
side in a given abstract object. This construction is refined in Sect.3.2 where
we restrict to materializations that satisfy the gluing condition and can thus
be rewritten via p. Finally in Sect. 3.3 we present the main result about mate-
rializations showing that we can fully characterize the co-matches obtained by
rewriting.

! Here we assume that C is essentially small, so that a language can be seen as a set
instead of a proper class of objects.
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3.1 Materialization Category and Existence of Materialization

From now on we assume C to be an elementary topos. We will now define the
materialization, which, given an arrow ¢: L — A, characterizes all objects X,
abstracted over A, which contain a (monic) occurrence of the left-hand side
compatible with ¢.

Definition 7 (Materialization). Let p: L — A be an arrow in C. The mate-
rialization category for ¢, denoted Mat,, has as

objects all factorizations L — X — A of ¢ L
whose first factor L — X is a mono, and as ‘
arrows from a factorization L — X — A ldLI e i/
to another one L — Y — A, all arrows L Yy ~ .
f: X — Y in C such that the diagram to S S
the right is made of a commutative triangle
and a pullback square.

If Mat,, has a terminal object it is denoted by L ~— (¢) — A and is called the
materialization of .

Sometimes we will also call the object () the materialization of ¢, omitting the
arrows.

Since we are working in a topos by assumption, the slice category over A
provides us with a convenient setting to construct materializations. Note in par-
ticular that in the diagram in Definition 7 above, the span X «—~ L ~— L is a
partial map from X to L in the slice category over A. Hence the materialization
() corresponds to the partial map classifier for L in this slice category.

Proposition 8 (Existence of materialization). Letp: L — A be an arrow
in C, and let n,: ¢ — F(p), with F(p): A — A, be the partial map classifier

of ¢ in the slice category C | A (which also is a topos).? Then L "% A FLo) 4 s
the materialization of ¢, hence (p) = A.

As a direct consequence of Propositions4 and 8 (and the fact that final pull-
back complements in the slice category correspond to those in the base category
[25]), the terminal object of the materialization category can be constructed for
each arrow of a topos by taking final pullback complements.

Corollary 9 (Construction of the materialization). Let p: L — A be an
arrow of C and let trues: A — A x {2 be the subobject classifier (in the slice
category C | A) from idy: A — A to the projection m: A x 2 — A.

n
Then the terminal object L e (p) Y A in the Ly ()
materialization category consists of the arrows I
e e e| (FPBC) X,
Ne and Y = 1 0 Xy, , where L () — A x §2 o .
is the final pullback complement of L % A il A>££ﬁé;‘> Ax 2 1 A

A x (.

2 This is by the Fundamental Theorem of topos theory [17, Theorem 2.31].
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Ezample 10. We construct the materialization L s (p) Y, A for the following
morphism ¢: L — A of graphs with a single (omitted) label:

Y. e—>o — Q L
——o >n—’9>

In particular, the materialization is
obtained as a final pullback com- WJ SR
plement as depicted to the right (FPBC)

(compare with the corresponding
diagram in Corollary9). Note that ————— Wea, —————— Q
edges which are not in the image of -

7, resp. truey are dashed.

This construction corresponds to the usual intuition behind materialization:
the left-hand side and the edges that are attached to it are “pulled out” of the
given abstract graph.

We can summarize the result of our constructions in the following proposition:

Proposition 11 (Language of the materialization). Let p: L — A be an

arrow in C and let L 25 (p) — A be the corresponding materialization. Then
we have

L(LY () = {L 75 X | 3: (X — A). (p = omp)}.

3.2 Characterizing the Language of Rewritable Objects

A match obtained through the materialization of the left-hand side of a produc-
tion from a given object may not allow a DPO rewriting step because of the

gluing condition. We illustrate this problem with an example.
L—~I—R

Example 12. Consider the material-
ization L — (p) — A from . o PO

Example 10 and the pro-
duction L <~ I »— R shown in -
the diagram to the right. It is easy G
to see that the pushout complement &7@ P ?
of morphisms I — L — () does not ct

exist.

Nevertheless there exist factorizations L — X — A abstracted by () that could
be rewritten using the production.

In order to take the existence of pushout complements into account, we con-
sider a subcategory of the materialization category.

