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Abstract. To reduce scrap in metal forming processes, one should aim for robustness by means of optimization, control or a
combination of both. Due to the high computational costs, a Finite Element (FE) model of a metal forming process cannot be used
in optimization routines or control algorithms directly. Alternatively, a surrogate model of the process response to certain variables
can be created that enables efficient control or optimization algorithms. When the process response is more than a scalar function
only, reduction methods such as Proper Orthogonal Decomposition (POD) can be applied to obtain a surrogate model. In this work,
the results of a set of FE analyses are decomposed using a single and separated snapshot matrices using different preprocessing
methods. Additionally, a new method for projecting in different parts of the snapshot matrix is proposed. The bases obtained
using different preprocessing methods are compared. Thereafter, the surrogate models of the process are built by interpolating the
amplitudes obtained in different bases. The accuracy of all surrogate models is assessed by comparing the reduced results with the
results from the FE analyses.

INTRODUCTION

To reduce scrap in metal forming processes, one should aim for robustness by means of optimization, control or a
combination of both. An efficient optimization or control algorithm requires an accurate description of the process.
The Finite Element (FE) method is a powerful tool to model metal forming processes. However, due to the high
computational costs, the finite element method cannot be used in optimization routines or control algorithms directly.
An alternative approach is to create a surrogate model of the process response. When this response is more than a
scalar function only, for example a measured force curve [1, 2], a displacement field [3] and/or a stress field [4];
all time steps, nodal or integration point data must be included in the surrogate model. To analyze such data sets
efficiently, reduction techniques such as Proper Orthogonal Decomposition (POD) in combination with interpolation
methods such as Kriging can be used.

To obtain a surrogate model that best describes the original data, the so-called snapshot matrix can be accom-
plished in different ways before applying POD. For instance, to model the displacement field, one can place the
displacement in x- and y-direction [3] in separate snapshot matrices, or all nodal displacements can be placed in one
single snapshot matrix [1]. A similar controversy is found when different data types need to be modelled. For example,
separate snapshot matrices are used to model stress components, plastic strain, damage indicator and temperature in
[4], while one single snapshot matrix is used to model the equivalent plastic strain, thickness and a damage criterion
in [5]. Besides this controversy in handling the snapshot matrices separately or not, many different preprocessing
methods can be found in literature [6, 7, 8].

In this work, the results of FE analyses are decomposed using one single and separated snapshot matrices using
different preprocessing methods. Additionally, a new method for projecting in different parts of the snapshot matrix is
proposed. The quality of the bases acquired using different preprocessing methods is assessed. Thereafter, surrogate
models of the process are built using the obtained bases and the accuracy of all surrogate models is assessed.
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PREPROCESSING THE SNAPSHOT MATRIX

Consider that the result of an FE analysis can be placed in an M-by-1 column vector yn, where M denotes (the sum
of) the nodal degrees of freedom and the number of integration points. As an example, we consider a snapshot matrix
Y that collects all N result vectors of a Design Of Experiments (DOE). This snapshot matrix consists of three parts
corresponding to the Mu-by-N displacement field matrix Yu, the Mε-by-N equivalent plastic strain Yε and the Mσ-by-
N stress tensor matrix Yσ. Hence, the M-by-N snapshot matrix Y collects the elements ymn corresponding to different
fields.

Y =
[
y1 . . . yN

]
=

⎡⎢⎢⎢⎢⎢⎢⎢⎣
[Yu]
[Yε]
[Yσ]

⎤⎥⎥⎥⎥⎥⎥⎥⎦ (1)

In the remainder of this article it is assumed that the snapshot matrix is in row-variate form and that N � M. This
Unprocessed snapshot matrix can already be used to construct a reduced basis. However, in the following sections
different preprocessing methods will be introduced. All different preprocessing methods will be indicated using Italic
script and correspond to the names used in Fig. 2 and Fig. 3 in which the different bases and surrogate models using
the lowest K basis vectors are compared, respectively.

