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Abstract. We consider the numerical approximation of boundary conditions in radiative trans-
fer problems by a perfectly matched layer approach. The main idea is to extend the computational
domain by an absorbing layer and to use an appropriate reflection boundary condition at the bound-
ary of the extended domain. A careful analysis shows that the consistency error introduced by
this approach can be made arbitrarily small by increasing the size of the extension domain or the
magnitude of the artificial absorption in the surrounding layer. A particular choice of the reflection
boundary condition allows us to circumvent the half-space integrals that arise in the variational
treatment of the original vacuum boundary conditions and which destroy the sparse coupling ob-
served in numerical approximation schemes based on truncated spherical harmonics expansions. A
combination of the perfectly matched layer approach with a mixed variational formulation and a
PN -finite element approximation leads to discretization schemes with optimal sparsity pattern and
provable quasi-optimal convergence properties. As demonstrated in numerical tests these methods
are accurate and very efficient for radiative transfer in the scattering regime.
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1. Introduction. Radiative transfer problems arise in a variety of applications,
such as astrophysics, meteorology, nuclear reactor physics, and medical treatment and
imaging; we refer to [3, 5, 6, 9, 17, 19] for examples and further references. In this
paper, we consider a particular aspect of such models, namely, the efficient numerical
treatment of boundary conditions. For ease of presentation, we consider a mono-
chromatic and stationary model problem

s · ∇u(r, s) + σ(r)u(r, s) =

∫
S
k (r, s · s′)u (r, s′) ds′ + q(r, s) in R× S,(1)

together with vacuum (homogeneous inflow) boundary conditions

u(r, s) = 0 on ∂R× S with s · n(r) < 0.(2)

Here, n(r) is the outer unit normal vector on ∂R. This model describes the transport,
absorption, and scattering of particles propagating through a bounded domain R
which is filled by some background medium and surrounded by vacuum. The function
u = u(r, s) denotes the density of particles at position r ∈ R traveling in direction
s ∈ S, the coefficients σ(r) and k(r, s · s′) describe the attenuation and scattering
properties of the medium, and q(r, s) is a given source density. Due to the inherent
tensor product structure of the phase space R × S, it seems natural to expand the
density u(r, s) into a series
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u(r, s) =
∑

n
un(r)Hn(s),(3)

which allows us to formally recast the radiative transfer equation (1) as an infinite
system of coupled partial differential equations for the moments un(r). A particularly
well-suited choice for the basis functions Hn are the spherical harmonics, since they
form a complete orthogonal system in L2(S) corresponding to the eigenfunctions
of the scattering operator. Moreover, the product sHn(s) can be expressed as a
finite combination of spherical harmonics Hm, which leads to a sparse coupling of
the moment equations arising from the spherical harmonics expansion; see [3, 16] for
details.

In the highly scattering regime, the density u(r, s) can be expected to be a smooth
function of s, which results in a fast decay of the moments un(r) in the spherical
harmonics expansion (3) with n→∞. A good approximation for the density can thus

already be obtained by a truncated series
∑N

n=0 un(r)Hn(s) withN small. Let us note,
however, that high smoothness cannot be expected in the vicinity of discontinuities of
the material parameters, and, in particular, the solution is typically nonsmooth close
to the boundary of the scattering domain. Therefore, a high degree N of the spherical
harmonics expansion may be needed to obtain very accurate results. More details of
this issue will be discussed in the computational tests.

Inserting the truncated spherical harmonics ansatz into (1) leads to the well-
known PN -approximations, which have been used successfully for theoretical investi-
gations and for the design of numerical approximation schemes; we refer to [5, 9, 20]
and [14, 16, 22] for details. While the formal derivation of the PN -approximation for
the radiative transfer equation (1) is rather straightforward, the correct approximation
of the vacuum boundary conditions (2) has been subject of controversial discussion
for many years; see [17] for a comprehensive overview. A systematic treatment is
possible by variational formulations [1, 10, 15], in which the boundary conditions (2)
give rise to half-space integrals of the form∫

∂R

∫
S:s·n(r)<0

u(r, s)v(r, s)|s · n| ds dr;(4)

here, v denotes the test function in the variational formulation. The appropriate
boundary conditions for the PN -approximation can then be obtained rigorously by
Galerkin projection of the underlying variational principle. Let us note that the half-
space integrals (4) no longer have a tensor product structure, which actually leads to
a dense coupling of almost all moments un(r) in the spherical harmonics expansion of
the system (1)–(2). Numerical methods based on PN -approximations, therefore, suffer
from a dense coupling of the moment equations originating from the nontensor product
structure of the boundary conditions. This not only complicates the implementation
but also negatively affects the performance of corresponding discretization methods.
In this paper, we propose a strategy to overcome these problems associated with the
numerical approximation of the boundary conditions (2). In the spirit of the perfectly
matched layer (PML) approach, which has been successfully used in the context of
acoustic and electromagnetic wave propagation [4, 13], we proceed as follows:

(i) In a first step, the domain R is extended by an absorbing but nonscattering
layer of thickness ` > 0 with absorption coefficient a > 0. If vacuum boundary
conditions are used at the outer boundary, this yields an equivalent formu-
lation of problem (1)–(2) on an extended domain R`, whose solution u`,a

coincides with u when restricted to R. Therefore, the solution u = u`,a|R is
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2168 HERBERT EGGER AND MATTHIAS SCHLOTTBOM

in general the restriction of a solution of a radiative transfer equation with
discontinuous coefficient functions. Due to the presence of the absorbing layer
R` \ R, the solution u`,a decays exponentially towards ∂R`.

(ii) In a second step, the vacuum boundary condition at the boundary of the
extended domain is replaced by a reflection boundary condition. Since u`,a

is already small at ∂R`, this introduces a minor perturbation that can be
controlled by the absorption parameter a and the thickness ` of the absorbing
layer in terms of an estimate of the form ‖u`,a−w`,a‖ = O(e−`a), where w`,a

is the solution of the problem with reflection boundary condition.
An appropriate choice of the thickness ` and the absorption coefficient a in the sur-
rounding layer R` \R thus allows us to obtain solutions w`,a of a perturbed problem,
whose restriction to R approximates the original solution u with any desired accuracy.
The rigorous analysis of this approach will be the main topic of the first part of the
paper. In the second part of the manuscript, we consider the numerical approximation
of the problem with reflection boundary conditions outlined in step (ii). Based on the
ideas of [10], we investigate in detail the Galerkin approximation of a mixed varia-
tional formulation of the perturbed problem. The possible extension of our analysis
to other approaches is briefly discussed at the end of the manuscript. The main new
contributions are the following:

(iii) A specific choice of the reflection boundary condition allows us to extend the
variational formulation given in [10] to the perturbed problem discussed in
step (ii) and to avoid the half-space integrals (4). A careful analysis of the
variational problem allows us to establish its well-posedness.

(iv) Under a mild compatibility condition of the approximation spaces, the
Galerkin approximation of the mixed variational method leads to discretiza-
tion schemes with provable convergence properties. A full analysis of the
general approach is given, and as a particular example, we discuss in some
detail the extension of the PN -finite element approximation considered in
[10, 14, 22]. Due to the absence of the half-space integrals (4), which are
eliminated by the particular reflection boundary conditions, the resulting lin-
ear systems can be shown to have an optimal sparsity and a tensor product
structure that allows for a very efficient solution.

For illustration of theoretical results and in order to demonstrate the efficiency of our
approach, we report about some numerical tests for the proposed PN -finite element
approximation with the PML approach at the end of the manuscript. Before we
proceed, let us mention a recent paper [18], where the authors considered a somewhat
related idea. In this work, a PML approach is used to obtain a problem with periodic
boundary conditions in space which in turn can be discretized efficiently by Fourier
series. The efficiency of the resulting pseudospectral approximation was illustrated
by numerical tests. A full analysis of this approach is not available yet but might be
possible with the arguments presented here.

