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Ssummary

Haptic interaction with a partner - interaction by exerting forces onto each
other directly or through an object — plays an important role in our lives. It can
help us to coordinate our actions; dance partners can smoothly coordinate dance
moves by communicating their intentions through interaction forces. Many new
movement or motor tasks — referred to as motor learning — are also learned
while haptically-interacting with someone else; parents physically support their
child while it learns to ride a bicycle or therapists help individuals suffering
from stroke to regain motor function through physical assistance. However, our
knowledge of haptic human-human interaction and its implications on how we
learn new motor tasks is still limited.

The goal of this thesis is to create a better understanding of whether haptic in-
teraction between two humans improves individual motor learning in a collabo-
rative motor task and why haptic interaction would improve motor performance
and learning. We approached this goal in two main steps: (1) we performed two
studies in which participants learned a new motor task while haptically interact-
ing with each other; and (2) we investigated whether and how the interacting
participants used the interaction force to coordinate actions or to improve their
own task performance.

To investigate how two humans haptically collaborate, we designed and built
BROS (Bi-partner RObotic Setup), a dual-manipulandum robotic setup (Chapter 2
and Fig. 1). BROS consists of two identical robotic manipulanda - one for each
individual in a pair - that participants could move with their hand in a horizontal
plane. We could generate many types of haptic interactions between the two
partners, ranging from a stiff connection, similar to carrying a table together, to
a compliant connection, such as holding a rubber band together.

Haptic interaction between humans does not improve
individual motor learning in a collaborative motor task

We tested how haptic interactions between two humans learning the same motor
task influenced their individual motor learning using two different learning tasks
(Chapters 3 and 4). We assessed motor learning by analyzing which final per-
formance they reached after sufficient practice and at what rate individuals im-
proved their performance to their final performance level. The partners tracked
the same randomly- and continuously-moving target in a plane as accurately as
possible in both tasks (see Fig. 1). In the first experiment, we introduced a dy-
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Figure 1. | BROS, the dual-manipulandum robotic setup. Participants were haptically-coupled us-
ing BROS.

namic perturbation using a velocity-dependent force field in the tracking task to
increase the task difficulty and to elicit learning (Chapter 3). The force field per-
turbed the hand movements of each partner proportional to their own movement
velocity. The force field initially degraded tracking performance, but participants
learned how to compensate for the force field and gradually improved tracking
performance over time. To study whether haptic interaction would influence
motor learning, we intermittently connected the hands of both partners using a
computer-generated compliant connection without making the individuals explic-
itly aware of the interaction while they performed the tracking task. Although
haptic interaction improved performance during interaction, practicing together
did not generalize to better tracking performance when doing the task alone.
Haptic interaction also did not speed up learning.

It is possible that haptic interaction did not improve individual motor learning
due to the force field learning task. In our force field experiment, the force field
was superimposed on the interaction force; hence, the force field and interaction
force were in the same sensory domain. The force field could have limited the
usefulness of the interaction force to improve each individual’s motor learning.

We, therefore, performed a second experiment using the same tracking task
but introduced a visual perturbation — a visuomotor rotation — instead of a force
field to evoke learning (Chapter 4). The visual feedback of the arm movement
on the computer display is rotated with respect to the actual arm movement in
a visuomotor rotation. Similar to the force field, humans gradually learn how
to move in such a visual perturbation. To better understand why haptic inter-
action would improve learning, we also investigated how two important factors
influenced individual motor learning: the amount of interaction time and the
strength of the interaction (e.g., the strength of the connection between the part-
ners). Consistent with our force field study, we still found no benefit of haptic



human-human interaction on individual motor learning in a visuomotor rotation
compared to individuals who practiced the task alone. Interaction led neither to
a better motor skill performance nor an increased motor learning rate. Increas-
ing the amount of interaction time or interaction strength also did not improve
motor learning,.

Combining the results of these two studies, we conclude that solely being hap-
tically coupled to a partner who is learning the same tracking task does not im-
prove individual motor learning in a visual or dynamic perturbation.

Haptic communication is not necessary to explain the motor
behavior in collaborative motor tasks

Although haptic interaction does not lead to better motor performance when
performing the tracking task alone, it does improve motor performance during
interaction. More importantly, we found that interaction improves performance
in a tracking task even when unconsciously being coupled to a worse-performing
partner. How does haptic interaction with a worse-performing partner still im-
prove performance?

To explain this result, we developed a computational model in which we me-
chanically coupled two simulated partners who both independently performed
the same aforementioned continuous tracking task (Chapter 6). The model as-
sumed that the partners were unaware of the haptic connection; the partners
were only mechanically influenced by the interaction force originating from the
coupling. Thus, the simulated partners did not exchange any information about
each other or the task through the interaction force, such as estimating the ac-
tions or intentions of their partner, to improve their performance. We refer to
such exchange of information through the interaction force as haptic communi-
cation. This ‘no haptic communication’ model accurately predicted the improve-
ment due to interaction observed in the experimental data. Additional model
analysis suggested that haptic interaction improved performance because the
compliant connection between the participants partially compensated for each
partner’s motor output variability, which includes tracking errors such as over-
shoots. The worse-performing partners in a pair additionally benefited from the
haptic guidance provided by their better-performing partner. Hence, the model
suggested that the participants did not necessarily need to haptically communi-
cate to improve performance in a continuous tracking task.
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This explanation is in contrast with a previous study', which proposed that
partners estimated each others movement goals through the interaction force
to improve their own estimate of the target location, which was subsequently
used to improve their performance. This hypothesis assumed that the partners
were able to accurately perceive the interaction force. However, when we im-
paired the perception of the interaction force by superimposing a force field on
the tracking task and interaction force, participants still improved due to the
haptic interaction similarly to when no force field was present. We showed that
the interaction force was biased in direction and magnitude by the force field,
even when assuming that the partners learned a substantial, but incomplete in-
ternal model of the force field. These results suggest that haptically-interacting
partners do not need to have an accurate perception of the interaction force to
yield similar performance improvements during interaction as when no force
field was present. This further affirms that haptic communication was not neces-
sary to improve performance during haptic interaction in a continuous tracking
task.

Researchers suggested that the interaction force can be used to negotiate roles
— such as leader-follower — between rigidly-coupled participants to improve per-
formance in a point-to-point reaching task. How did the partners achieve such
coordination and how did the roles emerge trial-by-trial? To answer these ques-
tions, we examined how two rigidly-coupled individuals coordinated their ac-
tions trial-by-trial during a collaborative reaching task to the same stationary
target (Chapter 5). The joint reaching movements were remarkably consistent
across the experiment and pairs also produced opposing forces between them
that they did not minimize over trials. Using a computational model of the joint
reaching task, we found that both partners executed their own pre-programmed
motion plan that ignored their partner’s behavior. The results suggest that the
partners did not exchange information through the interaction force to coordi-
nate actions, similar to our results in the continuous tracking task.

In conclusion, the results of haptic interaction in a collaborative tracking task
and collaborative reaching task suggest that haptically coupling two partners
does not guarantee that the partners will communicate or coordinate actions
through the haptic connection.

'A Takagi, G Ganesh, T Yoshioka, M Kawato, and E Burdet. Physically interacting individuals
estimate the partner’s goal to enhance their movements. Nature Human Behaviour, 1(3):0054,
2017.
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Samenvatting

Haptische interactie met een partner — interactie door krachten rechtstreeks of
via een voorwerp op elkaar uit te oefenen — speelt een belangrijke rol in ons le-
ven. Het kan ons helpen onze bewegingen te codrdineren: danspartners kunnen
bijvoorbeeld dansbewegingen op elkaar afstemmen door hun intenties te com-
municeren via interactiekrachten. Nieuwe bewegingstaken of motorische taken
kunnen worden geleerd (ook wel motorisch leren genoemd) terwijl mensen hap-
tisch samenwerken met een partner. Therapeuten helpen mensen bijvoorbeeld
met het herstellen van hun motorische functies na een beroerte door hen fysiek
te ondersteunen. Echter, onze kennis van haptische mens-mens interactie en hoe
deze ons kan helpen om nieuwe motorische taken te leren, is beperkt.

Het doel van dit proefschrift is om te onderzoeken of haptische interactie tus-
sen twee mensen helpt om het motorisch leren van beide partners in een geza-
menlijke motorische taak te verbeteren. We onderzochten hoe haptische interac-
tie met een partner, die dezelfde taak oefende, het motorisch leren beinvloedde
in twee aparte leertaken. Daarnaast bestudeerden we of en hoe de partners de
interactiekracht gebruikten om de prestaties te verbeteren in de motor taak of
om acties te codrdineren.

Om te onderzoeken hoe twee mensen haptisch samenwerken hebben wij de Bi-
partner Robotic Setup (BROS) ontworpen (Hoofdstuk 2). BROS bestaat uit twee
identieke robotische manipulanda - één voor iedere partner — elk met een hand-
vat die de deelnemer kon bewegen in een horizontaal vlak (Fig. 1). BROS stel-
de ons in staat om verschillende haptische connecties tussen de twee partners
te maken, zoals een stijve of een flexibele verbinding. Een stijve verbinding is
vergelijkbaar met het samen dragen van een tafel. Een flexibele verbinding is
vergelijkbaar met het samen vasthouden van een elastiek.

Haptische interactie tussen twee mensen leidt niet tot een
verbeterd motorisch leren in een gezamenlijke motorische taak

We onderzochten hoe de haptische interactie tussen twee partners die dezelfde
motorische taak uitvoerden het motorisch leren in deze taak van elke partner
individueel beinvloedde. We hebben dit in twee verschillende leertaken getest
(Hoofdstukken 3 en 4). Wij analyseerden het motorisch leren door het uiteindelij-
ke prestatieniveau te berekenen en te analyseren hoe snel dit niveau werd bereikt.
De motorische taak bestond uit het volgen van een doel op een scherm dat voor
beide partners hetzelfde was (zie Fig. 1). Dit doel bewoog continu en onvoorspel-
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Figuur 1. | BROS, de dubbele robotische opstelling. De partners werden aan elkaar gekoppeld door
BROS.

baar; de partners moesten dit doel zo precies mogelijk volgen. Om deze volgtaak
moeilijker te maken en zo het motorisch leren te stimuleren introduceerden wij
een dynamische verstoring met behulp van een snelheidsathankelijk krachtveld
in het eerste experiment. Het krachtveld verstoorde de handbewegingen als een
functie van de bewegingssnelheid van beide partners. Deze verstoring verslech-
terde de prestaties in de volgtaak in eerste instantie, maar door oefening leerden
de deelnemers om de krachtsverstoringen te compenseren en zo hun prestaties
te verbeteren. We koppelden de twee deelnemers met een flexibele verbinding
aan elkaar om te bestuderen of haptische interactie dit leerproces zou versnellen
en tot betere eindprestaties zou leiden. De twee partners werden niet op de hoogte
gesteld van de koppeling. Haptische interactie verbeterde de prestaties van beide
partners tijdens de interactie, maar leidde niet tot betere prestaties wanneer de
taak alleen werd uitgevoerd. Het leerproces werd ook niet versneld door hapti-
sche interactie.

Het is mogelijk dat het individuele leervermogen niet verbeterd werd door
het krachtenveld. Het krachtveld werd toegevoegd aan de interactiekracht; de
interactiekracht en het krachtveld bevonden zich dus in hetzelfde domein. Het is
daarom mogelijk dat de bruikbaarheid van de interactiekracht om het leerproces
te verbeteren werd beperkt door het krachtveld.

We voerden daarom een tweede studie uit met dezelfde volgtaak maar introdu-
ceerden nu een visuele verstoring: een visuomotor rotatie (Hoofdstuk 4). In een
visuomotor rotatie wordt de visuele terugkoppeling van de handbewegingen op
het computerscherm geroteerd ten opzichte van de echte handbewegingen. Dit
resulteert in een fout tussen wat de deelnemer ziet waar zijn/haar hand is ten op-
zichte van waar hij/zij voelt waar de hand is, wat leidt tot een verslechtering van
de volgprestaties. De visuomotor rotatie verslechterde de prestaties in de volg-
taak, maar met voldoende oefening leren de deelnemers om de volgtaak accuraat
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uit te voeren door voor de visuele verstoring te compenseren. We onderzochten
ook hoe twee belangrijke factoren invloed hadden op het individueel motorisch
leren: de hoeveelheid interactietijd en de kracht van de haptische verbinding
tussen de partners. Consistent met ons krachtveldexperiment vonden we geen
voordeel van haptische interactie op individueel motorisch leren in een visuomo-
tor rotatie vergeleken met individuen die de taak alleen leerden. Interactie leidde
niet tot betere individuele prestaties, noch tot een sneller leerproces. Meer inter-
actietijd of een hogere interactiesterkte had ook geen invloed op het leren.

Gebaseerd op deze twee experimenten concluderen we dat een haptische kop-
peling met een partner die dezelfde volgtaak leert niet leidt tot een verbeterd
individueel motorisch leren in een dynamische of visuele verstoring,.

Haptische communicatie is niet noodzakelijk om het gedrag
tijdens haptische interactie te verklaren

Hoewel haptische interactie niet resulteerde in betere individuele prestaties wan-
neer de volgtaak vervolgens alleen werd uitgevoerd, werden de prestaties wel
sterk verbeterd tijdens de haptische interactie. Wat nog interessanter was, was
dat haptische interactie de prestaties verbeterde, zelfs als iemand gekoppeld was
aan een slechter-presterende partner. Hoe kan haptische interactie met een slech-
tere partner je eigen prestaties verbeteren?

Om deze resultaten te verklaren ontwikkelden we een wiskundig model waar-
in we twee partners modelleerden die de volgtaak onafthankelijk van elkaar uit-
voerden (Hoofdstuk 6). De twee gesimuleerde partners werden aan elkaar ge-
koppeld met een flexibele verbinding. Het model nam aan dat de partners zich
niet bewust waren van de haptische koppeling; de partners werden alleen mecha-
nisch beinvloed door de interactiekracht atkomstig van de connectie. De partners
wisselden dus geen informatie over elkaar of de taak uit via de interactiekracht in
het model, zoals het schatten van elkaars acties of intenties om hun prestaties te
verbeteren. Deze informatie uitwisseling via de interactiekracht wordt ‘haptische
communicatie’ genoemd. Dit model voorspelde de prestatieverbeteringen door
haptische interactie in de experimentele data nauwkeurig. Een aanvullende mo-
delanalyse suggereerde dat haptische interactie prestaties verbeterde omdat de
flexibele verbinding de motor variabiliteit, waaronder bewegingsfouten zoals het
doel voorbij schieten, van beide partners gedeeltelijk compenseerde. De slechter-
presterende deelnemer profiteerde bovendien van de haptische begeleiding van
hun beter-presterende partner. Dus, het model suggereerde dat de partners niet
haptisch hoefden te communiceren in een continue volgtaak om hun prestaties
te verbeteren.
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Samenvatting

Deze verklaring staat lijnrecht tegenover een andere studie’, waarin werd ge-
suggereerd dat partner elkaars bewegingsdoelen schatten via de interactiekracht
om zo hun eigen inschatting van het doel te verbeteren, die vervolgens werd ge-
bruikt om hun eigen volgprestaties te verbeteren. Hun hypothese veronderstel-
de onder andere dat de partners de interactiekracht nauwkeurig konden waar-
nemen. Wanneer we echter de waarneming van de interactiekracht bemoeilijk-
ten door een krachtveld aan de volgtaak toe te voegen, verbeterden de deelne-
mers door haptische interactie net zoveel als toen er geen krachtveld aanwezig
was. We toonden verder aan dat de waarneming van de interactiekracht in rich-
ting en grootte beinvloed was door het krachtveld, zelfs als we aannamen dat
de partners een substantieel maar incompleet model van het krachtveld hadden
geleerd. Deze resultaten doen verder vermoeden dat partners de interactiekracht
niet nauwkeurig hoefden waar te nemen om dezelfde prestatieverbeteringen te
krijgen vergeleken met toen er geen krachtveld aanwezig was. Dit bekrachtigt
dat haptische communicatie niet noodzakelijk was om de prestaties te verbeteren
tijdens haptische interactie in een continue volgtaak.

In een andere taak, waarin twee haptisch-gekoppelde partners samen naar een
gemeenschappelijk stilstaand doel reikten, zag een andere studie dat de partners
verschillende rollen — zoals leider en volger — aannamen. De onderzoekers sugge-
reerden dat de samenwerkende partners de interactiekracht gebruikten om deze
rollen te verdelen en acties te codrdineren. Maar hoe codrdineerden de partners
hun acties en hoe kwamen deze rollen tot stand tijdens de haptische interactie?
We onderzochten hoe twee star-gekoppelde partners hun acties coérdineerden in
een gezamenlijke reiktaak om deze vragen te beantwoorden (Hoofdstuk 5). De
meetdata liet zien dat de gezamenlijke reikbewegingen opmerkelijk consistent
waren. Daarnaast produceerden de partners tegengestelde krachten op elkaar die
ze niet minimaliseerden; een teken dat de partners hun acties niet per sé coor-
dineerden. Met behulp van een wiskundig model van de gezamenlijke reiktaak
zagen wij dat beide partners hun eigen voorgeprogrammeerde bewegingsplan
uitvoerden waarin ze hun partner negeerden. Deze resultaten suggereerden dan
de partners geen informatie uitwisselden via de interactiekracht om hun acties
te coordineren, vergelijkbaar met de resultaten van de continue volgtaak.

Ten slotte, deze resultaten suggereren dat twee mensen haptisch met elkaar
verbinden niet garandeert dat de partners de interactiekracht bewust en effectief
gebruiken om bijvoorbeeld acties te codrdineren of informatie uit te wisselen.

'A Takagi, G Ganesh, T Yoshioka, M Kawato, and E Burdet. Physically interacting individuals
estimate the partner’s goal to enhance their movements. Nature Human Behaviour, 1(3):0054,
2017.
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Introduction

It is snowing heavily and the wind is howling as my climbing partner and I
start to climb the Stiidlgrat, a famous ridge up Austria’s highest peak — the Grof3-
glockner. The view on my partner is regularly obstructed by the rock as the route
meanders up the ridge and the wind prevents us from communicating verbally.
The only other way of communication is through our climbing rope. When my
partner climbs faster than me, the tension in the rope increases, indicating that
either I should speed up or he should slow down. By communicating through
the rope we are still able to coordinate our climbing speed and safely climb to
the top.

The ability to coordinate actions between individuals is an integral part of our
lives and often determines how successful we are at a motor task, such as danc-
ing or climbing [1]. Action coordination between humans can occur through
many channels, for instance through verbal communication, facial expressions
or imitation [2—4]. People can also coordinate actions by exerting forces onto
each other. In the mountaineering example, we exerted forces onto each other
through the climbing rope, facilitating motor coordination and task performance
as long as the goal is properly understood by both climbers. This form of interper-
sonal interaction is referred to as physical human-human interaction or haptic
human-human interaction. Figure 1.1 shows some examples of haptic interac-
tion between humans. A therapist physically supports a patient to help regain
motor function after stroke or injury. Movers can use haptic interaction to coor-
dinate movements while carrying a heavy object. A team can physically assist
each other to reach a common goal, like reaching the top of a climb.

Humans can haptically-interact in different ways, mainly depending on the
task and roles of each partner [5, 6]. Jarrassé et al. [5] described a framework
to classify interactive behaviors between two or more agents — including two
humans, two robots, or a human and a robot — based on optimal control theory
in which each agent minimizes their cost; the sum of effort and error. Optimal

Figure 1.1. | Examples of haptic human-human interaction in daily life. Photo credits: UK Stroke
Association (left figure), Gainesville Movers (middle figure), Constantine Antoniades
(right figure).



control theory is a common approach used to describe and predict human motor
behavior [7, 8]. Jarrassé et al. [5] classified interactions into three main cate-
gories: competition, collaboration, and cooperation. During competitive haptic
interaction, both partners only consider their own cost and, if necessary, impede
the other partner’s performance. In contrast, during cooperative and collabora-
tive interactions, each partner considers his/her own cost function and that of
their partner, attempting to work together to find a mutually beneficial solution
to a common task. The main difference between cooperation and collaboration is
how roles are assigned between the partners. In cooperation, roles are assigned a
priori to each partner, such as leader-follower or teacher-student. This can result
in partners performing different sub-tasks, while both work towards the same
goal.

Jarrassé et al. [5] identified two forms of cooperation that are relevant for
human-robot interaction: assistance and education. During assistance, both
agents try to minimize only the effort and error of the individual who is receiv-
ing assistance. An example is an exoskeleton that assists a human with walking.
During education, the teacher attempts to minimize his own effort in order to
challenge the student, let the student perform according to his capabilities, and
promote learning in the student [5]. The goal of the teacher is to become obsolete
as soon as the student has reached a certain skill level and can execute the task
independently.

During collaboration, roles are not assigned beforehand and are left to emerge
spontaneously [5, 6] and can change while both partners work together toward
the same goal. Each partner attempts to achieve the task themselves and could
take the performance of the other partner into account. When collaborating,
partners are equally responsible for reaching the goal. Collaboration also in-
cludes the interactions that can be described using differential game theory, in
which each partner chooses a strategy such that no partner has anything to gain
by changing only his/her strategy [5, 9] — a situation also known as a Nash equi-
librium [10]. Another form of collaboration is co-activity, in which the partners
interact without needing to know what the other partner is doing, but still suc-
ceed in the common task together [5]. An example of co-activity is when two
interacting partners execute a motor task independently by ignoring the other
partner, but were influenced by the haptic connection between them. Co-activity
is the simplest form of interaction because no exchange of information through
the interaction force is required.

Research on haptic interaction between humans has mostly focused on col-
laboration. These studies indeed found that collaborating partners adopt sponta-
neous roles depending on the task [11-16]. For example, Reed and Peshkin [11]
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found that two partners, who haptically collaborated to move a crank to a target
as fast as possible, specialized into roles in which one partner took care of the ac-
celeration of the crank and the other decelerated the crank. Interacting partners
do not necessarily converge to global role distributions, but adopt strategies that
are specific for each pair [13]. In addition, partners can change roles over time
[13].

Collaborating partners can perform a task as well as [12] or better than [11, 17]
either of the partners alone. Ganesh et al. [17] investigated how haptic inter-
action impacts the performance of two humans who were performing the same
collaborative task — tracking a common continuously-moving target. They made
two interesting observations: (1) haptic interaction between two humans leads
to performance improvements during interaction for both partners, even when
one partner is significantly worse at the tracking task than the other partner
and (2) that haptic interaction improved individual motor learning compared to
practicing the task alone.

Motivated by these promising results, we set out to investigate two aspects
of haptic human-human interaction in collaborative tasks. First, we investigated
whether and why haptic interaction with a human improves motor learning com-
pared to practicing the task alone. Second, we studied how two humans both can
improve performance during haptic interaction.

In this chapter, I will first discuss why gaining knowledge on haptic human-
human interaction would be useful, for instance to complement the development
of human-robot interaction strategies. I will then briefly summarize the most
important research on two aspects of haptic human-human interaction: the per-
formance improvement during interaction and the effect of interaction on motor
learning. In the final sections, I will present the research questions and outline
of this thesis.

1.1. Why investigate haptic human-human
interaction?

We live in a time in which intelligent systems, such as robots, are rapidly becom-
ing an integral part of our society: robotic devices are introduced in healthcare to
assist therapists in neurorehabilitation and physical therapy [18-20]; exoskele-
tons are becoming increasingly capable of supporting gait or helping to regain
motor function after stroke (e.g., [21, 22]); and industrial robots are starting to
work in direct physical contact with human workers, such as wearable robots
that assist the worker in lifting heavy objects [23]. Still, designing robots that
can physically interact with a human to cooperatively perform motor tasks, aid



in rehabilitation, or physically assist a human to learn a new motor task, is a
complex challenge for roboticists [6].

A large body of literature — a detailed overview of which is beyond the scope
of this introduction — exists describing different approaches on how to control
robots that physically interact with humans. For additional information, see
Marchal-Crespo and Reinkensmeyer [18] for a comprehensive review of robot-
assisted rehabilitation approaches or Goodrich and Schultz [24] for a survey on
human-robot interaction. Many of these approaches are implemented in an ad-
hoc manner based on notions of what the desirable features of a robot interacting
with a human should be [6, 18, 25]. The majority used cooperative interaction
strategies in which the robot is at the full service to the human. For example,
rehabilitation robots are controlled such that they guide the human over a pre-
defined desired kinematic trajectory to eventually improve motor function - a
form of haptic guidance [26, 27]. Other strategies tuned the amount of assis-
tance based on the motor skill level of the participant or only supported certain
sub-tasks of a movement to promote the active participation of the human [28-
30]. However, there is evidence that haptically guiding a movement does not
improve motor control, as demonstrated in rehabilitation after a stroke [18, 19].
Robots could also be used to augment movement errors or promote motor explo-
ration to facilitate motor learning, yet the effectiveness of error augmentation
to improve learning depends on the skill level of the participants and motor task
characteristics [31-34].

To further promote effective, intuitive, and versatile interaction between hu-
mans and robots, researchers expressed the desire to develop human-robot in-
teraction paradigms that resemble the haptic interactions between two humans
(6, 18, 25, 35]. The research on haptic interaction between humans while they
perform or learn a collaborative motor task, like the study of Ganesh et al. [17],
could provide valuable information for the development of intuitive, flexible, and
effective robotic control algorithms. Knowledge of haptic human-human inter-
action could help the human to better understand the intentions of the robot and
vice-versa [6, 35]. Rehabilitation robots could interact with the patient similarly
to how a physical therapist would during conventional therapy, alleviating the
physical demands on the therapist, potentially minimizing the training time, and
rehabilitation outcome [6]. Industrial robots could interact with their human col-
leagues in a way that is intuitive to the human, such that the robot’s intentions
are immediately understood, ensuring safe and efficient human-robot collabora-
tion.
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1.2. Learning better together through haptic
interaction

Ganesh et al. [17] were the first to show that haptic interaction between two
humans improves each partner’s own motor learning. They used a tracking task
that required both partners to follow the same randomly-moving target on a com-
puter screen by moving the handle of their robotic manipulandum (Fig. 1.2B).
Performance was the mean tracking error. The partners haptically-interacted in
some trials through a compliant connection: a computer-generated spring with a
small damping component that was rendered by each manipulandum (Fig. 1.2A),
that coupled their hands. To elicit learning, Ganesh et al. [17] introduced a visuo-
motor rotation in which the visual feedback of the cursor was rotated clockwise
with 80 deg with respect to the hand movement (Fig. 1.2C). Haptic interaction
improved individual motor performance significantly more and, although not
explicitly mentioned by the authors, initially faster compared to someone who
practiced the task alone [17].