Preprocessing methods
The first and most common preprocessing method is subtracting the mean ym of each row. The elements of the Mean
subtracted snapshot matrix are:

y0
mn = ymn − ym where: ym =

1

N

N∑
n=1

ymn (2)

Another preprocessing method, commonly used when applying Principal Component Analysis (PCA), a special type
of POD, is scaling the snapshot matrix by the number of experiments N after subtracting the mean [8]. This procedure
will only scale the obtained amplitudes and will not change the shape, and therefore the quality, of the basis vectors.
This preprocessing methods is therefore left out of consideration. However, when different parts of the snapshot matrix
are scaled to the same order, this will change the shape of the basis vectors. In the Scaled snapshot matrix all different
fields are scaled to 1 order of magnitude, hence:

[Yu] · 102, [Yε] · 101 and [Yσ] · 10−2. (3)

Data that has been mean subtracted can also be divided by the standard deviation sm of each row to obtain the Z-scores
[6]. The elements of the snapshot matrix with Z-scores are:

yZ
mn =

1

sm
y0

mn where: sm =

√√√
1

N − 1

N∑
n=1

(ymn − ym)2 (4)

Method for projecting in a subspace
As an example, the full, single snapshot matrix will be projected into the the displacement field matrix Yu. Projecting
in other parts of the snapshot matrix will follow the same procedure, one can simply replace the subscript. Note that
when the full snapshot matrix is used to project in, the subscript u can be omitted and the method below describes a
classical POD. The i-th displacement field based basis vector ϕi can be be calculated as follows:

ϕi = Y · vi · λ−1/2
i (5)

Where vi and λi are the eigenvectors and eigenvalues of the N-by-N matrix Du = YT
u Yu. Due to the multiplication

with the full snapshot matrix, the basis vectors are not orthonormal any more. To normalize the basis vectors, they
are divided by their norm. The full displacement field based basis Φu is constructed by sorting the basis vectors by
descending order of eigenvalues. As the obtained basis is not orthogonal, the amplitudes must be obtained using:

Au = (ΦT
uΦu)−1ΦT

u Y (6)
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When the full snapshot matrix is used, the basis vectors are orthonormal and equation (6) reduces to A = ΦT Y. The
snapshot matrix Based on the displacement field is:

Y = ΦuAu (7)

DEMONSTRATOR PROCESS

A demonstrator process is used to generate FE results and analyse the different preprocessing methods of the snapshot
matrix. The metal forming process under investigation is a simple bending step modelled in 2D using the FE analysis
software MSC Marc/Mentat. A graphical interpretation of the bending step can be found in Figure 1. A Latin Hyper-
cube Sampling is used to generate a DOE of N = 21 sample points with maximized minimum distance in the design
space x [5]. This set of sample points is used to obtain the different bases and to train the surrogate models. The design
space is 2 dimensional and consists of the design parameters thickness (x1) and punch depth (x2). The sheet metal
is modelled with an elastic-plastic isotropic material model with Von Mises Yield criterion and a tabular equivalent
plastic strain. The sheet metal is meshed using 1200 quadrilateral elements (Nelem) and 1296 nodes (Nnod). Hence, with
two degrees of freedom per node this leads to Mu = 2 · Nnod = 2592 nodal displacements. The elements are fully inte-
grated using four integration points per element. Hence, the equivalent plastic strain consists of Mε = 4 ·Nelem = 4800
integration points and the stress tensor consist of Mσ = 4 · 4 · Nelem = 19200 integration points. Overall this results in
a total snapshot matrix size of M = Mu + Mε + Mσ = 26592 by N = 21.

x1

x2

FIGURE 1. FE model with design parameters thickness (x1) and punch depth (x2) before bending (left) and after bending (right).

Bases obtained using different preprocessing methods
A modified version of the mean relative reconstruction error εrc as proposed in [3] is used to compare the quality of
the surrogate models obtained using different bases:

εrc =

√√√
1

N

N∑
n=1

||ŷn − yn||2
||yn||2 (8)

where ŷn is the result vector of experiment n reconstructed in the different bases using the K lowest basis vectors and
|| ||2 is the squared Euclidean norm.

In Fig. 2 it can be seen that overall the unprocessed snapshot matrix, the snapshot matrix with Z-scores and
a basis based on the displacement field are less accurate. The relative construction errors using a basis based on the
displacement field, strain field or stress field are the same as the errors using separate bases of that specific part because
their Du, Dε and Dσ matrices are the same respectively. Note that the bases obtain from all the snapshot matrices from
which the mean is subtracted have one basis vector less than the unprocessed snapshot matrix as their rank is 1 lower.
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FIGURE 2. Relative construction error (εrc) between the data from the FE model and the reconstructed result vector obtained using
different preprocessing methods as a function of the number of POD-directions included in the basis (K) of the full snapshot matrix
(a) and different parts of the snapshot matrix (b)-(d).