The remainder of the manuscript is organized as follows: In section 2, we introduce
our notation and main assumptions, and we recall some preliminary results about
well-posedness of the radiative transfer equation. In section 3, we then formulate and
analyze the problem in step (i) that arises from extension of the computational domain
by an absorbing layer. Section 4 deals with the analysis of the perturbed problem with
reflection boundary conditions described in step (ii). In section 5 we consider step
(iii) of our approach by deriving a mixed variational formulation of the problem with
reflection boundary conditions. In addition, we investigate its systematic Galerkin
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approximation and establish rigorous error estimates. In section 6, we address point
(iv) by considering an extension of the mixed PN -finite element method proposed in
[10] to the setting considered here. We state a basic compatibility condition of the
approximation spaces and discuss some further properties of the method. In section 7,
we comment on the efficient implementation of this discretization scheme and then
present some numerical tests for illustration of the efficiency of the method. We close
with a short discussion and indicate some possible extensions.

2. Preliminaries and notation. Let us start by introducing our notation and
basic assumptions that will allow us to guarantee the well-posedness of the radiative
transfer problem under consideration. Throughout the manuscript, we make the
following assumption.

(A1) The domain R ⊂ R3 is bounded and convex, and we let S = S2 be the unit
sphere in R3. The phase space is denoted by D = R× S.

Note that the assumption about convexity of R is not very restrictive, since one
may always extend the domain to a larger ball if required. As usual, we decompose
the boundary ∂D = ∂R× S via

∂D± = {(r, s) ∈ ∂D : ±s · n(r) > 0}

into an inflow part ∂D− and an outflow part ∂D+. Let us recall at this point that
boundary conditions (2) are required only for the inflow part ∂D− of the boundary.

2.1. Function spaces. For any sufficiently regular submanifold M ⊂ Rn and
any 1 ≤ p<∞, we denote by Lp(M) the usual Lebesgue space of functions on M , and
we use (u, v)M =

∫
M
uv dM to denote the scalar product of L2(M). Following the

notation of [8], we further write

W p(D) = {u ∈ Lp(D) : s · ∇u ∈ Lp(D)}

for the Sobolev space of functions with integrable weak directional derivatives and
finite norm given by

‖u‖pWp(D) = ‖u‖pLp(D) + ‖s · ∇u‖pLp(D).

Let us recall that functions u ∈ W p(D) possess well-defined traces on ∂D in some
weighted Lp spaces; see, e.g., [1, 8]. For a.e. (r, s) ∈ ∂D, we may thus define

u±(r, s) =

{
u(r, s), ±s · n(r) > 0,

0 else.

This induces a natural splitting u = u− + u+ of the boundary values on ∂D into an
ingoing trace u− and an outgoing trace u+, which are, respectively, supported on the
corresponding parts ∂D− and ∂D+ of the boundary. By the divergence theorem and
a density argument, one can see that

(s · ∇u, v)D = −(u, s · ∇v)D + (s · nu, v)∂D(5)

holds for all functions u, v with sufficient smoothness and integrability properties.
This integration-by-parts formula motivates the definition of weighted trace spaces

Lp(∂D; |s · n|) = {g : ∂D → R with

∫
∂D
|g(r, s)|p|s · n| d(r, s) <∞},
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2170 HERBERT EGGER AND MATTHIAS SCHLOTTBOM

which are strictly smaller than the natural trace spaces of W p(D); see [1, 8] for details.
For any u ∈ W p(D) with regular ingoing trace u− ∈ Lp(∂D; |s · n|), one can deduce
from (5) with v = |u|p−2u and some elementary manipulations that

‖u+‖pLp(∂D;|s·n|) = ‖u−‖pLp(∂D;|s·n|) + p
(
s · ∇u, |u|p−2u

)
D(6)

≤ ‖u−‖pLp(∂D;|s·n|) + ‖s · ∇u‖pLp(D) + p−1
p ‖u‖

p
Lp(D).

Hence, the norm of the outgoing trace u+ can be controlled in terms of the norm of
the ingoing trace u− and the norm of the solution u in W p(D).

2.2. Basic assumptions and well-posedness. In order to ensure the well-
posedness of the radiative transfer problem (1)–(2), we will make the following struc-
tural assumptions on the model parameters.

(A2) σ ∈ L∞(R) with 0 ≤ σ(r) ≤ σ;
(A3) k : L∞(R× (−1, 1)) with 0 ≤ k(r, θ) ≤ k and

∫
S k(r; s · s′) ds′ ≤ σ(r).

These rather general conditions are motivated by physical considerations. The
well-posedness of problem (1)–(2) is a special case of the following result, which also
covers inhomogeneous boundary conditions.

Theorem 1. Let (A1)–(A3) hold, and let (Ku)(r, s) :=
∫
S k(r; s · s′)u(r, s′) ds′

denote the scattering operator with kernel function k. Then, for any q ∈ Lp(D) and
any g ∈ Lp(∂D; |s · n|), the radiative transfer problem

s · ∇u+ σu = Ku+ q in D,(7)

u− = g− on ∂D(8)

has a unique solution u ∈W p(D), and there holds

‖u‖Wp(D) + ‖u+‖Lp(∂D;|s·n|) ≤ C
(
‖q‖Lp(D) + ‖g−‖Lp(∂D;|s·n|)

)
with constant C depending only on σ and diam(R).

Proof. Existence of a unique solution and the bound for u in the norm of W p(D)
follow from [11, Theorem 1.1 and Theorem 8.3]. The remaining estimate for the
outgoing trace u+ can then be deduced from (6).

Note that problem (1)–(2) is just a special case of (7)–(8) with g− = 0. Under
assumptions (A1)–(A3), the model problem (1)–(2) is therefore well-posed.

Part 1. The perfectly matched layer approach.

In the following two sections, we investigate the approximation of (1)–(2) by
radiative transfer problems on larger domains. We start with an equivalent problem
and then introduce a perturbation by incorporating a reflection boundary condition.

3. Equivalent problems on larger domains. Problem (1)–(2) describes the
propagation of particles through a domain R surrounded by vacuum. We will now
show that the domain R can also be embedded in an absorbing medium without
changing the solution. For any r ∈ Rd \ R and s ∈ S, we denote by

`(r, s) = inf{l > 0 : r − ls ∈ R}(9)

the distance of the point r to the boundary ∂R of the computational domain along
the path with direction −s starting at r; see Figure 1. Using standard convention, we
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R

R`

`
r − `(r, s)s

n(r)

s

r
α′

s̄

r̄∗ = r + t∗s̄

Fig. 1. Sketch of the geometric setup for two spatial dimensions. R corresponds to the disc.
The extended domain R` corresponds to the bounding rectangle. The distance between ∂R and ∂R`

is given by `, and the point (r, s) is an element of the outflow boundary ∂D`
+ of the layer such that

`(r, s) < ∞, i.e., r − `(r, s)s ∈ ∂R. Moreover, we have that s · n(r) ≥ sin(α′). On the other hand,
lines through r that pass through the gray area do not intersect R. For instance, the path t 7→ r+ ts̄,
t ∈ R, does not intersect R. Moreover, there exists a unique t∗ > 0 such that r∗ = r + t∗s̄ ∈ ∂R`

and (r∗, s̄) ∈ ∂D`
+, which will become important for the construction of the reflection boundary

conditions described in step (ii).

set `(r, s) = ∞ if the corresponding path does not intersect the boundary ∂R. We
then consider extensions R` of the domain R with the following properties.

(A4) For given `, η > 0, let R` ⊂ R3 be a bounded convex domain with R ⊂ R`

compactly embedded and such that `(r, s) ≥ ` for a.e. (r, s) ∈ ∂D` = ∂R`×S
and `(r, s) =∞ for a.e. (r, s) ∈ ∂D` with s · n(r) ≤ η =: sinα.

Remark 2. Note that ` ≤ dist{∂R`,R} is a lower bound on the thickness of the

extension layer R̃ = R` \ R. Moreover, 0 < η = sinα yields a lower bound on the
angles α′ at which beams originating from points r ∈ R can hit the boundary ∂R`

and lines in direction s going through points r ∈ R`\R with `(r, s) = `(r,−s) =∞ do
not intersect the domain R; see Figure 1 for illustration. These geometric properties
will become important for our analysis below.

