
Efficient Structured Scan Patterns Retargeting for
Hierarchical IEEE 1687 Networks

Ahmed M. Y. Ibrahim and Hans G. Kerkhoff
Testable Design and Test of Integrated Systems Group (TDT)

University of Twente
Enschede, the Netherlands

{a.m.y.ibrahim, h.g.kerkhoff}@utwente.nl

Abrar Ibrahim, Mona Safar and M. Watheq El-Kharashi
Computer and Systems Engineering Department

Faculty of Engineering, Ain Shams University
Cairo, Egypt

{abrar.ibrahim, mona.safar, watheq.elkharashi}@eng.asu.edu.eg

Abstract—The IEEE 1687 standard introduced a large design
space of compliant networks for accessing embedded instruments.
Such networks could grow in their structural complexity and
inter-component temporal dependencies. Scan pattern retargeting
is defined as the procedure of translating an instrument-level
pattern to several network-level ones. Pattern retargeting could
become computationally intensive with the increase of structural
and temporal dependencies. Structured pattern retargeting was
previously introduced as a formal and light-weight pattern
retargeting methodology for arbitrary IEEE 1687 networks. In
this work, we present a dedicated structured retargeting method
for hierarchical IEEE 1687 networks. The proposed method
significantly reduces the retargeting time for pure hierarchical
networks compared to the general one, while resulting in the
same network access time. The retargeting time is of a special
importance in the case of on-chip retargeting, which is used for
on-line monitoring using IEEE 1687 networks.

Keywords—Embedded instruments, IEEE 1687, IJTAG, struc-
tured retargeting.

I. INTRODUCTION

The IEEE 1687 standard [1] presents standardized access
networks for accessing embedded instruments that are utilized
for testing, debugging, monitoring and other purposes. The
standard follows a descriptive approach in defining its com-
pliant instrument networks, which results in a very large design
space, where such networks could significantly grow in their
structural complexity.

Hierarchical IEEE 1687 networks are the most common
architectural organization of compliant networks, since their
construction can be carried out in a structured and scalable
manner by using Segment Insertion Bits (SIBs). SIBs enable
the insertion and exclusion of scan segments from the active
scan path. Figure 1(a) shows an example of a hierarchical
network, while Figure 1(b) shows the internal organization of
the SIB.

Scan pattern retargeting is the process of translating an
instrument-level pattern, to a set of network-level scan vectors.
For example, Figure 1(c) shows the set of retargeted scan
vectors that should be shifted to the network in order to
write the pattern (10110) to register (A), starting from the
network at the reset state (all ScanMux control registers (C)
are ‘0’s). Pattern retargeting could become computationally
intensive with the growth of the inter-register structural and

Figure 1: Hierarchical IEEE 1687 network.

temporal dependencies [2]. Hence, pattern retargeting methods
are required to be devised in a formal manner.

A retargeting software tool [3] or hardware coprocessor
[4] processes on a structural model of the network, and
then generates the set of retargeted scan vectors to access a
certain instrument. Dynamic pattern retargeting is performed
if the retargeter is generating the scan vectors simultaneously
while accessing the network. This occurs in the case of run-
time debugging or dependability management [5] using IEEE
1687 networks. In this case, optimizing both the retargeting
and network access times becomes important. Consequently,
structured retargeting was introduced in [6] as a light-weight
dynamic retargeting method for arbitrary networks.

In this paper, a novel structured retargeting method is
introduced. It significantly reduces the retargeting time for
hierarchical networks compared to the previously introduced
one in [6], without affecting the access time. The method is
still applicable to the less common non-hierarchical networks,
enabling a comprehensive solution, however with a degraded
access time. The retargeting time is especially important for
on-chip IEEE 1687 network controllers, such as the ones that
have been recently introduced by industrial EDA tools [7].

