
Chapter 3
Energy-Aware Robotics

Stefano Stramigioli

Abstract This chapter has a tutorial nature in introducing a number of useful
concepts which resulted by reasoning with power ports rather than with signals,
as people usually do in control. Arjan is one of the Godfathers in this way of thinking
and he has been a pioneer in bringing these concepts to a new level, introducing
proper geometry, a sound system theoretic basis and divulgating these issues. This
chapter shows how, by using these concepts, it is possible to address or solve certain
problems in robotics, control and passivity in a simple and straightforward way. It
also presents a formal proof of a claim which is often used as a conjecture and which
gives theoretical arguments to counteract the statement which is often used against
passivity and saying that passivity is too restrictive and stability is what should be
looked for. Many of the concepts reported in the chapter have been the results of
discussions with Arjan or are still issues that I amworking on with Arjan. It is a great
pleasure and honour to have the opportunity to contribute in this way to a recognition
of the incredible career of a college and friend for which I have incredible respect
from an intellectual and personal point of view.

3.1 Introduction

In many applications of robotics, a controlled robot does interact mechanically with
the environment. This interaction means, in system theoretic terms, that the dynam-
ics of the controlled system changes. This change is completely unknown in general
and it is, in the opinion of the author, not meaningful in any sense to make hypoth-
esis of linearity, structure or whatsoever of the environment and therefore of this
possible change. Furthermore, this change can be discontinuous considering that for
example, due to dynamic interaction, bouncing could occur and a consecutive and
unpredictable contact/no-contact situation could occur. On the other hand, the robot
will physically interact with the environment and the interaction will follow physical
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laws, like action and reaction and the first principle of thermodynamics of energy
conservation. The first one to specifically address this issue in robotics was Neville
Hogan in his famous trilogy [3]. Unfortunately, in the opinion of the author, the core
message of Hogan has been often misinterpreted in the robotic literature [14]. From
a more systematic and geometrical point of view, the modelling of interaction and
behaviour has been presented in [10] and more extensively in [8].

This interaction can be effectively modelled with the concept of a power port
known in network theory. The concept of power ports was the basis and essential
element used by Paynter in the introduction of Bond Graphs [6]. In Bond Graphs the
topology of energetic flows is given the main importance rather than the topology of
the physical elements composing the system to be modelled.

A fundamental analysis of methods explaining the basis of bond graphs and their
thermodynamical importance has been done by Breedveld [1]. The work of Arjan
and Bernhard Maschke on port-Hamiltonian systems together with the deep insight
of Peter Breedveld, have started in [5] a new line of research called port-Hamiltonian
system theory, which gives a sound system theoretic basis to the use of port concepts
in modelling and control. Arjan and Bernard Maschke have been the pioneers in this
line of research and have extended these concepts very elegantly also to distributed
parameter systems [13].

The implication of this theory and approach in robotics is unfortunately under-
estimated, but in the opinion of the author it is the only proper paradigm which can
be used to control physical systems which, by their very existence, interact with a
physical world where physical energy transfers dictate the way such interaction takes
place. The title specifically names “energy awareness” rather than passivity, because
the paradigm and ideas presented do not limit in any way the design space of control,
but do give methods in order to keep track of the energy flows as a consequence of
certain actions in control of robotic systems.

3.2 Why Bother About Power Ports and Energy?

Aportmodels themeanbymeans ofwhich energy canbe exchangedbetween systems
or parts of a system. It can be also used to properly model the interaction between a
robot and the environment. Ports can be also used to model the interaction between
the actuators of the robot and the robot itself. We can therefore model in this context,
any robotic mechanism as a physical system having two multidimentional ports:
one modelling the interaction and energy exchange of the robot with the (unknown)
environment and onemodelling the interaction and energy exchange of the robot with
the actuators via which we can modify and shape the robot behaviour via control.

A port is model mathematically with the direct product of a vector space and its
dual as

P := V × V∗ (3.1)
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Fig. 3.1 Representation of a
power-port to interconnect
two systems A and B
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in which we can call V the space of flows and V∗ the space of efforts or the other
way around by dualisation.