The reasons why haptic human-human interaction would improve motor learn-
ing in a collaborative task remain unknown. It is possible that participants ‘coached’
each other on how to move in the learning task through haptics. Moving in an
80 deg visuomotor rotation, the learning paradigm used by Ganesh et al. [17],

A B Display
. 1 L } Target
Manipulandum—— (common)
Computer-generated spring
Cursor
(own)

Visuomotor rotation

80 deg

Curtain

Cursor

Figure 1.2. | Robotic setup and display and experiment design (taken from Chapter 4). A Each
participant grasped the handle of one of the two manipulanda. Visual feedback was
presented on a display mounted in front of each participant. B Participant received
visual feedback of their own cursor position and a common target position. C Visuo-
motor rotation: the visual feedback of the cursor was rotated clockwise with 80 deg
with respect to the hand movement.



likely required a change in movement strategy [36]. Haptically-interacting part-
ners could have coached each other on how to move in the visual perturbation.
Similarly, visually observing someone else learn a motor task has been shown to
facilitate the observer’s motor learning of the same task [37, 38]. Perhaps haptic
interaction allowed for ‘haptic observation’ of how to move in the visuomotor
rotation, improving motor learning. However, participants were not made explic-
itly aware of the interaction, so it is unknown whether such processes occurred.

Despite the promising results by Ganesh et al. [17], theirs remains the only
study that found that haptic human-human interaction in a collaborative task
benefits motor learning.

1.3. Performing better together through haptic
interaction

As mentioned earlier, haptic interactions with another human consistently im-
prove performance across several tasks, including reaching tasks [11] and track-
ing tasks [17, 39]. Specifically, Ganesh et al. [17] showed that haptic interaction
also improved the performance of both partners tracking the same unpredictably-
moving target. Ganesh et al. [17] used a compliant connection (Fig. 1.2A), which
allowed the participants to move independently while still feeling an interaction
force resulting from the haptic interaction. Remarkably, Ganesh et al. [17] found
that haptic interaction even with a worse-performing partner resulted in perfor-
mance improvements.

How did the haptically-interacting partners improve their performance in [17]?
To explain their results, researchers from the same group hypothesized that the
interacting partners extracted information about each other from the interaction
force [40]. They proposed that partners estimate their partner’s movement goal,
use it to improve their estimate of the goal, and improve motor performance.
In order to estimate their partner’s movement goal, participants first estimated
their partner’s position through the interaction force. The partner’s control ac-
tions are then estimated and used to estimate the partner’s movement goal.

Haptic interaction has been shown to be useful for communicating movement
intentions before (e.g., [14, 41-43]). However, most of these studies used less
complex tasks than a fast-moving tracking task, for instance tasks that required
movement in one dimension [41, 42], or assigned roles to the partners a priori
[14]. Sawers et al. [14] reported that the leader in a dancing couple used small
interaction forces to communicate the intended movement to the follower (i.e.,
they used cooperative tasks; participants were aware of the haptic connection).
Takagi et al. [40] was the first to propose that haptic interaction improved motor
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performance in a collaborative task, because partners estimated their partner’s
state and movement intention, even though participants were not made explic-
itly aware of or had any other accurate knowledge of the haptic interaction with
the other partner. The question remains whether the exchange of accurate infor-
mation, as required by the goal integration model, is possible in a fast-moving
tracking task.

1.4. Research questions

The goal of this thesis is to create a better understanding of whether and why
haptic interactions between two humans improve individual motor learning and
performance during interaction. If haptic interaction indeed leads to better in-
dividual motor learning compared to learning the motor task alone, then why
would haptic interaction improve learning? It is possible that partners exchange
information through the interaction force, for instance to coordinate motor ac-
tions or roles, like teacher-student, or to communicate information (e.g., ‘tips or
tricks’) on how to learn the task better through haptics. Therefore, another cru-
cial question in haptic human-human interaction is whether and how humans
can exchange any information through the interaction force, in particular in a
complex movement task such as a tracking task.
We investigated the following research questions:

1. Does haptic human-human interaction improve individual motor learning
in a collaborative motor task and if so, why?

2. How do rigidly-coupled partners coordinate motor actions in a joint reach-
ing task?

3. Do individuals improve performance during haptic interaction in a collab-
orative tracking task by exchanging information about each other through
the interaction force? Is such haptic communication necessary to explain
the observed improvements?

1.5. Thesis outline

This thesis consists of three parts: one chapter describing the hardware that we
developed to study haptic interaction between humans and two research themes,
see Fig. 1.3. Research theme I focuses on whether and how haptic interaction
improves motor learning (research question 1). Theme II centers on the question
of how people coordinate actions in haptic interaction and how people improve
performance through haptic interaction (research questions 2 and 3).
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Chapter 1
Introduction
Chapter 2

BROS: an admittance-controlled multi-player haptic robotic setup

Chapter 3 Chapter 5

Haptic interaction does Motor coordination in a
not facilitate learning of reaching task
novel dynamics (RQ1) (RQ2)

Chapter 4 Chapter 6
Physical interaction does Haptic communication in a
not improve visuomotor continuous tracking task

learning (RQ1) (RQ3)

Chapter 7
General discussion

Figure 1.3. | Thesis outline. Each chapter, except for the hardware chapter, discusses one of the
research questions indicated by RQ1, RQz2, or RQs3.

All chapters, excluding this introduction and the discussion, have been writ-
ten as papers that were either presented at a scientific conference or (are to be)
submitted in scientific journals. Therefore, each chapter can be read separately.
A short description of each chapter is provided below.

Hardware

Chapter 2 describes the design and implementation of BROS: the Bi-partner
RObotic Setup (see Fig. 1.4). BROS consists of two identical manipulanda that
allow arm movement in a horizontal plane. Control of each manipulandum was
implemented using an admittance controller, which renders desired dynamics
(in our case a point mass of 0.3 kg with a damping component of 0.2Nsm™')
uniformly in the x- and y-directions over the workspace. The manipulanda can

11
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Figure 1.4. | The BROS dual-robotic setup for studying haptic human-human interaction.

be coupled through the control software, allowing for a wide variety of haptic in-
teractions. We developed BROS specifically to study haptic interaction between
two humans. This chapter also describes a detailed evaluation of the manipu-
landa, with extra attention to how the manipulandum renders constant dynam-
ics across its workspace, essential for studying human motor control and haptic
interaction.

Research theme I: motor learning

Ganesh et al. [17] showed that haptic interaction improved motor learning in a
visuomotor learning task (see Fig. 1.2C). However, many new motor tasks we
learn in real life involve learning new dynamics, for instance learning to stabi-
lize yourself on a bicycle or swinging a tennis racket. We investigated whether
haptic interaction improved motor learning of novel dynamics in Chapter 3.
Participants performed a continuous tracking task while interacting with each
other through a compliant connection. We then introduced a velocity-dependent
force field perturbation as novel dynamics and investigated whether haptic inter-
action, now in the same sensory domain as the learning task, improved individual
motor learning. Individual motor learning of the participant who intermittently
haptically-interacted was not different from the participants who learned the
task alone. Hence, we found that haptic interaction did not facilitate nor inter-
fere with learning novel dynamics.

It is possible that haptic interaction did not improve the learning of novel dy-
namics because the learning task and interaction force were in the same sensory
domain. To investigate whether the motor learning benefits of haptic interaction
are task-specific, we also performed a motor learning experiment with the same

12



visuomotor rotation learning task as used by Ganesh et al. [17]. We also investi-
gated why haptic interaction would improve individual motor learning and tried
to understand this process better by investigating two factors that could impact
the learning process: the amount of interaction time and the strength of the in-
teraction. Chapter 4 describes the experiments and their results. Contrary to
Ganesh et al. [17] but consistent with Chapter 3, we found no benefit of haptic
human-human interaction on individual motor learning in a visuomotor rotation
compared to individuals who learned the task alone. Interaction led neither to
a better motor skill level nor an increased motor learning rate. Increasing the
amount of interaction time or interaction strength did not improve motor learn-
ing.

Research theme II: haptic communication

Studies proposed that haptically interacting partners improved performance by
coordinating roles through the interaction force [11, 12, 41]. Reed and Peshkin
[11] proposed that participants improved performance by specializing into roles
in which one partner took care of the acceleration and the other provided the de-
celeration of a movement. How did these roles emerge? Chapter 5 describes an
experiment and computational model to answer this question. We tested rigidly-
coupled pairs in a joint reaching task to study the changes in the partner’s move-
ments. However, the joint reaching movements were surprisingly consistent
across trials. A computational model demonstrated that the two partners had
distinct motion plans, which did not change with time. These results suggest
that rigidly-coupled pairs accomplished joint reaching movements by relying on
a pre-programmed motion plan that was independent of their partner’s behavior.

A continuous tracking task as the one used in Chapters 3 and 4 and [17, 40]
and coupling the two partners through a compliant connection may be more
suitable to examine haptic interaction and how haptic interaction improves per-
formance than a reaching task with rigid coupling. Similar to Ganesh et al. [17],
we found that haptic interactions though a compliant connection improves per-
formance in a tracking task, even with a worse-performing partner (see Chap-
ter 6). However, improvement benefits reduced when interacting with increas-
ingly worse partners. Takagi et al. [40] proposed that interacting participants
improved performance by exchanging accurate information through the interac-
tion force. However, is such information exchange possible through haptics, in
particular in a fast-moving tracking task? We provide an alternative explanation
backed up by a computational model. A model that made as few assumptions
as possible about the interaction — participants did not need to estimate their
partner’s state, actions or intentions through the interaction force — sufficiently
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described the performance improvements during interactions. In addition, we
impaired the accurate perception of the interaction force by superimposing a
force field (as in Chapter 3) on the tracking task. Even though the interaction
force perception was biased by the force field, we still found the same improve-
ment due to interaction. Our results suggest that no information exchange needs

to occur to improve performance, challenging the goal integration hypothesis of
Takagi et al. [40].
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BROS: the admittance-controlled multiplayer haptic robot

Abstract

Robotic manipulanda facilitate investigations on how two or more humans phys-
ically interact when performing a movement task together. Here we describe
BROS, a robotic setup with two planar manipulanda designed specifically for
studying physical human-human interaction. The design is based on a 5R closed-
loop parallel pantograph and was optimized for low end-point mass. Control of
each robotic device was implemented using an admittance controller, allowing
isotropic dynamic behavior across the workspace. Furthermore, admittance con-
trol allows for stable coupling of the two manipulanda and a wide range of haptic
interaction conditions. We evaluated the robotic devices in terms of stiffness ren-
dering capabilities, force production, closed-loop position tracking performance
and admittance rendering performance. We tested multiple degrees of virtual
stiffness up to 400 Nm™', however higher stiffness rendering is possible, and the
robots can produce over 50 N at the endpoint. The closed-loop position tracking
bandwidth to the —3 dB point is approximately 21 Hz. The desired virtual mass-
damper admittance could be rendered within a 10 % modulus deviation up to a
frequency of 7.5 Hz. Finally, we validated the experimental capabilities of BROS
with a human-human interaction experiment in which we varied the stiffness
between the two interacting partners.

2.1. Introduction

Haptic robotic manipulanda are indispensable tools in studying human motor
control, motor learning, physical rehabilitation and physical human-robot in-
teraction. These robots range from lower-extremity exoskeletons, such as the
LOPES [1], and full arm exoskeletons, like the ARMIN [2], to one degree of free-
dom (DOF) devices such as the Hi5 wrist manipulator [3]. Because many aspects
of motor control can be studied using arm movements in a plane, most motor
control studies predominantly used planar robotic manipulanda with a handle
at the endpoint. Examples of planar robotic manipulanda include the vBOT [4],
KINARM [5], Braccio di Ferro [6], PFM [7], Haptic Master [8] and 3DOM [9].
Planar endpoint robotic manipulanda have low complexity compared to multi-
DOF devices like exoskeletons, allow for high-precision movement sensing and
can provide a wide range of dynamic behaviors, such as minimal resistance to
movement (e.g., low apparent impedance), rendering stiff objects or applying a
velocity-dependent force field.
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The existence of planar and similar robotic manipulanda facilitated the re-
search on physical interaction between two humans (e.g. [10-13]). By studying
the motor behavior when two partners are physically coupled to each other, for
instance when carrying a table together, other researchers and we intend to deter-
mine the underlying mechanisms of physical interaction between two humans.
One of the advantages of using robotic manipulanda for studying human-human
interaction is the flexibility in generating different types of dynamic conditions,
such as different physical connections between the interacting partners, ranging
from rigid connections (carrying a table together) to compliant connections (for
instance two people holding a rubber band).

Most robotic setups used in physical human-human interaction studies consist
of two identical robotic manipulanda [3, 10, 14] whose endpoints can be virtually
connected through the control software, similar to robotic setups used for biman-
ual control (e.g. [15]). For instance, Melendez-Calderon et al. [3] developed the
His interface, which is a robotic setup with two 1 DOF wrist manipulanda, one
for each partner, that allows wrist flexion and extension. While a dual 1 DOF
robotic manipulandum alleviates the already complex analysis of human-human
physical interaction, for motor learning purposes a manipulandum with at least
two degrees of freedom and larger workspace is desirable. Ganesh et al. [10] and
Braun et al. [16] both used two identical planar robotic devices: two PFM planar
robotic manipulanda [7] and two vBOT manipulanda [4], respectively. While
any dual robotic setup can be made by linking two (preferably identical) existing
robotic manipulanda, most of the devices as mentioned earlier are built in-house
and are not commercially available. On the other hand, off-the-shelf solutions
usually do not fit budgetary constraints or desired specifications.

We developed the Bipartner RObotic Setup (BROS), which is a setup consisting
of two identical robotic manipulanda designed explicitly for studying physical
human-human interaction during sensorimotor tasks. Our goal was to develop
a setup consisting of two compact planar robotic manipulanda with a highly
configurable control and software architecture and low isotropic endpoint mass.
Besides describing the design and implementation process of the robot, we em-
phasize the usefulness of admittance control for human motor control research.
Most manipulanda use impedance control, sometimes with feedforward control
for passive dynamics compensation [6, 9] which heavily depend on the accuracy
of the estimated device dynamics. We evaluate the performance of the robot in
terms of admittance control capabilities with a focus on its efficacy for human-
robot interaction and motor control studies.
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Figure 2.1. | Overview of BROS. (a) Overview photo of the BROS with the two robotic manipu-
landa and displays. (b) Schematic top view of the setup. (c—e) Isometric, side and
front view renderings of the planar robotic manipulandum. The major mechanical
and electronic components are built into the base of each manipulandum.

This paper first describes the robotic setup, design and implementation pro-
cess, followed by the evaluation of the setup and its manipulanda. Lastly, we
will assess its capabilities for performing physical human-human interaction ex-
periments.

2.2. Design & Implementation

In this section, we first show an overview of the BROS, followed by a description
of the design and implementation steps of the BROS. Because the main compo-
nents are the two identical manipulanda, we will describe the design and evalu-
ation for one robotic device, unless stated otherwise.

2.2.1. Overview

Figure 2.1 shows an overview of the BROS robotic setup and manipulandum.
It comprises two identical planar parallel robotic manipulanda. Users hold the
robot by the handle at the endpoint of the manipulandum, which is attached to
the robot through a 6 DOF force/torque sensor. During experiments, a curtain
is closed to isolate the participants so that they can only see their display and to
minimize non-physical interaction.
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2.2.2. Design requirements

The manipulanda of BROS are designed for the following requirements:

1. low endpoint mass such that the passive robot dynamics impede the user’s
arm movements as little as possible,

2. high structural rigidity such that high stiffness can be rendered,

3. a minimum elliptical workspace with a bounding box of 350 X 200 mm
based on the typical movement magnitude in motor control work (e.g.
[17]).

4. a global conditioning index (GCI) (the condition number x integrated over
the usable workspace) larger than 0.7 for good manipulability [18],

5. the apparent dynamics at the endpoint by the user should be isotropic
across the workspace such that changing device dynamics do not influ-
ence the user’s motor control and

6. the robot should be able to deliver 25 N at the endpoint across the workspace
continuously and maximally 75N at the nominal position, similar to [6].

2.2.3. Topology, kinematics and dynamics

The BROS planar robotic manipulanda are parallel robots using a 5R symmet-
ric parallel robot topology (see Fig. 2.2). We chose this robot topology mainly
for the high structural rigidity, needed to render high stiffness, in combination
with low endpoint mass, necessary for rendering low impedance, and position-
ing and measurement accuracy [19]. A disadvantage of such a parallel kinematic
chain is the increased computational complexity of kinematics and in particular
dynamics [20]. Here we describe the kinematics and a simplified model of the
device dynamics which we used for design optimization and device control. The
actuators and position sensors are situated at joints 1 and 5 (the ‘shoulder’ joints,
indicated by P; and Ps) and are fixed to the base frame; the endpoint is located
at joint P3. Joints P; and Py are referred to as the ‘elbow’ joints. The links indi-
cated by Ly and L, are referred to as the “forearm’ links and ‘upper arm’ links,
respectively. The origin of the Cartesian coordinate system is at the midpoint of
the base segment L.
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Figure 2.2. | Parallel 5R topology of the robotic device. The endpoint is at joint P3 and is indicated
in red.

Direct kinematics
The Cartesian endpoint position x = [x3, y3]” is directly related to the joint
angles ¢ = [qi1, gs]”. The direct kinematics x = f(q) are derived using the

approach as described in Klein et al. [9]. The positions of joints Py, Py, P4, Ps5 are:

L o],

po= L o,

~

P =

. (2.1)
P, = [Lu cosq; Lysin ql] + P; and

P, = [Lu cosqs Ly sin q5]T + Ps.

Because both forearm links have length L¢, the triangle P,P3sP, is an isosceles
triangle and therefore the projection of P5; should always be above the midpoint
between P, and P,. By defining point P}, that is midway of points P, and P4, we
can calculate the distance ||Pj, — P5|| and corresponding normal vector n pointing
from the midpoint P, to Ps:

1
Py = 5(P2+P4),

u
u=P,-P, = [uj and (2.2)
n= L uy] .
[lull [—ux
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Because of the isosceles right triangle formed by P,P,P3 we know the distance

from P;, to P5 to be [L2 — }1 ||lu||?, such that the position P3 can be determined:

f

Because we are interested in the position of the endpoint P5 only, we denote the
position of P5 as x from here on.

The geometric Jacobian J(q) = dx/dq relating endpoint velocity to the joint
velocity (x = J(q)q) can be calculated analytically from 2.3. The Jacobian can be
used to calculate the conditioning number « [19]:

K

1
=, (2.4)
R ’

where a value of 0 and 1 indicate minimum and maximum dexterity (i.e. isotropy)
respectively.

Dynamics

We derived a simplified model of the robot dynamics to optimize the design of
the robot in terms of minimal passive device dynamics and for controller tuning.
The joint-space dynamics of the robotic device can be written in the standard
form

M(q)§+C(q,9q) q+ Dcsign(q) + D,q =

zq -1 (QF.. 5

where M (q) is the mass matrix, C(q,q) includes the Coriolis and centripetal
contributions, D, and D,, are the Coulomb and viscous friction coefficients, 7,
are actuator torques and F, is an externally applied force at the endpoint [21].
Due to the coupling of the forearm links in the closed-loop kinematic chain,
deriving the analytical solution of the device dynamics is complicated [19, 20].
Therefore, following the approach of Codourey [20], we used a simplified model
which ignores the rotational inertia of the forearm links. To account for the mass
of the left and right forearm links, we divided the mass ms of each forearm link
to the endpoint and corresponding elbow joints: %mf is added to the endpoint
mass m, at P3 and %mf is added to each elbow joint mass m,; at P, and Py:

1 2
m, = me + 3 and m),; = me; + 3 (2.6)
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Due to these simplifications, the mass matrix now consists of two main compo-
nents: (1) the rotational inertia Y, of both shoulder joints, upper arm links and
elbow joints and (2) the point-mass m,, of the endpoint. The rotational inertia
matrix Y is

Y
T, = [ a1 O | with

0 Y45

(2.7)

1 .

Yg,: = Y k? + Y, + L2 (g’"u + m;l), i=1,5,
where Y, is the actuator rotor inertia, k, the transmission ratio, Y the shoulder
joint rotational inertia and m,, the upper arm link mass.

Contributions of the endpoint mass to the joint-space inertia and Coriolis and
centrifugal terms are found by realizing that

% =J4+Jq. (28)
Combining equations 2.5 to 2.8, the simplified dynamics are

Y4+ m.J Jq +m.J'jq + Design (q) + Doq =
74— J'Fe.

2.2.4. Mechatronic design and implementation

Figure 2.3 shows an overview of the mechatronic implementation of one manip-
ulandum.

Robot design

The link lengths Ly, L, and Ly are the main design parameters, as they greatly
determine workspace, manipulability and dynamics.

Due to the force requirements specified in Section 2.2.2 and because we used
DC motors which can generate relatively low nominal torque output, a transmis-
sion was needed. We used a capstan wire transmission with transmission ratio
k, for two reasons, (1) a capstan wire transmission is highly back-drivable and
(2) it has no backlash compared to a geared transmission. However, it does have
a lower stiffness than gear-based transmissions.

The link lengths and transmission ratio are the results of an optimization of a
cost function which included the requirements described above using a genetic
algorithm in MATLAB (see the results in Table 2.1). The resulting link lengths
and transmission ratio led to a robot design with an elliptical workspace with a
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Figure 2.3. | Overview of the mechatronic implementation of one manipulandum.

bounding box of 355 by 215 mm, an average mass at the endpoint (averaged over
the workspace) of 0.27 kg, maximum mass at the end of 0.55kg at the usable
workspace boundary and a global conditioning index of 0.74.

The condition number across the reachable workspace is given in Fig. 2.4A.
Note that the usable workspace, indicated by the ellipse, is smaller than the total
reachable workspace. We intentionally keep the robot’s endpoint in the smaller
usable workspace to avoid robot configurations with poor conditioning. The
robot’s nominal position — where the condition number is closest to 1 — is at

Xnom = [0, 0.245] " m.

The maximum translational mass at the endpoint over the reachable workspace
(including all inertia contributions) is calculated by finding the largest eigenvalue
of the mass matrix expressed in operational space at the endpoint (denoted as
M,). We map the joint space mass matrix (Mq = Y4 + m.J’]) to the endpoint
operational space as follows [21]:

My =] "M =710 )7 + mlIPe (2.10)

The mass of each component was estimated from CAD data, and the handle and
force sensor were weighed.
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Figure 2.4. | Condition number and theoretical maximum endpoint mass, calculated using equa-
tion 2.10 across the workspace. A Theoretical condition number. B Theoretical maxi-
mum mass at the endpoint. Both figures show the robot configuration at the nominal
position as well as the usable workspace.

Mechanical design

All links consist of circular carbon-fiber reinforced tubes with an outer diameter
of 15mm and 1 mm wall thickness (mass density of 65gm™! and a modulus of
elasticity E = 65 GPa). At the most extended position of the robot with the arms
clamped, we expect a structural deflection of the links of 0.2 mm at the endpoint
when applying a force of 75N at the endpoint.

Table 2.1. | Robotic device design parameters and values.

Parameter Value

Ly 0.07  [m]
Ly 0.238 [m]
Ly 0.153 [m]
k, 73 [
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Other parts, including joints and transmission, are machined from aluminum.
We used low-friction ball-bearings (SKF) for all joints. The planar manipulan-
dum is housed in a rigid support frame made out of extruded aluminum profiles
(MISUMI). The housing contains most of the electronics (motor drive, sensors
and other circuitry) and is closed using transparent covers (see Fig. 2.1).

The handle at the endpoint is a 3D-printed sphere that is comfortable to hold.
The handle is connected to the 6 DOF force/torque sensor at the robot’s endpoint
and can freely rotate around the out-of-plane axis.

Actuation and sensors

The actuators at the shoulder joints are two Faulhaber 3890 Ho48CR brushed DC
motors with a nominal torque of 0.24 N m and a stall torque of 2.9 N m. These mo-
tors have low rotor inertia (1.71 - 10~ kg m?) and no cogging due to them being
coreless. The motors are connected to the transmission input shaft. Each mo-
tor is controlled by a Technosoft iPOS4808 BX-CAT motion controller in current
control mode, which has a maximum continuous output current of 8 A, a peak
output current of 20 A for a maximum of 2.5 s and a maximum nominal supply
voltage of 48 V. Each motor drive has an EtherCAT controller and allows for mul-
tiple sensor read-outs directly onto the EtherCAT bus; in our case an incremental
and an absolute encoder.

Position sensing is performed at each motor and each transmission output
shaft. Each DC motor is equipped with an incremental encoder (Faulhaber IE3-
1024L quadrature encoder, 1024 lines per revolution, 4096 counts in quadrature
mode). An absolute encoder (MU1C, iCHaus) with a 16-bit per revolution resolu-
tion is connected to each transmission output shaft. Using these position sensors,
we expect a worst-case measurement inaccuracy of dx ~ 26 um at the extreme
of the workspace [19]. Joint velocity is calculated using a discrete-time differen-
tiation of the position signals, followed by a second-order Butterworth low-pass
filter with a 70 Hz cut-off frequency. The translational position and velocity of
the endpoint are calculated using the direct kinematics and jacobian (see equa-
tions 2.1 to 2.3).

Forces and torques exerted onto the endpoint by the user are measured using a
high-precision 6 DOF force/torque sensor (ME Mef3systeme K6D27 sensor with a
custom 100 N and 2 N m range). The sensor’s GSV-8DS EC amplifier (ME Mef3sys-
teme) has 24-bit ADCs and an EtherCAT controller so that it can directly connect
to the EtherCAT chain. We measured force sensor drift and measurement vari-
ance for 80 min. The force sensor measurement variances for the sensor’s local
x- and y-axes are similar and are in the range of 1.85- 107> N? to 1.93 - 107> N2,
The drift of the x axis of the sensor was approximately 19.8 mN h™! (first-order
linear regression).
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Software implementation

The robots are controlled using the EtherCAT real-time control system (Ether-
CAT Technology Group), which is controlled through TwinCAT 3 (Beckhoff).
The advantages of using the EtherCAT control system include low loop delay
and jitter (< 100 ns) and simple reconfiguration of additional sensor slaves. Fur-
thermore, any PC can serve as the EtherCAT master device. Physical processing
cores can be isolated to be solely utilized for the EtherCAT real-time system exe-
cution, eliminating operating system-related timing delays. TwinCAT is capable
of using compiled MATLAB Simulink (Mathworks) models for real-time control.
Communication between the TwinCAT real-time kernel and the Windows oper-
ating system is performed using the TwinCAT Automation Device Specification
(ADS) router.

