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Abstract 
High accelerations of fast moving robots induce high fluctuating reaction forces and moments, resulting in undesirable vibrations 
and loss of accuracy. These fluctuations can be reduced or even eliminated by dynamic balancing techniques, e.g. by addition of 
counter-masses. However, these techniques typically disregard the flexibility of the mechanism. This flexibility potentially leads to 
undesirable eigenfrequencies and unbalance of an otherwise perfectly balanced mechanism. In this paper, the effect of link 
flexibility on the force balance quality is investigated in the frequency domain. This is done for a 2-DOF parallel manipulator with 
realistic stiffnesses. With the use of flexible multi-body software, the frequency transfer functions for the shaking forces are 
obtained for an unbalanced, a force balanced and a partially balanced case. The results show that, firstly, force balance results in a 
strong attenuation of the shaking forces’ frequency content up to the first eigenfrequency. Secondly, the addition of balance mass 
results in a reduction of the first parasitic eigenfrequency of the system leading to a worsened performance around the first 
eigenfrequency and a reduction in controller bandwidth. Identification of these effects leads to an optimal, intermediate solution, 
which mitigates the negative effects of dynamic balance, resulting in low-frequency shaking force attenuation of 30 dB without loss 
of controller bandwidth. 
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1. Introduction 

Dynamic balance aims to eliminate changing reaction forces 
and moments of high-speed robots by design of the mass 
distribution [1], [2]. Essentially, this leads to a dynamic 
decoupling between the robot and surroundings, reducing the 
vibration propagation and potentially eliminating the need for 
vibration isolation measures such as force frames, heavy soft 
mounts, and active vibration isolation [3].  

Typically, an addition of counter-masses is required for 
dynamic balance, leading to increased mass, motor torques 
and bearing forces. These effects can be mitigated by choice of 
an intermediate, partial balancing solution [4]–[6]. Moreover, 
the added mass is expected to lower the eigenfrequecies of the 
mechanisms leading to increased vibrations, and lower 
controller bandwidth. This is confirmed by [7]–[10], which have 
reported significant shaking forces, when considering link 
flexibility of an otherwise force balanced linkage. The literature 
on dynamic balancing of flexible linkages has focused on the 
time analysis of single degree of freedom (DOF), fixed speed, 
input-output machines. To the our best knowledge, only 
Martini et al. [11], [12] have performed a modal analysis on 
both unbalanced and dynamically balanced mechanisms. Still, 
the exact consequence of these lowered eigenfrequencies on 
the frequency response of multi-DOF manipulators has not 
been shown. Moreover, it remains unclear under which 
conditions dynamic balancing of robots with realistic stiffnesses 
is beneficial at all. 

In this paper, a frequency domain method for quantifying the 
dynamic balance quality of finitely stiff mechanisms is 
presented and applied to a 2-DOF planar mechanism leading to 
a novel dynamic balance design criterion. In the following 

sections, the mechanism design, its balancing solutions, and 
the evaluation method of the balancing performance are 
presented. Additionally, the resulting transfer functions are 
shown and qualitatively compared to a parametric model, 
leading to optimal design criterions for the dynamic balance of 
flexible robots. 

2. Methods 

The influence of flexibility on the force balancing quality is 
assessed for three cases: 1) unbalanced, 2) fully force balanced 
and 3) partially balanced. 

2.1. Unbalanced mechanism 
The robotic system under evaluation is shown in Fig. 1. The 

dimensions (Table 1) are chosen to resemble a commercially 

 

 
 

Figure 1. The 2-DOF planar mechanism with counter-masses in grey 
 

𝑞1 

𝑚b,1 

𝑥 

𝑦 

𝑚p 

𝑚a,1 

𝑚a,2 

𝑚b,2 

𝑚a,4 

𝑞2 

𝑚b,3 
𝑚b,4 

𝑚a,3 

546

http://www.euspen.eu/


  

available robot [13] with a workspace of approximately 800 
mm × 250 mm. The upper and lower arms (𝑙a,𝑖) have a 

respective length of 260 mm and 510 mm. The payload (𝑚p) on 

the end-effector is 1 kg. For evaluating the flexibility of system, 
the upper arms are modelled as steel tubes with an outer and 
inner diameter of 60 mm and 40 mm, respectively. The lower 
arms are carbon tubes with an outer and inner diameter of 30 
mm, and 20 mm, respectively. The links of the robot are 
modeled as fully elastic beams. 