Definition 13 (Materialization subcategory of rewritable objects). Let
w: L — A be an arrow of C and let wr,: I — L be a mono (corresponding to the
left leg of a production). The materialization subcategory of rewritable objects
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for ¢ and ¢y, denoted MatiL, is the full subcategory of Mat, containing as
objects all factorizations L X o A of ¢, where m is a mono and I N NN ¢
has a pushout complement.

Its terminal element, if it exists, is denoted by L 15 (@, oL) — A and is

called the rewritable materialization.

We show that this subcategory of the materialization category has a terminal
object.

Proposition 14 (Construction of the rewritable materialization). Let
p: L — A be an arrow and let ¢y, : I — L be a mono of C. Then the rewritable
materialization of ¢ w.r.t. @y ezxists and can be constructed as the following

factorization L 5 (o, o) 23 A of . In the left diagram, F is obtained
as the final pullback complement of I 25 L — (@), where L — (p) % A is the
materialization of o (Definition 7). Next in the right diagram L 5 (@, oL ZF
1s the pushout of the span L 51— F and « is the resulting mediating arrow.

L+t <1 (2) L L

el 7 AT ]
P P a B

A—— (p) +——F As—— (o) g oL)) F

Ezample 15. We come back to the running example (Example12) and, as in

Proposition 14, determine the final pullback complement I — F — () of T et
L — {(p) (see diagram below left) and obtain (¢, )} by taking the pushout
over L «~ I — F (see diagram below right).

L—1I L—1

e—>0 <— <O

I (FPBC) I
Coa——50 )

It remains to be shown that L — (¢, pr)) — A represents every factorization
which can be rewritten. As before we obtain a characterization of the rewritable
objects, including the match, as the language of an arrow.

(@) =1

(. o))
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Proposition 16 (Language of the rewritable materialization). Assume

there is a production p: L £% I Y5 R and let L5 (@, 1)) be the match for the
rewritable materialization for ¢ and ¢r. Then we have

LILS (o, 00) ={L ™5 X | Fp: (X — A). (p=tpomp A X B2}

3.3 Rewriting Materializations

In the next step we will now rewrite the rewritable materialization (¢, ¢r)) with

the match L 15 (@, L), resulting in a co-match R — B. In particular, we
will show that this co-match represents all co-matches that can be obtained by
rewriting an object X of £L(A) at a match compatible with ¢. We first start with

an example.

Ezample 17. We can rewrite the materialization L — (¢, ¢r)) — A as follows:

o——0O o o<+————O

I (PO) I (PO) I

—0 Q) [0
6/ 6/ 6/

(1A —~1

Proposition 18 (Rewriting abstract matches). Let a match ny: L — A
and a production p: L < I — R be given. Assume that A is rewritten along the

match ny, i.e., (L5 A) 2 (R B). Then
mr,

LREB)={REY|ILEX)eL(LBA). (LEX)E2REY))}

If we combine Propositions 16 and 18, we obtain the following corollary that
characterizes the co-matches obtained from rewriting a match compatible with
p: L — A.

Corollary 19 (Co-match language of the rewritable materialization).
Let p: L — A and a productionp: L Z% I £5 R be given. Assume that (o, oL) is
obtained as the rewritable materialization of @ and 1, with match L 5 (o, oL)
(see Proposition 14). Furthermore let (L5 (@, o)) 2 (R 25 B). Then

LRUEB) ={R™MY|ILTEX), (X L A). (p=vompA
LX) 2 (REY)))
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This result does not yet enable us to construct post-conditions for languages
of objects. The set of co-matches can be fully characterized as the language of
a mono, which can only be achieved by fixing the right-hand side R and thus
ensuring that exactly one occurrence of R is represented. However, as soon as
we forget about the co-match, this effect is gone and can only be retrieved by
adding annotations, which will be introduced next.

4 Annotated Objects

We now endow objects with annotations, thus making object languages more
expressive. In particular we will use ordered monoids in order to annotate
objects. Similar annotations have already been studied in [20] in the context
of type systems and in [10] with the aim of studying decidability and closure
properties, but not for abstract rewriting.

Definition 20 (Ordered monoid). An ordered monoid (M, +, <) consists of
a set M, a partial order < and a binary operation + such that (M,+) is a
monoid with unit 0 (which is the bottom element wrt. <) and the partial order is
compatible with the monoid operation. In particular a < b implies a +c < b+ ¢
and c+a < c+b for all a,b,c € M. An ordered monoid is commutative if + is
commutative.