The experiment control software, which handles the communication with the
real-time EtherCAT system, is implemented in C™" on the same system. Ex-
periment visualization is done using OpenFrameworks (version 0.10.0) which
handles the low-level OpenGL programming for minimal latency and hardware-
accelerated display of movements. Data for graphics visualization is polled from
the real-time system and updated at 120 Hz. Complete experiment protocols can
be programmed intuitively by human-readable XML files.

Safety

Multiple safety features are implemented: mechanical endstops, limit switches,
emergency buttons, software limits and watchdog timers. To complement the
mechanical endstops for each upper arm (see Fig. 2.1C), we implemented two
limit switches per actuator at the extremes of their predefined range of motion.
When pressed, the limit switches pull the enable circuits of both drives down, dis-
abling both drives. Furthermore, each robotic device has an emergency button:
when pressed, all motor drives of both robotic devices are disabled. We also im-
plemented software limits for position, velocity and maximum force. When any
of these parameters exceeds a threshold, all motor drives are disabled. Lastly, all
EtherCAT slaves (the motor drives and the Beckhoff EtherCAT terminals) have
built-in watchdog timers. These watchdog timers monitor the communication
between the slave and the master computer. In case of a communication inter-
ruption (unplugging of a data cable or master computer crash), the watchdog
timer in the motor drives will disable the drives after 50 ms. As a second layer of
safety, the motor drive enable circuit is powered using a Beckhoff EL2008 digital
out terminal which also includes a watchdog timer set to 50 ms. Once triggered,
this watchdog timer will pull the digital output down, disabling the motor drive
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enable circuit and disabling the motor drives.

The electrical safety and electromagnetic compatibility are ensured by using
a REOMED 2200 W medical isolator (REO) and redundant earthing. Where pos-
sible, shielded and screened electrical cabling is used. The covers of the support
structure prohibit the user from touching any internal parts.

2.2.5. Manipulandum admittance controller

We chose an admittance control strategy for how a manipulandum reacts to
the user’s force input on the handle. In admittance control, the opposite of
impedance control, the force exerted by the user onto the handle is measured
and used to calculate a setpoint — through a model of desired virtual dynamics —
for a lower-level position controller [22]. Figure 2.5 shows the basic control dia-
gram of admittance control. The human exerts a force Fj onto the robot, which
is used as an input to a virtual model Y,,,. This virtual model, for example, a mass-
damper dynamic system, outputs a desired position x, setpoint for the low-level
controller C,,. The controller C, attempts to enforce x4 onto the robot Y, using
a controller force F,, resulting in the robot’s motion x.

For our application, admittance control has some advantages over impedance
control which is often used in other devices (e.g. [4, 9]). Because the chosen
robot configuration results in changing dynamics and conditioning across the
workspace — for instance, the mass at the endpoint varies considerably over the
workspace — admittance control allows us to make them isotropic. Although
this can be achieved with impedance control, for instance by using feedforward
dynamic compensation of the passive device dynamics, this heavily relies on
how well the device dynamics can be estimated. Furthermore, for admittance
control, it is more straightforward to render any dynamics, such as stiff objects
and objects with high mass, which is more difficult in impedance control. For
instance, when rendering a virtual wall in admittance, you only need to limit the
desired position x; to not cross the wall.

F X
h Ym d O Cp

C
=

Figure 2.5. | Admittance control diagram for one manipulandum.
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The apparent admittance Y,(s) of the admittance controller shown in Fig. 2.5
is calculated by deriving the closed-loop transfer function from input F, to x:

x(s)
Fh,x(s)

Yq (S) = y(s)

Fh,y(s)

(P2 +Y,(5)Cp(5)) " (Yr(s) + Yr(5)Cp(5)Ym(s)) -

(2.11)

The apparent admittance indicates the admittance the user feels during the in-
teraction, taking the controller and robot dynamics into account.In the limit for
high control gains, the apparent admittance converges to the desired admittance.

We set the virtual model dynamics of each robotic device to a mass (m, =
0.3kg) and damper (b, = 0.2Nsm™!) system. Although lower inertia is possi-
ble (e.g., the maximum mass of approximately 60 % of the usable workspace is
smaller than 0.3 kg), these settings provide a good trade-off between apparent
device dynamics and stability across dynamic conditions, such as rendering a
rigid connection between the two robots’ endpoints.

The low-level position control loop was closed using a PD controller (C,) in
operational space [21]. The PD controller gains were tuned such that the end-
point position tracking behavior was stable across the usable workspace. The
position gain k, and differential gain k4 of controller C, are set to 1500 Nm™"
and 18 Nsm™, respectively. The controller gains are limited mainly due to me-
chanical constraints and the added phase lag in the closed loop due to velocity
estimation, which we will analyze and discuss further in the next sections.

2.2.6. Teleoperation controller

A set of two coupled manipulanda is in principle a typical teleoperation setup.
The two robotic devices can be coupled by interchanging the virtual spring force
connecting both robots and adding the spring force to the virtual model force
input. Figure 2.6 shows the control scheme of such a coupling: the difference
in the desired robot position results in a spring force Fg, which is added to the
virtual model inputs. Admittance control allows for stable coupling of two robot
devices compared to impedance control alternatives; the measured force can be
interchanged directly as if both partners are applying force onto a common vir-
tual model [23]. The low-level position control loop stiffness then limits the max-
imum render stiffness.
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Figure 2.6. | Teleoperation controller diagram for two coupled manipulanda. The two coupled
manipulanda are denoted by BROS green and BROS blue. Z; denotes the connection
dynamics coupling the two manipulanda, for instance a linear spring.

2.3. Evaluation

We performed some tests to evaluate the robotic device’s performance. First,
we tested the robot’s low-level position control loop by measuring the robot’s
ability to render (closed-loop) stiffness and by its closed-loop position tracking
bandwidth. Second, we evaluated the admittance control performance. Lastly,
we evaluated the usability of the BROS for studying human-human interaction.
We summarized the performance of a manipulandum in Table 2.2.

2.3.1. Closed-loop stiffness rendering and force production

The closed-loop stiffness at the handle was estimated at the nominal position in
eight directions. We simulated nine springs in the virtual model, with the desired
stiffness ranging from 20 Nm™! to 400 Nm™!. Per spring, we manually pulled the
endpoint handle from the nominal position in eight directions. The measured
force, handle position (as measured by the encoders) and handle velocity were
recorded. We regressed a mass-spring-damper system in two dimensions to the
measured data. The resulting stiffness in x and y was compared to the desired
stiffness, see Fig. 2.7. Due to the high similarity in measured stiffness in x and
y, we combined these stiffnesses in x- and y-direction in Fig. 2.7. When the
desired stiffness of 200 N m is simulated, we measured a stiffness of 175 N m. The
lower actual stiffness is due to the low-level position loop stiffness, which acts
as a series compliance element with the desired stiffness ((1/1500 + 1/200)"! =
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Table 2.2. | Performance measures of one manipulandum

Performance measure Value

Usable workspace (ellipse with a bounding 0.355m X 0.215m
box of L X W)

Global conditioning index 0.74 —
Position resolution” 26 pm
Velocity resolution™ ¥ 26 mms~?
Max. velocity (manual excitation) 1.05ms™?
Max. acceleration (closed-loop pos. input) 108.4ms2
Max. acceleration (manual excitation) 16.7ms?
Force/torque sensor range (in x and y) 100N; 2N m
Force sensor resolution (in x and y) 30 uN
Max. force production 50N

Max. passive endpoint mass” 0.55kg
Closed-loop position bandwidth (in x and y) 21Hz
Admittance control bandwidth 6.5Hz
Control frequency 1kHz

0:  The handle was at the position with lowest condition number (furthest away from the robot)
v:  Velocity resolution is calculated by dividing the position resolution by the sampling time (0.001 s)

175N m™!), see Fig. 2.7). This means that we need to compensate for the inner
loop position control stiffness when setting the desired stiffness. Note that we
did not take the structural stiffness of the device into account.

Each parallel manipulator of BROS is capable of generating over 50 N of force
at the endpoint. We tested this by slowly increasing the generated force at the
endpoint by open-loop control in eight directions. The user firmly held the han-
dle at the endpoint. The force/torque sensor measured the force exerted by the
robot onto the handle. We did not test forces over 50 N for safety reasons, because
we do not expect to use such high forces during the intended human-human in-
teraction experiments.

2.3.2. Closed-loop position bandwidth performance

The control bandwidth of the robot was assessed by analyzing the closed-loop
position-position tracking performance at the endpoint at the nominal position.
We used sum-of-sines excitation signals for the desired endpoint position x4 in
operational space (see Chapter A for more information). The tracking perfor-
mance was measured over five repetitions of 30 s with a sampling frequency of
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Figure 2.7. | Comparison of desired stiffness and measured stiffness. We evaluated several de-
sired stiffness levels. The expected measured stiffness, based on the closed-loop po-
sition controller in series, is given as well. We measured the stiffness at each desired
stiffness level five times, while moving the handle in eight directions. The markers
indicate the mean measured stiffness, where the measured stiffness in x and y are
combined. Although not visible, the small error bars (standard error of the mean)
indicate that the measurements are highly repeatable.

1kHz. The resulting robot endpoint position x was recorded. The measured fre-
quency response Hy, x for both the x and y axes are shown in Fig. 2.8. Our main
observations are: (1) the frequency responses for both axes are very similar and
show high consistency across repetitions, (2) the gain is approximately one up
to 10 Hz for both axes, well above the expected human hand movement band-
width, (3) a resonant peak occurs at approximately 17 Hz and (4) the frequency
response crosses the —3 dB (1/0.5) point at 21 Hz. Increasing the differential ac-
tion of the low-level position loop PD controller should decrease the resonance
peak; however, we were not able to increase damping and position gain further
during tuning, most likely due to the second-order filter used for the velocity
calculation and mechanical transmission resonance.

The sharp increase in the frequency response magnitude near 100 Hz in Fig. 2.8
is likely due to a mechanical resonance of the capstan transmission. To further
analyze the capstan transmission dynamics, we clamped one of the upper arm
links to the base of the robot (hence fixing the transmission output shaft) and sent
a sum-of-sines torque excitation signal to the motor. We measured the angular
motor position using the motor encoders, the (clamped) output shaft angular
position using the absolute encoders and commanded and actual motor torque.
The measured frequency response H;, . (jw) of the commanded torque 7, to

c dm
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Figure 2.8. | Closed-loop position tracking frequency responses of the x and y directions at the
nominal position. Markers and error bars indicate the mean and standard error of
the mean, respectively. Note that the error bars are small and practically not visible,
indicating that the frequency response results across the five repetitions was highly
repeatable.

motor position g,, (see Fig. 2.9) indeed reveals a transmission resonance peak at
fa = 110Hz. This low-frequency resonance most likely occurs due to the com-
pliance in the cable transmission [24] and reduces stability margin, subsequently
forcing controller gains down [25]. We will discuss options for curing the low-
frequency resonance peak and its effect on stability limits in the discussion.

2.3.3. Admittance controller performance

We analyzed the performance of how well a robotic device can render the de-
sired admittance using two metrics. First, we tested the isotropy of the rendered
apparent admittance across the workspace and compared it to the passive device
dynamics. Second, we analyzed the bandwidth over which the robotic device
can render the desired admittance.

Isotropic apparent admittance

To compare the measured apparent dynamics and passive dynamics, we esti-
mated the apparent endpoint mass and passive device endpoint mass to assess
whether the admittance control approach indeed leads to isotropic dynamics
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Figure 2.9. | Frequency response of the capstan transmission dynamics. The torque excitation
signal consisted of 42 non-harmonic sines, equally spread over a bandwidth of 10 Hz
to 400 Hz. Note that we decreased the frequency spacing between 90 Hz to 130 Hz
to properly capture the resonance peak. The maximum absolute requested torque of
the excitation signal was scaled to 0.2 N m.

across the workspace. To estimate the apparent admittance and passive device
dynamics, we manually moved the handle at nine locations in all directions with
different velocities and accelerations while staying close to the initial location
for 60 s. This measurement was done twice: once when the admittance controller
was switched on to measure the apparent mass and once when the device was
switched off to measure the passive device mass. We recorded the force applied at
the endpoint and the resulting robot movement and the endpoint position. End-
point velocity and acceleration were obtained by time differentiation. To obtain
the measured apparent mass, we fitted the desired dynamics Y, (a mass-damper
system in x- and y-directions) to the measured data. The resulting apparent mass
matrix per location is shown in Fig. 2.10 including the expected apparent mass
(e.g., my, = 0.3kg). To obtain the passive endpoint mass, we fitted the dynamic
model (equation 2.9) to the measured data. The passive endpoint mass was then
calculated using equation 2.10. All model fits were performed using MATLAB’s
fmincon algorithm and showed high R? values (> 0.9) indicating a good fit to
the measurement data.
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Figure 2.10. | Comparison of the expected versus measured passive and apparent mass across the
workspace. The locations are the average positions of each measurement. The gray
ellipse indicates the usable workspace. The admittance control approach leads to
isotropic mass at different positions in the workspace.

Figure 2.10 compares the expected and measured apparent endpoint mass and
expected and measured passive endpoint mass at the nine locations in the usable
workspace. The apparent mass is mostly isotropic across the usable workspace
compared to the passive endpoint mass. The advantage of the admittance con-
trol approach is evident for endpoint locations further away from the nominal
position (i.e., locations with a smaller condition number). Dynamic feedforward
compensation of the passive device dynamics could improve the passive device
dynamics (e.g. [9]), however precisely identifying the passive device dynamics is
not trivial. The admittance control approach ‘solves’ this problem for us. Small
discrepancies are seen between the expected and measured endpoint masses; our
manual excitation of the robot to measure these data is likely an important factor.
Note that the desired apparent mass was set to 0.3 kg, which is higher than the
maximum passive endpoint mass; this was done to ensure unconditional stability
for all practical human-robot interaction scenarios expected during experiments.
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Apparent admittance bandwidth

The bandwidth over which the desired dynamics can be rendered is examined
by comparing the desired virtual dynamics Y, with the apparent admittance
inferred from Y,,, C, and Y,, denoted as Y, and felt or measured apparent ad-
mittance Ya, where

_x(s)
_ | Fr® _|Yxls) 0
Y.(s) = hO o) | = l 0 Y (S)l and
i Fpy(s) Y (2.12)
~ B [V.(s) 0
Ya(s) - 0 ?y(s)l .

We define the bandwidth as the lowest frequency at which the ratios of magni-
tude of the measured apparent admittance and the desired apparent admittance
(|Ya|/|Ya|) is smaller than 0.9 or larger than 0.97!.

The frequency response of the desired virtual dynamics Y, is calculated with
a mass of 0.3kg and a damping of 0.2Nsm™!. We extracted the frequency re-
sponse of the robot dynamics Y, (from commanded torques to resulting robot
position in x and y directions) using the data from the position control loop band-
width evaluation, which means we can only evaluate Y, at the frequencies given
in Table A.1. The frequency response of the controller C, was also evaluated
at these frequencies, using the tuned position controller values. The inferred
apparent admittance is then calculated using equation 2.11. The measured ap-
parent admittance Y, was assessed by randomly applying forces onto the robot
endpoint at different frequencies and in all directions for five repetitions of 120 s
each at the nominal position. We took care to stay close to the nominal position
while moving the endpoint. Note that the human user applying the forces was
only able to provide frequencies in the range of approximately 0.2 Hz to 7.5 Hz.

Figure 2.11 shows the desired model dynamics Y,,, the inferred apparent ad-
mittance Y, and measured apparent admittance Y,. We see that the inferred and
measured apparent admittance in both x- and y-directions match well. Further-
more, the inferred and measured apparent admittance results match the desired
admittance at least up to 6 Hz. Above 6 Hz to 7.5 Hz the apparent admittance is
still similar to the desired dynamics; however, the measured apparent admittance
bandwidth already exceeds the bandwidth of typical human arm movements (for
instance, the maximum frequency of human arm movements during tracking
tasks is around 4 Hz [26]).

Because the apparent admittance is, among others, a function of the robot dy-
namics Y,, the apparent admittance bandwidth varies over the workspace. To
analyze this variation, we simulated the apparent admittance using equation 2.11
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Figure 2.11. | Desired admittance versus inferred and measured apparent admittance. The left
and right columns present the magnitude and phase of the desired, inferred and
measured apparent admittance in the x- and y-directions at the nominal position,
respectively. The measured apparent admittance shows the mean and standard error
of the mean.

across the usable workspace. We estimated the parameters of the simplified dy-
namics (see equation 2.9) using a model fit as used for estimating the passive
device dynamics as described above. The frequency response of the apparent
admittance is then evaluated across the workspace and compared to the desired
admittance. The apparent admittance bandwidth is defined as described above.

Figure 2.12 shows the simulated apparent admittance bandwidth across the
usable workspace. The smallest bandwidth between the x- and y-directions was
taken at each location. The further the endpoint is from the base of the robot, the
lower the apparent dynamics bandwidth. The lowest bandwidth is approximately
4.8 Hz at the farthest position of the workspace, which is still above the expected
bandwidth of human control and tracking behavior. Note that the simulated
results are highly dependent on the estimated device dynamics parameters; as
mentioned before, estimating the passive device dynamics yields results of vary-
ing quality. The bandwidth of the measured and inferred apparent admittance
could be improved by improving the position control loop performance.
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Figure 2.12. | Simulated bandwidth of the apparent admittance across the usable workspace. The
shown bandwidth is the smallest frequency of the apparent admittance bandwidth
in either the x- or y-direction.

2.3.4. Experimental evaluation

Here we present the results of an experiment to evaluate the performance of
BROS for studying physical human-human interaction. This experiment also
serves as a showcase of using an admittance control approach to teleoperation,
in which the robots are coupled through a spring Z; with different connection
dynamics (see Fig. 2.6).

Ganesh et al. [10] showed that physical interaction through a compliant con-
nection (a computer-generated spring) during a continuous tracking task leads
to better tracking performance compared to performing the tracking task alone.
More importantly, they found that you improve by interaction regardless of whether
your partner is better or worse than you at the task. We performed a similar ex-
periment to the one described by Ganesh et al. [10].

Experiment setup

We recruited 10 participants (aged 24.5 + 2.2 years, four females and six males),
which performed the experiment in five pairs. All participants performed the
same planar tracking task. The goal was to track a target with a cursor as accu-
rately as possible on a display. The cursor was controlled by moving the robot’s
handle. Each participant had a manipulandum and display, see Fig. 2.1.
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The target moved continuously during trials of 48 s. The data of the first 3 s
were discarded to remove any transient tracking behavior at the start of the trial.
The target movement was always the same for both partners. The target move-
ment was defined as sum-of-sines:

x(t) = 2.11 sin (0.63t + 4.86) + 2.05 sin (1.10¢ — 6.88)
+1.91sin(1.73¢ + 0.18) + 1.72 sin (2.67t — 8.49)
+1.42 sin (4.24¢ + 3.75) + 1.31 sin (5.50¢ — 4.28)

+1.13 sin (6.75¢ — 9.35) + 0.99 sin (8.01¢ — 0.54)

(2.13)
y(t) = 1.955sin (0.79¢ + 4.86) + 1.89 sin (1.26¢ — 6.88)

+1.77 sin (2.04¢ + 0.18) + 1.59 sin (2.98¢ — 8.49)
+ 1.31sin (4.56¢ + 3.75) + 1.21 sin (5.18 — 4.238)
+ 1.05 sin (6.44t — 9.35) + 0.91 sin (7.70¢ — 0.55)..

The tracking signal required hand movements over a circular workspace with a
diameter of 18 cm, an average velocity of 13.9 cms™! and a maximum velocity of
28.9cms™!. Each pair performed 48 trials of the tracking task divided over six
blocks.

Two types of trials were used in the experiment: connected and single trials.
During some trials, the partners in a pair interacted with each other through a vir-
tual spring; these trials are denoted as connected trials. The spring force allowed
the partners to physically interact, while still being able to execute the tracking
task independently. The computer-generated virtual spring (i.e., the connection
dynamics Z;, see Fig. 2.2.6) consisted of a spring stiffness of ks = 120 Nm™*
(same stiffness as used by Ganesh et al. [10]) and damping bs = 2.5Nsm™!:

Fs = ks (pp - Po) + bs (Vp - Vo) > (2.14)

where F; is the spring force exerted on a participant’s hand, p, and v, and p, and
v, are the partner’s and the participant’s own position and velocity, respectively.
The elastic force was exerted onto both partners’ hands by the robotic manipu-
landa. If a partner moved away from the other partner, they both experienced a
force pulling them toward each other.

The partners were not connected during the remaining single trials. The se-
quence of single (S) and connected (C) trials was {{SCCSCSCS] [SCCSCSCS]
[CSCSCSCC] [SCSSCSCS] [CSCSCSCC] [SSCSCSSC]}. Participants were not
explicitly made aware whether the trial was a single or connected trial.

Participants gave informed consent to participation in the study. The
study was designed following the principles of the Declaration of Helsinki.
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An expedited assessment of the study by the Medical Ethical Review Board
of the University of Twente (METC Twente) showed that the study poses
minimal risk and under Dutch law does not need full ethical review.

Data analysis

We focus on the performance improvement due to physical interaction fol-
lowing the approach of Ganesh et al. [10] and Takagi et al. [11]. Motor
performance was measured as the root-mean-square (RMS) of the tracking
error, denoted by E (in cm), recorded at 1kHz. We calculated performance
for single trials (Es) and connected trials (E;). Since the compliant virtual
springs still allowed independent tracking execution, E. of each partner is
not necessarily the same.

Similar to Ganesh et al. [10] and Takagi et al. [11], we examine the
relationship between improvement due to the haptic interaction and the
relative performance difference between partners. This allows us to study
whether interaction with a better or worse partner results in differences in
the benefits of the interaction for different skill levels. The improvement in
performance due to interaction (I) is calculated as

E.
I=1-—, 2.1
E (2.15)
where E. is the performance in a connected trial and E; is the performance
in the single trial following the connected trial. The relative performance (R)
of the partner you interact with is calculated by

Es,p
E;

R=1-

; (2.16)

where Es , is the partner’s performance during the single trial and E is the
participant’s own performance during the same single trial. To highlight the
trends in the data, we calculated the mean performance improvement in bins
that are 5% of relative performance R wide.

To analyze whether physical interaction leads to significant improvement
compared to performing the task alone, we used Wilcoxon sign-rank tests
(one-sample) per bin to test whether the improvement per bin had a median
larger than zero at a level of significance of o.05.
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Results

The improvement in task performance during a connected trial compared
to both partners performing the task alone is plotted against the relative
performance difference between the partners in Fig. 2.13.

Physical interaction generally leads to improvement in motor performance
during interaction when connected to a better partner (top-right quadrant).
We found significant improvement for all positive relative performance bins,
i.e. when the relative partner performance is R > 5% (all sign-rank tests
resulted in p < 0.01). Being connected to a worse partner did not significantly
improve performance (top-left quadrant). All sign-rank tests for all bins R < 0
did not reveal significant differences except for the bin spanning the relative
range R = [-17.5,-12.5] %.

Although our evaluation experiment showed similar results to previous
work [10] on physical human-human interaction, we could not confirm their
main conclusion that physical interaction leads to improvement regardless of
partner performance. Although we used similar spring dynamics, we found
no significant improvement when interacting with a worse partner. Note
that we used a different, more difficult target tracking sum-of-sine signal
compared to Ganesh et al. [10]; however, we did not introduce a visual
perturbation to during the tracking task (a visuomotor rotation), as Ganesh
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Figure 2.13. | Relative performance versus improvement due to physical interaction. The horizon-
tal axis shows the relative performance R between interacting partners, the vertical
axis shows the improvement I due to interaction: a positive improvement means
that interaction helps. The error bars show the mean and standard error of the mean
improvement per bin.
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et al. [10] did. Nonetheless, the experiment demonstrated the capability of
BROS to investigate physical human-human interaction.

2.4. Discussion

This paper described the design, implementation and evaluation of BROS, a
robotic setup with two 2-DOF manipulanda designed for studying physical
human-human interaction. We showed that the device can render the desired
admittance across the workspace and can be used for studying human-human
interaction. The compact design of the robotic manipulanda of BROS allows
for multiple configurations of the setup (for instance two manipulanda for
human-human interaction or bimanual motor control or one for unimanual
motor control studies). Multiple safety features minimize the risk for the
user.

Manipulandum evaluation

The main design parameters for the robotic devices were a minimal passive
mass at the end-point, high force production and good robot conditioning
while providing a sufficiently large workspace. BROS’ capabilities to render
admittance dynamics isotropically across the workspace allow for a useful
tool to study human-human interaction. We assessed the uniformity in the
x- and y-directions of the admittance dynamics by evaluating the apparent
mass at several points across the workspace. Furthermore, we showed that
the bandwidth with which the manipulanda can render the desired dynamics
exceeds the typical bandwidth of human arm movements in a plane (e.g.
[26]). The apparent passive mass at the end-point is relatively low compared
to other devices and permits the stable rendering of low mass dynamics
compared to other (impedance-controlled) devices (e.g. [4, 9]). The maxi-
mum force production of BROS is lower than other similar devices [4, 6, 9];
however, its force production is sufficient for our experimental goals.

Future hardware improvements

The evaluation test results suggest that some improvements can be made to
improve BROS’ performance. First, the position control loop performance
can be improved in different ways. The velocity estimation is currently
performed by using a discrete-time differentiation of the joint positions in
combination with a second-order Butterworth filter with a cut-off frequency
at 70 Hz. Other methods such as the first-order adaptive windowing (FOAW)
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[27] or implementing a Kalman filter could yield better results. We could
also use gyroscopes to measure the rotational rate of the joints directly.
The position control loop can be further improved by implementing inverse
dynamic control [21]. However, due to the uncertainty in the identified
dynamic model parameters, such as identified static and viscous friction,
we did not find significantly better performance using inverse dynamics
compared to the (much simpler) PD controller we implemented instead; still,
further research is warranted. Second, the low-frequency resonance mode
originating in the capstan transmission reduces control stability margins.
Acceleration feedback, for instance through inertial measurement units can
help to cure low-frequency resonance [25]. At the moment we implemented
a single PD controller; however, we could implement more complex control
strategies, such as gain scheduling. Furthermore, the resonance frequency
of the capstan transmission could be shifted to higher frequencies and thus
reducing its impact by increasing the transmission stiffness, for instance by
increasing the cable pretension or using cables with larger diameters [24].