 2.2. Force balanced mechanism 
A mechanism is force balanced when the total center of mass 

is stationary for all admissible motion. According to [14], this 
places 6 conditions on the link counter-mass (𝑚b,𝑖) and 

counter-mass location (𝑙b,𝑖). A symmetric force balance solution 

with in-line counter-masses is chosen, such that the following 
design equations hold 
 

𝑚b,2𝑙b,2 =
1

2
(𝑚a,2 + 𝑚p)𝑙a,2 (1) 

 
𝑚b,1𝑙b,1 = (𝑚a,2 + 𝑚b,2 +

1

2
𝑚p) 𝑙a,1 (2) 

 𝑚b,1𝑙b,1 = 𝑚b,3𝑙b,3 , 𝑚b,1 = 𝑚b,3 (3,4) 

 𝑚b,2𝑙b,2 = 𝑚b,4𝑙b,4, 𝑚b,2 = 𝑚b,4 (5,6) 

From these equations either the counter-mass (𝑚b,𝑖) or the 

counter-mass location can be chosen (𝑙b,𝑖). A solution with 

minimal lengths of the counter-mass links is a common choice 
in literature [15]. Although this will result in large counter-
masses, the moments of inertia and hence the motor torques 
are then minimal. The counter-masses on the lower arms are to 
be balanced by the counter-masses on the upper arm, leading 
to a significant increase of the total mass. Based on practical 
considerations, the counter-mass location is chosen to be 39 
mm and 51 mm for the upper and lower arm respectively 
(Table 2). This results in counter-masses of 60.8 kg for the 
upper arms and 6.7 kg for the lower arms. 

2.3. Partially balanced mechanism 
The large addition of mass can be mitigated by adopting a 

partial dynamic balance solution [16]. The optimal design 
parameters are strongly dependent on the trajectory selection, 

and the desired trade-off between actuator torques, shaking 
moments and shaking forces. Here, for the partial balancing 
solution, only counter-masses on the two upper links are used. 
The location of the counter-masses are identical to the fully 
force balanced mechanism. The counter-masses are chosen 
such that the shaking forces are minimal for a horizontal 
trajectory through the middle of the workspace. This resulted 
in counter-masses of 17 kg (Table 2). 

2.4. Evaluation of the force balance quality 
Evaluation of the shaking force balance quality for these 

three cases is performed by comparing the transfer 
functions 𝑇(𝑠) from one actuator angle (𝑞) to the shaking 
forces (𝑓) at the base.  
 

𝑇(𝑠) =
𝑓(𝑠)

𝑞(𝑠)
 (7) 

In this transfer function, 𝑠 denotes the complex frequency. 
These transfer functions are obtained by modeling and 
linearization of the mechanism in a numerical flexible multi-
body software package [17]. 

In order to obtain this transfer function, the linearization 
requires the assumption that the joint angle can be perfectly 
controlled. This assumption implies that the joint angle is 
virtually fixed. Such a perfect controller does not exist; in fact, 
the performance of the controller is limited by the first 
parasitic eigenfrequency. Close to this first parasitic 
eigenfrequency, the controller has no effect and joint behaves 
as a released or ‘free’ joint. This model choice - for fixture or 
release - influences the modeshape and therefore the 
eigenfrequencies of system. To clearly make the distinction 
between these two cases also two linearizations are made, one 
in which the joint angle is fixed in order to obtain the joint to 
shaking force transfer function, and a second with the input 
joints released to obtain the first parasitic eigenfrequency and 
mode which are limiting the bandwidth of the controller. 

2.5. Parametric model 
The observed behavior in numerical simulation is explained 

by comparing it to a simplified analytic parametric model of a 
single balanced elastic beam. This beam is modeled as two 
spring-mass-systems hinged at the base (Fig. 2). The right mass-
spring system represents the unbalanced mechanism and the 
left system the counter-mass system. The frequency transfer 
functions of the left (𝑃a) and right (𝑃b) mass-spring system from 
joint rotation to shaking force in the vertical direction become: 
 

 𝑃UB(𝑠) = 𝑃a =
𝑚a𝑙a𝑘𝑠2

𝑚a𝑠2 + 𝑘
, 𝑃b =

𝑚b𝑙b𝑘𝑠2

𝑚b𝑠2 + 𝑘
 (8,9) 

In which 𝑚𝑎, 𝑚b, 𝑙𝑎, and 𝑙b are the masses and lengths of both 
systems. For convenience the same stiffness (𝑘) for both 
systems is chosen. With force balance and partial balance the 
two mass-spring systems are combined, leading to the 
following total transfer function: 