As a next step, we extend the definition of the model parameters to R` by

σ`,a(r) = σ(r), k`(r, ·) = k(r, ·), q`(r, ·) = q(r, ·), r ∈ R,
σ`,a(r) = a, k`(r, ·) = 0, q`(r, ·) = 0, r ∈ R` \ R,

and we denote by K` the scattering operator associated to the kernel k`. The choice
a = 0 means that R is surrounded by vacuum, while a > 0 models the case that
the original domain is embedded in an absorbing but nonscattering medium. On the
extended domain D` = R` × S, we then consider the problem

s · ∇u`,a + σ`,au`,a = K`u`,a + q` on D`,(10)

u`,a− = 0 on ∂D`.(11)

With the same arguments as used for the proof of Theorem 1, one can again obtain
the existence of a unique solution. Due to the particular definition of the parameters
in the extension layer, we obtain some further properties of the solution.
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Theorem 3. Let (A1)–(A4) hold and a ≥ 0. Then for any q ∈ Lp(D), the
extended problem (10)–(11) has a unique solution u`,a ∈ W p(D`), which can be rep-
resented as u`,a = E`,au, where u is the solution of (1)–(2) and where the extension
operator E`,a is defined by

(E`,au)(r, s) =


u(r, s), (r, s) ∈ D,
e−a`(r,s)u(r − `(r, s)s, s), (r, s) ∈ D` \ D, 0 < `(r, s) <∞,
0, else.

Moreover, u`,a|D = u and u`,a(r, s) = 0 for (r, s) ∈ ∂D` with `(r, s) =∞, and

‖u`,a‖Lp(∂D`) ≤ Ce−a`‖q‖Lp(D)(12)

with constant C depending only on σ, diam(R), and the constant η in (A4).

Proof. Existence of a unique solution u`,a follows from [11, Theorem 1.1 and
Theorem 8.3]. The remaining assertions are proven by the following lemma.

Lemma 4. Let (A1)–(A4) hold, and let u ∈ W p(D) with u− = 0 on ∂D. Then
for any a ≥ 0, we have E`,au ∈W p(D`) and

‖s · ∇E`,au‖Lp(D`\D) = a‖Ea,`u‖Lp(D`\D) ≤ a1−
1
p ‖u‖Wp(D).

Moreover, (E`,au)(r, s) = 0 for any (r, s) ∈ ∂D` with `(r, s) =∞, and, therefore,

η1/p‖E`,au‖Lp(∂D`) ≤ ‖E`,au‖Lp(∂D`;|s·n|)

≤ e−a`‖u+‖Lp(∂D;|s·n|) ≤ e−a`‖u‖Wp(D).

Proof. By construction, ũ = (E`,au)|D̃, with D̃ = D` \ D, is a solution to

s · ∇ũ+ aũ = 0 in D̃,(13)

ũ− = u+ on ∂D̃ ∩ ∂D and ũ−= 0 on ∂D̃ ∩ ∂D`.(14)

Note that the normal vector pointing out of the layer R̃ = R` \ R has to be used
in the definition of ũ±, while that pointing out of R is used in the definition of u±.
From [11, Theorem 1.2] with ν = 1, σ = a, and f = 0 and noting that s · ∇ũ = −aũ,

we infer that ũ ∈W p(D̃) and

‖s · ∇ũ‖Lp(D̃) = a‖ũ‖Lp(D̃) ≤ a
1− 1

p ‖u+‖Lp(∂D;|s·n|).

From (6) and u− = 0 on ∂D, we deduce that

‖u+‖Lp(∂D;|s·n|) ≤ ‖u‖Wp(D),(15)

which proves the first estimate.Moreover, we have ũ+ = 0 = u−, and, by (14), ũ− =
u+ on ∂D. Hence ũ = u on ∂D, which shows that E`,au is continuous across ∂D
in the sense of traces. Together with (E`,au)|D = u ∈ W p(D) and (E`,au)|D̃ = ũ ∈
W p(D̃), this implies that E`,au ∈ W p(D`); see [1, Remark 2.5]. By the definition
of the extension and condition (A4), one can see that E`,au(r, s) = 0 for all (r, s) ∈
∂D` with `(r, s) = ∞; cf. Figure 1. In addition, one can infer that |E`,au(r, s)| ≤
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e−a`|E`,0u(r, s)| on ∂D̃. But since s ·∇E`,0u = 0 on D̃ and (E`,0u)+ = 0 on ∂D̃ ∩ ∂D
by construction, we may deduce from (6), with D replaced by D̃, that

‖E`,0u‖Lp(∂D`;|s·n|)
(14)
=
∥∥∥(E`,0u

)
+

∥∥∥
Lp(∂D̃;|s·n|)

(6)
=
∥∥∥(E`,0u

)
−

∥∥∥
Lp(∂D̃;|s·n|)

(14)
=
∥∥∥(E`,0u

)
−

∥∥∥
Lp(∂D̃∩∂D;|s·n|)

= ‖u+‖Lp(∂D;|s·n|).

In the last step, we used the continuity of E`,0u across ∂D and the fact that the normal
vectors at ∂R̃ ∩ ∂R and ∂R have opposite sign. Using (15) and (E`,au)(r, s) = 0 for
all (r, s) ∈ ∂D` with s · n(r) ≤ η, we obtain the second estimate of the lemma.

Remark 5. An important consequence of Theorem 3 is that the trace of the solu-
tion u`,a of the extended problem (10)–(11) is an element of Lp(∂D`) without weight,
i.e., it has somewhat higher regularity. This is due to the geometric setting and the
purely absorbing but nonscattering behavior of the surrounding layer and will be
important for our further considerations:

4. A modified boundary condition. The estimate (12) implies that the so-
lution u`,a can be made arbitrarily small at the outer boundary ∂D` by choosing the
parameters a, ` sufficiently large. A perturbation of the boundary condition at ∂D`

should, therefore, only have a minor effect. As approximation for (10)–(11), we thus
consider in this section the following problem with modified boundary conditions:

s · ∇w`,a + σ`,aw`,a = K`w`,a + q` in D`,(16)

w`,a
− = Rw`,a

+ on ∂D`,(17)

where R : Lp(∂D`; |s · n|) → Lp(∂D`; |s · n|) is an appropriate reflection operator.
Motivated by the considerations of section 5, we here consider the particular choice

(Rg)(r, s) =
s · n+ 1

s · n− 1
g+(r,−s), (r, s) ∈ ∂D`.(18)

Particles arriving in direction −s at the boundary ∂D`, thus, partially leave the
domain or get, otherwise, reflected in the opposite direction s. In the analysis of this
section, we will only make use of the following properties.

Lemma 6. The operator R : Lp(∂D`; |s · n|) → Lp(∂D`; |s · n|) is linear, and
Rg = (Rg)−. Moreover, |Rg(r, s)| ≤ |g(r,−s)| for a.e. (r, s) ∈ ∂D`

−. If (A4) holds,
then |Rg(r, s)| ≤ (1− η)|g(r,−s)| if `(r,−s) <∞.

Proof. The validity of the assertions follows directly from the definition (18).

4.1. Well-posedness of the perturbed problem. We will now show by a
contraction argument that problem (16)–(18) admits a unique solution. The key
ingredient is that most particles that leave the domain R get absorbed before they
arrive at the reflection boundary ∂R`. Moreover, points (r, s) ∈ D` with `(r, s) =∞
cannot be reached by particles originating from the domain R. Let us denote by

H− = {h− ∈ Lp(∂D`; |s · n|) : h−(r, s) = 0 if `(r,−s) =∞}(19)

the space of inflow boundary values at ∂D` which corresponds to particles that
may hit the computational domain R after travelling along straight lines through
the extension layer R` \ R. The following result is essential for our contraction
argument.
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2174 HERBERT EGGER AND MATTHIAS SCHLOTTBOM

Lemma 7. Let (A1)–(A4) hold. Then for any q∈Lp(D) and h−∈H−, the problem

s · ∇z`,a + σ`,az`,a = K`z`,a + q` in D`,(20)

z`,a− = h− on ∂D`(21)

has a unique solution z`,a ∈ W p(D`), and z`,a+ (r, s) = 0 for a.e. point (r, s) ∈ ∂D`

with `(r, s) =∞. Moreover, there holds∥∥z`,a∥∥
Wp(D)

≤ C
(
‖q‖Lp(D) + e−a`‖h−‖Lp(∂D`;|s·n|)

)
with constant C depending only on σ and diam(R). In addition,∥∥∥z`,a+

∥∥∥p
Lp(∂D`;|s·n|)

≤ e−pa`
(
e−pa`‖h−‖pLp(∂D`;|s·n|) + p‖q‖Lp(D)

∥∥z`,a∥∥p−1
Lp(D)

)
.