Depending on the situation, V van be a scalar, a finite or an infinite dimensional
vector space. In the last case, n-forms and Poincaré duality can be used as intro-
duced in [13]. Considering that a port is the interface between two “independent”
systems, the mathematical formulation describing the port should not be dependent
on the states of the two systems and at the same time should be representable at the
“input/output” structure of the two system. In multibody dynamics, this is achieved
using the structure of Lie groups, in which the port vector space V is modeled with
a Lie algebra, which is not dependent on any element of the group.

A port should also have an orientation indicating the positive direction of power.
In bong-graphs, the direction of a port is indicated with a half arrow as shown in
Fig. 3.1. Due to the structure of the port, it is then possible in each instant of time to
calculate the power flowing in the positive direction as

P = e( f ). (3.2)

Alternatively, by using scattering, the interaction could be represented by wave vari-
ables, also known as scattering variables, which can be geometrically defined for
finite [9] and infinite dimensional systems [4] in a geometric way. The difference
with this formulation is that the power transfer can be then expressed as an algebraic
sum of quantities related to the scattering variables rather than a dual-pairing/product
of efforts and flows. This approach has some great advantages in certain situations
where the energy transport between the two systems is subjected to physical delay.
This has brought to novel insight in geometrical telemanipulation [9].

3.3 The Intrinsically Passive Control (IPC) Framework

In [8], the author has introduced a paradigm called Intrinsically Passive Control.
The proposed architecture for a controlled robot interacting with the environment is
represented in Fig. 3.2. The basic idea is that, as indicated previously, a robot can be
modeled as a physical system having two ports, one with the environment and one
with the actuators controlled by the control system. The suggested paradigm is that
the control should be conceived as a system which will be coupled using the port
structure of the actuators to the control robot. The controller, which is implemented
in discrete time, is composed of an Intrinsically Passive Controller (IPC) part and a
Supervisor part which can inject energy and control the Robot via the IPC controller.
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Fig. 3.2 IPC Supervision architecture

This structure has this form because in this way, if the supervisor will not inject
energy via the IPC, the energy which can enter the Robot–IPC pair, can only come
from the environment. The IPC can be designed on the basis of a model of the
Environment, but due to its passive nature, if the Environment will not be as expected,
if the supervisor does not inject energy, the interaction will be always passive. This
follows the paradigm of what is called Control by Interconnection [12].

As it will be formally proved in the next section, if the controlled robot would not
be passive seen from the environment side, there exist possible passive environments
which would destabilise the system when connected to it.

3.4 Passivity as a Must

But why is the concept of port in robotics so important? In robotics the control
of robots which interact with an unknown environment should happen stably in
interaction with any kind of environment for clear reasons of performance, but more
important safety. As said before, once a robot is interconnectedwith the environment,
the stability analysis is onlymeaningful if the environment is considered as part of the
system. Unfortunately, very simplistic and unrealistic models of the environment are
used like elastic, purely linear, unilateral or variations of it. The value of such stability
proofs is highly discussable considering they only prove stability for a very specific
environment. The author argues that in control of systems coupled or interacting with
unknown systems, a different paradigm and analysis is necessary as introduced in
the previous section.

In this context, the following claims are made:

NP Anecessary condition for having stable interactionwith an unknownenvironment
is that the controlled robot should result in a passive behaviour seen from the port
which interacts with the environment

IPC A necessary condition for achieving the previous point is that, for a physical
robot, which is clearly passive as seen composed of a physical system with an
interconnection port and a control port, where the controller can supply and drain
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energy via actuators, the control should be done via interconnection and should
be passive by itself following the IPC paradigm.

The previous claims are at this point conjectures which can be specified more
clearly in the following problems statements:

Passivity Control Robot (PCR) If a controlled robot is not passive seen from the
environment port, there is always a (passive) environment which can destabilise
the interconnected system.

Not Passive State FeedBack (NPSF) For any passive robot, a general control which
does not specifically address passivity as a port interconnection (IPC), there is
always an environmentwhich could result in an unstable interconnected behaviour
as described in PCR.