In summary, the BROS provides a useful and versatile tool to study phys-
ical human-human interaction, bimanual motor control and upper-extremity
impairment assessment [28, 29], other applications of teleoperation and motor
control.
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Haptic interaction does not improve learning of novel dynamics

Abstract

Humans have a natural ability to haptically interact with other humans, for
instance during physically assisting a child to learn how to ride a bicycle. A
recent study found that haptic human-human interaction can improve individ-
ual motor learning of tracking a continuously-moving target in a visuomotor
rotation. We investigated whether haptic interaction also improved learning
of a similar tracking task in a new dynamic environment. Pairs performed
the tracking task and were intermittently connected to each other through a
compliant connection. Motor learning was assessed by comparing each part-
ner’s individual performance during trials in which they were not connected
to the performance of participants who learned the task alone. We found
that haptic interaction did not lead to better individual motor performance
or faster motor learning rates. Performance during haptic interaction was
significantly better than when the partners were not interacting, even in the
force field.

3.1. Introduction

Interaction with another human plays an important role when learning new
motor tasks [1]. For example, visually observing someone else learn im-
proves your own motor performance [2—4]. Haptic interaction — interaction
by exerting forces onto each other — with a human partner who is learning
the same collaborative motor task has also been shown to improve each par-
ticipant’s motor learning [5]. In Ganesh et al. [5]’s study, pairs learned to
track a common randomly-moving target with their hands while being per-
turbed by a visuomotor rotation, in which the visual movement of the hand
on a display was rotated with respect to the actual hand movement. Par-
ticipants that haptically-interacted through a compliant connection improved
more and faster compared to participants who practiced the same task with-
out any interaction. However, to our knowledge, no studies other than [5]
have shown the potential benefits of haptic interaction between humans on
motor learning.

The benefits of haptic human-human interaction on individual motor learn-
ing could complement the design of robot-assisted motor learning paradigms.
Other studies that used robotic assistance to help humans learn a new motor
task showed mixed results. Haptic guidance — physically guiding a student
through the desired movement — immediately improves performance while
the student receives the assistance, but rarely results in improved individual
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motor learning [6-11]. To complement the design of human-robot interac-
tion strategies that benefit the motor learning of the human, more research
is needed to understand why haptic interaction with another human would
improve learning and to investigate whether haptic interaction also improves
learning in motor tasks other than a visuomotor rotation learning task as
used by Ganesh et al. [5].

Here we tested whether haptic interaction between two humans, using the
interaction paradigm from Ganesh et al. [5], improves the motor learning of
novel dynamics. Many real-life motor tasks include (re)learning new task
dynamics, for instance learning how to balance yourself on a bicycle. The
novel dynamics consisted of a velocity-dependent force field, a well-known
motor adaptation paradigm used in reaching tasks [12, 13] and tracking tasks
[14].

When people move in a velocity-dependent force field for the first time,
their movements are perturbed by the force field, which results in movement
errors (e.g., [12—14]). People decrease these movement errors with practice
— a process also referred to as motor adaptation — using at least two com-
plementary mechanisms [15]. First, we can learn an internal model of the
dynamics and use this model to predict and compensate for the perturbations
[12, 16, 17]. Second, participants can modulate arm impedance through mus-
cle co-contraction [18-20]. Studies found that both these mechanisms con-
tribute to the early compensation of the force field; muscle co-contraction
offers a temporary strategy to reduce errors while the internal model is
learned [18, 21, 22].

Because the interaction forces originating from the haptic interaction are
in the same sensory domain and plane as the force field, it is unknown how
the haptic interaction will influence motor learning of the force field. Studies
found that humans can learn to compensate for a velocity-dependent force
field even when the force field is superimposed by a constant background
force [23, 24]. These studies reported that participants had difficulty judging
the force field strength when the background force was present, but the
presence of aftereffects when the forces were removed indicated that partic-
ipants learned an internal model of the forces to some extent despite the
background force. Liu and Reinkensmeyer [24] also found that participants
updated their internal model of the force field slower when the background
force was present compared to the no background load condition. It is
possible that the interaction force has a similar effect in our task; haptic
interaction might slow down the motor learning of the force field.
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In this study, we investigated whether haptic interaction between two
partners facilitated or interfered with learning to track a randomly moving
target in novel dynamics. Its primary goal is to investigate whether the
promising improvement in learning a visuomotor task as reported by Ganesh
et al. [5] also generalizes to a dynamic learning task. Contrary to Ganesh
et al. [5], we found that haptic interaction neither facilitates nor interferes
with learning to move in a velocity-dependent force field.

3.2. Methods

Forty participants (aged 19-35 years, 28 males and 12 females; all except
four were right-handed according to the Edinburgh handedness inventory
[25]) participated in the experiment. All participants were naive to the force
field motor task. The study was designed following the principles of the
Declaration of Helsinki. An assessment of the study by the Medical Ethical
Review Board of the University of Twente (METC Twente) showed that the
study posed minimal risk to the participants and therefore under Dutch law
did not need full ethical review. All participants provided written informed
consent. The experiment lasted approximately two hours; all participants
received compensation for their participation.

3.2.1. Robotic setup

The experiments were performed using a dual robotic setup, see Fig. 3.1
and Chapter 2 for a full description. Participants held and moved their
own robotic manipulandum. The manipulanda allowed arm movements in
a horizontal plane. The manipulanda were admittance-controlled, such that
the handle’s dynamics (a mass of 0.3kg and a damping of 0.25Nsm™?)
were isotropic over the workspace. Each partner had their own display that
showed the workspace, target and their own cursor (Fig. 3.1). Participants
controlled the cursor by moving the handle of their own manipulandum.
Cursor and target movements were scaled on the display to match the real-
world movement of the manipulandum. A curtain obstructed the view of
the other partner and the partner’s display. A panel obstructed a direct view
of the arm and hand of each participant. Participants were not allowed to
communicate verbally during the experiment.
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Figure 3.1. | Manipulanda and display. Each participant had their own display showing a cursor
and target. The participants could control their own cursor by moving the handle.
The target movement was the same for both partners. The detail shows how the
partners were haptically coupled through a compliant computer-generated spring.

3.2.2. Task and interaction paradigm
Tracking task

All participants performed the same collaborative planar tracking task. The
goal was to track a target as accurately as possible on a display. The
participants tracked the continuously moving target during trials of 23s
followed by a 20s break. The target movement was always the same for
both partners in a pair. The target movement T in x- and y-direction (in
mm) was defined as a sum-of-sines:

T™)(t) = 28.7 sin (0.94t — 7.77) + 27.1sin (1.26t — 8.53)

+23.5sin (1.89¢ — 4.36) + 18.0 sin (2.83t — 3.79)

(3.1)
TW(¢) = 27.1sin (1.26t — 0.71) + 25.3 sin (1.57¢ — 3.45)

+21.65in (2.20¢ + 3.92) + 16.4 sin (3.14¢ + 4.93).

The tracking signal required hand movements over a circular workspace
with a radius of 10cm, an average velocity of 79mms™! and a maximum
velocity of 139mms™!. To prevent fast learning or other cognitive track-
ing strategies, we chose a uniformly random start time for the signals
(t € [to, to + 23]s, to ~ %(0,20)) and we rotated the tracking signal randomly

from a set of six predefined rotations: [0, %77.', %n, T, %77.', %n] rad.
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Connected and single trials

Two types of trials were used in the experiment: connected (C) and single
(S) trials. A single trial is a trial in which the partners in a pair performed
the task alone (they were not connected). During a connected trial, partners
physically interacted through a compliant connection that connected the
handles of the two partners (see the detail in Fig. 3.1). The connection was
a computer-generated spring, which generated a force

Fi = ks (Pp - Po) + b (Vp - Vo) > (3-2)

where kg is the connection stiffness, b; a damping contribution, p, and v,
and p, and v, are the partner’s and the participant’s own position and
velocity, respectively. The force was exerted onto both partners’ hands by
the manipulanda. If a partner moved away from the other partner, they both
experienced a force pulling them toward each other. We also refer to the
spring force F; as the interaction force.

We set the stiffness and damping to ks = 150Nm™! and by = 2Nsm™!,
respectively. The stiffness was similar to previous work [5], and we added
a small damping coefficient for spring stability, but small enough to only
minimally interfere with the velocity dependent force field. The compliant
connection allowed the partners to haptically interact while being able to
execute the tracking task independently. Active task execution was required;
participants could not completely relax and let the force pull their hand
along.

3.2.3. Experiment design and force field

All participants performed the experiment in pairs. Each pair performed four
blocks of 21 trials, see Fig. 3.2A. Between blocks, participants had a four-
minute break. Block 1 served as a baseline, in which participants practiced
the tracking task without a perturbation. A velocity-dependent force field
was introduced in blocks 2 and 3, which generated a planar force F. given

by

o -15] [o™

15 0 | [|o®
on the hand of each participant, similar to previous work (a clockwise per-
turbation) [12, 26]. The force field was removed in block 4 to observe

aftereffects, if present. The force field generated a force that was always per-
pendicular to the movement, see Fig. 3.2B. During the connected trials, the

F

FC =Dv = Fc(y)

(3-3)
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force field was superimposed on the interaction force; hence the participants
would feel a total force F;, which is the sum of the force field F. and the
interaction force F; (see Fig. 3.2C). The participants were informed that a
force field would disturb their movements and they were instructed to track
the target as accurately as possible at all times. We asked participants not
to stop tracking to learn the force field.

Baseline

solo: SSSSSSSSSSSSSSSSSSSSS

interaction: SCSCSCSCSCSCSCSCSCSCS

Force field
SSSSSSSSSSSSSSSSSSSSS SSSSSSSSSSSSSSSSSSSSS
SCSCSCSCSCSCSCSCScCSscs SCSCSCSCSCSCSCSCSscCSscs
Aftereffects
SSSSSSSSSSSSSSSSSSSSS
SCSCSCSCSCSCSCSCSCSCS
B ¢ v Fi

20 mm

2N

Figure 3.2. | Experiment design, force field and forces on the handle. A The four experiment
blocks, including the trial sequences for the interaction and solo group. B The force
field introduces forces perpendicular to the movement. Here we show part of the
tracking signal and the ideal force compensation, if the target was tracked perfectly.
C Forces at the robot handle during the force field blocks. The participant feels a
total force F;, which is the sum of the force field force F,. (proportional to the own
hand velocity v) and interaction or spring force F;. The forces originating from the
robot’s dynamics are omitted.
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We equally divided the forty participants over two groups: an interaction
group and a solo group. They performed an alternating sequence of single
and connected trials in each block (that is, {SCSCSCSCSCSCSCSCSCSCS}),
see Fig. 3.2A. Hence, the partners in the interaction group intermittently
interacted with each other while performing the tracking task in the baseline,
force field and aftereffect blocks. Participants were not explicitly made aware
of the haptic interaction.

The participants in the solo group only performed single trials (see Fig. 3.2A).
We included a solo group for comparison and to analyze whether physical
interaction would interfere with adapting to the force field [27].

3.2.4. Analysis

Data, including handle position and velocity, interaction force and total force
exerted by each participant onto the handle were sampled and logged at
1kHz. We used MATLAB R2017B to parse the data and perform additional
analysis. Statistical analysis was done using the R statistical software package
(version 3.5.1).

Motor performance and motor learning

The primary measure of motor performance is the root mean square of
the tracking error E (the distance between the target and cursor) of the
last 20s of each trial. The lower the tracking error E, the better the motor
performance. We calculated the motor performance for each partner and each
trial. The performance during a single trial and connected trial are denoted
by Es and E., respectively. Partners could still perform the tracking task
independently during the connected trials due to the connection compliance;
hence the tracking errors in the connected trials are not necessarily the same
for both partners.

The effect of haptic interaction on motor learning is assessed by com-
paring the individual learning curves of the baseline and force field blocks.
Unless stated otherwise, we focus on individual motor learning based on
the single trial performance per participant. Motor learning was quantified
using four measures: (1) the performance after learning E; 5, (2) the initial
motor performance Es, when first exposed to the visuomotor rotation, (3)
the motor improvement from the initial performance to the error after learn-
ing and (4) the rates at which each participant improved motor performance.
We calculated the motor performance after learning, denoted by Es , as the
mean performance of the last five single trials of the baseline and the force
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field blocks. The motor improvement in the baseline and force field blocks
is the difference between the error after learning and the initial performance
in the first trial of the baseline block and force field blocks (Es o — Es. al)-

The learning rate was extracted by fitting a single exponential function

Es = a+be 7D (3.4)

(where t is the trial number, A the learning rate and a and b are constants)
to each participant’s single performance curves using MATLAB’s FMINCON.
We also extracted the rates of each participant’s performance during the
connected trials for comparison. We used R? as a goodness-of-fit measure.
Fits that had an R? < 0.25 were not taken into account. We removed two
fits in the solo group and one fit of the interaction group. Fitting a double
exponent function or a power function to the learning curves did not yield
significantly better R? values.

Force field compensation factor

People can use complementary mechanisms to compensate for a force field
perturbation [15, 18]. Participants can increase arm impedance by muscle
co-contraction [18, 19] as a compensation strategy. Furthermore, participants
can learn and use an internal model of the force field to predict the force
field forces based on their current hand velocity [12, 16, 26, 28, 29]. We
calculated the force field compensation factor @, which served as a measure
of how much each participant on average compensated for the force field
forces in every single trial and reflects the combination of the aforementioned
mechanisms [15, 26].

Following the approach of previous work [15, 26, 28], we regressed the
actual compensation forces F. , generated by the participants to compensate
for the force field on the ideal forces F. ; that would fully compensate for the
force field. The actual compensation force is preferably measured in error-
clamp trials, in which the movements perpendicular to the desired movement
are restricted such that the measured forces only describe the (feedforward)
force field compensation [28]. However, error-clamp trials are mainly used in
reaching tasks that involved discrete and fast reaching movements in which
the force field is compensated for in a feedforward manner [26, 28]. In
contrast, we used a continuous tracking task that required feedback control
such that error-clamp trials are not as useful. Instead, to compensate for
the forces resulting from moving the manipulandum, we calculated the the
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actual forces F. , during a single trial (F; = ON) per participant as follows:
Fc,a =F; - (mrir + brxr) > (3-5)

where F; is the measured total force, m, and b, are the mass and damping
of each manipulandum’s admittance model, and %, and %, are the manipu-
landum’s measured acceleration and velocity.

To calculate the ideal compensation forces F.;, we assumed that partici-
pants would return to their tracking trajectories in the no force field blocks
after extensive practice in the force field, based on previous work [14]. The
ideal force profile was calculated using each participant’s hand velocity of
the average tracking trajectory of the last eight single trials of both the
baseline and aftereffects blocks using equation 3.3. We then computed the
compensation factor « as:

N
1 Feall
o= = — (36)
N ; Pl
where k is the time step and N is the number of time steps in a trial. The

resulting a reflects how much each participant compensated for the force
field in a single trial.

Statistical analysis

All data and statistical model fit residuals were checked for normality using
the Shapiro-Wilk normality test and visual inspection. We used dependent-
samples t-tests to compare the performance between the single and con-
nected trials of the interaction group. Independent-samples t-tests are used
to compare performance between the solo and interaction groups. We com-
pared the improvement improvement between solo and interaction groups
using ANCOVA, with initial performance E;, as covariate and group as
factor. We used the Kruskal-Wallis test and Wilcoxon signed-rank test for
paired samples and Mann-Whitney U tests for unpaired samples to compare
the learning rates within and between groups. We analyzed the compensa-
tion factor using ANCOVA, with the single trial number as covariate and
group as factor. We log-transformed the compensation factor such that the
model fit residuals were normally distributed. We set the level of signif-
icance for all tests to 0.05; the Bonferonni correction was applied when
making multiple comparisons. Unless explicitly stated, all data are reported
as the mean + standard error of the mean (s.e.m.).
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3.3. Results

We investigated whether learning to move in novel dynamics — a velocity de-
pendent force field - is facilitated by haptic interaction with a partner who is
learning the same collaborative task, or whether haptic interaction interfered
with learning. Participants tracked a randomly-moving target in a plane and
were intermittently connected with a compliant spring. A force field was
introduced to elicit motor learning. Performance — the root-mean-square of
the tracking error — was calculated for single trials, in which participants per-
formed the task alone, and connected tasks, in which the participants were
haptically connected. We compared their single performance (i.e., when they
were not connected) to a group who never haptically interacted.

Figure 3.3 shows the motor performance of the single trials for both the
interaction and solo groups over the experiment. Both groups reached the
same error after learning in the baseline block (see Fig. 3.3B; no significant
difference between the interaction and solo group #(38) = 0.13, p = 0.90).
When first exposed to the force field, individual motor performance was
significantly worse compared to the performance of the last five single trials
in the baseline block (dependent-samples t-tests; interaction group: #(19) =
5.86, p = 1.2 - 107°; solo group: t(19) = 6.66, p = 2.3 - 107°). The performance
in the first force field trial was similar between the interaction and solo
group (independent-samples t-test #(38) = —0.72, p = 0.475). Participants in
the interaction and solo groups also improved significantly with respect to
the initial performance in the force field (interaction group: #(19) = 7.05, p =
1.0-107; solo group: #(19) = 5.78, p = 1.4-107°). Both groups learned to track
the target in the force field equally well; the error after learning in the force
field blocks was not significantly different between groups (t(38) = —0.20,
p = 0.84), see Fig. 3.3B. In addition, the error after learning in the force
field block was similar for both the solo and interaction groups (dependent-
samples t-tests, within each group; interaction: #(19) = 0.98, p = 0.338; solo:
t(19) = 0.42, p = 0.680).

3.3.1. Initially less-skilled participants do not benefit more
from haptic interaction

It is possible that physical interactions resulted in more motor improve-
ment for participants who are initially less skilled at the task [30]. Fig-
ure 3.3C shows each participant’s improvement versus his/her initial perfor-
mance (Es) for all groups. The initial performance significantly predicted
improvement (ANCOVA with E;, as covariate and interaction group as a
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Figure 3.3. | Motor performance over the course of the experiment. A The learning curves of the
single trials of both interaction and solo groups are similar. The performance during
interaction is shown as well. B Individual performance after learning. Performance
during interaction is significantly better than doing the task alone (m: independent-
samples t-test, 1(38) = 3.05, p = 0.004. +: dependent-samples t-test, #(19) = 8.65, p <
1077, a: independent-samples t-test, £(38) = 2.79, p = 0.008. v: dependent-samples
t-test, £(19) = 7.11, p < 107%). We found no differences between baseline and force
field performance after learning. C Motor improvement versus initial performance
for the solo and interaction groups. D Individual learning rates A, extracted from the
fitted exponential learning curves of the force field blocks. No significant differences
between the solo and interaction groups were found. All error bars indicate mean
and standard error.
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factor, slope B; = 0.75, F(1,76) = 146.19, p < 1071°, w? = 0.78). However,
there were no significant differences in improvement between the solo and
the interaction group (interaction group as a factor, F(1,76) = 0.02, p = 0.90).
Hence, haptic interaction did not lead to more motor improvement compared
to practicing the force field alone.

3.3.2. Haptic interaction does not speed up individual motor
learning

The learning rates of the baseline and force field blocks are shown in figures
3.3D. We found no significant differences in learning rates of the single trials
between the solo and interaction groups, both in the baseline and force field
blocks (see Fig. 3.3D). Furthermore, the learning rates in the connected trials
were not significantly different compared to the single trial learning rates of
both groups.

3.3.3. Performance is improved during haptic interaction, also
in the force field

Haptic interaction led to a substantial improvement in motor performance
during interaction in the baseline block. We compared the mean error of
the last five single trials to the mean error of the last five connected trials
of the interaction group. Motor performance improved significantly dur-
ing interaction for all interaction groups compared to the single trials, see
Fig. 3.3B. Furthermore, the performance during the connected trials was also
significantly better than the single performance of the solo group.
Remarkably, haptic interaction also improved performance in the force
field blocks (Fig. 3.3B). The force field generated an time-average force of
1.31N in a trial; the measured interaction force was smaller (time-average
of 0.44N). Hence, even though the average interaction force during the
connected trials was significantly smaller compared to the average force field
force, interaction in the force field still improved performance (see Fig. 3.3B).
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Baseline Early force field  Late force field Aftereffect

Target path

Cursor path

Figure 3.4. | Examples of a participant’s cursor paths during single trials. Shown are the cursor
paths of the last three single trials of the baseline block, first single trial in the force
field, the last three trials of the force field blocks, and the first trial in the aftereffect
block for one participant.

3.3.4. Evidence that participants learned an internal model of
the force field

Immediately after the force field was removed, both groups showed signif-
icant aftereffects as reflected by the tracking performance. Performance in
the first single trial in the aftereffect block was significantly worse than
each participant’s error after learning in the last single trial in the force
field blocks (dependent-samples t-tests comparing performance per partici-
pant; interaction group: t(19) = 3.64, p = 1.75-107>; solo group: £(19) = 4.14,
p=5.57-10"%), see Fig. 3.3A. The performance in the first single trial of the
aftereffect block was the same for both groups (#(38) = 1.41, p = 0.167).

Figure 3.4 shows an example of the tracking paths of one participant to
illustrate the aftereffect. On initial exposure to the force field, the tracking
behavior is different compared to the baseline paths. The lateral deviations
that are typical for force field perturbations are visible in the early exposure
phase (most notable are the top and bottom loops and the leftmost loop).
At the end of the force field blocks, the cursor paths are similar to the
baseline behavior. The first single trial when the force field was removed
shows aftereffects opposite the velocity-dependent force field, for example in
the bottom and top loops.

Furthermore, participants already compensated for a substantial amount
of the force field in the first single trial (~72% to 77 %) and improved the
accuracy of the internal model to approximately 86 %. The force field com-
pensation factor « in the single trials (see Fig 3.5) increased significantly for
both the interaction group and solo group with increasing exposure to the
force field (ANCOVA, effect of trial covariate: F(1,876) = 123.78, p < 107'°),
Furthermore, the compensation factor was not significantly different between
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Figure 3.5. | Average force field compensation factor in the single trials across the force field
blocks for the solo and interaction groups.

groups (group factor: F(1,876) = 0.08, p = 0.79). The initial performance de-
crease in the aftereffect block, observed after effects, and the increasing
compensation factor suggest that participants learned an internal model of
the force field to some extent.

3.4. Discussion

We investigated whether haptic human-human interaction facilitated or in-
terfered with learning to move in a new dynamic environment: a velocity-
dependent curl force field. Participants intermittently interacted through a
compliant connection with a partner who was learning the same collab-
orative motor task: tracking a randomly-moving target in the force field.
Participants were not made explicitly aware of the interaction. Haptic in-
teraction neither improved nor impeded individual motor learning (learning
rate and performance after learning) compared to participants who practiced
the learning task alone.

Haptic interaction does not improve individual motor learning

Physically assisting, or haptically guiding, someone who is learning a new
motor task has been shown to improve performance while receiving the
assistance, but these improvements are rarely retained when performing the
task alone [7-9, 31, 32]. Haptic guidance may give the participants an
erroneously good impression of their performance, suppress the detection
of errors and the correction processes, and participants may rely on the
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haptic guidance for improved motor performance. Movement errors are a
key training signal for motor learning [33]. Similarly, we found that haptic
interaction significantly reduced movement errors during haptic interaction,
even in the force field, which could explain why haptic interaction did not
improve individual motor learning.

The force field only resulted in a relatively small reduction in tracking
performance (the tracking error increased with ~5mm compared to the final
performance in the baseline block) and participants rapidly improved in the
following trials. However, visual inspection of the cursor paths indicated that
the force field substantially affected the tracking behavior. Still, we found
that the participants in the interaction and solo group improved performance
significantly and equally with practice in the force field. Furthermore, these
results are consistent with a similar study by Conditt and Gandolfo [14], who
found that participants improve performance in the same order of magnitude
when tracing shapes in a velocity-dependent force field.

Force field compensation

The compensation factor showed that participants already compensated for a
substantial amount of the force field in the first single trial (o = 72 %). It is
likely that participants rapidly minimized the additional movement errors due
to the force field, in particular in the first trial, by increasing arm impedance
through muscle co-contraction [15, 18]. With longer practice in the force
field, participants compensated ~86 % on average, which is consistent with
other studies that found that people learn approximately 80-82 % of similar
force fields [15, 26, 28]. The compensation factor, similar to the adaptation
factor used in other force field studies, reflects the combination of multiple
complementary mechanisms that could be used to compensate for the force
field, including increasing arm impedance and using an internal model of
the force field [15]. We cannot distinguish between these mechanisms in
our data, but the observed aftereffects indicated that participants, besides
counteracting the force field using muscle co-contraction, also learned an
incomplete internal model of the field [12, 14, 24].

Haptic interaction does not interfere with learning a force field

Although the haptic interaction was in the same sensory domain as the force
field, which could have altered the task dynamics, we found no interference
on individual motor learning; both the individual tracking performance and
the force field compensation in the single trials of the participants in the
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interaction group were similar in magnitude and rate to those of the solo
participants. Humans have been shown to adapt to velocity-dependent force
field even when a background force was superimposed [23, 24], though the
background force slowed learning down [24]. Our data showed that the
intermittent haptic interaction did not slow down learning compared to the
solo group.

To explain why a velocity-dependent force field was still learned despite
the background force, Kurtzer et al. [23] suggested that people were able
to discriminate between the static background force and dynamic velocity-
dependent force. However, the interaction force in our haptic human-human
interaction experiment was not constant in direction and magnitude, as it
depends on the movements of both partners. The interaction force was
also substantially smaller than the force field force, possibly making it more
difficult to discriminate from the force field force. Yet haptic interaction
still led to significantly better motor performance during the interaction. It,
therefore, remains unknown whether the interacting partners were able to
differentiate between the interaction force and force field accurately; we will
analyze and discuss this further in Chapter 6.

This study compared to Ganesh et al. [5]

Our results are in contrast with the findings of Ganesh et al. [5], who found
that haptic human-human interaction improves motor learning in a visuomo-
tor rotation task. Although our experimental design and haptic interaction
paradigm were similar to those of Ganesh et al. [5], it is possible that the
type of learning task - force field or visuomotor rotation - plays an im-
portant role in why we did not see better motor learning during haptic
interaction. The learning task of Ganesh et al. [5] was in a different sensory
domain than the haptic interactions. Superimposing the interaction forces
with a velocity-dependent force field might have limited the potential to
learn from the other partner. The benefits of haptic interaction on motor
learning could thus be task-specific. However, when we repeated the study
of Ganesh et al. [5] using the same visuomotor rotation perturbation, we
did not see benefits of haptic interaction on motor learning (see the next
chapter), in line with the results of this study.
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Limitations

Our study has limitations. First, the absolute magnitude of learning is in
the order of millimeters. Ganesh et al. [5] showed greater individual per-
formance improvements (in the order of centimeters). However, the motor
improvement in the force field task still was significant and similar to pre-
vious studies who also tracked in a force field [14]. Second, although we
believe that learning to move in novel dynamics has a higher out-of-the-lab
validity than a visuomotor rotation learning task, the applicability to real-life
learning tasks is still limited. Third, we did not make the participants explic-
itly aware of the haptic interaction. Presumably, assigning teacher-student
roles in haptic interaction would have more potential to improve individual
learning.