Proof. Existence of a unique solution z`,a ∈W p(D`) follows with the same argu-

ments as in Theorem 1. Now let D̃ = D` \D denote the extension layer. Then due to

the linearity of the problem, we can decompose z`,a on D̃ as z`,a = z̃a +E`,az, where
z = z`,a|D and z̃a is the solution of the auxiliary problem

s · ∇z̃a + az̃a = 0 in D̃,

z̃a− = h− on ∂D̃− ∩ ∂D` and z̃a− = 0 on ∂D̃− ∩ ∂D.

With similar arguments as in the proof of Lemma 4, one can show that

‖z̃a‖Lp(∂D;|s·n|) =
∥∥z̃a+∥∥Lp(∂D̃∩∂D;|s·n|)

≤ e−a`
∥∥z̃0+∥∥Lp(∂D̃∩∂D;|s·n|) ≤ e

−a` ‖h−‖Lp(∂D`;|s·n|) .

In the last step, we used the a priori estimate of Theorem 1 for the problem defining
the solution z̃a with a = 0. From the decomposition z`,a = z̃a +E`,az, the definition
of z = z`,a|D, and the continuity of z`,a across ∂D, we deduce that

z− = z̃a+ on ∂D̃ ∩ ∂D,

i.e., the particles entering D via ∂D are those generated by h− on ∂D` and leaving

the surrounding layer D̃ = D` \ D via ∂D. The function z = z`,a|D hence solves

s · ∇z + σz = Kz + q in D,
z− = g− on ∂D

with boundary data g− = z̃a+. From Theorem 1 and the previous estimates, we get∥∥z`,a∥∥
Wp(D)

= ‖z‖Wp(D) ≤ C ′
(
‖q‖Lp(D) + e−a`‖h−‖Lp(∂D`;|s·n|)

)
.

The additional bound for the outgoing trace z`,a+ = E`,az can then be deduced from
the second estimate of Theorem 1 and Lemma 4.

We are now in the position to establish the well-posedness of problem (16)–(18).

Theorem 8. Let (A1)–(A4) hold. Then, for any q ∈ Lp(D) and any a > 0,
problem (16)–(17) has a unique solution w`,a ∈W p(D`) with∥∥w`,a

∥∥
Wp(D)

≤ C‖q‖Lp(D) and
∥∥w`,a

∥∥
Lp(∂D`)

≤ Ce−a`‖q‖Lp(D)

with constant C depending only on σ, diam(R), and η.
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Proof. In a first step, we show that for any solution w`,a ∈W p(D`) there holds

w`,a(r, s) = 0 for a.e. (r, s) ∈ ∂D` with `(r, s) = `(r,−s) =∞,(22)

which implies that w`,a ≡ 0 on the union of all lines that do not intersect the compu-
tational domain R; cf. Remark 2. Let (r, s) be such a point on the outer boundary
∂D`
− with `(r, s) = `(r,−s) =∞. Then r+ ts ∈ R` \ R for all 0 < t < t∗, where t∗ is

chosen such that r∗ = r+ t∗s ∈ ∂R`; see Figure 1. Since the medium in the extension
layer R` \ R is purely absorbing, we have w`,a(r + ts, s) = e−atw`,a(r, s). Applying
the reflection operator at the point (r∗, s), we further obtain∣∣w`,a (r∗,−s)

∣∣ =
∣∣Rw`,a (r∗,−s)

∣∣ ≤ ∣∣w`,a (r∗, s)
∣∣ = e−at

∗ ∣∣w`,a (r, s)
∣∣ .

Repeating the argument with r = r∗−t∗s yields |w`,a(r, s)| ≤ e−2at∗ |w`,a(r, s)|, which
implies that w`,a(r, s) = 0 and shows the assertion (22).

As a consequence, we know that any solution w`,a ∈ W p(D) has to satisfy
w`,a|∂D`

−
= h− ∈ H− as in (19). We now show the existence and uniqueness of

such a solution. For any given h− ∈ H−, we define Φ(h−) := Rz+, where z ∈W p(D`)
is the unique solution of

s · ∇z + σ`,az = K`z + q` in D`,(23)

z− = h− on ∂D`.(24)

The results of Lemma 7 imply that z+(r, s) = 0 for (r, s) ∈ ∂D` with `(r, s) = ∞,
and thus Rz+ ∈ H− by Lemma 6. Hence Φ : H− → H− is a self-mapping on the
nonempty and closed subset H− of the Banach space Lp(∂D`; |s · n|). By taking the
difference of two solutions z, z′ with boundary data h−, h

′
− ∈ H−, we further deduce

from Lemma 6 and Lemma 7 that

‖Φ(h−)− Φ(h′−)‖Lp(∂D`;|s·n|) = ‖Rz+ −Rz′+‖Lp(∂D`;|s·n|)

≤ (1− η)‖z+ − z′+‖Lp(∂D`;|s·n|) ≤ (1− η)e−2a`‖h− − h′−‖Lp(∂D;|s·n|).

This shows that Φ is a contraction on H− and by Banach’s fixed-point theorem, there
exists a unique fixed point h− ∈ H− with Φ(h−) = h−. By construction, the function
w`,a = z with z as defined above then is the unique solution of (16)–(17). Now set
h0− = 0 and for n ≥ 1 define hn− = Φ(hn−1− ). Then from the convergence estimates for
Banach’s fixed-point iteration, we obtain

‖h−‖Lp(∂D`;|s·n|) =
∥∥h− − h0−∥∥Lp(∂D`;|s·n|) ≤

1

1− η
∥∥h1− − h0−∥∥Lp(∂D`;|s·n|) .

Due to the choice h0− = 0, we know that h1− = Ru`,a, where u`,a is the unique solution
of (10)–(11). From Lemma 6 and the estimate (12), we can then deduce that

η1/p‖h−‖Lp(∂D`) ≤ ‖h−‖Lp(∂D`;|s·n|)

≤ 1

1− η

∥∥∥u`,a+

∥∥∥
Lp(∂D`;|s·n|)

≤ C

1− η
e−a`‖q‖Lp(D).

From the construction of h−, one can see that the solution w`,a = z of the aux-
iliary problem (23)–(24) is the unique solution of problem (16)–(17). The proof
is thus completed by an application of Lemma 7, which yields the bounds for the
solution.
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4.2. Error estimates. In preparation of the next theorem, let us state a bound
for the solution w`,a of the perturbed problem on the extension layer.

Lemma 9. Let (A1)–(A4) hold and w`,a be the solution of (16)–(17). Then∥∥s · ∇w`,a
∥∥
Lp(D`\D)

+ a
∥∥w`,a

∥∥
Lp(D`\D)

≤ Ca
p−1
p ‖q‖Lp(D)

with constant C depending only on σ̄, diam(R), and η.

Proof. Observe that w`,a is a solution to

s · ∇w`,a + aw`,a = 0 in D̃,

w`,a
− = (w`,a|D)+ on ∂D̃ ∩ ∂D,

w`,a
− = Rw`,a on ∂D̃ ∩ ∂D`.

In view of Theorem 8, we already know that∥∥∥w`,a
+

∥∥∥
Lp(∂D;|s·n|)

≤ C
∥∥w`,a

∥∥
Wp(D)

≤ C‖q‖Lp(D) and∥∥Rw`,a
∥∥
Lp(D`;|s·n|) ≤

∥∥w`,a
∥∥
Lp(D`;|s·n|) ≤ Ce

−a`‖q‖Lp(D).

The assertion now follows with the same arguments as in the proof of Lemma 4.

In combination with the previous results, we can now derive explicit estimates for
the perturbation error resulting from the use of the reflection boundary condition.

Theorem 10. Let (A1)–(A4) hold, and let u and w`,a denote the solutions of
problem (1)–(2) and of problem (16)–(17), respectively. Then∥∥w`,a − u

∥∥
Wp(D)

≤ Ce−2a`‖q‖Lp(D)

with constant C depending only on σ̄, diam(R), and η. Moreover,∥∥s · ∇ (w`,a − E`,au
)∥∥

Lp(D`\D)
+ a

∥∥(w`,a − E`,au
)∥∥

Lp(D`\D)
≤ Ca

p−1
p e−a`‖q‖Lp(D).