A tuple (M, 4+, —, <), where (M,+,<) is an ordered monoid and — is a
binary operation on M, is called an ordered monoid with subtraction.

We say that subtraction is well-behaved whenever for all a,b € M it holds
that a —a =0 and (a — b) + b = a whenever b < a.

For now subtraction is just any operation, without specific requirements.
Later we will concentrate on specific subtraction operations and demand that
they are well-behaved.

In the following we will consider only commutative monoids.

Definition 21 (Monotone maps and homomorphisms). Let My, My be
two ordered monoids. A map h: My — Moy is called monotone if a < b implies
h(a) < h(b) for all a,b € M. The category of ordered monoids with subtraction
and monotone maps is called Mon.

A monotone map h is called a homomorphism if h(0) = 0 and h(a + b) =
h(a) + h(b). If My, My are ordered monoids with subtraction, we say that h
preserves subtraction if h(a — b) = h(a) — h(b).

Ezample 22. Let n € N\{0} and take M,, = {0,1,...,n,%} (zero, one, ...,
n, many) with 0 < 1 < --- < n < x and addition as (commutative) monoid
operation with the proviso that a+ b = x if the sum is larger than n. In addition
a+ *x = x for all a € M,,. Subtraction is truncated subtraction where a — b =0
if a < b. Furthermore * — a = « for all a € N. It is easy to see that subtraction
is well-behaved.
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Given a set S and an ordered monoid (with subtraction) M, it is easy to
check that also M* is an ordered monoid (with subtraction), where the elements
are functions from S to M and the partial order, the monoidal operation and
the subtraction are taken pointwise.

The following path monoid is useful if we want to annotate a graph with
information over which paths are present. Note that due to the possible fusion
of nodes and edges caused by the abstraction, a path in the abstract graph does
not necessarily imply the existence of a corresponding path in a concrete graph.
Hence annotations based on such a monoid, which provide information about
the existence of paths, can yield useful additional information.

Example 23. Given a graph G, we denote by Eér C Vi x Vi the transitive closure
of the edge relation E; = {(srcg(e), tgtc(e)) | e € Eg}. The path monoid Pg
of G has the carrier set P(E(). The partial order is simply inclusion and the
monoid operation is defined as follows: given Py, P, € Pg, we have

Py+ P = {(’Uo,vn) | i, ..., Un_1: (vi,viﬂ) S ij
jo€4{0,1}, 5541 =1—4;,i€{0,...,n— 1} and n € N}.

That is, new paths can be formed by concatenating alternating path fragments
from Py, P;. It is obvious to see that + is commutative and one can also show
associativity. P = () is the unit. Subtraction simply returns the first parameter:
Py— P, =F,.

We will now formally define annotations for objects via a functor from a
given category to Mon.

Definition 24 (Annotations for objects). Given a category C and a functor
A: C — Mon, an annotation based on A for an object X € C is an element
a € A(X). We write Ay, instead of A(p), for the action of functor A on a
C-arrow p. We assume that for each object X there is a standard annotation
based on A that we denote by sx, thus sx € A(X).

It can be shown quite straightforwardly that the forgetful functor mapping
an annotated object X[a], with a € A(X), to X is an op-fibration (or co-fibration
[19]), arising via the Grothendieck construction.

Our first example is an annotation of graphs with global multiplicities, count-
ing nodes and edges, where the action of the functor is to sum up those multi-
plicities.

Ezample 25. Given n € N\{0}, we define the functor B" : Graph — Mon: For
every graph G, B"(G) = MYe¢YEc | For every graph morphism ¢: G — H and
a € B"(G), we have Bl}(a) € M}#YEH with:

B (a)(y) = Z a(z), wherex € (VgUEg) andy € (Vg U Eg).
e(z)=y
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Therefore an annotation based on a functor B™ associates every item of a graph
with a number (or the top value ). We will call such annotations multiplicities.
Furthermore the action of the functor on a morphism transforms a multiplicity
by summing up (in M,,) the values of all items of the source graph that are
mapped to the same item of the target graph.

For a graph G, its standard multiplicity s¢ € B"(G) is defined as the function
which maps every node and edge of G to 1.

As another example we consider local annotations which record the out-
degree of a node and where the action of the functor is to take the supremum
instead of the sum.