𝑃PB = 𝑃a − 𝑃b =
(𝑚a𝑙a − 𝑚b𝑙b)𝑘2𝑠2 + 𝑚a𝑚b(𝑙a − 𝑙b)𝑘𝑠4

(𝑚a𝑠2 + 𝑘)(𝑚b𝑠2 + 𝑘)
 (10) 

The force balance condition of this beam is: 
 0 = 𝑚a𝑙a − 𝑚b𝑙b (11) 

Table 1. Robot design parameters 
 

Name Symbol Value Unit 

Base width 𝑙s 160 mm 
Upper arm length  𝑙a,1, 𝑙a,3 260 mm 
Upper arm outer diameter  60 mm 
Upper arm inner diameter  40 mm 
Upper arm mass 𝑚a,1, 𝑚a,3 3.19 kg 
Lower arm length 𝑙a,2, 𝑙a,4 510 mm 
Lower arm outer diameter  30 mm 
Lower arm inner diameter  20 mm 
Lower arm mass  𝑚a,2, 𝑚a,4 0.34 kg 
Payload  𝑚p 1 kg 

 

Table 2. Counter-mass properties for the force balanced (FB) and 
partially balanced (PB) case. 

 

Name Symbol FB PB Unit 

Upper arm counter-
mass  

𝑚b,1, 𝑚b,3 60.8 17.0 kg 

Upper arm counter-
mass location  

𝑙b,1, 𝑙b,3 39 39 mm 

Lower arm counter- 
mass  

𝑚b,2, 𝑚b,4 6.7 - kg 

Lower arm counter- 
mass location 

𝑙b,2, 𝑙b,4 51 - mm 
 

 
 
Figure 2. The parametric model of the dynamically balanced 
mechanism. The counter-mass is depicted in grey. 
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Therefore, the transfer function of the force balance system 
becomes 
 

𝑃FB =
𝑚a𝑚b(𝑙a − 𝑙b)𝑘𝑠4

(𝑚a𝑠2 + 𝑘)(𝑚b𝑠2 + 𝑘)
 (12) 

Here it can be seen that force balance eliminates the 𝑠2 
component in the numerator of (10). 

3. Results 

The linearization of the full dynamic model of the 2-DOF 
mechanism around the midpoint of the workspace results in a 
frequency transfer function (Fig. 3.) from joint angle 1 in rad to 
shaking forces in the y-direction in Nm. The modes shapes of 
the fixed-joint linearization are depicted in Fig. 4. The modes 
shapes of the released-joint linearization are shown in Fig. 5. 
Table 3 provides the eigenfrequencies of both linearizations. 

3.1. Unbalanced mechanism 
A low frequent 40 dB/decade line characterizes the transfer 

function of the shaking forces of the unbalanced mechanisms 
until the fixed-joint eigenfrequency at 474 Hz (Fig. 3). Beyond 
this eigenfrequency, the internal vibrations of the robot are 
dominant. Since the shaking forces of a rigid body motion 
correspond to 𝑓𝑦 = 𝑚eq𝑞̈1, the Laplace domain the transfer 

function is characterized by 𝑇UB ≈ 𝑚eq𝑠2. In here 𝑚eq is the 

equivalent mass inducing the shaking force. This 𝑠2 result in 40 
dB/decade line and is termed the rigid body motion effects of 
the robot. 

This effect is also observed in the parametric model. In the 
frequency region far below the first eigenfrequency (𝜔 ≪ 𝜔1) 

the behavior of the unbalanced mechanism (8) can be 
approximated by 
  𝑃UB ≈ 𝑚a𝑙a𝑠2 (12) 

It can be seen that here the rigid body behavior is dominant. 
This corresponds to a 40 dB/decade line in the bode diagram. 

Inspection of the fixed-joint eigenmodes of the mechanism 
(Fig. 4a and d) reveals that the first eigenmode (433 Hz) is in 
the 𝑥-direction, and does not contribute in the 𝑦-direction 
transfer function. This is attributed to the symmetry of the 
robot in this pose. 

The controller bandwidth is limited by the released-joint first 
parasitic eigenfrequency (Fig. 5a). This is 620 Hz in the 
unbalanced case. 