Proof. By Theorem 3, we have u = u`,a|D, where u`,a is the solution of (10)–(11).
The difference z`,a = w`,a− u`,a satisfies (20)–(21) with h− = Rw`,a and q` = 0. The
first bound then follows by a combination of Lemma 6, Lemma 7, and Theorem 8,
and the second estimate follows similarly using Lemma 9.

Remark 11. As shown in [11] the constant C in Theorem 1 is uniformly bounded
for all 1 ≤ p ≤ ∞. Using the basic fact that, on bounded domains, the L∞-norm of an
essentially bounded function can be obtained as the limit p→∞ of its corresponding
Lp-norms, the results of the first part generalize to the case p =∞ directly.

Part 2. Numerical approximation.

In the following two sections, we discuss the numerical approximation of prob-
lem (16)–(17) by extending the mixed variational approach proposed in [10]. We first
derive a variational formulation of the problem and consider its systematic Galerkin
approximation, and then we discuss a particular method based on a tensor product
approximation using spherical harmonics and mixed finite elements.
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5. A mixed variational problem. For ease of notation, we write w = w`,a

and q = q` in the following and consider the problem

s · ∇w + σ`,aw = K`w + q in D`,(25)

w− = Rw+ on ∂D`.(26)

As before, the reflection operator is defined by (Rg)(r, s) = s·n+1
s·n−1g+(r,−s), and the

particular form will become important now. Based on the derivation of the perturbed
problem, we know that q ≡ 0 and k` ≡ 0 in the extension layer ∂R` \ R.

5.1. Even-odd splitting. Following [10], we start with the splitting of functions
v(r, s) into even and odd parts with respect to direction s defined by

v±(r, s) =
1

2
(v(r, s)± v(r,−s)) .(27)

Let us note that the splitting v = v+ + v− is orthogonal with respect to the scalar
product of L2(S). This allows us to rewrite the problem (25)–(26) as follows.

Lemma 12. Let w ∈W 2(D`) denote a solution of problem (25)–(26). Then

s · ∇w− + σ`,aw+ = K`w+ + q+ in D`,(28)

s · ∇w+ + σ`,aw− = K`w− + q− in D`,(29)

w+ = s · nw− on ∂D.(30)

If, on the other hand, w± ∈ W 2(D`) solve (28)–(30), then w = w+ + w− ∈ W 2(D`)
is a solution of (25)–(26). The two problems are thus equivalent in this sense.

Proof. Let us note that multiplication with σ and application of K` preserves
parity, i.e., these operations map even to even and odd to odd functions, while ap-
plication of s · ∇ reverts the parity. Together with the orthogonality of the splitting
(27) this already shows the equivalence of (25) and (28)–(29). Using the definition of
the reflection operator, the boundary condition (26) can be rewritten as

(1− s · n)w(r, s) = −(1 + s · n)w(r,−s) for (r, s) ∈ ∂D`
−.

A reordering of the terms and inserting the definition of w± further yields

2w+(r, s) = w(r, s) + w(r,−s)
= s · n[w(r, s)− w(r,−s)] = 2s · nw−(r, s) for (r, s) ∈ ∂D`

−,

which shows that (30) is valid on ∂D−. Now note that the left- and right-hand side
of the last identity each define even functions of s. This shows that (30) also holds
on ∂D`

+. The equivalence of (26) with (30) follows by reverting the arguments.

5.2. Variational characterization. We can now use the equivalent formula-
tion (28)–(30) to derive a weak form of problem (25)–(26). The function spaces

W+ =
{
u+ ∈W 2

(
D`
)

: u+|∂D` ∈ L2
(
∂D`

)}
and V± =

{
u± ∈ L2

(
D`
)}

turn out to be appropriate for representing the even and odd solution components
of the problem under investigation. The tensor product space W+ × V− is equipped
with its natural norm given by

|||
(
u+, u−

)
|||2 =

∥∥s · ∇u+∥∥2
L2(D`)

+ ‖u+‖L2(∂D`) +
∥∥u+∥∥2

L2(D`)
+
∥∥u−∥∥2

L2(D`)
.(31)
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For ease of notation, we further define the total collision operator

C : L2(D`)→ L2(D`), v 7→ σ`,av −K`v.

We then obtain the following variational characterization of solutions.

Lemma 13. Let w ∈ W 2(D`) denote a solution of problem (25)–(26) or, equiva-
lently, of problem (28)–(30). Then for all v+ ∈W+ and v− ∈ V− there holds

(w+, v+)∂D` + (Cw+, v+)D` − (w−, s · ∇v+)D` = (q+, v+)D` ,(32)

(s · ∇w+, v−)D` + (Cw−, v−)D` = (q−, v−)D` .(33)

Proof. Recall that (u, v)M =
∫
M
uvdM denotes the scalar product of L2(M).

Multiplying (28) with a test function v+ ∈W+ and integrating over D` yields

(q+ − Cw+, v+)D` = (s · ∇w−, v+)D` = −(w−, s · ∇v+)D` + (s · nw−, v+)∂D` .

Here, we made use of the integration-by-parts formula (5) in the last step. The
boundary condition (30) allows us to replace the last term, and inserting the definition
of the collision operator C then already yields (32). The validity of (33) follows
immediately by testing (29) with v− ∈ V−.

Let us note at this point that, due to the particular reflection boundary condition,
no half-space integrals appear in the variational characterization of the perturbed
problem.

5.3. Weak formulation. We can now give the following weak formulation of
problem (25)–(26) and of the equivalent problem (28)–(30), respectively.

Problem 14. Find w+ ∈W+ and w− ∈ V− such that (32)–(33) holds.

Let us note that existence of a weak solution is immediately obtained from The-
orem 8 and Lemma 13. To show uniqueness and to facilitate the further discussion,
we will make the following assumption in what follows.

(A5) γ‖v‖2L2(D`) ≤ (Cv, v)D` ≤ Γ‖v‖L2(D`) for all v ∈ L2(D`) for some 0 < γ,Γ.

This condition is valid, e.g., if the medium is uniformly absorbing, and it implies
that the artificial absorption has to satisfy γ ≤ a ≤ Γ as well. Using the arguments
of [10, section 3.3], the assumption could be further relaxed. Due to (A5) the total
collision operator C : L2(D`) → L2(D`) is boundedly invertible, which allows us to
define norms

‖u‖2C = (Cu, u)D` and ‖u‖2C−1 = (C−1u, u)D` ,

which are equivalent to the norm on L2(D`), i.e., γ‖u‖2L2(D`) ≤ ‖u‖
2
C ≤ Γ‖u‖2L2(D`)

and Γ−1‖u‖2L2(D`) ≤ ‖u‖
2
C−1 ≤ γ−1‖u‖2L2(D`). By minor modification of the arguments

used in [10], we can now deduce the following assertion.

Theorem 15. Let (A1)–(A5) hold. Then problem (32)–(33) has a unique solution
w+ ∈W+ and w− ∈ V−, and there holds

|||(w+, w−)||| ≤ CD‖q‖L2(D)

with constant CD depending at most linearly on γ−1 and Γ. In addition, the function
w = w+ + w− ∈W 2(D`) coincides with the unique solution of (25)–(26).
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Proof. The proof of [10, Theorem 3.1] applies almost verbatim and yields the
existence and uniqueness of a solution as well as the a priori estimate

‖s · ∇u+‖2C−1 + ‖u+‖2C + ‖u+‖2L2(∂D`) + ‖u−‖2C ≤ C‖q‖2C−1

with a universal constant C > 0. Let us note that the change of the boundary
term does not affect the proof given in [10]. The postulated bounds for the so-
lution then follow using assumption (A5) and the equivalence of the norms ‖ · ‖C ,
‖ · ‖C−1 , and ‖ · ‖L2(D`). The last assertion follows by the uniqueness of the weak so-
lution and noting that, according to Lemma 13, the solution of (25)–(26) also solves
(32)–(33).

5.4. Galerkin approximation. Let W+
h ⊂ W+ and V−h ⊂ V− be closed sub-

spaces. We then consider the following Galerkin approximation of Problem 14.

Problem 16. Find (w+
h , w

−
h ) ∈W+

h × V−h such that

(Cw+
h , v

+
h )D` + (w+

h , v
+
h )∂D` − (w−h , s · ∇v

+
h )D` = (q+, v+h )D` ∀v+h ∈W+

h ,(34)

(s · ∇w+
h , v

−
h )D` + (Cw−h , v

−
h )D` = (q−, v−h )D` ∀v−h ∈ V−h .(35)

In order to ensure the existence of a unique discrete solution, we require the following.