In conclusion, we found that haptic interaction between humans perform-
ing the same collaborative tracking task neither facilitated nor interfered
with learning to move in a new dynamic environment. Interestingly, haptic
interaction improved performance during the interaction, even when the per-
ception of the interaction force was impaired by the force field. How did the
participants still improve performance through the haptic interaction? We
discuss this question in more detail in Chapter 6.
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Haptic interaction does not improve motor learning of a visuomotor rotation

Abstract

Haptic interaction between two humans, for instance a therapist physically
supporting a patient during recovery, could facilitate motor learning. Hap-
tic interaction through a compliant connection with another human who is
learning the same motor task has been shown to improve your own motor
learning. These results are remarkable given that physically guiding someone
with a robot rarely improves motor learning. Studies have found that such
haptic guidance reduces movement execution errors, which are the main
driver for motor learning. Haptic human-human interaction significantly
reduces movement execution errors, so why would it improve motor learn-
ing? Here we investigated whether and, if so, why haptic human-human
interaction would improve individual motor learning. We found that haptic
human-human interaction through a compliant connection did not improve
individual motor learning. Furthermore, neither more interaction time nor
a higher interaction strength facilitated motor learning. Although haptic
human-human interaction leads to immediate performance improvement dur-
ing interaction, it does not improve individual motor learning beyond the
skill level when practicing the task alone, which is in line with existing
robot-assisted motor learning paradigms.

4. Introduction

During physical rehabilitation after a stroke, therapists physically move the
patient’s limbs to promote relearning of lost motor skills. Similarly, par-
ents physically support their children while they are learning to take their
first steps. Physical or haptic interactions like these, in which two partners
exchange forces while performing and learning a motor task together, are
common in our lives. Research has shown that haptically interacting part-
ners adopt roles [1—4], such as leader-follower, that interactions can be used
to communicate intentions [5, 6] and that haptic interaction improves motor
performance during the interaction [1, 7]. Interestingly, Ganesh et al. [7],
published in this journal, found that haptic interaction between two human
partners improves each partner’s own motor learning. Individuals who hap-
tically interacted with another person performing the same task improved
their individual motor performance significantly more and, although not ex-
plicitly mentioned by the authors, initially faster compared to someone who
practiced the task alone. Despite these encouraging results, theirs is currently
still the only study which found that haptic interaction benefits motor learn-
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ing. In addition, the reasons why haptic human-human interaction benefits
motor learning remain unknown.

Why would haptic human-human interaction improve individual motor
learning? Since a theoretical framework explaining the benefits on motor
learning specifically for haptic human-human interaction is lacking, we will
approach this question from two different perspectives. First, we attempt
to explain these results from a motor learning point of view. Many motor
learning studies showed that learning to move in the presence of a pertur-
bation, referred to as motor adaptation, is predominantly driven by errors
between the planned and actual movements. A well-known motor adaptation
paradigm is a visuomotor rotation perturbation, in which the visual feedback
of the hand movement is rotated with respect to the actual hand movement,
generating motor execution errors [8, 9]. These motor execution errors are
used to develop an internal model of the perturbation, which then updates
our motor commands to compensate for the perturbation [9-11]. The larger
the experienced error, the more you learn to compensate for the error [12].
Robotic motor learning paradigms that reduce movement executions errors
while learning a novel motor skill rarely improve motor learning [13-18]. For
instance, haptic guidance to demonstrate the desired movement or changing
the task dynamics to encourage the correct behavior does not improve motor
learning [15, 16, 19-22]. Ganesh et al. [7] showed that haptic interaction
with a human partner significantly reduced movement execution error while
learning to move in a visuomotor rotation perturbation compared to some-
one practicing the task without interaction. Thus, from an error-based motor
learning perspective no beneficial effects of haptic human-human interaction
on motor adaptation would be expected.

Second, findings from other haptic human-human interaction studies could
explain the improvement in motor learning. Haptically interacting humans
can coordinate actions and adopt specialized roles by exchanging forces [1,
2, 4, 5], which could facilitate motor learning of both partners. For instance,
participants could ‘coach’ each other on how to move in the learning task
by exchanging forces. Moving in an 80 deg visuomotor rotation, the learning
paradigm used by Ganesh et al. [7], likely requires a change in movement
strategy [23]. Participants could haptically help each other to change their
movement strategy to compensate for the visuomotor rotation, resulting in
quicker learning compared to someone learning alone. Similarly, visually
observing someone else learn facilitates your own motor learning [24, 25].
Perhaps haptic interaction allows for ‘haptic observation’ of how to move in
the visuomotor rotation, improving motor learning. Note that the participants
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in the Ganesh et al’s study were not aware of the physical connection, so
we wonder whether they could have effectively used the haptic information
of the interaction, especially in the early stages of the learning process.

The goal of this paper is to investigate whether haptic interactions with a
partner who is learning the exact same motor task, using the same interaction
paradigm and visuomotor rotation learning task as Ganesh et al. [7], indeed
improves individual motor learning. Note that we use ‘motor learning’ to
refer to the motor adaptation process to the visuomotor rotation in this paper.
We hypothesize, based on error-based motor learning findings, that haptic
human-human interaction in which the partners are unaware of the physical
connection does not improve motor learning. However, it is possible that
haptic interaction allows for exchange of information about the learning task
which facilitates learning.

To further differentiate between these two explanations, beside repeating
Ganesh et al. [7]’s study, we varied the amount of interaction time and
the strength of the interaction. First, we tested a group which continuously
interacted while learning the visuomotor rotation, resulting in more interac-
tion time and consistency of interaction compared to the main experiment,
in which partners intermittently interacted (e.g. in one trial partners inter-
acted while in another they performed the task alone). We also expect that
continuous haptic interaction does not improve motor learning; more inter-
action means even less experienced error for both partners while learning.
However, if we observe improved motor learning as a result of continuous
interaction compared to intermittent interaction or learning the task alone,
it provides evidence that some aspect of haptic human-human interaction
indeed plays an important role for facilitating motor learning.

Second, we investigated how the strength of the haptic interaction affects
learning by increasing the stiffness of the compliant connection. A stronger
connection could provide the partners with more haptic information about
the learning task, however it also limits independent movement. Increased
interaction stiffness results in additional improvement for the inferior per-
forming partner in a pair during interaction [26]. Following our hypothesis,
we would expect that motor learning of the inferior performing partner
would not be improved and even impeded due to the haptic interaction,
following the results of haptic guidance studies [14-16, 21].

Contrary to Ganesh et al. [7], we found no benefit of haptic human-
human interaction on individual motor learning compared to individuals
who learned the task alone. Interaction led neither to a better motor skill
level nor increased motor learning rate. Increasing the amount of interaction
time or interaction strength did not improve motor learning. Our data show
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that haptic human-human interaction through a compliant connection in
which the participants are not aware of the interaction is not effective for
improving individual motor learning.

4.2. Methods

Sixty healthy participants (34 men and 26 women; age 22.0 + 2.1 yr; all except
two participants were right-handed according to the Edinburgh handedness
inventory [27]) were recruited to participate in the study. All participants
had not previously performed any experiments involving a visuomotor rota-
tion. The study was designed following the principles of the Declaration of
Helsinki. An assessment of the study by the Medical Ethical Review Board
of the University of Twente (METC Twente) showed that the study posed
minimal risk to the participants and therefore under Dutch law did not
need full ethical review. All participants provided written informed consent.
The experiment lasted approximately two hours; all participants received a
compensation for their participation.

4.2.1. Robotic setup

All experiments were performed using a dual robotic setup (Fig. 4.1A). Par-
ticipants held a handle at the endpoint of their own manipulandum with
their preferred hand. Each manipulandum allowed arm movements in a hor-
izontal plane. A panel obstructed direct view of the arm and hand of each
participant. Each partner had their own display that showed the workspace,
a target and their own cursor which they could control by moving the ma-
nipulandum handle (Fig. 4.1B). Cursor and target movement were scaled to
match the real-world movement of the manipulandum. A curtain obstructed
view of the other partner and the partner’s display. Participants were not
allowed to verbally communicate during the experiment.

4.2.2. Task and interaction paradigm

All participants performed a task in which they tracked a continuously mov-
ing target with the cursor as accurately as possible, similar to Ganesh et al.
[7]. The participants tracked the target during trials of 23s. The target
movement (in mm) was defined as a sum-of-sines (see Section B.1 for more
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A B Display
| 1
: ] ! . Target
Manipulandum — (common)
Computer-generated spring
Cursor
(own)

C Visuomotor rotation

Curtain

Cursor

Figure 4.1. | Robotic setup and display and experiment design. A Each participant grasped the
handle of one of the two identical manipulanda. Visual feedback was presented on
a display mounted in front of each participant. A panel (not shown) obstructed the
view of the hand and arm for each participant. B Participant received visual feedback
of their own cursor position and a common target position. C Visuomotor rotation:
the visual feedback of the cursor was rotated clockwise with 80 deg with respect to
the actual hand movement.

details on the target signal design):

x(t) = 28.7 sin (0.94¢ — 7.77) + 27.1 sin (1.26¢ — 8.53)
+23.5sin (1.89¢ — 4.36) + 18.0 sin (2.83¢ — 3.79),
y(t) = 27.1sin (1.26¢ — 0.71) + 25.3 sin (1.57¢ — 3.45)
+21.6 sin (2.20¢ + 3.92) + 16.4 sin (3.14¢ + 4.93).

(4.1)

The tracking signal required hand movements over a circular workspace
with a radius of approximately 10 cm, an average velocity of 7.9cms™! and a
maximum velocity of 13.9cms™. To prevent fast learning or other cognitive
strategies, we generated the 23s signal using a time offset f, which was
sampled from a uniform distribution (t € [to, ty + 23]s, to ~ %(0,23)s). We
generated the tracking signals for all trials beforehand, such that all partici-
pants tracked the exact same target signal per trial. Each trial was followed
by a 15s rest break.

The participants performed 84 trials of the tracking task divided over four
blocks with five minutes of rest between blocks. The first block (21 trials)
served to measure the baseline tracking skill level of the participants. We
introduced a visuomotor rotation by visually rotating the cursor movement
clockwise with 80 deg (same as Ganesh et al. [7]) with respect to the actual
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hand movement (see Fig. 4.1C) in the remaining three blocks. We explained
the concept of a visuomotor rotation to the participants and told them that
their goal was to track the target as accurately as possible using continuous
and smooth movements but not to estimate the magnitude of the rotation.

The haptic human-human interaction paradigm is the same as [7]. Two
types of trials were used in the experiment: single (S) and connected (C) trials.
The partners in a pair haptically interacted through a compliant connection
in the connected trials. The connection was a computer-generated spring
between the participant’s hands (see the detail in Fig. 4.1A). The spring
generated a force

F; = ks (Pp - Po) + bs (Vp - Vo) > (4~2)

where kg is the connection stiffness, by a damping contribution, p, and v,
and p, and v, are the partner’s and the participant’s own position and
velocity, respectively. The force was exerted onto both partners’ hands by
the manipulanda. If a partner moved away from the other partner, they
both experienced a force pulling them toward each other. The stiffness and
damping of the spring were chosen to be the same as the stiffness used
by Ganesh et al. [7]: ks = 120Nm™! and b = 7Nsm™'. The compliant
connection allowed the partners to haptically interact, while being able to
independently execute the tracking task. Active task execution was required;
participants could not completely relax and let the interaction force pull
their hand along. We informed participants that the forces they experienced
during the connected trials “involved external forces that would sometimes
help the task and sometimes disturb it”, but we did not provide explicit
information about the connection. The trials in which the partners were not
connected are denoted as single trials. The single trials were used to analyze
individual motor performance and learning.

4.2.3. Experiments

We performed three experiments: (1) a ‘main intermittent interaction’ ex-
periment in which we repeated Ganesh et al’s interaction experiment, (2) a
‘continuous interaction’ experiment and (3) a ‘stiff connection’ experiment.
The sixty participants were divided over four groups: a solo group (N = 20),
an interaction group (N = 20, divided over 10 pairs), the ‘continuous inter-
action’ group (N = 10, 5 pairs) and the ‘stiff connection’ group (N = 10, 5
pairs). All pairs were gender-matched to avoid gender-related effects. We
also matched partners on age as much as possible to avoid age-related ef-
fects on motor learning. All groups performed the same tracking task and
learned the same visuomotor rotation with the same number of trials; we
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only changed how pairs interacted with each other per group. All partici-
pants received the same instructions.

The main interaction experiment consisted of the solo and interaction
groups. The solo participants also performed experiment in pairs, but per-
formed the motor learning task by themselves (they only performed single tri-
als (S)). The interaction group intermittently interacted while performing the
tracking task; single (S) and connected (C) trials alternated in each block, re-
sulting in the following trial sequence across the four blocks: [{SCSCSCSCSC-
SCSCSCSCSCS} {SCSCSCSCSCSCSCSCSCSCS}, {SCSCSCSCSCSCSCSCSCSCS},
{SCSCSCSCSCSCSCSCSCSCS}] (see Fig. 4.2A).

The partners in each pair in the continuous interaction group were al-
ways connected to each other while learning to move in the visuomotor
rotation. The first block consisted of single trials only. The second and
third blocks consisted of connected trials only. The first nine trials in block
4 were connected trials and the last 12 trials were single trials to measure
the individual motor performance after learning (see Fig. 4.2B). The trial se-
quence for the continuous interaction group was [{SSSSSSSSSSSSSSSSSSSSS}
{CCCCCCCCCCCCCCCCCCLLe, {eceeeeeeceeecececeeccecececec, {eecece-
CCCCC SSSSSSSSSSSS}]. To assess the individual motor performance on
initial exposure to the visuomotor rotation Es,, we introduced the visuomo-
tor rotation for one trial (trial 13, see the bold S in the trial sequence) in
the baseline block.

The stiff connection group performed the same experiment as the inter-
action group, using the same alternating sequence of single and connected
trials per block. We increased the connection stiffness ks to 250 Nm™ and
kept the damping constant. The higher connection stiffness increased the
amount of interaction force with respect to the main interaction experiment,
yet still allowed for independent movement.

4.2.4. Analysis

Kinematics of each partner were logged at 1kHz. We used MATLAB R2017B
and the R statistical software (version 3.5.1) for analysis. The main measure
of motor performance is the root mean square of the tracking error E (the
distance between the target and cursor in mm) of the last 20 s of each trial;
the lower the tracking error E, the better the motor performance. We studied
motor learning by analyzing the reduction of tracking error while learning
to track the target in the visuomotor rotation. We are interested in each par-
ticipant’s individual motor learning; we therefore focus on each participant’s
performance in the single trials (Es). Unless explicitly mentioned otherwise,
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when referring to motor learning, we mean individual motor learning. Mo-
tor learning was quantified using four measures: (1) the performance after
learning E; ,, (2) the initial motor performance when first exposed to the
visuomotor rotation Es(, (3) the motor improvement from the initial perfor-
mance to the error after learning and (4) the rates at which each participant
improved motor performance. The performance after learning (E; ) was cal-
culated by taking the mean of the last five single trials of each participant in
block 4. The initial motor performance E;, was the performance in the first
single trial of block 2 for the solo, interaction and stiff connection groups
and trial 13 in the baseline block for the continuous interaction group. The
motor improvement is the difference between E;( and E; ,: (Es,o - Es,al).

The rates at which each participant improved his/her own motor per-
formance were extracted by fitting exponential functions to each partici-
pant’s motor performance curves. Short-term motor learning in error-based
paradigms consists of multiple learning processes, each with their own learn-
ing rate [11]. We fitted a function with two exponents — one exponent that
modeled a ‘slow’ learning process and one that modeled a ‘fast’ learning
process [11] — to the motor performance curves of the visuomotor rotation
learning blocks (blocks 2, 3 and 4):

Es = ag +ase s 4 apem D) (4.3)

where t is the trial number, As and Af are the slow and fast learning rates
(/’ls < )Lf), respectively, and aw, as and ay are constants. We fitted equa-
tion 4.3 to the single trials of each participant to estimate their slow and
fast learning rates. We also fitted equation 4.3 to the connected trials to es-
timate how fast performance increased for each participant in the connected
trials. The fits resulted in a minimum and mean R? of 0.84 and 0.95, re-
spectively, for all participants. Using a function with a single exponent led
to a significantly worse fit; R? of a single exponent was worse (Wilcoxon
signed-rank test, Z =741, p < 1- 1077) and led to lower Akaike Information
Criterion values (Wilcoxon signed-rank test, Z =45, p<1- 107°). This justi-
fies our use of a double exponent function to analyze individual participant
learning rates.
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To investigate whether haptic interaction indeed improves motor perfor-
mance compared to a partner’s single performance, we also calculated the
performance error in the connected trials (E;) for all interacting partners.
Partners could still perform the tracking task independently during the con-
nected trials because of the connection compliance; hence the tracking errors
during interaction are not necessarily the same for both partners. The con-
nected performance (E.) was compared to the individual performance (E;)
for each participant.

We performed one-way and linear mixed-effect ANOVA and post-hoc tests
to identify differences in motor skill performance after learning, initial motor
skill level, motor improvement and baseline skill level. We analyzed the
effect of initial skill level E, as a covariate on motor improvement and
learning rates using ANCOVA. All data and statistical model fit residuals
were checked for normality using the Shapiro-Wilk normality test and for
equality of variance with the Levene’s test. In case of non-normality or when
the sample size was < 10 in each group, we used the Kruskal-Wallis test and
Wilcoxon signed-rank test for paired samples and Mann-Whittney U tests
for unpaired samples. The level of significance for all tests was set to 0.05.
Post-hoc tests were performed using the Holm-Bonferroni method to correct
for the number of pairwise comparisons. Unless explicitly stated, all data are
reported as the mean + standard error of the mean (s.e.m.). The data files
of two participants in the solo group (they performed the experiment in the
same session) were corrupted and are therefore not taken into account in
the analysis.

4.3. Results

We investigated whether haptic interaction improved individual motor learn-
ing. Participants learned how to track a moving target while being perturbed
by a visuomotor rotation. Two partners were intermittently connected to
each other through a compliant computer-generated spring. Their motor
learning performance when performing the task without interacting with
their partner was compared to a solo group who practiced the task always
alone. Furthermore, we studied whether the amount of interaction time and
interaction strength influenced motor learning. Motor learning was assessed
by comparing the performance after learning, motor improvement and motor
learning rates of each participant during trials when they were not interact-
ing with their partner. The performance curves for all groups are shown in
Fig. 4.2.
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The motor learning task consisted of two components: the tracking task
and the visuomotor rotation perturbation. We first checked that the baseline
tracking performance was the same between groups. We found no significant
difference in individual motor performance (E;) between groups at the end
of the baseline block (solo: 8.0 + 0.3 mm, interaction: 8.3 + 0.2 mm, contin-
uous interaction: 7.7 £ 0.3mm and stiff connection: 8.2 + 0.3 mm, between-
subject ANOVA, F(3,54) = 0.89, p = 0.451, w? = —0.006). In addition, the
visuomotor rotation initially degraded performance equally across groups.
Motor performance at the initial exposure to the visuomotor rotation (Es )
was not significantly different between groups (solo: 48.0 + 3.0 mm, inter-
action: 46.6 + 2.9 mm, continuous interaction 48.5 + 4.1mm and stiff con-
nection 50.4 + 4.1 mm, between-subject ANOVA F(3,54) = 0.21, p = 0.89,
w? = —0.044). Because we established that baseline tracking performance
and initial performance in the visuomotor rotation is equal across groups,
any observed differences in motor learning in the visuomotor rotation blocks
are likely due to the haptic interaction.
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4.3.1. Haptic human-human interaction does not improve
individual motor performance

Our results show that haptic human-human interaction does not improve
motor performance after learning in the visuomotor rotation compared to
the solo group (see the highlighted sections in Fig. 4.2). Figure 4.3A shows
the group meants.em. of error after learning for the single trials (E; a)
and connected trials (E.,). A between-subject ANOVA comparing only the
individual performances across all groups revealed no significant differences
in individual performance after learning E;, (solo: 10.0 +0.6 mm, inter-
action: 10.7 + 0.6 mm, stiff connection 12.0 + 0.8 mm, continuous interaction:
11.2 + 0.8 mm, between-subject ANOVA F(3,54) = 1.44, p = 0.242, w? = 0.022).
Hence, we found no evidence that human-human interaction improves mo-
tor performance level beyond the skill level that a solo participant would
reach. Interaction with a better partner also did not significantly affect the
error after learning (see Fig. B.1A). Furthermore, increasing the time spent
interacting (continuous interaction) or interaction strength (stiff connection)
did not significantly change individual performance after learning.

It is possible that the haptic interactions resulted in more motor improve-
ment for participants who are initially bad at the task; for instance, haptic
human-human interaction could benefit an inferior participant through coach-
ing. Figure 4.3B shows each participant’s improvement versus his/her initial
performance (E; ) for all groups. The initial performance significantly pre-
dicted improvement (ANCOVA with Es, as covariate and interaction group
as factor, slope B; = 0.970, F(7,50) = 186.10, p < 1-1071° w? = 0.96).
However, there were no significant differences in improvement between the
solo and all interaction groups (interaction group as factor, F(3,50) = 0.56,
p = 0.647, w? = 0.032). Haptic interaction with a better partner did not
lead to significantly more motor improvement (see Fig. B.1B). Hence, haptic
human-human interaction does not lead to more motor improvement com-
pared to the solo group.

A common finding of many studies on haptic human-human interaction
is that interaction improves individual motor performance during interaction
for both partners [1, 7, 26, 28]. We compared the mean error of the last
five single trials to the mean error of the last five connected trials for the
interaction and stiff connection group and the last five connected trials and
last five single trials of the continuous interaction group. Motor performance
improved significantly during interaction for all interaction groups compared
to the single trials, see Fig. 4.3A (mixed-effect ANOVA on all interaction
groups, main effect of single versus connected trial and participant as random
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Figure 4.3. | Motor performance after learning and motor improvement. A Meanz+s.e.m. of the in-
dividual error after learning (average error of the last five single trials in block 4) and
the connected error after learning (average error of the last five connected trials in
block 4). Post-hoc contrasts on performance difference between single and connected
trials per group, paired tests: 0: #(37) = 3.82,p = 0.001, < #(37) = 3.95,p = 0.001, A:
t(37) = 2.69,p = 0.011. B Motor improvement versus initial motor performance Es
for each participant in all groups. The shaded area shows 95 % confidence interval
for the fitted linear model.

factor, F(1,37) = 36.27, p < 1-107°). On average, interaction increased
performance with 1.6 + 0.4 mm (~15 % improvement) for the interaction group,
1.6 £ 0.6 mm (~14 % improvement) for the continuous interaction group and
2.3+ 0.6mm (~20% improvement) for the stiff connection group. We found
no significant difference between the connected trial performance across the
interaction groups (mixed-effect ANOVA main effect of interaction group,
F(2,37) = 0.78, p = 0.465).
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4.3.2. Haptic human-human interaction does not increase
individual motor learning rate

Figure 4.4A compares the slow (A;) and fast (Ar) learning rates of each
participant’s motor performance curves (fitted to the single trials) of the
solo, interaction and stiff connection groups. We also included the learning
rates of the connected trials. We found no significant differences in slow or
fast learning rates between the solo, interaction and stiff connection groups
(Kruskal-Wallis tests on the single trials only; slow learning rate: y%(2) =
0.17, p = 0.920, fast learning rate: y?(2) = 2.48, p = 0.290). Note that because
the participants in the continuous interaction group did not perform any
single trials while learning the visuomotor rotation, we cannot extract their
individual motor learning rates. Instead, we compared the slow and fast
learning rates during the connected trials between groups and the connected
trial learning rates of the continuous interaction group to the individual
learning rates of the other groups. The slow and fast learning rates of
the connected trials were not significantly different between the interaction,
continuous interaction and stiff connection groups (Kruskal-Wallis tests, slow
learning rate: y%(2) = 5.65, p = 0.059, fast learning rate: y?(2) = 0.44,
p = 0.805). Furthermore, comparing the connected slow and fast learning
rate of the continuous group to the single learning rates of the other groups
revealed no significant differences (Kruskal-Wallis tests; slow learning rate:
x%(3) = 5.63, p = 0.131, fast learning rate: y%(3) = 4.78, p = 0.189). In
summary, haptic interaction does not speed up motor learning compared to
learning the task alone, with no effect of more interaction time or connection
stiffness on learning rates.

Similar to the motor improvement, we investigated how the learning rates
depended on initial motor performance. Research has shown that individuals
with higher levels of motor variability, which in a tracking task like ours
presumably results in larger motor performance errors, show higher learning
rates [12, 29]. The slow and fast learning rates are plotted against each
participant’s initial performance for the solo, interaction and stiff connection
group in Fig. 4.4B. We performed ANCOVA with initial performance as
covariate and interaction group as factor on the slow and fast learning rates.
The fast learning rate was not significantly influenced by the initial motor
performance or the interaction group (initial performance: F(1,42) = 0.56,
p = 0.459, interaction group: F(2,42) = 2.46, p = 0.097). However, we found
that the slow learning rate is significantly affected by the initial motor
performance (ANOVA, effect of Es, on As: F(1,42) = 4.70, p = 0.036) and
interaction group (ANOVA, effect of interaction group on As: F(2,42) =
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Figure 4.4. | Slow (45) and fast (1) learning rates. A Fast and slow learning rates of the single and
connected learning curves. B Slow and fast learning rates versus initial performance
Es 0. The linear regression lines per interaction group are shown as well as the 95 %
confidence intervals for the fitted linear model.