Ezample 26. Given n € N\{0}, we define the functor §" : Graph — Mon as
follows: For every graph G, S"(G) = MYc. For every graph morphism ¢: G —
H and a € 8"(G), we have S%(a) € M, with:

S (a)(w) = \/ a(v), wherev € Vg and w € V.
p(v)=w

For a graph G, its standard annotation sg¢ € S™(G) is defined as the function
which maps every node of G to its out-degree (or = if the out-degree is larger
than n).

Finally, we consider annotations based on the path monoid (see Example 23).

Ezample 27. We define the functor 7: Graph — Mon as follows: For every
graph G, 7 (G) = Pg. For every graph morphism ¢: G — H and P € T(G), we
have 7,(P) € Py with:

1,(P) = {(¢(v), p(w)) | (v,w) € P}.

For a graph G, its standard annotation s € T(G) is the transitive closure of
the edge relation, i.e., sqg = Eé;'

In the following we will consider only annotations satisfying certain properties
in order to achieve soundness and completeness.

Definition 28 (Properties of annotations). Let A : C — Mon be an
annotation functor, together with standard annotations. In this setting we say
that

— the homomorphism property holds if whenever ¢ is a mono, then A, is a
monoid homomorphism, preserving also subtraction.
— the adjunction property holds if whenever ¢: A — B is a mono, then
o A,: A(A) — A(B) has a right adjoint red,: A(B) — A(A), i.e., red, is
monotone and satisfies a < red,(Ay(a)) fora € A(A) and Ay(red, (b)) <
b forbe A(B).?

3 This amounts to saying that the forgetful functor is a bifibration when we restrict
to monos, see [19, Lem. 9.1.2].
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e red, is a monoid homomorphism that preserves subtraction.
e it holds that red,(sp) = sa, where sa, sp are standard annotations.

Furthermore, assuming that A, has a right adjoint red,, we say that
— the pushout pererty holds, wl}enevef for each pushout as AP
shown in the diagram to the right, with all arrows monos -
where 11 = 1 0 1 = 19 0 s, it holds that for every d € ¢ " P2
. A
A(D): B>w—> D
1

d = Ay, (redy, (d) + (Ay, (redy, (d)) — Ay, (red, (d)))-
We say that the pushout property for standard annotations holds if we replace
d by sp, red,(d) by sa, redy, (d) by sp and redy,(d) by sc.

P2

— the Beck-Chevalley property holds if whenever the square A——C
shown to the right is a pullback with @1, Vs mono, then it o1 (PB) |v
holds for every b € A(B) that ’

B

— D
‘A<P2 (Tedsol (b)) = red@ (‘Awl (b)) v

Note that the annotation functor from Example 25 satisfies all properties
above, whereas the functors from Examples26 and 27 satisfy both the homo-
morphism property and the pushout property for standard annotations, but do
not satisfy all the remaining requirements [8].

We will now introduce a more flexible notion of language, by equipping the
abstract objects with two annotations, establishing lower and upper bounds.

Definition 29 (Doubly annotated object). Given a topos C and a functor
A: C — Mon, a doubly annotated object A[ay,as] is an object A of C with
two annotations ay,as € A(A).An arrow ¢: Alay,as] — Blb1,bs], also called a
legal arrow, is a C-arrow ¢: A — B such that Ay(a1) > by and Ay(az) < bs.

The language of a doubly annotated object Ala1, as] (also called the language
of objects which are abstracted by Alay,as]) is defined as follows:

L(Ala1,a2]) = {X € C | there exists a legal arrow ¢: X[sx,sx]| — Ala1,az]}

Note that legal arrows are closed under composition [9]. Examples of dou-
bly annotated objects are given in Example36 for global annotations from
Example 25 (providing upper and lower bounds for the number of nodes resp.
edges in the preimage of a given element). Graph elements without annotation
are annotated by [0, *] by default.

Definition 30 (Isomorphism property). An annotation functor A: C —
Mon, together with standard annotations, satisfies the isomorphism property if
the following holds: whenever ¢: X[sx,sx]| — Y[sy, sy] is legal, then ¢ is an
isomorphism, i.e., L(Y sy, sy]) contains only Y itself (and objects isomorphic
toY).
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5 Abstract Rewriting of Annotated Objects

We will now show how to actually rewrite annotated objects. The challenge is
both to find suitable annotations for the materialization and to “rewrite” the
annotations.

5.1 Abstract Rewriting and Soundness

We first describe how the annotated rewritable materialization is constructed
and then we investigate its properties.

Definition 31 (Construction of annotated rewritable materialization).