(A6) W+
h ⊂W+, V−h ⊂ V− are finite dimensional and {s·∇w+

h : w+
h ∈W+

h } ⊂ V−h .

This condition guarantees the uniform stability of the discrete variational problem.
By the same arguments as used in [10, section 6], we then obtain the following results.

Lemma 17. Let assumptions (A1)–(A6) be valid. Then Problem 16 has a unique
solution (w+

h , w
−
h ) ∈W+

h × V−h , and

|||(w+
h , w

−
h )||| ≤ CD‖q‖L2(D)

with the same constant CD as in Theorem 15. Moreover,

|||(w+ − w+
h , w

− − w−h )||| ≤ C ′D inf |||(w+ − v+h , w
− − v−h )|||,

where the infimum is taken over all (v+h , v
−
h ) ∈ W+

h × V−h . The constant C ′D again
depends at most linearly on γ−1 and Γ.

Proof. The assertions result from application of the Babuška–Aziz lemma. Details
can be found in the proof of [10, Theorem 6.1].

Together with the results of section 4, we finally obtain the following error esti-
mate.

Theorem 18. Let (A1)–(A6) hold, and let u, w = w`,a, and (w+
h , w

−
h ) denote the

unique solutions of (1)–(2), of (25)–(26), and of Problem 16, respectively. Then

‖u+ − w+
h ‖W 2(D) + ‖u− − w−h ‖L2(D)

≤ CDe
−a`‖q‖L2(D) + C ′D inf |||(w+ − v+h , w

− − v−h )|||.

The infimum is again taken over all (v+h , v
−
h ) ∈W+

h ×V−h , and the constants CD and
C ′D depend at most linearly on γ−1 and Γ.

Proof. The result follows from the previous results via the triangle inequality.

Remark 19. The approximation error in the above theorem involves the function
w, which itself depends on the PML parameters ` and a. For uniformly bounded
parameters a, `, we can, however, expect convergence with N → ∞ and h → 0. Let
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2180 HERBERT EGGER AND MATTHIAS SCHLOTTBOM

us assume for simplicity that the best-approximation error can be bounded uniformly
in a and ` by inf |||(w+ − v+h , w− − v

−
h )||| = O(h). Then the optimal choice of the

parameters `, a would be such that e−`a ≈ h, where we neglect the at most linear
dependence of C ′D on a. Hence, it suffices to choose a or ` proportional to | log h|
in order to obtain a quasi-optimal overall approximation. We expect that such a
mild variation in the parameters will only have a small effect on the regularity of the
function w, which has to be approximated; see Table 3 and Figure 3 for a numerical
illustration. Let us also note that, in view of Theorem 10, inf |||(w+ − v+h , w− − v

−
h )|||

can replaced by inf |||(E`,au+ − v+h , E`,au− − v−h )||| in the estimate of Theorem 18,
which can be possibly made explicit under regularity assumptions on the solution u
of the original problem.

6. The PN -finite element method. We now discuss a particular construction
of approximation spaces W+

h and V−h using spherical harmonics and finite elements.

6.1. Angular approximation. As angular basis functions Hn in the moment
expansion (3), we employ the spherical harmonics Y m

l , −l ≤ m ≤ l, l ≥ 0 in the
sequel. These functions form an orthonormal basis for L2(S) and allow us to efficiently
realize the splitting (27), since Y m

2l and Y m
2l+1 are even and odd functions, respectively.

For the approximation of even and odd functions of angular variable s, we then
consider the spaces

S+N = span{Y m
2l , 0 ≤ 2l ≤ N,−2l ≤ m ≤ 2l},

S−N = span{Y m
2l+1, 0 ≤ 2l + 1 ≤ N,−2l − 1 ≤ m ≤ 2l + 1}.

Let us note that dim (S±N ) ≈ N2. We will later only consider the choice N odd;
necessary modifications for the case N even can be found in [10].

6.2. Spatial approximation. We denote by Th = Th(R`) a quasi-uniform reg-
ular partition of the spatial domains R` ⊂ R3 into simplicial elements T of size h and
assume that Th(R) = {T ∈ Th(R`) : T ⊂ R} is a conforming mesh of the original
domain R ⊂ R`. By Pk(Th) = {v ∈ L2(R`) : v|T ∈ Pk(T )}, we denote the spaces of
piecewise polynomials over Th of degree less or equal to k. For the approximation of
the even and odd moments un in the expansion (3), we utilize the spaces

X+
h = P1(Th) ∩H1(R`) and X−h = P0(Th) ⊂ L2(R`).

We denote by {ϕj} and {χk} the canonical basis consisting of hat functions and
piecewise constant functions, respectively, and recall that dim(X+

h ) ≈ dim(X−h ) ≈ h−3.

6.3. Tensor product spaces. As choice for the spaces W+
h and V−h in Prob-

lem 16, we then consider the following tensor product construction:

W+
h = X+

h ⊗ S+N and V−h = X−h ⊗ S−N .

By similar arguments as in [10, 22], one can show the following properties.

Lemma 20. Let W+
h and V−h be as above. Then dim(W+

h ) ≈ dim(V−h ) ≈ h−3N2.
If N is chosen odd, then assumption (A6) is satisfied.

Proof. The estimates for the dimensions are obtained directly from the tensor
product construction. By well-known recurrence relations for spherical harmonics,
one can further see that sY m

l is of the form [3, 22]

sY m
l =

a1lmY m−1
l−1 + b2lmY

m+1
l−1 + c3lmY

m−1
l+1 + d4lmY

m+1
l+1

a1lmY
m−1
l−1 + b2lmY

m+1
l−1 + c3lmY

m−1
l+1 + d4lmY

m+1
l+1

elmY
m
l−1 + flmY

m
l+1

 .
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Together with the assumption that N is odd, this implies that sS+N ⊂ (S−N )3. Since the
derivative of a continuous piecewise linear function is piecewise constant, we further
have ∇X+

h ⊂ (X−h )3. The compatibility condition in (A6) then follows directly from
the tensor product construction.

As a consequence of the previous lemma, all results presented in section 5 apply
directly to the PN -finite element method based on this choice of approximation spaces.

6.4. Complexity estimates. The choice of a basis for W+
h and V−h allows us

to recast the discrete variational problem (34)–(35) as a linear system,

Mw+ + Rw+ − B>w− = q+,

Bw+ + Cw− = q−,

where w+, w−, q+, q− are the corresponding coefficient vectors. When choosing the
natural tensor product basis with components {ϕjY

l
2m} for the even components and

{χjY
l
2m+1} for the odd components, the resulting system matrices can be seen to have

some favorable properties.

Lemma 21. Let assumptions (A2)–(A3) and (A5)–(A6) hold and a > 0. Then the
matrices M and C are symmetric and positive definite, and R is symmetric and positive
semidefinite. If the basis for W+

h and V−h are chosen as described above, then M and
R are block-diagonal with sparse blocks, B is block-sparse with sparse blocks, and C is
diagonal. Moreover, the number of nonzero entries is given by nnz(M) ≈ nnz(B) ≈
nnz(C) ≈ h−3N2 and nnz(R) ≈ h−2N2.

As a direct consequence of these properties, the multiplication with any of the
system matrices can be achieved in order optimal complexity.

Remark 22. In our numerical tests, we consider test problems with symmetries.
For instance, in section 7.2 we consider a two-dimensional cross-section R ⊂ R2 of
the three-dimensional domain while the angular domain still is S = S2. In that
case, the spatial mesh Th consists of triangles and dim(X±h ) ≈ h−2, and consequently
dim(W+

h ) ≈ dim(V−h ) ≈ h−2N2. All observations made above apply with obvious
modifications also to such settings.