The remainder of the paper is organized as follows: section
II discusses the terminologies used and related works. Tempo-
ral dependencies modelling and the temporal characteristics of
hierarchical networks are presented in section III. In section
IV the optimized structured retargeting method for hierarchical



networks is presented. Experimental results are discussed in
section V. Finally conclusions are discussed in section VI.

II. TERMINOLOGY AND RELATED WORK

The IEEE 1687 instrument network, connected between the
Test Data In (TDI) and Test Data Out (TDO) ports, is primarily
constructed using ScanRegisters, ScanMuxs and control sig-
nals. A ScanRegister is a sequential network component that,
at least, is able to perform the shift function, and optionally
the capture and/or the update functions. ScanRegisters are
used for network configuration and for data delivery to/from
the instruments; the latter is often referred to as a Test
Data Register (TDR). A ScanMux is a combinatorial network
component that enables selecting one of its (M) input scan
paths according to the given address signal values. ScanMuxs
are used as the mechanism for configuring the scan path.

The ScanMux address control signal (S) is the result of
a combinatorial function in terms of the contents of the
network ScanRegisters. A ScanMux Control Bit (SCB) is any
ScanRegister in the network that contributes to the combi-
natorial function of an (S) signal. The current state of all
SCBs represents the network state. Several network states can
configure an active scan path that includes a certain register.

The selection of the register ‘R’, denoted as Sel(R), is
defined as a Boolean function in terms of a minimum set
of the SCBs, that when evaluated to True (according to the
SCBs values) R becomes included in the active scan path. For
example, Table I shows the selections of all ScanRegisters in
the network shown in Figure 1(a). The selections represent the
inter-registers structural dependencies. A formal methodology
for extracting the register selections in arbitrary IEEE 1687
networks was introduced in [4].

Table I: Structural Dependencies for all the ScanRegisters in Figure 1(a).

Registers Selection
C1 & C2 & C3 (True)
C4 & C5 & C6 (C2)
C7 & C8 & C9 (C2 ∧ C4)

C10 & C11 (C2 ∧ C6)
C12 (C2 ∧ C4 ∧ C9)
R1 (C2 ∧ C4 ∧ C7)
A (C2 ∧ C4 ∧ C9 ∧ C12)
B (C2 ∧ C4 ∧ C9 ∧(¬ C12) )

Pattern retargeting to a register (R) is a computational
process that tries to set the network to a state that evaluates
the selection of the target register to True, by shifting one or
more configuration scan vectors to the network, each within a
Capture-Shift-Update cycle (CSU). The configuration vectors
satisfy the inter-register temporal dependencies, which result
in ultimately activating the target register.

Previous works discussing retargeting methodologies have
approached it as a Boolean Satisfiability (SAT) modelling
and computational problem, e.g. [2] and [8]. In SAT-based
retargeting, the network is modelled to capture its structural
organization, then the temporal behaviour is modelled by un-
rolling the SAT instances over a number of transitions. These

Figure 2: The corresponding SCT for the network in Figure 1(a).

transitions correspond to the application of configuration vec-
tors in several CSUs, until the network state includes the target
register in the active scan path. The resulting sequence of
vectors becomes the output of the pattern retargeting process.

In [6] we introduced a different method for performing pat-
tern retargeting based on resolving the inter-register temporal
dependencies in a structured manner. The method analyzes
the structural organization of the network and extracts the
inter-register structural dependencies (i.e. the selections). The
inter-register temporal dependencies can be further extracted
from the structural ones, and using a dedicated tree traversal
algorithm, one can generate the configuration vectors to access
the target register. The temporal modelling of IEEE 1687
networks and structured retargeting will be briefly explained in
the following sections since they form the basis of this work.

III. TEMPORAL MODELLING

A register is said to have a temporal dependency on another
one when the latter is required to be set to a certain value
in order for the former to become accessible after a certain
number of subsequent CSUs. For example, in the network
shown in Figure 2(a), in order to access R2, C1 is required
to be set to ‘1’, which in turn requires C2 to be set to ‘1’ in
order to make C1 accessible. While R2 can be shown not to
have a “structural” dependency on C2, however, R2 is said to
have a “temporal” dependency on C2.