3.2. Force balanced mechanism 
The transfer function of the fully force balanced mechanism 

is characterized by an 80 dB/decade line up to the first fixed-
joint eigenfrequency. This shows that force balance removes 
the rigid body effect on the force vibrations such that the 
transfer function in this domain is characterized by 𝑇(𝑠) ≈
𝑚eq𝑠4. From the parametric model, a similar low-frequent 

approximation is found: 
 

𝑃FB ≈
𝑚a𝑚b(𝑙a − 𝑙b)

𝑘
𝑠4 (14) 

This fourth-order behavior corresponds to the 80 dB/decade 
line of the numeric simulation. This shows that dynamic 
balance results in a strong attenuation of the shaking forces in 
the frequency region below the first eigenfrequency. 

Additionally, the first fixed-joint eigenfrequency of the 
system is lowered from 433 Hz to 179 Hz due to counter-
masses placed at the lower arms. Therefore, the force balance 
quality of this flexible manipulator is improved in the low 
frequency range up to 108 Hz; beyond this frequency, the 
performance is worsened. 

The lowering of the eigenfrequencies due to dynamic balance 
is also observed in the released-joint eigenfrequency; the first 
parasitic eigenfrequency is lowered to 204 Hz, indicating a 
significant loss of controller bandwidth. 

3.3. Partially balanced mechanism 
The partially balanced robot shares a low frequent 40 

dB/decade line with the unbalanced mechanism. However, the 
magnitude of this line is lower compared to the unbalanced 
case. Effectively, this results in a 30 dB reduction in low-
frequent region. This is attributed to the reduction of the 
equivalent mass.  

In the parametric model, the shaking forces at the 
frequencies below the first eigenfrequency are dominated by 

 
 
Figure 3. The shaking force frequency content of the 2-DOF mechanism 
in the vertical direction due to actuation of joint 1. The units of the y-
axis are the logarithm of N/rad. 

   
a) UB 1: 433 Hz b) FB 1: 179 Hz c) PB 2: 433 Hz 

   
d) UB 2: 474 Hz e) FB 2: 195 Hz f) PB 2: 474 Hz 

Figure 4. The first two fixed-joint mode shapes for the unbalanced (a, d), force balanced (b, e) and partially balanced case (c,f) 
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the rigid body effects as seen from the following approximation 
 𝑃PB ≈ (𝑚a𝑙a − 𝑚b𝑙b)𝑠2 (15) 

In here also the rigid-body, second-order behavior is found. The 
difference between the unbalanced case is a reduction of the 
effective mass by suitable choice of the counter-mass (𝑚b𝑙𝑏). 

Additionally, a minimal decrease of the first released-joint 
parasitic eigenfrequencies to 619 Hz occurs. Since the counter-
masses are placed at the base joints, solely the higher, non-
critical eigenfrequencies are reduced. This indicates that the 
controller bandwidth can be maintained with partial dynamic 
balance. 

4. Conclusion 

In this paper, it is shown that dynamic balance results in a 
low frequent attenuation of the shaking forces of 40 dB/decade 
in comparison to an unbalanced robot. This effect is due to the 
elimination of the rigid body contribution in the shaking force. 
This is particularly helpful if a shaking force attenuation is 
required in the low frequency range. However, the added 
balance mass also lowers the first parasitic eigenfrequency. In 
the present case study a reduction of 67 %, from 620 Hz to 204 
Hz was observed. This will result in a proportional loss of 
controller bandwidth and hence performance the robot. Partial 
dynamic balance combines a low frequent attenuation without 
a reduction of the first parasitic eigenfrequency and is 
therefore suited to maintain the controllability of the robot. 
The proposed frequency domain analysis of the dynamic 
balance quality enables a dynamic balance solutions tailored to 
application specific needs. 
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a) UB 1: 620 Hz b) FB 1: 204 Hz c) PB 2: 619 Hz 

   
d) UB 2: 624 Hz e) FB 2: 213 Hz f) PB 2: 621 Hz 

Figure 5. The first two released-joint mode shapes for the unbalanced (a, d), force balanced (b, e) and partially balanced case (c,f) 
 

Table 3. The first unwanted eigenfrequencies (in Hz) for the fixed-joint 
(𝜔f,𝑖) and released-joint (𝜔r,𝑖) linearizations in the unbalanced (UB), 
force balanced (FB) and partially balanced case (PB). 

 

Case 𝜔f,1 𝜔f,2 𝜔r,1 𝜔r,2 

Unbalanced 433 474 620 624 
Force balanced 179 195 204 213 
Partially balanced 433 474 619 621 
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