6.5. Solution of the linear system. Let us finally also comment briefly on
the efficient solution of the linear system arising from the tensor-product PN -finite
element approximation. Since the matrix C is diagonal and positive definite, one can
eliminate w− via the second equation by

w− = C−1(q− − Bw+).(36)

Note that w− can be computed efficiently once the even component w+ of the solu-
tion is known. Inserting the formula for w− into the first equation yields the Schur
complement system

[M + R + B>C−1B]w+ = q+ + B>C−1q−.(37)

Using Lemma 21, the matrix S = [M+ R+ B>C−1B] is symmetric and positive definite.
Moreover, the matrix vector product S · w+ can be realized, even without assembling
S, with h−3N2 algebraic operations and thus in optimal complexity. For the efficient
numerical solution of the Schur complement system, we can employ a preconditioned
conjugate gradient (PCG) method. In our numerical tests, we utilize a spatial multi-
grid strategy for preconditioning, cf. [2, 7].
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2182 HERBERT EGGER AND MATTHIAS SCHLOTTBOM

7. Numerical illustrations. We now illustrate the theoretical results obtained
in the previous sections by numerical tests, which model physically realistic three-
dimensional problems that can be described by reduced models due to symmetries.

7.1. Slab geometry. We consider the spatial domain R = R2 × (0, 1) and
assume that all functions only depend on the third coordinate z and on the azimuthal
angle of the direction s via µ = cos θ. In this setting, the radiative transfer equation
with isotropic scattering reduces to

µ∂zu(z, µ) + σ(z)u(z, µ) =
σs
2

∫ 1

−1
u(z, µ′)dµ′ + q(z, µ),(38)

which is assumed to hold for all (z, µ) in the slab D = (0, 1) × (−1, 1). In addition,
we assume homogeneous inflow boundary conditions, which here read

u(0, µ) = 0 and u(1,−µ) = 0 for 0 < µ < 1.(39)

Let us recall that this quasi-one-dimensional setting, usually called slab geometry,
amounts to a three-dimensional problem with particular symmetries [5].

For discretization of the radiative transfer problem (38)–(39), we use a mixed PN -
finite element approximation outlined in the previous section. The spherical harmon-
ics are given here by Hn(µ) = Pn(µ), where Pn denotes the nth Legendre polynomial.
As in multiple dimensions, the even moments in the expansion are approximated by
continuous piecewise linear finite elements over a mesh of the spatial domain, and the
odd moments are approximated by piecewise constant functions.

For our computational tests, we set the parameters to σs = 1 and σ = 1.01,
which corresponds to a scattering dominated regime. The source density is chosen as
q(z, µ) = exp(−100(z − 0.5)2). Snapshots of the reference solution for problem (38)–
(39) obtained with our numerical methods with N = 1001 moments and nz = 1024
elements are depicted in Figure 2.

Let us note that the solutions seem almost indistinguishable, which is in perfect
agreement with the estimates of Theorem 18. In the following, we investigate the
behavior of the error(

‖uh − wa,`
h ‖

2
L2(D) + ‖µ∂z(u+h − w

a,`,+
h )‖2L2(D)

)1/2
(40)

Fig. 2. Numerical solutions as functions of 0 < z < 1 and −1 < µ < 1 for slab geometry with
N = 1001 moments, nz = 1024 mesh elements, and standard boundary conditions (left) and ap-
proximation with N = 101 moments, nz = 128 mesh elements, and PML treatment of the boundary
condition with a = 3 and ` = 0.15 (right).
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Table 1
Observed errors ‖uh−wa,`

h ‖ between finite element solution uh with standard boundary condition

and the solution wa,`
h based on the PML approach with parameters a and ` of the layer with norm

as in (40). In both cases, the discretization parameters were chosen as N = 1001 and nz = 512.

`

a 0.0 0.1 0.2 0.3 0.4

1.0 0.1084 0.0687 0.0456 0.0308 0.0214
2.0 0.1084 0.0456 0.0215 0.0107 0.0056
3.0 0.1084 0.0310 0.0108 0.0041 0.0017
4.0 0.1084 0.0215 0.0057 0.0017 0.0006
5.0 0.1084 0.0152 0.0031 0.0007 0.0003

Table 2
Observed errors |||wa,` − wa,`

N,h||| for the finite element solutions in dependence of the discretiza-

tion parameters for the mixed problem with PML boundary conditions with a = 3 and ` = 0.2.

N

nz 21 41 81 161 321

64 0.0407 0.0181 0.0133 0.0131 0.0131
128 0.0391 0.0141 0.0071 0.0067 0.0067
256 0.0387 0.0129 0.0043 0.0034 0.0033
512 0.0386 0.0126 0.0032 0.0018 0.0016

in dependence of the two terms in the right-hand side of the corresponding error
estimate in more detail.

In Table 1, we display the errors introduced by the numerical handling of the
boundary conditions via the PML approach for different model parameters a and `.
As predicted by the estimates of Theorem 10, we can observe exponential convergence
in both model parameters, i.e., in the thickness ` and in the absorption coefficient a
of the PML layer. In fact, as expected, the relevant parameter is a`. The error to
the reference solution is ‖u − uh‖ = 0.001, which shows that the consistency errors
introduced by the PML approach can be made small compared to the approximation
errors that result from the finite element discretization. Let us also note that much
smaller errors are obtained with respect to the zero order moment, which contains
the most valuable information in practice.

As a next step, we study in more detail the approximation error estimates stated
in Lemma 17 and Theorem 18. In Table 2, we display the errors in the numerical
solution measured in the norm ||| · ||| defined in (31). As a reference solution, we choose
the one obtained with the same methods but the finest discretization with N = 1001
moments and nz = 1024 mesh elements.

For any fixed number of moments N , we observe convergence O(h) with respect
to the mesh size h = 1/nz, until saturation occurs due to the error of the truncated
moment approximation. Vice versa, we also observe convergence with respect to N
until saturation due to the spatial approximation occurs. The overall convergence
behavior can be expected in view of the results of Theorem 18, since for fixed PML
parameters a, `, the function w = w`,a in the estimate does not change.

The overall convergence behavior of the error defined in (40) for a` = ln(1/h) is
presented in Table 3. This choice of a and choosing N = nz = 1/h, yields the rate
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2184 HERBERT EGGER AND MATTHIAS SCHLOTTBOM

Table 3
Observed errors ‖u − wa,`

h,N‖ between finite element reference solution with standard boundary

condition and the solution wa,`
h,N based on the PML approach with parameters a = ln(1/h)/` and

` = 0.1 measured in the norm defined in (40).

N

nz a 51 101 201 401 801

64 44.36 0.0277 0.0264 0.0263 0.0263 0.0263
128 47.77 0.0143 0.0118 0.0116 0.0116 0.0116
256 54.60 0.0098 0.0060 0.0056 0.0055 0.0055
512 62.63 0.0082 0.0034 0.0029 0.0028 0.0027

1024 69.59 0.0076 0.0022 0.0016 0.0014 0.0013

Fig. 3. Decay of the norms ‖un‖L2(0,1) (left) and ‖w`,a
n ‖L2(−`,1+`) (right) of the moments

for the two numerical solutions with standard and PML boundary condition and layer parameters
a = 30 and ` = 0.1.

O(h). The previous computations suggest that the assumptions of Remark 19 are
reasonable for our example.

Let us briefly comment on the smoothness of the solutions u and w`,a for the
model with standard and PML boundary conditions. In Figure 3, we visualize the
decay of the moments un and wn in the corresponding spherical harmonics expansions
for the two reference solutions u and w`,a computed on the finest grid with N = 1001
moments and nz = 1024 elements. Let us note that the decay of the moments is very
similar for both variants of the boundary conditions, and one can therefore expect a
very similar convergence behavior with N →∞. Let us also note that the decay of the
moments slows down for large N . This can be explained by a lack of smoothness of
the solution close to the boundary, which is due to the homogeneous inflow boundary
conditions, i.e., the discontinuity of µ 7→ u(0, µ) for µ = 0.

Let us close this section by verifying numerically the efficiency of the PML ap-
proach, which we indicate in section 6.4. Let

u(z, µ) = sin(πz)χ(0,1)(µ)(41)

with χ(0,1) being the characteristic function of the interval (0, 1). We choose σ and
σs as above and define q(z, µ) such that u(z, µ) is the exact solution to the radiative
transfer equation (38). Due to the nonsmoothness of u with respect to µ, we expect
that N needs to be large in order to obtain a good approximation. Table 4 shows
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Table 4
Observed errors between the exact solution u defined in (41) and the finite element solution

uh,N with standard boundary condition and the solution wa,`
h,N based on the PML approach with

parameters a = 10, ` = 0.1 and nz = 128 measured in the norm defined in (40). The solution is
obtained after k CG iterations with tolerance 10−5 in t seconds CPU time.