Characterisation of Stable Active Environment (CSAE) Given a Robot controlled
passively via interconnection (IPC), we can characterise the active environments
which would result in a stable interconnected behaviour.

The argument PCR is important because it proves NP. The argument NPSF could
formally prove that the only proper and safe way to control interactive systems
should use the IPC methodology for robustness and that any other state feedback
cannot ensure stable behaviour under uncertainty of the plant. Last but not least,
CSAE would give a method to characterise and relax hypothesis on the passivity of
the environment or humans, as often criticised in the haptic literature. In this work
PCRwill be formally proven. NPSF and CSAE are conjectures at this stage and work
is in process to see if they can be formally proved, maybe with extra conditions.

3.4.1 The PCR Problem

The following theorem is a formal proof of PCR.

Theorem 3.1 Given a non-passive system Σ with input output pair (u, y), there
always exist a passive system Σ̄ which connected to Σ will give rise to an unstable
behaviour of the interconnection of Σ and Σ̄ .

Proof Non-passiveness of Σ implies that ∃ ū(t) such that the integral of minus
the supply rate is unbounded, which means we can extract infinite energy from the
system. Indicate with ȳ(t) the output corresponding to the input ū(t). This means
that we can define the extracted energy function Ho(t) as

Ho(t) =
∫ t

0
〈ū(s)|ȳ(s)〉ds (3.3)

By construction limt→∞ Ho(t) = ∞. This implies that due to the continuity of
Ho(t), ∃ a bounded Hmin := mint Ho(t).
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We will now constructively define a passive system Σ̄ which will generate the
input ū(t).

ẋ = n(t)ỹ (3.4)

ũ = n(t)
∂ H

∂x
(3.5)

with H(x) = 1
2 x2 and n(t) = ū(t)

∂ H
∂x

. It is easy to see that the previous system is passive

(even conservative) with storage function H(x). By initialising x(0) = √
2Hmin + Δ

for any Δ > 0, it can be seen that by construction ∂ H
∂x (t) > 0 ∀t > 0 and it is

therefore always possible to calculate ū(t). By setting as interconnection ũ = ū and
ỹ = ȳ, we by construction have that

lim
t→∞ H0(x) = lim

t→∞ H(x) = ∞ ⇒ x → ∞

which proves instability of the coupled system having a state diverging.

The previous proof is simple and reasonably straightforward, but the theorem’s impli-
cations are far reaching. First of all, the theorem is general and nonlinear. This means
that, if a controlled robot is not passive, it is possible to construct an environment,
maybe by a second controlled robot, which would be passive and if connected to the
original robot would result in an unstable system. This clearly gives a strong reason
to create a passive behaviour for any robot which would potentially interact with an
unknown environment in order to ensure stable and safe behaviour.

3.5 Connecting to the Discrete World

Everything done so far is treated in continuous time. One important issue in practical
applications is that clearly, the controller will be implemented digitally. In order for
this framework to be solid, we therefore need a way to couple the continuous and
discrete world which will not violate the energy balance and therefore which will not
create or distroy energy in the coupling between the continuous and discrete world.
This has been introduced in [11] and will be recalled hereafter.

Consider the port interconnection of a continuous time Hamiltonian system HC

and a discrete Hamiltonian system HD through a sampler and zero-order hold. Sup-
pose that HC has an admittance causality (effort in/flow out) and therefore HD has
an impedance causality (flow in/effort out).

During the dynamic evolution of the two systems between time kT and (k +1)T ,
where T is the sampling time and k is a positive integer, the effort supplied to HC

by HD will be constant due to the zero-order hold assumption. We will indicate this
value as ed(k). If we indicate the power port at the continuous side with (e(t), f (t)),
we clearly have
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e(t) = ed(k) t ∈ [kT, (k + 1)T ]

By looking at the energy flow towards the continuous system, we can see that if
we indicate withΔH in

C (k) the energy which flows through the input power port from
time kT up to time (k + 1)T , we obtain

ΔH in
C (k) =

∫ (k+1)T

kT
eT

d (k) f (s)ds

= eT
d (k)

∫ (k+1)T

kT
f (s)ds

= eT
d (k) (x((k + 1)T ) − x(kT ))

(3.6)

where we indicated with x() the integral of the continuous time flow f (t).