3.66, p = 0.034). More importantly, further analysis showed that the slopes
(B1) of the regression lines for the solo, interaction and stiff connection
groups are significantly different (between group ANOVA, F(2,42) = 4.22,
p = 0.021). We plotted the regression lines for each group in Fig. 4.4B to
show these differences in slope. The slow learning rate of the solo group
increased significantly with decreasing initial motor performance (slope f; =
1.41 +0.66, t(16) = 2.12, p = 0.0497, R? = 0.22). The slow learning rate of the
interaction group did not significant change with initial motor performance
(slope f; = —0.20 £ 0.86, t(18) = —0.23, p = 0.822, R? = 0.003; this slope was
not different from the solo group: #(42) = 1.54, p = 0.132). Interestingly, the
slow learning rate of the individuals in the stiff connection group decreased
with decreasing initial motor performance (slope f; = —1.94 +0.68, t(8) =
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—2.86, p = 0.021, R* = 0.51). This trend was significantly different compared
to the solo group’s trend (#(42) = —2.84, p = 0.0069). These results suggest
that haptic human-human interaction with a stiffer connection significantly
slows down learning for initially less skilled participants.

4.4. Discussion

We examined whether haptic interactions between two humans performing
the same motor task improved their own motor learning. This work was
motivated by the results of Ganesh et al. [7], who were the first to report
that haptic human-human interaction improved motor learning significantly
compared to learning the motor task alone. We repeated their study by using
the same interaction paradigm and motor learning task. We also studied the
influence of interaction time and interaction strength on motor learning. The
participants who intermittently interacted with another person did not yield
better motor performance after learning or motor improvement compared
to the participants who practiced the task alone. Physical interaction did
not speed up motor learning. Neither the amount of interaction time nor
the strength of the connection influenced individual motor learning. Our
results contradict the observations of Ganesh et al. [7]. Unfortunately, the
authors do not discuss why haptic human-human interaction would benefit
motor learning. Here we discuss some key observations from error-based
motor learning and robot-assisted motor learning research which support
our results, but not those of Ganesh et al. [7].

Why is motor learning not improved by haptic interaction?

Our results are in line with observations in error-based learning and robot-
assisted motor learning. Movement execution errors are a key training signal
for motor learning [9, 10, 12, 30]. Since haptic human-human interaction
reduces the experienced motor error for both partners, it was expected that
we would see no benefits on motor learning. This is also consistent with
many studies in robot-assisted motor learning. Several studies found that
physically assisting a person in a movement task by providing guiding forces
temporarily improved motor performance while the participant received the
haptic guidance, but did not improve individual motor learning [13-16, 19—
21, 31]. Physical human-human interaction may be seen as a compliant
guidance that allows each participant to independently perform the task,
but still benefit from the error-correcting guidance of the other partner.
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This gives the interacting partners an incorrect good impression of their
performance, but reduces error as driving factor for motor learning [32].

According to the challenge point theorem, ‘optimal’ learning is achieved
when the difficulty of the task is appropriate for the participant’s level of ex-
pertise [33]. Haptic guidance could benefit less skilled participants, whereas
increasing error would be more beneficial for skilled participants [34]. Sim-
ilarly, haptic interaction with a superior partner makes the task easier and
could benefit initially less skilled participants, whereas interacting with an
inferior performing partner temporarily could make the task more difficult.
So based on this this theorem, haptic human-human interaction could have
a beneficial effect on the performance of both partners, in particular when
both partners differ in skill level. However, our analysis on the effect of
initial performance on motor improvement and learning rates did not show
any benefits of haptic interaction. Interaction with a better or worse partner
also did not result in more improvement.

Although we found no benefit of haptic interaction on learning, interaction
generally did not impede motor learning. The participants in the continu-
ous interaction group only learned to move in the visuomotor rotation with
haptic interaction and consistently experienced less error than the solo par-
ticipants. They could have relied more heavily on the interaction forces for
error correction, which could have impaired motor learning. Though when
we removed the physical connection in the last trials, their individual per-
formance was immediately similar to the individual performance of other
participants. We did observe that motor learning seemed to be impeded
for some participants in the stiff connection group. These participants in-
teracted with a superior partner and showed relatively worse performance
after learning and lower slower learning rates, indicating that these partic-
ipants’ individual learning process was hindered by the haptic interaction.
Stiff haptic guidance in a visuomotor rotation learning task has been shown
to impede motor learning [15]. Our results seem to be in agreement with
the observations on stiff haptic guidance.

A contrasting explanation as to why haptic human-human interaction
could improve motor learning is through some form of coaching or an-
other type of motor coordination by exchanging forces. A large visuomotor
rotation likely requires a change in movement strategy [23], so partners
could have improved learning the visuomotor rotation by coaching each
other through interaction. Our results do not support this hypothesis. Motor
learning rates of the interacting partners of any interaction group were not
faster and motor performance was not better than solo participants. If any
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form of motor coordination or coaching in haptic interaction would have
been a driving factor for motor learning, we probably would have seen dif-
ferences for the continuous interaction group, since the participants received
the most interaction time. A strong physical connection even seemed to
impede learning for some participants. Furthermore, all but six participants
responded in a post-experiment questionnaire that they were unaware of
the nature of the forces; they did not know that the forces originate from
haptic interaction with their partner. It is therefore unlikely that the haptic
interaction led to conscious motor coordination or coaching in the motor
learning task.

It is possible that the benefits of haptic human-human interaction on
motor learning are task-dependent like they are for haptic human-robot
interaction [35]. Recently, we investigated the effect of haptic human-human
interaction on motor adaptation to novel dynamics (a velocity-dependent
force field). Interacting partners did not show faster learning or better
motor performance in the force field compared to the solo participants [28].
Perhaps haptic human-human interaction could be useful in tasks in which
timing is of importance [35, 36] or in tasks in which both partners need to
learn subtasks [37]; haptic interaction could be used to support one subtask,
possibly allowing for more effective learning of another subtask.

Our study compared to Ganesh et al. [7]

Although we used the same interaction paradigm and learning task as Ganesh
et al. [7], there are small differences in the experimental design. First, due
to the smaller workspace of our robotic setup (our workspace had a radius
of 10cm, Ganesh et al’s workspace had a radius of 15cm), we designed
a different tracking signal which had a lower average and maximum ve-
locities as their tracking signal. This resulted in lower performance error
magnitudes, which could be a reason why we did not see a significant im-
provement in motor learning for the interaction group compared to the solo
group. However, we found that haptic interaction resulted in significantly
better performance during interaction, in particular for the inferior perform-
ing partners (see Fig. B.2), indicating that there was still significant room
to improve motor performance. Furthermore, pilot tests showed that more
difficult tracking signals, achieved by adding frequencies to the sum-of-sine
target signal, did not yield better individual motor performance of the in-
teracting partners. Second, we alternated the connected and single trials
(e.g. SCSCS...), whereas Ganesh et al. [7] used a slightly less predictable
semi-random sequence (e.g. SSCCSC...). We posit that our trial sequence
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did not significantly impact motor learning because always being connected
(our continuous interaction group) also had no effect on individual motor
performance.

Study limitations

Our study has a number of limitations. First, we make inferences on mo-
tor learning using a visuomotor rotation learning paradigm. A visuomotor
rotation is a error-based motor adaptation paradigm which has been used
in many motor learning studies [8, 9], but one could contest its applica-
bility to real-world learning scenarios [38, 39]. Second, we studied motor
learning during haptic human-human interaction without explicitly making
participants aware of the interaction and without assigning roles. Assigning
roles, such as educator-student, or making partners aware of the connection
could influence motor learning of the interacting partners [25], warranting
turther research.

In conclusion, we showed that haptic human-human interaction through a
compliant connection does not improve individual motor learning in a con-
tinuous movement task in a visuomotor rotation. If we recall the examples
in which parents physically help their child to walk or a therapist assisting a
patient to relearn arm movements, it is still likely that haptic human-human
interaction can play a role in motor learning. Even though we studied
two aspects of haptic human-human interaction, interaction time and inter-
action strength, further investigation into what role haptic human-human
interaction and the interaction forces play in motor learning is necessary.
Furthermore, to foster motor learning through haptic human-human inter-
action, we need to take important interaction aspects such as (conscious)
motor coordination and role assignment into account.
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Motion plans of rigidly-coupled pairs change predictably in joint reaching

Abstract

Parents can effortlessly assist their child to walk, but the mechanism behind
such haptic coordination is still unknown. Studies have suggested that haptic
coordination is achieved by interacting humans who update their movement
or motion plan in response to the partner’s behavior. Here, we tested
rigidly coupled pairs in a joint reaching task to observe such changes in
the partners’ motion plans. However, the joint reaching movements were
surprisingly consistent across different trials. A computational model that
we developed demonstrated that the two partners had a distinct motion plan,
which did not change with time. These results suggest that rigidly coupled
pairs accomplish joint reaching movements by relying on a pre-programmed
motion plan that is independent of the partner’s behavior.

5.1. Introduction

From a parent coordinating movements to help a child learn to walk, to a
therapist supporting a patient during recovery of their motor functions after
injury or disease, we rely on haptic interaction while performing tasks with a
common goal. Despite its importance, haptic coordination has only recently
been investigated [1-9]. These studies use a variety of metrics such as
distance from a goal [1, 4, 5], ad-hoc roles [2, 6, 7], magnitude of interaction
force from the haptic coupling [3], the energy exchanged between partners
[8] and dominance measures [9] to quantitatively analyse haptic interaction.
Importantly, these studies measured only the outcome of haptic interaction
and could only speculate as to the cause of these outcomes, which explains
why we still have limited understanding of how two people complete a
common task.

To understand how pairs or dyads haptically coordinate motion behaviors,
which we define as the outcome of partners who change their movement
or motion plan dependent on the partner’s actions, we examined haptically
connected partners whose task was to reach a common target from the same
initial position. Since the reaching movement is discrete, we can measure
trial-by-trial change in the kinematic trajectory and the interaction force. To
interpret these changes in kinematics and force, we need a computational
model of two coupled partners control. Without a model, the kinematics and
interaction force alone cannot differentiate between one partner attempting
to move faster or the other to move slower [10].
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However, a computational model can resolve this redundancy as each
dyad simulated by two coupled controllers yields a unique trajectory and
interaction force pattern that can be compared with data. By using our
experimental protocol and computational model together, we address the
limitations of a previous study that purported that the interaction force is
used to negotiate changes in motion plan, but could not support this claim
[2].

If coupled partners do haptically coordinate the interaction force sensed
through haptics, the sensory modality of touch and proprioception, in what
manner would they change their motion plan? Reaching movements in
humans have been shown to minimize error, e.g. distance of the hand from
a target, and effort [11]. This can be modelled as the minimization of a cost
function, which yields a motion plan. We hypothesize that dyads haptically
coordinate by reducing effort in the form of interaction force that does not
contribute to the movement [7]. However, other studies have suggested that
the interaction force is critical to haptic coordination [2]. Do partners update
their motion plan to reduce interaction force in order to conserve effort,
or increase it to improve coordination? To answer this question, we also
tested dyads who were constrained to produce a constant interaction force
prior to the initiation of the reaching movement. If partners coordinate by
minimizing force, their motion plans should update trial-by-trial to decrease
this interaction force. The results suggest that the two partners use distinct
motion plans unmodified throughout the trials.

5.2. Methods

5.2.1. Participants

Sixteen healthy participants (eight males, eight females; mean age: 25.9 years,
age range: 22—33 years) were recruited in pairs to form eight dyads. Pairs
were matched on sex to avoid any large differences in physical strength. All
participants were right-handed, as assessed using the Edinburgh Handedness
Inventory [12]. All participants gave informed consent prior to participation,
and the experiment was conducted in accordance with the Declaration of
Helsinki and approved by the Imperial College Research Ethics Committee.

5.2.2. Robotic setup

The experiments were performed in dyads using the His dual one degree-of-
freedom wrist robotic manipulandum described in [13] (see Fig. 5.1A). Each
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participant placed his or her right wrist in the His robotic manipulandum,
which allowed flexion and extension of the wrist. The wrist movement
controlled a cursor on one’s own computer display [13] (see Fig. 5.1B). The
robotic interface can generate a stiff connection between both wrist interfaces
with a torsional stiffness of 23Nmrad™, which is equivalent to a linear
stiffness of approximately 2300 Nm™' when assuming the pivot arm is 0.1m
from the centre of the wrist (centre of rotation) to the middle of the palm.
Participants were separated by a heavy curtain, which prohibited them from
seeing each other’s movements, displays, and eliminated social interaction.

5.2.3. Experiment protocol

In each trial, participants made point-to-point reaching movements using the
dual robotic interface with wrist flexion/extension. The movement’s start and
target positions were fixed at 10 deg extension and 30 deg flexion, respectively.
To synchronize the movement start, participants initiated their movement
after a 3s countdown, which was shown on the display (see Fig. 5.1C).
The trial ended when the cursor was held in the target for 0.5s. Dyads
performed 135 trials in seven blocks in which their wrists were alternately
not connected (one training and three solo blocks) and connected (one coupled
and two push-pull blocks), see Fig. 5.1B.

We constrained movement time during the training and solo blocks be-
tween 900 ms and 1200ms for two reasons: (1) to allow for more time
for interaction to occur compared to previous studies that showed variable
movement times smaller than 800ms [2, 3] and (2) to return partners to
their baseline reaching movement such that the dyads started each coupled
and push-pull block from the same condition. For this purpose, participants
received feedback on the display using the messages “too fast” or “too slow”
after a movement with duration smaller than 900 ms or larger than 1200 ms,
respectively. Movement time was not constrained during the coupled and
push-pull blocks since our aim is to investigate changes in coordination due
to interaction forces, not due to changes in movement behavior to adjust for
too short or too long movement durations.

Dyads first performed a training block of 15 trials to familiarize themselves
with the interface and the reaching task, including the countdown and move-
ment time constraint. During this training block, participants’ wrists were
not connected such that the participants independently reached towards the
target (training & solo panel of Fig. 5.1C).
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1. Partners produce
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moving at the start position

3. Coundown, then reach H
Countdown

Figure 5.1. | Dyadic reaching manipulandum and protocol. A Schematic of the dual-wrist manip-
ulandum setup. B The experiment was split up into three types of blocks: training
and solo blocks, a coupled block and push-pull blocks. Dyads were alternately dis-
connected (training and solo blocks) and connected (coupled and push-pull blocks).
After the first push-pull block and subsequent solo block, dyads performed another
push-pull block and solo block. C In the training and solo blocks, partners are discon-
nected and reach the target alone. In the coupled and push-pull blocks the partners
were rigidly coupled. In the coupled block, partners were rigidly coupled and moved
the averaged cursor to the target. In the push-pull block, dyads were constrained to
produce a torque of 0.7 Nm prior to the reaching movement. One partner pushed
towards the target and the other pulled away; once the initial opposing torque was
balanced and the average cursor position at 0 deg, the 3 s countdown was initiated.
Partners switched the pushing and pulling instructions in the second push-pull block.
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After training, the partners experienced a coupled block of 30 trials, where
their wrists were rigidly coupled by the computer-generated rigid connection.
Instructions and procedure per trial in the coupled block were the same as
in the training block; participants had to make reaching movements after
a 3s countdown (coupled panel of Fig. 5.1C). Although the connection was
very stiff, the connection could still result in very small differences in cursor
position between the partners. Therefore, the average wrist position was
displayed as the common cursor. Through the rigid coupling, participants
could exert torques onto each other.

Following the coupled block, participants performed a solo block of 10
trials, which was used to allow the participants to return to their baseline
reaching behavior.

Dyads then experienced two push-pull blocks (30 trials per block) in which
each reaching movement started with an initial opposing torque while being
rigidly coupled (see Fig. 5.1C). Partners were instructed to produce an initial
constant torque of 0.7 N m whilst remaining stationary at the starting position
prior to the movement onset only. Once the torque was held for 1s, the
3s countdown was initiated and partners were instructed to reach to the
target at the end of the countdown. During the countdown, dyads had to
maintain the initial opposing torque and remain stationary at the starting
position. No further instructions were given concerning the opposing torque
during the reaching movement itself. In one push-pull block, one partner
was assigned to push towards the target (i.e. produce a positive torque) and
the other to pull away from it (i.e. produce a negative torque). In the next
push-pull block, the instructions of pushing and pulling were switched. The
order of which partner pushed towards the target was counterbalanced and
randomly assigned to dyads. Each push-pull block was followed by a solo
block.

5.2.4. Data analysis

Trajectory and interaction torque data was recorded at 100Hz. Data was
recorded from the start of the countdown until the cursor was in the target
for 0.5s. All trajectory and torque data were aligned on the start of a trial,
which was defined as the time the wrist velocity exceeded 5degs™!. Data
was then truncated after 1.2s, which was the slowest permissible movement
time as constrained during the solo trials. The trajectory and torque patterns
of all trials were resampled to 256 time samples. Trajectory and torque
patterns were filtered using a zero-phase sixth-order low-pass Butterworth
filter with a cut-off frequency of 6 Hz.
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Changes in haptic coordination throughout the coupled and both push-
pull blocks were analysed per block by comparing the trial-by-trial changes
in trajectory and torque patterns within each block. In addition, since we
observed dyad-specific torque patterns, this analysis was performed for each
dyad separately. To compare the trajectory and torque patterns we used
wavelet-based ANOVA following the method described by McKay et al. (see
[14] for a detailed description). By performing the time-series analysis in
the wavelet domain, statistical power is increased relatively to time domain
ANOVA, since differences between curves tend to be represented by a few
wavelets and hence results in fewer comparisons. Furthermore, this method
does not sacrifice temporal resolution which occurs when dividing the tra-
jectory or torque patterns into time windows [14].

All trajectory and torque patterns were transformed to the wavelet domain
using the MATLAB wavelet toolbox (third-order coiflets, decomposition level
4). This resulted in 256 wavelet coefficients for the trajectory and torque
patterns for each trial. We grouped the 30 trials per coupled or push-pull
block into six bins of five trials each in chronological order (e.g. bin 1: trials
1-5, bin 2: trials 6-10, etc.). By performing a wavelet-based ANOVA on the
binned data with bin as single factor, we can test whether the trajectory and
torque patterns change across bins and hence throughout each connected
block. Significant differences in trajectory or torque patterns between bins
could indicate changes in haptic coordination. A fixed-effect single-factor
ANOVA model with bin as factor at a significance level of 0.05 was performed
for each wavelet coefficient across bins, resulting in 256 F tests per block
and per dyad. Post hoc multiple pairwise comparisons between bins using
Scheffé’s method were performed on the wavelet coefficients corresponding
to the significant F tests. Post hoc tests were performed at significance level
of o.05 which was Bonferroni-adjusted for the number of significant initial
F tests. Significantly different wavelet coefficients were transformed back to
the time domain for visualization and analysis. This results in time-domain
curves describing the mean differences of trajectory and torque patterns and
temporal location of these differences between all combinations of bins, per
connected block and per dyad [14]. Point-wise ANOVA were also performed
in the time domain to corroborate the findings of the wavelet-based ANOVA.
Figure C.3 shows an example of the mean difference curves as a result of
the wavelet-domain and time-domain analysis for the coupled block of dyad
VIII. All significant differences and temporal location of the differences in
torque curves are summarized in Table C.1 for all connected blocks and all
dyads.
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5.2.5. Model of dyadic reaching

A participant reaching in one dimension using their wrist with state

x=1[0, 6, = f], (5-1)

composed of the angle, angular velocity, torque and an auxiliary variable,
evolves in discrete time through the state space model

Xi+1 = AXg + Bup + C (xi - xk) , (5.2)
where xi is the state of the partner, k the time index,
[1 5 o0 0
PR g 0 (53)
= S ) s 5.3
0 0 1- - ™
oo o 1-2
. 17
B=[0 0 0 ;] , (54)
0 0 0 0
kS bS 0 0
CcC=|"1 ST .
0 o ol (5-5)
0 0 0 O

with the moment of inertia of the wrist I, time step § and the stiffness and
damping of the spring ks and b that connects partners. The musculoskeletal
system of the wrist is modelled using a second-order muscle-like filter with
a time constant of 7, = 40ms [15]. The connection matrix C = 04y if the
partners are disconnected, as in the solo block. The motor command u; sent
to the wrist is

up = -L(xx — 1), (5.6)

where the target vector t is

t=1[6, o, 0, o] (5.7)

during reaching, with 6, is the target angle of the movement. In addition,
for the push-pull blocks, the target vector prior to the reaching movement
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in the push-pull blocks is
T
tO = [907 09 70, O] P (58)

where ) and 7y are the initial angle and the interaction torque imposed
prior to the movement in the push-pull blocks, respectively. The controller
gain L is computed by minimising the cost

(o]

Z X Qx + uyRug, (5.9)
k=0

where the matrix Q is positive semi-definite and R is positive. The solution
of this infinite horizon linear quadratic regulator (LQR) is [16]

S=Q+AT

Ten) ' mT
S—SB (R+B SB) B S]A (5.10)
and the iterative solution of equation 5.10 yields the optimal gain
-1
L= (R + BTSB) BTSA. (5.11)

A pair of the human-like controllers were simulated in parallel, only inter-
acting through the connection matrix C. Thus, each partner was affected
by the interaction forces alone, and did not plan a joint movement with
another partner, yielding co-activity [17]. We assume that participants know
the state of their own wrist with fidelity. For all simulations, the parameters
were set to

ks = 0.4Nmdeg™, b; = 0.05Nmsdeg™*, R=0.5, § =0.01s, I = 0.1kgm?

where ks is from the experiment and damping bs is added to model the
natural damping properties of the wrist. The inertia I and the control cost R
were set to match the average speed and torque observed in the data such
that the motion plan identification (described in the next section) converged
within reasonable time for each dyad. The initial and target angles and initial
opposing torque were set to

0y = —10deg, 6; = 30deg,
7o = 0.7Nm or —0.7 Nm,

as in the experiment.
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5.2.6. Identifying the motion plan

To identify the parameters of the cost function Q (in equation 5.9) and the
final target angle of each partner (equations 5.7 to 5.8), we conducted a
tree-search of the 6 parameters Qq(1,1), Q1(2,2), 0;1 and Q2(1,1), Qz(2,2),
0,2 to identify their values that minimized the normalized squared distance
from the trajectory and force pattern in the data

_ 2 2
L 0; —0; T;—T;
M=— + _
ZL; o ) (5.12)

where L is the length of data, 0; is the mean angle of the data over all trials
in one block, T is the mean torque in one block, og and o2
of the angle and torque along the trajectory, and 0 and 7 are the angle and

torque in the simulation. The parameters were initialized with the values

are the variance

Q = diag(2,0.1,0,0), 0 = 30deg

which were incrementally altered in step sizes of Qpos = 2, Qe = 0.1
and 860, = 1deg (for position cost, velocity cost and final target angle) to
minimize the magnitude of the metric in equation 5.12. The algorithm goes
as follows: first, we simulated the 64 permutations of

Q1(1,1) = 6Qpos;
Q1(2,2) £ 6Qvel,
0r.1 £ 56;,
Q2(1,1) = 6Qpos;
Q2(2,2) = 6Qvel,
6; » + 56;.

Out of these permutations, the parameters that minimized the metric of
equation 5.12 was selected as the starting point again, and the process was
repeated for 200 iterations for each dyad in the coupled and push-pull blocks.
We then compared the relative changes in the position and velocity cost
terms in the cost matrix Q between the coupled and push-pull blocks to
examine any consistent change due to the torque prior to movement onset.
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5.3. Results

We first examined the trajectories and interaction torques from the coupled
block. The trajectories of the average cursor from all binned trials in the cou-
pled block are shown in Fig. 5.2A, where each bin consists of five trials. The
trajectories were different between dyads, but a statistical analysis showed
no significant differences between the binned trials within dyads (for all F
tests, p > 0.05, see Methods for a description of the analysis). Figure 5.2B
shows the torque patterns from all dyads in the coupled block. Similar to
the kinematics, we observed dyad-specific torque patterns. The partners in
dyad II, for example, have specialized into pure acceleration (blue partner)
and deceleration (red partner) of the coupled movement. Some statistical
differences were found between within-dyad binned torque patterns; dyad
IIT showed a difference in torque between bins 2 and 3 for only a small
time window (0.38s to 0.45s; one significant F test, p < 0.05), see Table C.1.
However, we observed no consistent trial-by-trial changes in the torque pat-
terns for any dyad in the coupled block, with the exception of dyad VIIL
Dyad VIII showed significantly higher torques in bin 1 compared to bins 2
to 6 (see Fig. C.3 and Table C.1 for details). Although the torques in bin
1 were higher, the torques in the other bins were consistent and showed
no significant differences between bins. These data suggest that dyad VIII
changed their motion plan after bin 1, but did not coordinate during bins 2
to 6, i.e. they did not change their motion plan to reduce effort.

5.3.1. Dyadic reaching with torque at movement onset

Next, we examined the torque patterns of all dyads in the push-pull blocks.
The representative dyads I-IV are shown in Fig. 5.3, while dyads V--VIII are
plot in Fig. C.2. It appears that the torque patterns are unchanging from
one trial to the next in each push-pull block. The wavelet-based ANOVA
did reveal some significant differences in between bins for dyads I, VI, VII
and VIII, see Table C.1. For instance, dyad I showed differences in torque
between bin 1 and bins 5 and 6, but only briefly, and dyad VII’s torque pat-
tern in bin 2 was different compared to bins 4 and 5 in the last 0.5s of the
reaching movement (see Table C.1 for details). Importantly, the significant
differences were not consistent across the push-pull bins for all dyads and
across both push-pull blocks. There are three noticeable outcomes in the
push-pull condition. First, partners in the same dyad do not have identical
torque patterns when switching between pushing and pulling roles. Second,
the torque pattern predominantly remains in the same direction throughout
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Figure 5.2. | Trajectory and torque data for the coupled block. A Trajectories of the average cur-
sor for all dyads in the coupled block. The bold lines indicate the average trajec-
tory of each bin; the thin lines show the individual trials. B Torque from all eight
dyads, where each bold trace corresponds to the average of each bin; the bins progress
chronologically from green to blue for the blue partner and from yellow to red for
the red partner. With the exception of dyad VIII, no consistent trial-by-trial change
in the torque was observed within dyads. Different dyads displayed specific torque

patterns.



the whole movement, i.e. a partner constrained to push at movement onset
keeps pushing and vice versa. Third, the torque at movement onset caused
all dyads, in at least one push-pull block, to end the movement with con-
stant (e.g. non-zero) opposing torque (paired-sampled t-test on the opposing
torque at t = 1.2s, t(15) = 46.80, p < 0.001). The constant opposing torque at
movement end is possible due to the redundancy of the task, but is function-
ally superfluous and energy inefficient. Partners could have updated their
motion plans between trials to reduce this superfluous torque, but they did
not.