A. The SCB Chaining Trees (SCTs)

The inter-register temporal dependencies can be modelled as
a directed rooted tree data-structure T = (V,E, vr). The root
(vr) represents the target register, while a child node (v ∈ V )
represents an SCB literal in the parent selection clause. The
resulting tree is referred to as the SCB Chaining Tree (SCT).

Figure 2(b) shows the SCT for R2 in the network shown
in Figure 2(a), where Sel(R2) = C1, Sel(C1) = C2 and Sel
(C2) = True. Here the root node (v1) representing the target
register has a single child node (v2) representing the single
literal in Sel(R2), and similarly, v2 has a single child node
(v3) representing the single literal in Sel(C1). Finally, v3 has
no children since Sel(C2) = True.

Except for the root, each node has a satisfying value
(sat val(v) ∈ {0, 1}) according to whether the corresponding
literal was negated or not. For instance, in Figure 2(b),
sat val(v2) = sat val(v3) = 1 since both the corresponding
literals in Sel(C1) and Sel(C2) were not negated.



A node in the SCT has two dynamic variables according to
the network state: 1- active and 2- satisfied, which result in
four different node states. A node is considered to be satisfied
if the current state of the corresponding SCB is equal to
the node’s sat val. A node is considered to be active if the
network is configured to include the corresponding SCB in the
active scan path, which occurs by satisfying all its children.

B. Temporal properties of Hierarchical Networks
Hierarchical IEEE 1687 networks are a special type of

networks that are constructed using a hierarchical organization
of SIBs. The hierarchy could be viewed as a tree with the
leaves being the instruments.

In general, the selection of a register “R” (either an SCB
or a TDR) at level (l) of the network is given recursively
using the selection of the SCB of its parent SIB as shown in
equation (1). While all the SCBs of the first level SIBs have
their selections equal to True as shown in equation (2). For
example, in Figure 1(a), the selection of R1 is derived from the
selection of its parent (i.e. C7) as (Sel(C7) ∧ C7), which can
be verified using Table I, as well for the remaining registers.

Sel(Rl) = Sel(Cparent) ∧ Cparent,∀(l > 1) (1)

Sel(C1) = True (2)

For instruments with a special TDR organization for opti-
mizing the access time [9] such as instrument “inst” in Figure
1(a), equation (1) can be extended to accommodate for the
instrument-level non-hierarchical organization as follows:

Sel(TDR) = Sel(Cparent) ∧ Cparent ∧ F (3)

where F is a Boolean function that when evaluated to True,
(TDR) becomes selected between the host interface of the
parent SIB. For instance, in Figure 1(a), Sel(B) = (Sel(C9)
∧ C9 ∧ (¬ C12)), here F = (¬ C12).

Equations (1) and (3) present the selection of a register in
a hierarchical network in terms of the selection of the SCB in
the parent SIB. This recursive nature of the structural depen-
dency in hierarchical networks results in a unique property
of the corresponding SCTs, where many identical temporal
dependencies exist.

For example, Figure 3 shows the corresponding SCT to the
hierarchical network shown in Figure 1(a). It is clear that
the subtree beneath v5 (i.e. T2) is identical to the subtree
beneath v1 excluding the branch leading to v5 (i.e. T1).
Such redundancy will be exploited in our optimized structured
retargeting for hierarchical networks that is presented in the
next section.

Finally, the number of nodes (N) of an SCT of a TDR in a
purely hierarchical network can be calculated as follows:

N = 2L (4)

where L is the hierarchical level at which this TDR is
located. For instance, register R1 in Figure 1(a) is located
at level 3, and hence its SCT has 8 nodes.

Figure 3: Post-reset SCT of the network shown in Figure 1(a).