Remark 3.2 It is important to realise that, inmost usefulmechanical applications like
haptics, ed(k) will correspond to forces/moments that a controller would apply to an
inertial element. In this case, x() would be nothing else than a position measurement
of the masses the controller pushes on.

It is now straightforward to state the following theorem:

Theorem 3.3 (Sample Data passivity) If in the situation sketched before, we define
for the interconnection port of HD

fd(k) := x(kT ) − x((k + 1)T )

T
, (3.7)

we obtain an equivalence between the continuous time and discrete time energy flow
in the sense that for each n:

n∑
i=1

eT
d (i) fd(i) = −

∫ nT

0
eT (s) f (s)ds (3.8)

Remark 3.4 It is important to notice that the exact equivalence is achieved only by
the definition of Eq.3.7 in which x() is usually the easiest variable to measure in real
applications. The negative sign appearing in Eq.3.8 is consistent with the fact that
the power flowing into the continuous system is minus the power flowing into the
discrete side.
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Fig. 3.3 Representation of a
power-port to interconnect
two systems Σ1 and Σ2
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3.6 Energy Routing

An important techniquewhich has been originally introduced byDuidam and Strami-
gioli in [2] and called by Ortega DSER in [7] (Duindam Stramigioli Energy Router)
allows to direct energy flows without compromising passivity.

3.6.1 Controlling the Energy Directions and Magnitude
Among (Sub)systems

To introduce this, with reference to Fig. 3.3 let us start from the situation in which
only two ports are considered connecting two systems Σ1 and Σ2 and indicated
with (u1, y1) ∈ V1 × V∗

1 and (u2, y2) ∈ V2 × V∗
2 and for which we indicated

inputs and outputs of the two systems with ui and yi , respectively, for i = 1, 2. For
simplicity of exposition, let us consider V1 = Rn and V2 = Rn . A power continuous
interconnection of the two systems is implemented by using the following relations
which correspond in bond graphs to a multidimensional transformer or gyrator

u1 = n y2 (3.9)

u2 = nT y1 (3.10)

where n and nT is any linear map and its dual. Clearly, we have that

uT
1 y1 = yT

2 nT y1 = yT
2 u2 (3.11)

which proves energy continuity. In the previous relation, n can be changed contin-
uously or discontinuously and independently of its value the power continuity will
hold by construction. We can therefore vary n also as function of the port variables,
creating effectively a system which allows energy flow only in a specific direction.
Suppose for example we want to force energy flowing from Σ2 to Σ1. This can be
achieved simply by enforcing the direction of the power. Considering the positive
power of Fig. 3.3 goes from Σ2 to Σ1, we want to achieve yT

1 u1 > 0 indicating
positive power flow toward Σ1. Using Eqs. (3.9) and (3.10) this can be done by
choosing

n = αy1yT
2 (3.12)
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for a positive α. It is easy to see that by this construction a negative α will force a
flow of energy in the opposite direction and its magnitude will control the amount
of energy transfer. At all effects, α can be used to control the amount and direction
of energy flow. It is also important to notice that energy will follow in the direction
controlled iff energy is available which will result in values of yi �= 0.

This construction can be easily generalised to the situation in which instead of a
two port, we consider a multidimensional Dirac structure connecting n systems Σi

for i = 1, . . . , n. Suppose that by convention, all positive orientations are chosen
towards the systems that the Dirac structure connects. In this case, using the same
kind of notation, we would have by power continuity that

yT
1 u1 + · · · + yT

n yn = 0 (3.13)

and this will have to be realised by a relation of the form

⎛
⎜⎝

u1
...

un

⎞
⎟⎠ = S

⎛
⎜⎝

y1
...

yn

⎞
⎟⎠ (3.14)

where S can be a skew symmetric matrix of proper dimension: ST = −S. Suppose
it is the goal to control the flow direction and magnitude of energy to the first system
yT
1 u1. We have that

yT
1 u1 = yT

1 S1

⎛
⎜⎝

y2
...