5.3.2. Simulation of dyadic reaching

Why do the trajectory and torque patterns remain relatively stable from
trial-to-trial within each block? Why is the torque pattern dyad-specific,
and how can the same dyad exhibit different trajectories and torque patterns
between the coupled and push-pull blocks? To address these questions,
we developed a computational model of dyadic reaching. The experimental
results suggest that partners do not update their motion plan from trial-to-
trial, but may have differing motion plans in each block. Thus, we assume
that the torque patterns are a by-product of two rigidly coupled participants
who planned their motion independently, corresponding to the mechanism of
co-activity [17]. Each participant was modelled as a controller with muscle-
like dynamics that minimized the difference in position and velocity between
the cursor and target using a linear quadratic regulator [18]. Dyadic reaching
was simulated with two of these controller agents who planned and executed
their movements independently with movement affected by the torque of the
rigid coupling.

As the trajectory and torque pattern in different block conditions was dif-
ferent for each dyad, partners may have had different motion plans between
block conditions that did not change within each block. To identify the mo-
tion plans in each block for each partner, we modified each partner’s state
cost matrix Q, which has two diagonal terms that prioritize the difference be-
tween the current and desired position and velocity (see Methods for details).
How do these two terms in the state cost matrix affect the motion plan?
A position-priority controller, with a large term in Q(1,1) and a small term
in Q(2,2), will aggressively reach to the target, resulting in large overshoot
(blue decoupled controller in Fig. 5.4A). A velocity-priority controller, with
a small term in Q(1,1) and a large term in Q(2,2), will slowly converge to
the target without overshooting (red decoupled controller in Fig. 5.4A).
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Figure 5.3. | Dyadic reaching with initial opposing torque prior to movement. Torque from dyads
I-IV in the coupled and both push-pull blocks; each bold trace is the average trajec-

tory of each bin. In all dyadic reaching blocks, the torque was unchanging between

trials within each block.
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Figure 5.4. | Position and velocity priority in the motion plan explains endpoint bias. A The (de-
coupled) blue controller prioritizes position, which causes it to overshoot the target.
The (decoupled) red controller prioritizes velocity such that it converges to the target
without any overshoot. When the position-priority and velocity-priority controllers
are coupled (dashed black trace), a force pattern is observed (dashed blue and red
traces). The only manner in which the controllers would end the movement with
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Endpoint bias at the end of the reaching movement from all 16 partners. Partners, at
movement onset, who pushed towards the target overshot it, and those who pulled

away undershot it.
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When these two controllers, one position-priority and the other velocity-
priority, are rigidly coupled, an interaction torque pattern is observed (see
dashed torque traces in Fig. 5.4A) that appears similar to dyad II's coupled
reaching (Fig. 5.3). However, the simulated torque pattern decays, whereas
dyad II ends the movement with a constant torque. The (optimal) controllers
will never end the movement with wasteful torque, unless they decide to
stick to their current position once the task is fulfilled. Looking back at
the decoupled controllers (solid traces in Fig. 5.4A), the joint movement
ends when the driving controller (blue) has overshot the target and the
braking controller (red) is undershooting it. If both controllers maintain
their respective positions once their average position reaches the target, the
position-priority and velocity-priority controllers will end the movement with
constant torque as dyad II did (zoomed plot in Fig. 5.4A). Upon examining
the data (Fig. 5.4B), the partner pushing towards the target at movement
onset overshot it (overshoot significantly different from zero; one-sample t-
test on the pushing partner’s position; #(15) = 3.73, p < 0.002) and the pulling
partner undershot the target (#(15) = —3.20, p < 0.006). Thus, we suspected
that pushing at movement onset altered the motion plan to prioritize position,
and pulling to prioritize velocity.

We used a Monte Carlo tree-search to identify the underdetermined system
of the motion plan priority and final reach position of both partners such
that the simulated trajectories and torque pattern matched the data, which
were averaged in each block, as closely as possible (see Methods for details).
We modified each partner’s state cost matrix Q incrementally in the direction
that reduced the discrepancy between the simulation and the data. As each
pair of controllers yield a unique trajectory and torque pattern, there is no
issue in resolving the redundancy while interpreting a torque pattern. Since
the trajectory and torque pattern was different between blocks even for the
same dyad, we conducted the tree-search for each block separately for every
dyad. We could then compare the identified motion plans in the push-
pull blocks with those from the coupled block to assess how each partner’s
motion plan changed due to their pushing or pulling role in the push-pull
block.

Figure 5.5 compares the data (solid trace) and the simulations (dashed
trace) of the mean trajectories and torques of all trial from dyads I--IV in
both coupled and push-pull conditions. Taking dyad I as an example, in the
first coupled block the red partner prioritized position more than blue. This
is also evident from the solo blocks where the red partner was found to
reach faster than the blue partner (see Table C.2). We simulated the different
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push-pull conditions using the motion plans identified in the coupled block,
but the predicted trajectory and torque were different from the data. Clearly,
the partners had different motion plans in the push-pull blocks than in the
coupled block. So how had the partners’ motion plan changed? Simulations
revealed that in the first push-pull block, the (pushing) red partner prioritized
position even more than in the coupled block, and the blue partner prioritized
velocity. In the last push-pull block, the (pushing) blue partner prioritized
position and the (pulling) red partner prioritized velocity. This pattern of
change in the partners’ motion plan was consistent in all dyads. Every
partner pushing towards the target prioritized position, and those pulling
away prioritized velocity (Fig. 5.5B-D for dyads I-1V, and Fig. C.2 for dyads
V-VIII, see Table C.2 for identified state cost terms). This explains why
pushing partners, who prioritized position, overshot the target and pulling
partners, who prioritized velocity, undershot the target, just as predicted by
the computational model (Fig. 5.4A and Fig. 5.4B).
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Figure 5.5. | Simulation of dyadic reaching. Trajectories and torques from dyads I to IV (A--D)
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in the coupled and push-pull blocks. Solid trace is from the data showing the mean
of all trials and the shaded area is the standard deviation; the dashed traces are from
simulations. First, we identify the state costs of both partners in coupled reaching,
then identify the state cost in the push-pull blocks to see what effect the opposing
torques prior to movement onset had. In all dyads, the initial opposing torque had a
consistent effect: partners pushing towards the target prioritized position and over-

shot the target; those pulling away prioritized velocity and undershot the target.
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Figure 5.5. | Simulation of dyadic reaching (continued). Trajectories and torques from dyads I to
IV (A--D) in the coupled and push-pull blocks. Solid trace is from the data showing
the mean of all trials and the shaded area is the standard deviation; the dashed traces
are from simulations. First, we identify the state costs of both partners in coupled
reaching, then identify the state cost in the push-pull blocks to see what effect the op-
posing torques prior to movement onset had. In all dyads, the initial opposing torque
had a consistent effect: partners pushing towards the target prioritized position and
overshot the target; those pulling away prioritized velocity and undershot the target.
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5.4. Discussion

We systematically examined rigidly coupled dyadic reaching movements to
observe the trial-by-trial emergence of coordination. We developed a compu-
tational model of the reaching movement to identify each partner’s motion
plan, thereby resolving the redundancy in interpreting kinematic and torque
data. Our experiment revealed that dyads did not change their motion plan,
i.e. did not coordinate their behavior, even after 30 movements. However,
their motion plan was different when dyads were constrained to produce a
constant opposing torque prior to movement onset. This modification of the
motion plan was predictable and dependent on which direction the partner
was producing the interaction torque.

Rigidly-coupled partners do not coordinate during a joint reaching task

Our study provides evidence that dyads do not coordinate during joint reach-
ing movements towards the same target. This result stands in contrast with
Reed and Peshkin [2] who argued that the interaction torque was used by
dyads to negotiate specialized roles, like one partner who only accelerates
and the other who purely decelerates. Indeed, we also observed dyads em-
ploying such a ‘strategy’ in our study, but this specialization can be explained
by two reasons. First, partners may reach towards a common target at dif-
ferent speeds or initiate the movement with different reaction times as the
authors did not implement a countdown [10]. When we examined the solo
blocks where partners were decoupled, the partner who applied torque in the
direction of the movement was also reaching faster in the solo trials. Second,
the condition at movement onset can affect the specialization; partners who
push towards the target prior to movement onset will tend to keep applying
such torque throughout the movement. Reed and Peshkin [2] reported that
their dyads were applying such opposing torques whilst waiting for the next
target to appear, which explains the specialization they observed. Thus, the
trajectory and torque patterns that these authors documented are the result
of different movement speeds, reaction times and varying movement onset
conditions.

118



Using computational modeling to understand haptic interaction

Our computational model resolved the redundancy in interpreting the trajec-
tory and torque patterns observed during joint reaching. This is in contrast
with previous studies [2, 6] that employed ad-hoc roles defined by the au-
thors to classify the coordination strategies. Such an approach is limited and
may be unwise as differences in natural movement speed may account for
differences between dyads [10]. Furthermore, the use of a metric like the
magnitude of interaction torque [3] is prone to misinterpreting the results
of our study as it would suggest greater coordination in push-pull blocks
in comparison to coupled blocks, which is evidently not the case as our
computational model suggests. Interestingly, our computational model can
be implemented in real-time on a robotic manipulandum to interact with
a human partner. Future studies can employ this model to test if a robot
partner, whose motion plan is programmed to minimize interaction torque
on a trial-by-trial basis, may induce the human partner to do the same.

Our experimental results and computational model suggest that joint reach-
ing may not be a suitable task when examining the emergence of haptic
coordination, as partners do not seem to update their motion plan on a trial-
by-trial basis. So how should future works study haptic coordination and
its emergence? Comparing the simulation predictions from co-activity with
the experimental results may yield clues as to whether partners coordinate
their actions. For example, the study by Ganesh et al. [5], which examined
tracking in dyads connected by an elastic band, cannot be explained by co-
activity, and suggests a change in one’s behavior with the haptic coupling.
Our findings suggest that a joint reaching task is a suitable paradigm to
compare with a computational model to identify each partner’s motion plan,
but is not sufficient to observe systematic trial-to-trial changes in the motion
plans. A continuous task such as a pursuit tracking may be more suitable
to examine haptic coordination [5, 8].
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Haptic communication in a tracking task

Abstract

Two is better than one: haptic interaction between two individuals in a
continuous tracking task has been shown to improve performance for both
partners. Researchers proposed that the interacting partners improved per-
formance by estimating their partner’s movement goal from the interaction
force and using it to improve their own tracking performance. In contrast,
we have a simpler explanation and provide evidence that no such haptic
communication was necessary to improve performance in a similar tracking
task. First, we show that the partners did not need to accurately perceive the
interaction force to improve performance. We impaired the perception of the
interaction force by superimposing a velocity-dependent force field on the
task and found that individuals improved similarly during haptic interaction
compared to when no force field was present. Second, we could accu-
rately explain the improvements with a computational model that assumed
no haptic communication to occur. Haptic interaction improves performance
because the mechanical coupling between the two partners reduces motor
variability and provides haptic guidance to the worse-performing partner in
the pair.

6.1. Introduction

When carrying a couch up a flight of stairs together, movers can coordi-
nate their movements by exerting forces onto each other through the couch.
Haptic interactions between humans like these play an important role in
motor coordination [1, 2]. Interestingly, haptic interaction with a partner
who is performing the same task can also improve your motor performance,
regardless of how good he/she is at the task [3-5]. Reed and Peshkin [4]
showed that rigidly-coupled pairs were faster at reaching to a target com-
pared to each participant doing the same task alone. Ganesh et al. [3] found
that haptic interaction through a compliant connection, a computer-generated
spring and damper, improved tracking performance for both partners during
a collaborative tracking task, which required following a randomly-moving
target. More importantly, they found that individuals still improved during
interaction even when they interacted with a worse-performing partner.
How does haptic interaction with a worse-performing partner still improve
motor performance? This finding is remarkable, as you might expect that
being physically connected to a worse-performing partner would impede
performance. To explain the results of [3], Takagi et al. [6] proposed a com-
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putational model in which the two haptically interacting partners infer each
other’s movement goal from the information transmitted in the interaction
force. The estimated partner goal is then used to improve their own visual
estimate of the target to enhance their tracking performance. So, Takagi et al.
[6]’s goal integration model assumed that partners exchanged or extracted
information from the interaction force, which is also referred to as haptic
communication.

However, the tracking task in [3, 6] required following an unpredictably-
moving target. In addition, both partners were still able to move inde-
pendently due to the compliance of the haptic connection. Consequently,
the interaction force changed magnitude and direction continuously for both
partners. However, humans seem to have systematic errors in the perception
of force magnitude [7-11] and direction [8, 9, 12], in particular when the
forces are small. So, we ask whether accurate and unbiased interaction force
perception and thus accurate haptic communication — such as estimating the
goal of the partner - is possible in such a fast-moving tracking task.

Here we show, using both a model-based and an experimental approach,
that haptic communication is not required to improve motor performance
during haptic interaction in a tracking task, challenging Takagi et al. [6]’s
goal estimation hypothesis. Instead, we hypothesize that the partners inde-
pendently executed the tracking task and did not haptically communicate
through the connection; they were only mechanically influenced by the
interaction force of the connection. Specifically, we propose that the im-
provements are because the compliant connection primarily compensates for
the motor output variability — the variability of the hand position during
tracking, including errors due to focus lapses such as overshoots - of each
partner. Furthermore, the mechanical connection provides haptic guidance
for the worse-performing partner.

First, we used a computational model which assumed no haptic commu-
nication to occur to describe the improvements due to haptic interaction in
a tracking task similar to the one used by Ganesh et al. [3]. This model
consisted of two moving agents who tracked the target alone and were only
influenced by the interaction force of the compliant connection. We did not
model any exchange of information to occur through the interaction force.

Second, we impaired the perception of the interaction force by superim-
posing a velocity-dependent force field on the tracking task and interaction
force. To haptically communicate through the interaction force, partners now
had to discriminate the interaction force from the force-field force. If the ac-
curate perception of the interaction force to exchange information is indeed
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essential to yield improvements, we would expect no or less improvement
due to interaction while moving in the force field compared to when no
force field was present.

The results and model showed that no exchange of information through
the interaction force has to occur to explain the improvement during haptic
interaction. Even when we superimposed a force field onto the task, impair-
ing the perception of the interaction force, interaction still led to the same
performance benefits as when no force field was present. Our study showed
that the improvement benefits of haptic interaction in a fast-moving tracking
task can primarily be explained by the motor variability-reducing nature of
the compliant connection, challenging the hypothesis that partners haptically
communicate by estimating each other’s goals through the interaction force
to improve performance.

6.2. Methods

The data used in this chapter are from the study presented in Chapter 3,
which included a solo and interaction group. Because we are interested
in how two humans haptically interact, we only used the data from the
interaction group. The materials and methods are similar except for the
analysis and interaction model.

Twenty participants (aged 19-35 years, 12 males and 8 females; all ex-
cept one were right-handed according to the Edinburgh handedness inven-
tory [13]) participated in the experiment. All participants were naive to
the force field motor task and interaction task. The study was designed
following the principles of the Declaration of Helsinki. An expedited assess-
ment of the study by the Medical Ethical Review Board of the University
of Twente (METC Twente) showed that the study posed minimal risk to the
participants and therefore under Dutch law did not need full ethical review.
All participants provided written informed consent. The experiment lasted
approximately two hours; all participants received compensation for their
participation.

6.2.1. Robotic setup

The experiments were performed using a dual-robotic setup, see Fig. 6.1. Par-
ticipants held and moved their own planar robotic manipulandum. The ma-
nipulanda were admittance-controlled, such that the manipulandum dynamics
(simulating a mass of m, = 0.3kg and a damping of b, = 0.25Nsm™') were
uniform in the x- and y-directions over the workspace. Each partner had
their own display that showed the workspace, target and their own cursor
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Figure 6.1. | Dual robotic setup. Each participant held their own manipulandum and tracked the
same target. The displays showed the common target and each participant’s own
cursor. We indicated the local coordinate frame for one manipulandum. The part-
ners were haptically coupled through a compliant computer-generated spring in the
connected trials.

(see Fig. 6.1). Participants controlled the cursor by moving the handle of
their manipulandum. Cursor and target movement were scaled to match the
real-world movement of the manipulandum. A curtain obstructed the view
of the other partner and the partner’s display. A panel obstructed a direct
view of the participant’s own arm and hand. Participants were not allowed
to communicate verbally.

6.2.2. Task and interaction paradigm
Tracking task

All participants performed the same planar tracking task. The goal was to
track a target as accurately as possible on a display. The participants tracked
the same unpredictably-moving target in trials of 23s long followed by a

20s break. The target movement T = [T(x) T(y)]T (in cm) was defined as
two sum-of-sines:

TX)(t) = 2.87 sin (0.94t — 7.77) + 2.71 sin (1.26t — 8.53)

+2.35sin (1.89¢ — 4.36) + 1.80 sin (2.83t — 3.79)

(6.1)
TW(t) = 2.71 sin (1.26¢ — 0.71) + 2.53 sin (1.57¢ — 3.45)

+2.16:5in (2.20¢ + 3.92) + 1.64 sin (3.14¢ + 4.93).

The tracking signal required hand movements over a circular workspace
with a diameter of 20 cm, an average velocity of 7.9 cm s~! and a maximum
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velocity of 13.9cms™!. To prevent fast learning or other cognitive track-

ing strategies, we chose a uniformally random start time for the signals
(t € [to, to +20]s, ty ~ %(0,20)) and we rotated the tracking signal randomly
from six predefined rotations: ((p = [0, %n’, %ﬂ, T, %JT, gﬂ]rad).

Connected and single trials

Two types of trials were used in the experiment: connected (C) and single
(S) trials. The participants tracked the target alone in a single trial (they
were not connected). In a connected trial, the partners haptically interacted
through a computed-generated compliant connection that connected the han-
dles of the two partners (see the detail in Fig. 6.1), which generated an
interaction force

F; =k, (pp - po) + by (Vp - VO) , (6.2)

where k; is the connection stiffness, by a damping contribution, and p,,
Vp, Po,» and v, are the partner’s and the participant’s own position and
velocity, respectively. We set the stiffness and damping to ks = 150 Nm™!
and b; = 2Nsm™!, respectively. The stiffness was similar to previous work
[3] and a small damping was added for spring stability, but small enough
to only minimally interfere with the velocity dependent force field. The
force was exerted onto both partners’ hands by the manipulanda. If a
partner moved away from the other partner, they both experienced a force
pulling them toward each other. The compliant connection allowed the
partners to haptically interact while being able to execute the tracking task
independently. Active task execution was required; participants could not
completely relax and let the force pull their hand along.

6.2.3. Experiment design

The twenty participants performed the experiment in ten pairs. Each pair
performed four blocks of 21 trials with a four-minute break between blocks
for a total of 84 trials. Participants tracked the target without a force field
in the first and last blocks, which we also refer to as null field blocks. We
introduced a counterclockwise velocity-dependent curl force field in blocks 2
and 3, which generated a planar force F. given by

FY

FC =Dv Féy)

(6.3)

0 -15] [o™
15 0 ||oW

on the hand of each participant, where v is the participant’s own hand veloc-
ity. The force field generated a force that was perpendicular to the movement
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Figure 6.2. | Force field example and forces on the handle. A The force field introduces forces F,
perpendicular to the movement. The forces shown in this figure are based on perfect
tracking of the target. B The participant feels a total force F.4;, which is the sum
of the force field force F, (in the force field blocks, proportional to velocity v) and
interaction F;.

(Fig. 6.2A). During the connected trials, the force field was superimposed on
the interaction force; the participants would feel a force F.i; that is the
sum of the force field F. and the interaction force F; (see Fig. 6.2B). The
participants were informed that a force field would disturb their movements
and they were instructed to track the target as accurately as possible at all
times. We asked them not to stop tracking to learn the force field. We refer
to blocks 2 and 3 as the force field blocks.

The participants performed an alternating sequence of single and connected
trials in each block ({SCSCSCSCSCSCSCSCSCSCS}). Hence, the partners
intermittently interacted with each other while performing the tracking task
in all blocks.

6.2.4. Analysis

Data, including handle position p and velocity v, interaction force F; and
total force F; exerted by each participant onto the handle, were sampled at
1kHz. We used MATLAB R2018B to parse the data and perform additional
analyses.

Motor performance is computed as the root mean square of the tracking
error E (the distance between the target and cursor in cm) of the last 20s of
each trial — the lower the tracking error E, the better the motor performance.
We calculated the motor performance for each partner in each trial. The
performance during a single trial and connected trial are denoted by Es and
E., respectively. The tracking performances in the connected trials were
not necessarily the same for both partners because they could still move
independently because of the compliant connection.
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We analyzed the time-averaged motor output variability — the variability
of the hand position across trials — of each participant in the ‘no force field’
blocks (baseline and aftereffects). We used the last eight single trials of both
null field blocks (so 16 single trials in total per participant) in which tracking
performance was constant to avoid learning effects. The variance X, of the
hand position p is:

%p = E|(p-E[p])?] (6.4)
_ of  poxoy ‘ .
[PO'xO'y 0_5 ] (6.5)

We assumed that the participants tracked the target in the x- and y-directions
independently. Consequently, the variances in x- and y-directions were as-
sumed to be uncorrelated (p = 0). We used o2 as a scalar representative of
the total motor output variability. We calculated the time-averaged variance
of the hand position as follows:

1 N
7%=~ A (6.6)
k=1

2 . is the variance of the x-direction at time step k across the

where o
X

sixteen single trials and N is the number of time steps in each trial.

Motor improvement due to interaction

Ganesh et al. [3] found that the amount of performance improvement due
to haptic interaction depended on the relative performance of the partner.
Following [3, 6], we calculated the improvement due to interaction I and
the relative partner performance R. The interaction group performed sets of
connected and single trials (CS) in each block. The performance improvement
due to interaction (I) is calculated per participant using the performance of
the connected and single trial in each set (E. and Ej, respectively):

I=1-E./Es. (6.7)
The relative performance of your partner (R) is calculated by
R=1-E,/E,, (6.8)

where E , is the partner’s performance during the single trial and E; is your
own performance during the same single trial.
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Force analysis

We logged the total force F; exerted by the participant on the handle mea-
sured by a force transducer as well as the true interaction force F;.

We analyzed how the force-field force impaired the perception of the
interaction force. To estimate the interaction force F;, participants primarily
had to differentiate between the actual interaction force F; and the force-
field force F.. People can learn an internal model of the force field with
extended practice [14-16], which could be used to estimate the current force-
field force based on the current hand velocity (equation 6.3). However,
studies found that humans only learn to compensate for a fraction a of the
imposed field (a = 0.8) [15-17]. If the participants indeed used an incomplete
internal model of the force field to estimate the interaction force, they would
underestimate the force-field force. The remaining, uncompensated, force-
field force F., = (1 — @) Dv would bias the perceived interaction force:

Fi =F;, + (1 - 0{) Dv, (69)

where F; is the actual interaction force, « is the fraction of the force field
that is learned (also referred to as the compensation factor), D is the force
field, and v is the hand velocity.

We computed a compensation factor « as the amount of the force field
that was compensated for in each single trial for every participant (i.e.,
when F; = ON). Following the approach of previous work [15, 16, 18], we
regressed the actual compensation forces F. , generated by the participants
to compensate for the force field on the ideal forces F.; that would fully
compensate for the force field. The actual compensation force is preferably
measured in error-clamp trials, in which the movements perpendicular to
the desired movement are restricted such that the measured forces only
described the (feedforward) force field compensation [15]. However, error-
clamp trials are mainly used in reaching tasks that involved discrete and
fast reaching movements in which the force field is compensated for in a
feedforward manner [15, 18]. In contrast, we used a continuous tracking
task that required feedback control such that error-clamp trials are not as
useful. Instead, to compensate for the forces resulting from moving the
manipulandum, we calculated the the actual forces F. , during a single trial
(F; = ON) per participant as follows:

Fc,a =F; - (mrir + brxr) s (6'10)

where F; is the measured total force, m, and b, are the mass and damping
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of the manipulandum’s dynamics, and %, and X%, are the manipulandum’s
endpoint acceleration and velocity.

To calculate the ideal compensation forces F.;, we assumed that partic-
ipants would return to their tracking trajectories in the null field blocks
after extensive practice in the force field, based on previous work [19]. The
ideal force profile was calculated using each participant’s hand velocity of
the average tracking trajectory of the last eight single trials of both the
baseline and aftereffects blocks using equation 6.3. We then computed the
compensation factor a as:

N
1 F

. _Z I c,a”, (6.11)
N & ||F il

where k is the time step and N is the number of time steps in a trial.
The resulting o reflects how much each participant compensated for the
force field in a single trial. We assume that the compensation factor during
connected trials was the same as in the single trials.

The compensation factor reflects a combination of multiple possible mecha-
nisms that people could use to compensate for the force field. These comple-
mentary mechanisms include increasing arm impedance [16, 20, 21], learning
an internal model of the force field that could be used in feedforward con-
trol (e.g., predictive force compensation based on the current hand velocity)
[14, 16, 22, 23] and feedback control (e.g., reacting to tracking errors) [24].

Statistical analysis

Statistical analysis was done using the R statistical software package (version
3.5.2).

We compared the improvement due to interaction versus relative perfor-
mance curves between the force field and null field blocks using the linear
model

I:ﬁ0+ﬁ1R+ﬁzF+ﬁ3(RF)+€, (6.12)

where R is the relative performance (continuous predictor), F a factor indi-
cating force field or no force field. The coefficients S, . 3 are the intercept,
coefficients for R, F and the interaction term (RF), respectively and € is the
unexplained variance of the data. We used the same model to compare the
interaction model predictions with the data.
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Figure 6.3. | Model of two partners tracking a target independent while under the influence of
the interaction force F;. Each partner was modeled as a controller which generates
a control input uy to the system dynamics. A state estimate X | is obtained with a
state estimator using an internal model of the system dynamics, a copy of the control
input uy and sensory observation yj. Partners were only connected through a com-
pliant connection that exerted an interaction force F; onto each partner; no other
exchange of information was modeled.

All data and statistical model fit residuals were checked for normality
using the Shapiro-Wilk normality test and visual inspection (QQ plots). The
level of significance for all tests was set to 0.05. Unless explicitly stated, all
data are reported as the mean + standard error of the mean (s.e.m.).

6.2.5. Tracking model

We developed a model based on a Linear-Quadratic Gaussian controller (LQG)
to describe each participant’s tracking behavior in the single trials (e.g., their
individual tracking behavior) in the null field blocks [25]. The tracking mod-
els of the partners in a pair are then coupled with a compliant connection
(see Fig. 6.3), which will be described later.