Letp: L ZI Rbea production and let Alay,as) be a doubly annotated object.
Furthermore let p: L — A be an arrow.

We first construct the factorization L 5 (@, L) 44, obtaining the
rewritable materialization (@, ¢r)) from Definition 13. Next, let M contain all
mazimal* elements of the set

{(a1,a3) € A((w,0L))? | A, (sz) < ah, a1 < Ay(a)), Ay(aj) < as}.

Then the doubly annotated objects (o, pr)[a),ab] with (a),al) € M are the
annotated rewritable materializations for Alay,as], ¢ and ¢y,.

Note that in general there can be several such materializations, differing by the
annotations only, or possibly none. The definition of M ensures that the upper
bound a), of the materialization covers the annotations arising from the left-hand
side. We cannot use a corresponding condition for the lower bound, since the
materialization might contain additional structures, hence the arrow ny, is only
“semi-legal”. A more symmetric condition will be studied in Sect. 5.2.

Proposition 32 (Annotated rewritable materialization is terminal).

Given a production p: L &rs R, let L ™ X be the match of L in an object
X such that X 22 i.e., X can be rewritten. Assume that X is abstracted by

Alay, as), witnessed by . Let o = ¢ omy and let L 25 (o, 1) Y. A the the
corresponding rewritable materialization. Then there exists an arrow (4 and a
pair of annotations (a},ah) € M for {p,pL)) (as described in Definition 31) such
that the diagram below commutes and the square is a pullback in the underly-
ing category. Furthermore the triangle consists of legal arrows. This means in
particular that (4 is legal.

L[SL,SL]#X[S)(,S)(]L)A[al,az]
Lsy,sp]— (v, pr)lal, a3

4 “Maximal” means maximality with respect to the interval order (a1,a2) C
(allva‘IQ) — all S ai, az S a/2-
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Having performed the materialization, we will now show how to rewrite anno-
tated objects. Note that we cannot simply take pushouts in the category of anno-
tated objects and legal arrows, since this would result in taking the supremum
of annotations, when instead we need the sum (subtracting the annotation of
the interface I, analogous to the inclusion-exclusion principle).
Definition 33 (Abstract rewriting step~). Let p: L 2% I 25 R be a
production and let Alay,as] be an annotated abstract object. Furthermore let
@: L — A be a match of a left-hand side, let ny,: L — {(p,@L) be the match
obtained via materialization and let (ay,ab) € M (as in Definition 31).

Then Alay,as] can be transformed to Blby,bs] via p if there are arrows such

that the two squares below are pushouts in the base category and by, by are
defined as:

b; = ‘A<PB (cl> + (*ATLR (SR) - ATLROSPR(SI)) fori € {17 2}
where c1,co are maximal annotations such that:

all < ALPA (Cl) + (Anl, (SL) - AnLOSDL (31)) 'A<PA (62) + (AnL (SL) - AnLOLPL (51)) < al2

L[SL,SL] L(I[S[,S[bﬂ) R[SR,SR]

S

(s pr)lat, ay] —Cler, ca—" Blby, bo]
In this case we write Alay,as] %% B[by,bs] and say that Alay,as] makes an
abstract rewriting step to B[by, ba].

We will now show soundness of abstract rewriting, i.e., whenever an object X
is abstracted by A[a1,as] and X is rewritten to Y, then there exists an abstract
rewriting step from Alaq,as] to B[by, bs] such that Y is abstracted by B[by, ba].

Assumption: In the following we will require that the homomorphism property
as well as the pushout property for standard annotations hold (cf. Definition 28).

Proposition 34 (Soundness for ~-). Relation ~ is sound in the follow-
ing sense: Let X € L(Ala1,az]) (witnessed via a legal arrow v: X[sx,sx]| —
Alay,az]) where X ™ Y. Then there exists an abstract rewriting step

Alay, as) P22 Blby, by) such that Y € L(B[by, ba)).

5.2 Completeness

The conditions on the annotations that we imposed so far are too weak to guar-
antee completeness, that is the fact that every object represented by B[b, bo]
can be obtained by rewriting an object represented by Aaj,as]. This can be
clearly seen by the fact that the requirements hold also for the singleton monoid
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and, as discussed before, the graph structure of B is insufficient to characterize
the successor objects or graphs.

Hence we will now strengthen our requirements in order to obtain
completeness.