Standard PML

N ‖u− uh,N‖ t k ‖u− wa,`
h,N‖ t k

511 0.0176 1.74 1614 0.0176 1.73 1608
1023 0.0125 4.42 1647 0.0125 3.60 1634
2047 0.0089 12.98 1684 0.0089 7.44 1650
4095 0.0066 49.79 1697 0.0066 15.70 1650

the errors as well as the computation times for the standard approach and the PML
approach. We observe a convergence of the error of order 1/

√
N for both methods,

which fits to the regularity of u. The errors for both approaches are almost identical.
As already observed in Table 3, the PML treatment of the boundary conditions again
introduces only a minor perturbation. A similar reasoning as in section 6.4 shows that
the memory complexity and the computational complexity of matrix-vector multipli-
cations for the standard approach is O(h−1N2), while the corresponding complexities
for the PML approach are O(h−1N); i.e., the expected runtimes for the PML approach
grow linearly in N , while for the standard approach the runtime grows quadratically
in N . These theoretical estimates are verified by the computations shown in Table 4.
In addition, we observe that the conjugate gradient method requires almost the same
number of iterations for the corresponding approaches, which indicates that the condi-
tioning of both systems is similar, and thus the enhanced complexity of matrix-vector
multiplications in the PML approach directly translate into an enhanced performance
of the overall solution process.

7.2. Checkerboard test. The potential of the proposed method to solve large-
scale problems is illustrated by computational experiments for a lattice problem, which
is used as a test case for simulating the core of a nuclear reactor in the nuclear
engineering communities. The geometric setup of the problem, the absorption, and
the scattering parameters are depicted in Figure 4. The source is defined as q(r, s) = 1
for 3 ≤ r1, r2 ≤ 4, s ∈ S and q(r, s) = 0 else. Since the coefficient functions and the

Fig. 4. Sketch of the computational setup. Left: Extended absorption parameter with e−a` =
1/32 on R` \ R. Middle: Extended scattering coefficient on R`. The domain R is enclosed by the
dotted line. Right: log10-plot of the angular average of the reference solution.
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Table 5
Observed errors between the finite element solutions computed on the reference grid for different

layer parameters a with norm defined in (42).

e−a` 1/2 1/4 1/8 1/16

‖wh,N − w`,a
h,N‖ 0.00146 0.00068 0.00035 0.00014

source term have jump discontinuities, we expect that good numerical approximations
require large N . In this case, the implementation of inflow boundary conditions using
half-space integrals (4) is not practical; refer to section 7.3 for an in-depth discussion.
Therefore, we confine ourselves to show exponential decay of the error in terms of
the layer parameter a` and that our method can be used to compute high-order PN -
approximations efficiently.

We compute a reference solution wh,N = w`,a
h,N for e−a` = 1/32 on a grid with

332 929 vertices, 663 552 triangles, and spherical harmonics of order N = 31, i.e.,
1 024 Fourier coefficients; see Figure 4 for a plot of the mean of the reference solution.
The number of degrees of freedom for approximating the solution is 515 488 240, which
amounts to nearly 4GB of memory to just store the even and odd parts of the solution.
For the even part we have 165 132 784 degrees of freedom. Table 5 shows the error(∥∥∥wh,N − wa,`

h,N

∥∥∥2
L2(D)

+
∥∥∥s · ∇(w+

h,N − w
a,`,+
h

)∥∥∥2
L2(D)

)1/2

(42)

of the finite element approximation computed on the same grid but for different damp-
ing parameters a to the reference solution. As predicted by theory, the error decays
exponentially. Regarding the efficiency of the numerical solver, we have observed that
the number of PCG iterations only slightly increases with N but is robust in a`. More
precisely, the number of PCG iterations decreased from 270 for e−a` = 1/2 to 226
for e−a` = 1/32. We observed this favorable behavior, which can be explained by the
fact that the numerical solution is close to zero in the absorbing layer, in several other
numerical tests as well.

7.3. Fully three-dimensional problem. For three-dimensional problems the
approximation of inflow boundary conditions with PN -methods leads to large-scale
computations. Since the matrices B, C, and M exhibit a tensor product structure, they
can be stored efficiently. This is, however, not the case for the matrices that arise
from the discretization of the half-space integrals (4), which introduce a coupling of all
spherical harmonics. In order to illustrate this issue, we provide in Table 6 the memory
requirements of the matrices of the corresponding boundary functionals, where we
used a workstation with 16GB of memory. As a computational domain we have chosen
the unit ball in R3. We clearly see the quadratic growth in terms of memory with
respect to the spatial mesh size h as well as the growth to fourth order in the order
of the spherical harmonics N ; i.e., the memory requirements for the boundary terms
are of the order h−2N4. This growth, in terms of N , makes PN -methods with the
standard implementation of inflow boundary conditions prohibitive for computations
in fully three-dimensional geometries if the problem admits solutions with a nontrivial
dependence on s. As estimated in section 6.4, the memory requirements for the PML
approach are O(h−3N2), cf. Table 6, while the standard approach requires O(h−3N2+
h−2N4) memory. Thus, if N ≥

√
1/h is required for an accurate approximation of

the exact solution, the PML approach has better computational complexity than

D
ow

nl
oa

de
d 

09
/1

0/
19

 to
 1

30
.8

9.
3.

19
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

PML FOR RADIATIVE TRANSFER 2187

Table 6
Memory requirements for the matrices approximating the inflow boundary conditions via dis-

cretization of half-space integrals (top), where oom means out of memory, and the same for the fully
assembled boundary functional of the PML approach (bottom), which could be reduced to 620kB if
the tensor product structure were used.

N

h 9 11 13 15 17

0.12 70MB 151MB 287MB 500MB 812MB
0.06 282MB 605MB 1.12GB 1.95GB 3.17GB
0.03 1.11GB 2.37GB 4.5GB oom

0.12 1MB 2MB 3MB 3MB 4MB
0.06 6MB 8MB 11MB 15MB 19MB
0.03 27MB 40MB 55MB 73MB 93MB

the standard approach, because matrix-vector multiplications can be performed with
optimal complexity in our PML approach. Note that Table 3 indicates that a choice
N ∼ 1/h, or, in view of Table 4, even N ∼ 1/h2, seems to be an adequate choice if
the overall error should be O(h). Thus, using the PML approach, it is attractive to
employ iterative solvers, such as the PCG method that we used above.

8. Discussion and further applications. We have presented a PML approach
for the efficient treatment of vacuum boundary conditions in radiative transfer. The
choice of reflection boundary condition on the boundary of the extended domain was
specifically tailored to obtain a mixed variational formulation that leads to sparse
linear systems and can be implemented easily. The theory is supported by extensive
numerical simulations (i) verifying the predicted convergence and (ii) showing the su-
periority in terms of memory requirements compared to the standard approximation
using half-space integrals. These low memory requirements are key for large scale
computation in three-dimensional problems. In view of our detailed error estimates,
it seems possible to analyze different artificial boundary conditions for the extended
problem as well. As mentioned in the introduction, a relevant case is periodic bound-
ary conditions, which in turn can be used to develop pseudospectral methods; see
[18]. Besides different boundary conditions it seems possible to generalize our results
to nonconstant extensions of the absorption coefficient as long as sufficient decay of
the solution within the absorbing layer is guaranteed. Finally, let us briefly comment
on a further possible application of the theory.

Least-squares formulations. A powerful method for the solution of first order
equations is the least-squares approach that has been developed for the radiative
transfer equation in [15] and has been widely used [12, 21]. The basic approach is to
minimize the functional

‖s · ∇u+ Cu− q‖2L2(D) + ‖u‖2L2(∂D−;|s·n|)

in the spaceW2 = {v ∈W 2(D) : v|∂D− ∈ L2(∂D−; |s·n|)}. Here, the homogeneous in-
flow boundary conditions are approximated by incorporating the boundary functional
‖u‖L2(∂D−;|s·n|). As mentioned in the introduction, the numerical approximation of
such half-space integrals makes the numerical realization of the minimization problem
difficult. Based on the approach of this paper, it is natural to investigate minimization
of the functional
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∥∥s · ∇w̄`,a + C`,aw̄`,a − q`
∥∥2
L2(D`)

+
∥∥w̄`,a

∥∥2
L2(∂D`)

in the space W` = {v ∈ W 2(D`) : v|∂D` ∈ L2(∂D`)}. This is currently under
investigation by the authors.
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