IV. STRUCTURED RETARGETING FOR HIERARCHICAL
NETWORKS

In [6] we have presented a structured retargeting method-
ology for arbitrary SCTs. The main goal of this method is
to activate the root node, which corresponds to configuring an
active scan path that includes the target register represented by
the root node. This is iteratively accomplished by satisfying
the set of currently active nodes, which is done by shifting
a corresponding scan vector, such that their parents become
activated. Hence, the parents could be further satisfied, which
ultimately leads to the root node being activated.

For example, in the SCT shown in Figure 2(b), and assum-
ing the network at the reset state (all SCBs set to ‘0’), one
starts by satisfying v3, which is the only active node, by shift-
ing a corresponding scan vector. Hence v2 becomes activated
and could be further satisfied, after which v1 would become
active. This is performed in [6] using a tree traversal referred
to as the Modified Depth First Search (MDFS) traversal. In
MDFS, the tree is completely traversed in a depth-first fashion,
while assuming every node that is either satisfied or active as a
leaf one. The resulting set of active nodes are further reduced
to resolve any conflicting satisfying values for the same SCB.

A. Optimized SCT Traversal for Hierarchical Networks

In MDFS, it is attempted to traverse the entire tree before
producing the set of active nodes, which is further reduced
for conflicts resolution. Subsequently, one configuration scan
vector is generated to satisfy the resulting set of active nodes.

While this traversal ensures producing satisfying values for
all the currently active nodes which optimizes the number of
required CSUs for retargeting, for hierarchical networks with
deep hierarchies, traversing all the nodes in the SCT might
lead to a long retargeting time due to the exponential node
count as shown in Equation (4). In addition, it also increases
the hardware requirements for maintaining the temporal de-
pendencies in the case of on-chip retargeting [4].

As discussed earlier, SCTs of hierarchical networks incorpo-
rate several identical nodes. This property could be exploited
such that a complete SCT traversal becomes unnecessary.



Figure 4: Applying MPO-DFS to the SCT in Figure 3.

Instead of traversing the entire SCT before satisfying the active
nodes, one can start satisfying the active nodes once reached
by the traversal algorithm, and hence, dynamically changing
the network state while traversing it. Since the traversal does
not attempt to further traverse a branch when an active or
satisfied node is reached, dynamically satisfying the redundant
nodes will reduce the tree traversal path.

This can be illustrated in Figure 4, where dynamically
satisfying the active nodes once reached is applied to the SCT
shown in Figure 3. In MDFS, the traversal would start with
traversing the entire SCT (16 nodes) in order to generate the
first vector which sets C2 to ‘1’. In our optimized approach,
once v2 is reached and found to be active, the algorithm
would immediately generate a configuration vector that sets
C2 to ‘1’ and dynamically change the network state where
all nodes corresponding to C2 become active (Figure 4(a)).
This is further applied to nodes v3, v4 and v5, and then the
root node becomes active after only traversing the nodes at
the first level.

For purely hierarchical networks, the traversal would simply
traverse only the first level of the SCT. However, in order
to support arbitrary networks as well, a generic traversal
algorithm was developed as shown in Algorithm 1.

In Algorithm 1, a depth-first search traversal similar to
MDFS is applied, however, with a post-order processing,
referred to as the Modified Post-Order Depth First Search
(MPO-DFS). This means that children nodes are attempted to
be satisfied first before their parents during the traversal. The
inputs to the algorithm are the target register (R), the registers
selections (Sel) and the current network state (St). While the
output is a set of Access Vectors (AV) that are applied to
configure the network to access the target register (R).

It is shown in line 16 that the processing of a node (i.e
satisfying it when it becomes activated) occurs after the return
of the recursive MPO-DFS function calls on all the children.
In this case, this node was initially not active at the start of
the tree traversal; however, it was activated by satisfying its
children during the recursive function call in line 15.