Assumption: In addition to the assumptions of Sect.5.1, we will need that
subtraction is well-behaved and that the adjunction property, the pushout prop-
erty, the Beck-Chevalley property (Definition 28) and the isomorphism property
(Definition 30) hold.

The global annotations from Example25 satisfy all these properties. In
particular, given an injective graph morphism ¢: G — H the right adjoint
red, : MynYEn — MVeUEe o B is defined as follows: given an annotation
b e MVEVER red  (b)(z) = b(p(z)), i.e., red, simply provides a form of rein-
dexing.

We will now modify the abstract rewriting relation and allow only those
abstract annotations for the materialization that reduce to the standard anno-
tation of the left-hand side.

Definition 35 (Abstract rewriting step —). Given ¢: L — A, assume that
Blby,ba] is constructed from Alay,as) via the construction described in Defini-
tions 31 and 33, with the modification that the set of annotations from which
the set of mazimal annotations M of the materialization {p,pr)) are taken, is
replaced by:

{(aj,a5) € A((p, oL))? | redn, (a;) = sp,i € {1,2}, a1 < Ay(a}), Ay(ah) < as}.
In this case we write Alay, as] 424 Blby, ba].

Due to the adjunction property we have A,,, (sr) = Ay, (red,, (a5)) < a) and
hence the set M of annotations of Definition 35 is a subset of the corresponding
set, of Definition 33.

Ezample 36. We give a small example of an abstract rewriting step (a more
extensive, worked example can be found in the full version [8]). Elements without
annotation are annotated by [0,x] by default and those with annotation [0, 0]
are omitted. Furthermore elements in the image of the match and co-match are
annotated by the standard annotation [1,1] to specify the concrete occurrence
of the left-hand and right-hand side.

A—L«—~I—R

) ) A1,1]
DL o DL - o o L1
] 1] 1] L1 B L)

nr, nr ITIR
NG I, !
D D pwa D D vB D D A[L1]
o p MO o] +—— D — D X5 e[l
[1.1] [1.1]

(L,1] B[1,1]
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The variant of abstract rewriting introduced in Definition 35 can still be
proven to be sound, assuming the extra requirements stated above.

Proposition 37 (Soundness for —). Relation — is sound in the sense of
Proposition 34.

Using the assumptions we can now show completeness.

Proposition 38 (Completeness for —). If Alay,as] ¥ Blb1,bs] and Y €
L(B[b1,b2]), then there exists X € L(Ala1,az]) (witnessed via a legal arrow
v: X[sx,sx] — Ala,az]) such that X Z2£Y and p =1 omy.

Finally, we can show that annotated graphs of this kind are expressive enough
to construct a strongest post-condition. If we would allow several annotations
for objects, as in [9], we could represent the language with a single (multiply)
annotated object.

Corollary 39 (Strongest post-condition). Let Alay,as]) be an anno-
tated object and let p: L — A. We obtain (several) abstract rewriting steps

Alay, as] ©% Blby, by], where we always obtain the same object B. (B is dependent

on o, but not on the annotation.) Now let N = {(by,bs) | Ala1, as] 5 Blby, bs]}.
Then

U L(B[b1,ba]) = {Y | IX € L(A[ay, as]), witnessed by ), (L 15 X).

b1,b N m
SRS (p=bomp A X 22 Y))

6 Conclusion

We have described a rewriting framework for abstract graphs that also applies
to objects in any topos, based on existing work for graphs [1,2,4,27,28,31]. In
particular, we have given a blueprint for materialization in terms of the universal
property of partial map classifiers. This is a first theoretical milestone towards
shape analysis as a general static analysis method for rule-based systems with
graph-like objects as states. Soundness and completeness results for the rewriting
of abstract objects with annotations in an ordered monoid provide an effective
verification method for the special case of graphs We plan to implement the
materialization construction and the computation of rewriting steps of abstract
graphs in a prototype tool.

The extension of annotations with logical formulas is the natural next
step, which will lead to a more flexible and versatile specification language,
as described in previous work [30,31]. The logic can possibly be developed in
full generality using the framework of nested application conditions [18,23] that
applies to objects in adhesive categories. This logical approach might even reduce
the proof obligations for annotation functors. Another topic for future work
is the integration of widening or similar approximation techniques, which col-
lapse abstract objects and ideally lead to finite abstract transition systems that
(over-)approximate the typically infinite transitions systems of graph transfor-
mation systems.
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