yn

⎞
⎟⎠ (3.15)

where (0 S1) is the first row of the sknew symmetric matrix S. By clearly choosing

S1 := α1y1
(
y2 · · · yn

)
(3.16)

we can by choosing α1 choose the direction and magnitude of power flow towards
system Σ1 and this will fix the first row, and for the skew symmetric constraint
column, of the matrix S. By proceeding in a similar way, it would be possible to
use the extra degrees of freedom still available in the choice of the matrix S in
order to select other energy flows to the remaining systems. A similar analysis could
also be carried out by using scattering which would directly represent positive and
negative energy flows towards the systems and from the systems attached to the Dirac
structure.
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3.6.2 Energy Tanks and Tracking

Another way to use energy routing is to keep track of the energy which is used to
perform a certain operation. This can be used to prevent instability of certain control
actions. Suppose for example to control a robot which interacts with an unknown
environment, a general control law which would not specifically monitor the amount
of energy injected to the system, could potentially destabilise an interaction with an
unknown environment as proven previously, if the energy would not be bounded by
a passive behaviour. It is therefore useful to have a strategy which is able to allocate
a certain energy budget to perform a specific operation and take proper actions if
this amount of energy has been used. This action may be to adapt the control to
prevent instability, or to analyse the situation and possibly adapt the control strategy
providing extra energy. This is why the author talks about energy awareness rather
than passivity which could seem restricting the applicability of the paradigm.

Consider the energy tank to have an associated positive definite energy function
H(s) = 1/2s2 with s a scalar. The energy budget can be initialised by a proper initial
value of s. Assume to have n subsystems as in the previous section which need to
be controlled and assume to have a control law u = f (x, y) where u represents
the column vector of all inputs, x the vector of states of the systems and y the dual
outputs of u. To have power continuity we can consider the following interconnection
between the energy tank and the systems:

⎛
⎜⎜⎜⎝

ṡ
u1
...

un

⎞
⎟⎟⎟⎠ = S

⎛
⎜⎜⎜⎝

∂ H
∂s
y1
...

yn

⎞
⎟⎟⎟⎠ (3.17)

again with a skew symmetric matrix S and also considering that Ḣ = ∂ H
∂s ṡ.

It is possible to show that, under the condition that ∂ H
∂s �= 0, it is possible to

calculate a skew symmetric matrix S which satisfies the control relation u = f (x, y)

and at the same time monitors the energy necessary for that action by the value of the
energy function H . By only monitoring the scalar s is therefore possible to see when
the available budget of energy has expired. This simple idea, paradoxically can be
used to “passivise” any control law, but building a safety mechanism which would
prevent to inject indiscriminate energy into a control system leading to instability. In
other words, we can implement the control law u = f (x, y) until the energy set in
the beginning is finished and then switch to a different control action to prevent loss
of passivity and ensure stable interaction with any passive environment as proved in
Theorem 3.1.
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3.6.3 Projections

In many robotic applications it is useful to use projectors operators in order to imple-
ment certain control strategies. For example, in case of under-actuation, it is not
possible to servo a complete force which would be desired, but that should be first
projected on the subspace of forces which are implementable. If this projection is
done naively, it can result in loss of passivity. By using the method shown in the
previous section it is possible to monitor the energy consequence of such actions, but
for the sake of clarity and with a didactical goal, hereafter, the example of projections
will be further constructed.