Algorithm 1 MPO-DFS.
Input: R,Sel, St
Output: AV

1: Create the root node (r)
2: r.id← R
3: while r is not active do
4: MPO-DFS(r)
5: procedure MPO-DFS(v)
6: Create children nodes of v according to Sel(v.id)
7: v.children← created children nodes
8: Mark v as visited
9: if v is not active then

10: if v is not satisfied then
11: for all w ∈ v.children do
12: if w is not visited then
13: w.id← corresponding id as in Sel(v.id)
14: w.depth← v.depth+ 1
15: MPO-DFS(w)
16: if v is active then .Function return. Post-order
17: Satisfy v by shifting a corresponding AV

18: else
19: if v is not satisfied then .Avoid generating an AV for a

satisfied node
20: Satisfy v by shifting a corresponding AV

B. Dynamic Conflict Resolution

For purely hierarchical networks, there exist no temporal
conflicts in the corresponding registers SCTs. However, in
order to ensure a generic solution for arbitrary networks,
temporal conflicts should be considered.

In MDFS, temporal conflicts were resolved by selecting
the active node that has the largest distance from the root
among all nodes that represent a certain register. In MPO-DFS
temporal conflicts are dynamically resolved by the traversal
with no special selection of the nodes like in MDFS.

Figure 5(a) shows a network with conflicting temporal
dependencies for register R2 as shown in Figure 5(b). Figures
5(c-h) show the dynamic resolution with the MPO-DFS traver-
sal. The traversal starts from the left-most branch and satisfies
every active and not satisfied node, until all the children of
the root node are satisfied.

Considering the two cases where a node (v2) has a conflict
with a descendant of a right sibling, and another node (v4) with
a conflict with a descendant of a left sibling. One can see that
going through the traversal, all the children of the root node
will be eventually satisfied (Figure 5(h)). Although satisfying
v2 and v4 resulted in de-satisfying v5 and v6, however, they
became irrelevant to satisfying the root node since their parent
v3 was already satisfied.

It can be shown that if the order of the children nodes of
the root was changed such that node v3 is swapped with node
v2, pattern retargeting for R2 will require only 5 CSUs instead
of the required 6 CSUs for the original SCT. In this case the
sequence of traced and satisfied nodes will be (v5 → v6 →
v3 → v2 → v4 ). Therefore, reordering the children nodes for
MPO-DFS such that the deepest branches are traversed first
will reduce the network access time in case of conflicts.



Figure 5: Dynamic conflict resolution in MPO-DFS.

V. EXPERIMENTAL RESULTS

The developed retargeting method was verified on a subset
of the IEEE 1687 benchmark suite [10] and further evaluated
against the previous work presented in [6].

A. The Experimental Setup

We performed our experiments on the networks presented in
the “Basic” category [10] since they provide a good diversi-
fication of the network organization. They range from pure
hierarchical networks (TreeFlat and TreeUnbalanced), pure
hierarchical with optimized TDR organization (TreeFlatEx
and TreeBalanced), semi-hierarchical with ScanMuxs inserted
within the hierarchy presenting a few temporal conflicts (Min-
gle) to finally an arbitrary network with many temporal con-
flicts (BasicSCB). The TDRs in all networks are not located at
a single level of the hierarchy, but rather they are distributed
in different branches and levels in the hierarchy, resulting in
different SCT complexities for the TDRs in the same network.

Table II lists the structural statistics of the 6 networks
presented in the Basic category. The second column shows
the maximum hierarchical levels in the network (L), while
the third shows the number of SIBs, and the fourth shows the
number of TDRs. Finally the fifth column shows the maximum
number of nodes (N) in a single SCT of a TDR in this network
and the name of this TDR. Note that there might be several
TDRs with the same maximum node count.

Table II: Network statistics of the Basic category in [10].