SURROGATE MODEL RESULTS

To construct surrogate models of the process results, second order Kriging is used to interpolate the N amplitudes
obtained from the training set using different preprocessing methods. Using Latin Hypercube Sampling an additional
set of P = 21 validation points in constructed to test the surrogate model. Again the mean relative reconstruction error
as proposed in equation (8) is used to assess the quality of the obtained surrogate models relative to the FE results.
Note that in this case n and N are replaced with p and P respectively. In that case ŷp is the result vector obtained using
a surrogate model evaluated at validation point xp.

In Fig. 3 it can be seen that overall the unprocessed snapshot matrix and the snapshot matrix with Z-scores are
less accurate. Again, as it should, the relative construction errors using a basis based on the displacement field, strain
field or stress field are the same as the errors using separate bases of that specific part. Scaling the different parts to
the same order improves the approximation of the displacement field, while slightly deteriorating the approximation
of the stress field. This can be explained by the emphasis on the displacement field and the disregard on the stress field
introduced by the scaling method as proposed in equation (3). The majority of the surrogate models reaches a steady
state when 5 basis vectors are included in the surrogate model. From that point, including more basis vectors does
not increase the quality of the surrogate model any further because the approximation error by the surrogate model
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FIGURE 3. Relative construction error (εrc) between the validation data from the FE model and the surrogate model as a function
of the number of POD-directions included in the basis (K) of the full snapshot matrix (a) and different parts of the snapshot matrix
(b)-(d).

outweighs the truncation error of the reduced basis. Using separate bases gives the best approximation of the strain
field. For the displacement and stress field this improvement is less apparent.

CONCLUSION, RECOMMENDATION & OUTLOOK

Subtracting the mean of the snapshot matrix is beneficial for the quality of the surrogate models. Although the division
by the standard deviation makes the snapshot matrix dimensionless, the use of Z-scores is not beneficial for the quality
of the surrogate model. The usage of separate snapshot matrices gives the best surrogate model, however the added
computational time is a disadvantage. In future work, the surrogate model results will be propagated to an FE model
of a subsequent process stage to address the assumption that all parts of the snapshot matrix are equally important.

ACKNOWLEDGMENTS

This research project is part of the ‘Region of Smart Factories’ project and is partially funded by the ‘Samenwerk-
ingsverband Noord-Nederland (SNN)’, Ruimtelijk Economisch Programma’.

100002-5



REFERENCES

[1] V. Buljak, FME Transactions 38, 129–136 (2010).
[2] G. T. Havinga, “Optimization and control of metal forming processes,” Ph.D. thesis, University of Twente

2016.
[3] M. Hamdaoui, G. Le Quilliec, P. Breitkopf, and P. Villon, International Journal of Material Forming 7, 337–

358 (2014).
[4] G. Misiun, C. Wang, H. Geijselaers, and A. van den Boogaard, “Interpolation of final geometry and result

fields in process parameter space,” in Numiform 2016, Vol. 80 (2016), pp. 16010–1 – 16010–6.
[5] D. Steffes-Lai, “Approximation Methods for High Dimensional Simulation Results - Parameter Sensitivity

Analysis and Propagation of Variations for Process Chains,” Phd thesis, University of Cologne 2014.
[6] D. Skillicorn, Understanding Complex Datasets: Data Mining with Matrix Decompositions (Chapman &

Hall/Crc Data Mining and Knowledge Discovery Series) (2007) p. 257.
[7] J. Cadima and I. Jolliffe, Pakistan Journal of Statistics 25, 473–503 (2009), arXiv:arXiv:1211.2549v2 .
[8] H. Abdi and L. J. Williams, English 2, 433–470 (2010), arXiv:arXiv:1011.1669v3 .

100002-6

https://doi.org/10.1007/s12289-013-1132-0
http://arxiv.org/abs/arXiv:1211.2549v2
http://arxiv.org/abs/arXiv:1011.1669v3