Consider a control law which would calculate the applied force F to an under-
actuated robot. Assume the motion of the robot can be measured and let us indicate
with ẋ its velocity. From a port point of view, the controlling port of this robot would
then be (ẋ, F) and FT ẋ would be the power supplied to the robot. Suppose that, for
reasons which are not going to be discussed here, we want to apply to the robot an
elastic force with some specific geometrical properties. We can create consistently
an elastic force by defining an elastic energy function H(x) which, after integrating
the velocity of the robot ẋ could calculate the force to be applied as F = ∂ H

∂x .
Unfortunately, due to the under-actuation of the robot, we first need to project the
gradient of H to the subspace of applicable forces. If we indicate with P such a
projection, we could indicate the control law with:

F = P
∂ H

∂x
. (3.18)

Unfortunately, such an operation alone would break passivity considering that this
operator is acting only on the force and not dually on the velocity. The passivity
could be recovered by integrating for the state of the spring PT ẋ rather than ẋ , but
this would drastically change the control law because the state of the spring would
not be anymore representing the configuration of the robot. This paradox is showing
that such a projection on the force only, will inject or extract energy from the system
and if we are able to exactly monitor this, we can prevent that the projection action
would result in loss of passivity and possibly an unstable behaviour. What we can
do is therefore specifically to model the energy which is necessary to recover this
passive behaviour. This can be clearly done by framing the control operation of the
projection as a general control law u = f (x, y) as explained in Sect. 3.6.2 but we
will do it constructively hereafter, in order to give better insight.

Let us indicate with v = ẋ the real velocity of the robot and with v̄ := PT v. If
we want to conserve the integration of v rather than v̄ for the state of the controller,
we can model this by adding a new power port and using what in bond graphs is
called a 0-junction (representing one ofKirchhoff’s laws), which is an elementwhose
connected bonds all have the same effort F and forwhich the flows sumalgebraically:
v = Δv + v̄. We can now model the energy used for “balancing” the projection, with
a new storage element (energy tank) which we can represent with an energy function
H̄(s) = 1

2 s2. By then setting
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Δv = C
∂ H̄

s
(3.19)

ṡ = CT F (3.20)

and choosing

C = (v − v̄)/
∂ H̄

∂s
(3.21)

we can easily check that, as long as s > 0, and there is energy available in the tank,
the projection operator will achieve the original goal without the shortcoming of
losing information about the pose of the robot in the elastic control and by having an
exact quantification of the energy which such an action requires. If we furthermore
slightly modify Eq. (3.21) to be

C =
{

(v − v̄)/ ∂ H̄
∂s s > ε or ΔvF ≥ 0

0 s ≤ ε and ΔvF < 0
(3.22)

where ΔvF > 0 indicates power flow towards the storage tank H̄(s), we can also
handle the singularity. This system will implement the desired compensation as long
as energy will be available. Further modifications could for example inject energy to
the tank H̄(s) by redirecting energy from possible damping actions as presented in
the next section.

3.6.4 What About Damping?

Very often, especially for the control ofmechanical systems, damping plays an impor-
tant role. The effect of damping is clearly to irreversibly extract energy from the
system. On the other hand, it may be useful to extract energy without necessarily
getting rid of it, but rather store it somewhere else, very much in a similar fashion
as introduced in the previous section. From a thermodynamical point of view, dis-
sipation is an irreversible transformation of energy from any domain to the thermal
domain leading to an increase of entropy. We can use this metaphor, but from a con-
trol point of view, we can buffer this energy and use it for other possible means. This
operation does not create energy and it is therefore passive and perfectly consistent
with the framework. A small modification of what is presented in Sect. 3.6.2 allows
to implement this. If for example we increase the dimension of u and y of 1, we can
add a relation:

un+1 = Byn+1 (3.23)
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where B could be a varying, but positive damping coefficient. The effect of such an
action is that any energy which would be extracted via the port (un+1, yn+1) would
automatically be used to increase the energy buffer H(s) to be used as previously
described. The possibility of time varying the damping B allows, from the point of
view of control, to shape the dynamics of the system in a desirable way and the
presented framework will ‘automatically’ take care that the energy balance will be
accounted for.

3.7 Conclusions

In this chapter some basic concepts of what the author calls energy-aware robotics
have been presented. It has been shown that the passive behaviour of a robot which
can interact with an unknown environment is a must to ensure stable interaction
with any passive environment. Different methodologies have been presented which
give an idea on how, thanks to the use of port concepts, it is possible to structure
control loops in such a way that all energy flows can be made explicit and passivity
ensured. These techniques can also be used in telemanipulation andmany other fields
of robotics successfully to ensure a stable behaviour.
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