Network Max L No. of No. of Max NSIBs TDRs
BasicSCB - 0 5 16 (WI2.SReg)

Mingle 3 10 8 16 (WI3.SReg)
TreeFlat 2 12 11 8 (All)

TreeFlatEx 5 49 78 32 (M4.SR4)
TreeBalanced 7 43 52 128 (M8.SR4)

TreeUnbalanced 11 28 40 2048 (M1.SR8)

A software implementation of our optimized retargeting
method shown in Algorithm 1 was developed, along with the
previously developed generic method in [6]. The selections of
each TDR and SCB in the network were calculated and pro-
vided to the software for the SCT generation. Furthermore, a
software structural model for each network was developed, for
verifying the target register accessibility using the generated
scan patterns from the retargeting module.

Single register access experiments were performed for each
TDR in the network, starting from the network at the reset
state using both MDFS and MPO-DFS SCT traversals.

We evaluated both methods regarding their execution times
in terms of the number of traced nodes during the consecu-
tive traversals that are required for activating the root node.
The number of traced nodes is especially important for the
hardware implementation of structured retargeting.

In addition, the quality of the generated patterns was eval-
uated in terms of both the number of required Capture-Shift-
Update Cycles (CSUs) and the access time in clock cycles
(CC) that are required to configure the network to include the
target TDR in the active scan path. The access time can be
calculated using equation (5), where N is the number of CSU
cycles and li is the length of the shift vector in the ith CSU
cycle, and the constant 4 is the overhead of the CSU cycle
being caused by the IEEE 1149.1 TAP FSM.

Access T ime =

N∑
i=1

li +N × 4 (5)

B. Analysis of the Results

Table III shows the results of the single access experiments.
For each network, the average and maximum values of the
traced nodes are shown, as well as the number of CSUs and
the access time after attempting to access each TDR in this
network.

For the BasicSCB network, it is clear that MDFS outper-
forms MPO-DFS in both retargeting and access times. This
occurs not only because the SCTs do not have much identical
temporal dependencies such that they dynamically reduce the
traversal path length, but also since there exist an abundance
of temporal conflicts that increase the traversal path length.

Reordering the SCTs in the case of MPO-DFS leads to
better results such that a reduction of the number of traced
nodes of 50% of the average and 44% of the maximum was
achieved. Also a reduction of the number of CSUs of 45% of
the average and 40% of the maximum, and a reduction of the
access time of 44% of the average and 39% of the maximum
were achieved. However, these enhancements are still below
the performance achieved with MDFS.3

Furthermore, it can be shown that for the remaining net-
works with hierarchical organizations, the number of traced
nodes in case of MPO-DFS were significantly less than
these of their MDFS counterparts due to the existence of
many identical temporal dependencies. For instance, in the
TreeUnbalanced network, the MDFS method was required to
visit 6131 SCT nodes in order to perform pattern retargeting



Table III: Results of structured retargeting for single register access

Network
MDFS MPO-DFS

Traced Nodes CSUs/access Access Time (CC) Traced Nodes CSUs/access Access Time (CC)
av max av max av max av max av max av max

BasicSCB 9.4 16 1.4 2 15.8 23 14.2 18 4.4 5 48.6 57
Mingle 27.4 42 3.3 4 26 35 5.9 8 3.4 4 27.3 35
TreeFlat 11 11 2 2 23 23 5 5 2 2 23 23

TreeFlatEx 10.2 89 2.1 5 50.7 428 4.1 7 2.1 5 50.7 428
TreeBalanced 167 375 5.4 7 235.6 2164 7.4 9 5.4 7 235.6 2164

TreeUnbalanced 341.1 6131 4.5 11 4570.5 60427 6.5 13 4.5 11 4570.5 60427

Figure 6: Effect of the increased hierarchical levels on the number of traced
nodes for the two structured retargeting methods.

to register M1.SR8, while only 13 nodes were visited in the
case of MPO-DFS. A large number of traced nodes might be
tolerable in software, for instance in the case of debuggers,
however this becomes a clear problem for a hardware retar-
geter, since all the temporal dependencies need to be resolved
and stored for the retargeting processing.

Figure 6 shows the number of traced nodes for both MDFS
and MPO-DFS that are required for a TDR access in balanced
hierarchical networks with different hierarchical levels. It can
be shown that the traced nodes exponentially increases in the
case of MDFS with the increase of the TDR’s depth in the
hierarchy, while it linearly increases in the case of MPO-DFS.

Finally, the quality of the produced vectors by MPO-DFS in
terms of the number of CSUs and the access time were slightly
lower in case of the Mingle network than those produced by
MDFS, since there exist a few of temporal conflicts as the
network is not purely hierarchical. While for the remaining
networks, the quality of the produced vectors in both methods
were identical. The long access times in the last three networks
occur due to the structural organization of the network where
several long TDRs exist in the access path to other TDRs.

VI. CONCLUSIONS

Dynamic pattern retargeting is performed simultaneously
while accessing IEEE 1687 networks; therefore reducing the
retargeting time becomes important for reducing the overall
test time. In this paper we presented a novel structured retar-
geting method that is optimized for hierarchical networks. The
presented method results in generating an identical retargeted
pattern set to the one generated by the previous work resulting

in the same access times, while significantly reducing the
retargeting time for hierarchical networks in terms of the
number of traced nodes.

The number of traced nodes is an important parameter for
a hardware implementation of structured retargeting, since
the hardware retargeter is required to dynamically resolve
the temporal dependencies (i.e. the SCT nodes), and perform
the SCT traversal on those resolved dependencies. Therefore,
reducing the number of traced nodes in structured retargeting
will result in a less hardware complexity for maintaining the
dynamically resolved dependencies.

The method is still applicable to the less common non-
hierarchical networks although with a degraded performance,
and consequently can be utilized as a generic retargeting
solution for software debuggers or EDA tools which generate
IEEE 1687 network controller hardware IPs.

VII. ACKNOWLEDGEMENT

Parts of this research were carried out within the EU-
PENTA project “HADES”, financed by the European Com-
mission (EC) and the Netherlands Enterprise Agency (RVO).

REFERENCES

[1] IEEE Standard for Access and Control of Instrumentation Embedded
within a Semiconductor Device, IEEE Std 1687-2014, 2014.

[2] R. Baranowski, M. A. Kochte, and H.-J. Wunderlich, “Reconfigurable
Scan Networks: Modeling, Verification, and Optimal Pattern Generation,
ACM Trans. Design Automation of Electronic Systems (TODAES), vol.
20, no. 2, pp. 1-27, 2015.

[3] M. Portolan, “A novel test generation and application flow for functional
access to IEEE 1687 instruments,” European Test Symposium (ETS),
2016, pp. 1-6.

[4] A. Ibrahim and H. G. Kerkhoff, “Analysis and Design of an On-Chip
Retargeting Engine for IEEE 1687 Networks,” European Test Symposium
(ETS), 2016, pp.1-6.

[5] A. Ibrahim and H. G. Kerkhoff, “A cost-efficient dependability manage-
ment framework for self-aware system-on-chips based on IEEE 1687,”
International Symposium on On-Line Testing and Robust System Design
(IOLTS), 2017, pp. 1-2.

[6] A. Ibrahim and H. G. Kerkhoff, “Structured scan patterns retargeting for
dynamic instruments access,” VLSI Test Symposium (VTS), 2017, pp.1-
6.

[7] Steve Pateras and Mike Santarini, “Tessent MissionMode: New, Runtime
DFT Technology Paves Way for Self-Correcting Automotive Electronics”
[Online], Available: : http://go.mentor.com/4XrS8

[8] R. Krenz-Baath, F. G. Zadegan and E. Larsson, “Access time minimiza-
tion in IEEE 1687 networks,” International Test Conference (ITC), 2015,
pp. 1-10.

[9] A. Ibrahim and H. G. Kerkhoff, “iJTAG integration of complex digital
embedded instruments,” International Design & Test Symposium (IDT),
2014, pp.18-23.

[10] A. Tertov et al., “A suite of IEEE 1687 benchmark networks,” Interna-
tional Test Conference (ITC), 2016, pp. 1-10.