System dynamics

We modeled the dynamics of each partner as a point mass in Cartesian
coordinates. The combined action of all muscles is represented with a force
f acting on the point mass. The muscle control signal u is transformed into
force f by the muscle activation dynamics, which are modeled by a second-
order low-pass filter [25]. The system dynamics were discretized with time
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step 6 = 0.01s. The discrete-time state vector is given by

T
X = pECX) piy) U](Cx) Z)gcy) fk(x) k(y) gI(CX) ggcy) T/Ex) Tliy) Tlgx) T/Ey) , (6.13)
where p is the hand position, v the hand velocity, f is a muscle-like force, g
is an auxiliary variable to implement the activation dynamics’ second-order
low-pass filter and T and T are the target position and velocity, all at time
step k in the x- and y-directions. The discrete-time system dynamics are

Xi+1 = AXi + Bug + wy, (6.14)
where:
[1050 0 0 0 0
0106 0 0 0 0
0010 6/m 0 0 0
0001 O §/m 0 0 | sxe
A=]00001-5/ry, 0 d/ty 0 , (6.15)
0000 0 1-68/ty 0 5/t
0000 0 0 1-56/1, 0
0000 0 0 0 1-6/1,
R <4
06)(2 )
O/ty, 0
B = 0 8/, and (6.16)
04)(2
wi ~ N(0,Q°). (6.17)

We set the mass m to 1kg and the muscle-filter time constant to 7, =
0.04s [25]. The motor noise wi on the control input was zero mean with
covariance Q% = diag (0,0, 0,0,0,0, 02, 52,0,0,0,0).

The sensory feedback contains information about the hand position, hand
velocity, target position and target velocity:

Vi = Hx + v, (6.18)

where:

[ix4 x4 (ixd
H= 084 gix4  paxd and (6.19)

vi ~ N(0,Q"). (6.20)
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Because we do not model any information exchange through the interaction
force, it is not needed to observe the interaction force F; on the hand. The

sensory noise vy was zero-mean with covariance

Vo 1 2 2 2 2 2 2 2 2
Q" = diag (ap, Ops O O 0 0, 0 GT.).

State estimation

We implemented a Kalman filter to optimally estimate the state and target
despite the motor noise and noisy sensory measurements. The Kalman fil-
ter updates the posterior state estimate Xix by combining the prior state
prediction Xjx—; with the noisy observation yy:

Xk = Xijk—1 + Kk (yx — HXkjk-1) , (6.21)

where K are the Kalman gains. The prior state prediction X x—; is computed
using the human’s estimate of the system dynamics, A and B, also referred
to as the internal model, and a known copy of the motor command ux_;:

Kilk-1 = AXp_1jk-1 + Bug_;. (6.22)

Because the target observation contains sensory noise, the participants deter-
mined the target position and velocity based on the noisy target motion in
yk. To ensure that the participants estimated the target motion in the poste-
rior state estimate Xi|r, we added a target position and velocity update noise
(i.e. a random walk model of the target position and velocity) in the process
noise when iterating the Kalman filter, following the approach of Izawa et al.
[17]. These update noises, which were zero-mean with variance 0?

0; e respectively, represented the uncertainty of the human’s target motion

estimate due to the random-appearing motion of the target.

and

s

Feedback controller

The motor command u; moved the hand to the target based on the current
posterior state estimate:

up = —LiXg k. (6.23)
We derived the optimal feedback gains Li such that the participant tracked
the target with certain accuracy requirements. Because we assumed that

tracking behavior was constant during a trials, we computed the infinite-
horizon optimal gains (i.e., constant feedback control gains). The resulting
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feedback gains Ly minimize the cost function

" (6.24)

e () ()]

where w, and w, are the weighting factors on the difference between the
hand position and target position and hand velocity and target velocity,
respectively. This cost function describes the task requirements: participants
had to track the target with their hand as accurately as possible. Because
each participant based their control on their estimate of the real system
dynamics, we computed the optimal control gains using the internal model
system matrices (A, B). Because we did not make the participants aware of
the coupling, we did not include the interaction in the internal model system
matrices.

6.2.6. Interaction model

The two partners were only coupled through a compliant connection (see
Fig. 6.3); no other exchange of information through the interaction force
was included in our model. We refer to this model as the ‘no haptic commu-
nication’ model. The physical connection between the two partners during
the connected trials is implemented by introducing the compliant spring of
equation 6.2 in the system dynamics (equation 6.14). We combined the state
space models of both partners (denoted as partner 1 and 2) in one system:

x! _(lAa o c x! B of[u! o' ‘
X2k+1_ 0o Al” x2k+ 0 B u2k+ a)zk’ (6.25)

where C is the connection matrix in which the spring is implemented (see
Section D.1 for the implementation). The same connection stiffness and
damping from in the experiment were used (ks = 150Nm™! and b; = 2N m™}).
To reiterate, because we assumed that the participants were unaware of the
connection, we did not include the connection dynamics in their internal
model, only in the actual system dynamics.




6.2.7. Parameter estimation and simulation

To describe the tracking behavior of each participant in the single trials,
we estimated the position weight w),, velocity weight w, and motor noise
uncertainty o, for each participant. The control effort weight w, was set to
1. Based on previous research [17, 25-27], we set op to 0.005m and oy to
0.01ms™!. The target position and velocity observation uncertainties were
set to the same values: oy = 0.005m and o4 = 0.0lms™' and or., was set
to 0.005m and o, to 0.01ms™".

We fitted the LQG model to the last eight single trials of both the baseline
and after effect blocks, resulting in 16 single trials per participant. The fit
parameters were estimated such that the model resulted in similar tracking
performance as the participant by matching their individual tracking perfor-
mance over the 16 measured single trials. We used a genetic algorithm fol-
lowed by a gradient-based search algorithm (the ga and patternsearch
functions in MATLAB). The lower and upper bound were set for the baseline
fit to 10" to 10° for w, and w, and ON to 1N for o,.

We then used these parameter estimates to simulate the tracking behavior
of each participant alone and while they were connected to the same partner
as in the experiment. The resulting simulated tracking performance is then
compared to the data.

6.3. Results

We performed a collaborative tracking task similar to Ganesh et al. [3], who
observed that haptic interaction improved tracking performance for both
partners in a pair. Participants tracked a common randomly-moving target
alone in single trials and while haptically-interacting through a compliant
connection in connected trials. We compared the tracking performance in the
single and connected trials and confirmed that haptic interaction generally
improved performance for both partners.

Why does haptic interaction with another human improve tracking perfor-
mance, even when interacting with a relatively worse-performing partner?
Do the participants need to estimate their partner’s actions or movement
goals from the interaction force to improve their own tracking performance
[6]? Or can the improvement be attributed to the compliant coupling be-
tween the two partners? We first impaired the perception of the interaction
force by superimposing a velocity-dependent force field on the tracking task
to test whether accurate perception of the interaction was necessary to im-
prove performance during haptic interaction. If accurate perception of the
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interaction force was necessary to improve performance, we would expect
significantly less to no performance improvements due to haptic interaction
in the force field. In the second analysis, we used a computational model
that only mechanically coupled the two partners to explain the performance
improvements.

6.3.1. Haptic interaction improves individual tracking
performance, also when the partners interact in a force
field

Figure 6.4A compares the average individual performances in the single and
connected trials in the null field and force field blocks. Haptic interaction
leads to small but significant performance improvements, both within the
null field and in the force field blocks (dependent-samples t-tests; null field
(¢): t(19) = 8.65, p < 1077; force field (v): t(19) = 7.11, p < 107°). The
improvement in the null field blocks was similar to the improvement in the
force field blocks (dependent samples t-test: t(19) = —0.44, p = 0.669). Each
participant’s improvement depended significantly on the relative performance
of the partner (see Fig. 6.4B; ANOVA on the relative partner performance
factor R in the linear model of equation 6.12: F(1,356) = 270.52, p < 10712),
Interestingly, interaction with an inferior partner (R < 0%) increased per-
formance, but improvement benefits decreased with a progressively worse
partner and seemed to converge to no improvement (I ~ 0%) when interact-
ing with even more worse-performing partners.

We investigated whether the force field affected the haptic interaction and
subsequently its performance benefits. Besides comparing the improvements
in all connected trials in the null field and force field blocks, we also included
the improvements in the first three connected trials in the first force field
block, in which the participants presumably only started to learn the force
field perturbation (denoted as ‘early force field’). Remarkably, we found
similar improvements of haptic interaction in the force field, early force
field, and null field (ANOVA on equation 6.12 with force field, null field, and
early force field as factor levels; F(2,784) = 1.95, p = 0.144).

If the estimation of the partner’s goal from the interaction force was es-
sential to improve performance, we would expect no or at least reduced
improvement in the force field blocks. Were the participants able to ac-
curately discriminate the interaction force from the force-field forces? To
discriminate the interaction force from the force-field force (Fig. 6.2B), it is
possible that participants learned and used an internal model to predict the
forces generated by the force field. In the ideal case, all participants had a
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Figure 6.4. | Haptic interaction improves tracking performance. A Average improvement due to
interaction in the null field and force field blocks. B Performance improvement due
to interaction is a function of the relative partner performance. Haptic interaction
improved motor performance equally in the force field, early force field, and when
no force field was present. We grouped the improvement in bins of 10 % of relative
performance wide. The mean and s.e.m. of the improvement per bin are shown.

perfect internal model of the force field. However, our compensation factor
showed that participants did not fully compensate for the force field, ranging
from a = 0.72 in the first single trial up to an average o = 0.86 with exten-
sive practice in the force field (see Fig. 6.5A), consistent with previous work
[15-18]. Because the participants learned an incomplete model of the force
field, an uncompensated force-field force F. , = (1 — @)Dv remained that the
participants did not account for. The uncompensated force-field force could
bias the actual interaction force F; in direction and magnitude, resulting in
an incorrect perceived interaction force F; (see Fig. 6.5B for two examples).

To illustrate how the force field could bias the interaction force percep-
tion in magnitude, we calculated the time-averaged total force-field force
magnitude F. (using equation 6.3), the time-averaged uncompensated force-
field force magnitude F., (using @ = 0.86), and the time-averaged actual
interaction force magnitude F; across all connected trials and all participants
(Fig. 6.5C). The force field produced an average force of F, = 1.31N per trial;
the average interaction force was smaller: F; = 0.43N. If the participants
learned a fraction of 0.86 of the force field, the average uncompensated
force-field force was 0.18 N. This uncompensated force could still lead to
an overestimation of the interaction force magnitude of 40 % when the two
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Figure 6.5. | Force field compensation factor and potential bias of the interaction force percep-
tion due to the uncompensated force-field force. A Force field compensation factor
a of the single trials across the force field blocks (from Chapter 3). B Two examples
illustrating how the uncompensated force-field force F. ;, can bias the perceived in-
teraction force F; in magnitude and direction. C Comparison of the time-averaged
total force-field force magnitude F, time-averaged uncompensated force-field force
magnitude F. , and time-averaged interaction force magnitude F;.

forces are parallel, or a direction bias 6 ~ 22deg when the two forces are
perpendicular (e.g., Fig. 6.5B). We performed a more detailed analysis of
how the uncompensated force field force could the bias the interaction force
perception in magnitude and direction in Section D.4. These results indi-
cate that accurate perception of the interaction force was impaired by the
force field, even when the participants learned a significant yet incomplete
internal model of the force field. Still, even though accurate perception of
the interaction force was difficult and unlikely, haptic interaction improved
performance similarly in the force field.

6.3.2. An interaction model without haptic communication
explains the interaction improvements

Using an interaction model that only connected the hands of two part-
ners who independently tracked the same target, we showed that no haptic
communication between the two partners was necessary to explain the im-
provements. Instead, we propose that the error-correcting nature of the

140



compliant connection is the primary reason for the observed performance
improvements during haptic interaction. We first modeled each participant’s
individual tracking behavior in the single trials in the null field blocks using
the tracking model described in Section 6.2.5. This resulted in estimates of
the position and velocity cost weights w, and w, and the motor noise vari-
ance o> for each participant (see Table D.1). We then coupled the two single
tracking models to simulate how the mechanical coupling affects tracking
performance.

The tracking model described each participant’s individual tracking behav-
ior well, which we assessed by comparing the measured and simulated time
traces, power spectral densities, single motor performance and motor output
variability per participant. Figures 6.6A-C show the measured and simulated
time traces in the x-direction, power spectral density in the x-direction and
the tracking performance of the last eight single trials in both null field
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Figure 6.6. | The tracking model described individual tracking behavior during single trials in the
null field blocks well. Shown are the measured tracking behavior of the last eight
single trials in both null field blocks (e.g. 16 trials in total) for one representative
participant in the x-direction. We simulated the tracking model for one participant
with 16 different motor noise time realizations. The legend in B holds for all figures. A
Comparison of the measured and modeled hand path (x-direction). B Power spectral
density of the measured and simulated data. C The distribution of measured single
trial performance E; of the 16 single trials compared to the tracking model’s predicted
single performance for one participant.
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blocks (i.e., 16 trials in total) for one representative participant. The tracking
model predicted similar mean tracking behavior in the time and frequency
domain for each participant; the variance-accounted-for (VAF), a measure to
describe the correlation of two time-domain signals, was 97.7 % on average
across all participants. The tracking model also predicted similar individual
tracking performance (E;) per participant (Fig. 6.6C). Lastly, individuals with
worse mean individual tracking performance showed higher motor output
variability o2 in the single trials (Fig. 6.7A). The tracking model predicted
a similar increase in motor variability with increasing mean tracking error
(ANCOVA with mean performance as covariate and data/model as factor
showed no significant difference: F(1,36) = 0.04, p = 0.85).

The interaction model was created by mechanically coupling the two single
tracking models of the partners who also performed the experiment together
(equation 6.25). By using each participant’s estimated model parameters fitted
to the single trial behavior, we assumed that the participants did not change
their tracking behavior when coupled to their partner.

The interaction model showed similar improvements in tracking perfor-
mance per participant as the data (Fig 6.8). Using the linear model in equa-
tion 6.12, we found no significant difference between the data and model
(F(1,796) = 1.73, p = 0.19). The interaction model also captured two salient
features in the data: (1) interaction with a worse partner still improved per-
formance, but (2) the improvement benefit decreased with interaction with
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Figure 6.7. | Motor output variability analysis in the null field blocks. The legend in A also holds
for B. A Measured and simulated motor output variability versus the mean perfor-
mance of each participant in the single trials. Shown are regressed linear models
(@% = Po + 1Es) to the measured data and tracking model, including the 95 % con-
fidence intervals. B Comparison of the mean measured and mean simulated motor
output variability in the single and connected trials for all participants combined.
All statistics were done using paired-sampled t-tests. ¢: £(19) = —1.78, p = 0.089, aA:
£(19) = —2.68, p = 0.023, m: £(19) = 6.05,p = 8.1-107°, e: £(19) = 6.21, p = 5.8-107°.
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a progressively worse partner. However, the interaction model predicted
that haptic interaction with a worse partner would lead to a deterioration
of performance for the better partner at some point (R = —40 %), whereas
the data showed that haptic interaction still led to some improvement at a
similar relative partner performance.

The data show that haptic interaction reduced motor output variability
significantly on a group level (see Fig. 6.7B). The interaction model showed
a similar trend, but predicted a larger reduction in motor output variability
(dependent-samples t-test between data and model in the connected trials:
t(19) = —2.68, p = 0.023). The similar reduction in motor output variability
during interaction indicates that the compliant connection partially counter-
acted motor output variability, improving performance

Based on the data and model analysis, we hypothesize that haptic inter-
action improves performance depending on the relative performance of the
participants. We split the data into the superior (R < 0) and inferior (R > 0)
participants. First, we propose that superior partners still improved perfor-
mance when interacting with a inferior partner because the compliant con-
nection partially counteracted for their average motor output variability in
the connected trials. To test this hypothesis, we removed each participant’s
motor output variability from the interaction model. Because the model’s
motor output variability is mainly determined by o? (see Fig. D.1), we esti-
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Figure 6.8. | Comparison of the measured performance improvement versus relative performance
with the improvement predicted by the interaction model in the null field blocks.
The markers indicate the mean relative performance and mean improvement of each
participant (data and model). We also show the binned improvement curves.
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mated w, and w, for each participant once more while constraining ¢ to
ON?. As a result, the model now described the average measured tracking
behavior of each partner without trial-by-trial motor variability due to the
motor noise. Removing the motor output variability from the single tracking
models reduces the improvement benefits for all participants (Fig. 6.8) and
predicts that interaction with a worse partner now deteriorates performance.
In addition, when we simulated the interaction model with identical motor
noise for both partners in a pair, performance improvements decreased sim-
ilarly (see Section D.3 for more details). Hence, our results suggest that the
reduction of motor variability by the compliant connection can explain the
motor improvements when haptically-interacting with a worse-performing
partner.

Second, we propose that the worse-performing partners improved perfor-
mance using in two complementary mechanisms. First, haptic interaction
improved their performance by partially counteracting their motor output
variability, same as the mechanism we described earlier. In addition, the
interaction model without motor noise showed that the worse partners still
benefited from the interaction with a better partner (Fig. 6.8). Inspection of
the estimated tracking feedback gains in the single trials of the two partners
in a pair showed that the superior partners tracked the target with higher
gains than the inferior partners (see Section D.1 and Table D.1). When con-
necting both partners, the better partner with stronger tracking gains likely
provided haptic assistance to the worse partner. The resulting interaction
force assisted the worse partner to move closer to the target, improving
their performance.

6.4. Discussion

This study investigated why haptic interaction between humans through
a compliant connection improved the performance of both partners in a
tracking task. Data showed that both partners generally improved track-
ing performance during interaction. Surprisingly, haptic interaction with a
worse partner also improved performance. We found through computational
modeling that the participants improved performance because the compliant
connection partially compensated for motor output variability for both part-
ners. The worse-performing partners additionally benefited from the haptic
guidance provided by their better-performing partner. Participants did not
need to estimate their partner’s actions or goals from the interaction force, as
suggested by Takagi et al. [6]. We also found that when a velocity-dependent
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force field impaired the perception of the interaction force, performance still
improved equally during interaction compared to when no force field was
present, supporting our hypothesis that no haptic communication needed to
occur to improve performance during interaction.

Haptic interaction with a worse partner still improved performance

An important result is that haptic interaction with a worse partner still led
to performance improvements. Our results are consistent with Ganesh et al.
(3], who were the first to show that haptic interaction improves performance
for both partners, however, there is one crucial difference. Whereas the
results of Ganesh et al. [3] suggested that haptic interaction improved your
performance independent of how bad your partner was at the tracking task
(for R < 0%), we found that the improvements decreased with an increasingly
worse partner. It seems that interaction with an even worse partner does
not lead to deteriorated performance: the measured improvement seemed to
converge to I = 0%, although the number of data points in this region is
limited (~5% of the data is below R =~ —40%). Our improvement results
are intuitive; being coupled to progressively worse partners will eventually
physically ‘hold you back’, even with a compliant connection, resulting in
less to no performance benefits. Lastly, we found the same improvement
curves in a different study with an additional twenty other participants (see
Section D.2).

Interacting partners did not need to estimate each other’s actions to
improve performance

The interaction model provided evidence that the partners did not need to
understand each other’s actions or movement goals to improve performance
during haptic interaction in a fast-moving tracking task. These findings are
in contrast with the work of Takagi et al. [6], who proposed that participants
improved performance in a similar tracking task by estimating their partner’s
movement goal from the interaction force and used it to improve their own
estimate of the moving target. However, we question whether such accurate
communication through the interaction force is possible, in particular in a
fast-moving tracking task in which the interaction force continuously changes
magnitude and direction because of the independently-moving partners.

To accurately estimate the partner’s movement goal, Takagi et al. [6] as-
sumed that the individuals had exact knowledge of the dynamics of the
haptic connection. However, participants were not made aware of the inter-
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action or the dynamics of the connection. Perhaps the interacting individ-
uals learned the connection dynamics over time; humans are able to learn
to manipulate unknown complex but deterministic dynamics, but only after
extensive practice [28]. However, it is debatable whether individuals learned
the connection dynamics accurately enough to pinpoint their partner’s move-
ment goal from the interaction force, in particular if they were unaware of
the interaction. Our no haptic communication model did not require the
participants to know the connection dynamics.

Furthermore, to estimate the partner’s goals solely from the interaction
force, the individuals need to accurately perceive the interaction force in
magnitude and direction. However, human force perception likely contains
systematic errors. Humans typically produce higher forces than the exter-
nally presented force, indicating that humans overestimate externally applied
forces (such as an interaction force) [9, 10, 29-31]. Humans are also inaccu-
rate at estimating the direction of a force [8, 9]. It is still unclear whether
these systematic errors in force perception are because individuals indeed
perceive the force incorrectly, but it is likely that the accuracy of any in-
formation exchanged through the interaction force in a fast-moving tracking
task is limited.

Lastly, a recent study showed that haptically-interacting individuals can
only exchange incomplete information to each other through an interac-
tion force [32]. In their study, participants were haptically coupled with a
compliant connection while they performed joint reaching movements. The
researchers varied the amount of information that individuals received from
their partner, ranging from only the interaction force to a combination of the
interaction force and the visual position of their partner. When only receiv-
ing haptic information from their partner - like in our study - participants
adopted interaction strategies that minimized the need-to-know about their
partner; they planned their motions independently and ignored the behavior
of their partner (we found similar results in our joint reaching study in
Chapter 5). Only when the researchers added visual information about the
partner, individuals started to estimate their partner’s actions. These find-
ings corroborate our hypothesis that accurate information exchange solely
through an interaction force is unlikely to occur.
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Haptic interaction resulted in similar improvements even when the
perception of the interaction force was impaired

To further support our hypothesis, we found that haptic interaction still im-
proved performance similarly even when the perception of the interaction
force was impaired by a velocity-dependent force field. These results indi-
cate that accurate perception of the interaction force was not necessary to
improve performance during haptic interaction; hence, presumably, no haptic
communication needed to occur.

Additional analysis showed that when we assumed that the participants
learned and used an internal model of the force field to differentiate the
interaction force from the force-field force, the perception of the interaction
force would be biased in magnitude and direction because of an imperfectly-
learned internal model. The incorrect estimate of the interaction force would
yield incorrect estimates of the partner’s position and movement goals. Sup-
pose that a participant estimates their partner’s location relative to their
own position using Ap = F;/k,, assuming that the partners know the con-
nection stiffness ks and ignoring the connection damping for simplicity. An
overestimated magnitude of the interaction force would result in an overes-
timation of the partner’s position. Any other information about the partner
extracted from the interaction force that depends on the partner’s location,
such as their spatial movement goal, would be inaccurate as well. Therefore,
the improvements of haptic interaction in the force field are unlikely to be
explained by haptic communication, as discussed earlier.

Limitations of the interaction model

The no haptic communication model is not able to explain the improvements
for all individuals. The model predicts that haptic interaction would start im-
peding performance when interacting with a partner whose performance is
~40 % worse, whereas the data seem to suggest that improvement converges
to I = 0%. However, the number of data points in the range of relative part-
ner performance R < 50 % is small, so we can only speculate. The interaction
model also assumed that participants used their single trial tracking behavior
when interacting with their partner; we will briefly discuss this below.
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Do participants adapt their control behavior during haptic interaction?

Humans have been shown to change their motor behavior when moving in
a different physical environment, such as haptic interaction with a robotic
device (e.g., [17, 33]). It is possible that the haptically-interacting partners
changed their control behavior based on their partner’s skill level. For
example, a superior partner could have experienced the interaction force
as a disturbance and adapted control, such as increased arm impedance
through muscle co-contraction, to counteract the disturbances [21]. A worse-
performing partner could have changed their control behavior, such as de-
creasing their physical effort to depend more on the haptic assistance of
the interaction force [33]. For now, it remains unknown whether and how
participants changed their motor behavior during tracking with respect to
their individual behavior in the single trials, warranting further research.

Conclusion

The main conclusion of this chapter is that no haptic communication - or
more specifically, no estimation of the partner’s movement goals - was
necessary to explain the observed performance improvements during a fast-
moving tracking task. Instead, we hypothesized that both partners improved
from the haptic interaction because the mechanical coupling between the
participants decreased motor output variability and provided some form of
haptic guidance for participants with a skill level lower than their partners’.
Although we suggest that accurate information exchange through the interac-
tion force is unlikely to occur, we do not rule out the possibility that some,
less accurate, information could be communicated trough the interaction force.
However, more research is necessary to better understand how useful the
information communicated through the interaction force is, in particular for
complex motor tasks.
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General discussion

Haptic interaction between two humans performing a motor task together
has been demonstrated to improve performance of both partners [1—-4]. Fur-
thermore, learning a motor task while being haptically coupled to a partner
who is learning the same task has been shown to improve individual motor
learning [1].

Most of these studies investigated haptic interaction in collaborative motor
tasks, in which the two individuals share a common goal, but have no pre-
assigned roles [5, 6]. Participants were not made aware of the interaction
and could only influence each other or potentially communicate through
interaction force. However, it is not clear how haptic interaction would
improve performance and learning in collaborative tasks.

The goal of this thesis is to create a better understanding of whether and, if
so, why haptic interactions between humans would improve individual motor
learning and performance during interaction in a collaborative task. We
investigated the following research questions and found the corresponding
(summarized) answers:

1. Does haptic human-human interaction improve individual motor learn-
ing in a collaborative motor task and if so, why? (Chapters 3
and 4)
Haptic interaction between two humans who are learning the same collabo-
rative task does not improve or impede individual motor learning compared
to someone who learned the task alone, neither in a force field nor in a visuo-
motor rotation perturbation.

2. How do rigidly-coupled partners coordinate motor actions in a joint
reaching task? (Chapter 5)
Rigidly-coupled partners accomplish joint reaching movements by relying on
a pre-programmed motion plan that is independent of the partner’s behavior.

3. Do individuals improve performance during haptic interaction in a col-

laborative tracking task by exchanging information about each other
through the interaction force (also referred to as haptic communica-
tion)? (Chapter 6)
Participants did not need to haptically communicate through the interaction
force — such as estimating their partner’s actions or intentions — to explain the
improvements due to interaction. Instead, we suggest that both interacting
partners improved because the mechanical coupling between the participants
decreased motor output variability and provided assistance in the form of
haptic guidance for participants with a skill level lower than their partners’.
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Here we discuss these findings, their implications and our recommendations
for future work. We begin by focusing on how haptic interaction influences
individual motor learning (research theme I). We then discuss the results on
haptic communication (research theme II), followed by a discussion on the
BROS (our dual-robotic setup) and, lastly, future work and conclusions.

7.1. Motor learning through haptic human-human
interaction (theme 1)

7.1.1. Haptic interaction does not improve individual motor
learning in collaborative tracking tasks

Ganesh et al. [1] reported that haptic interaction improved individual motor
learning of tracking a moving target in a visuomotor rotation, in which the
visual feedback of the hand movement was rotated with 80 deg with respect
to the actual movement [7]. Interacting participants showed more individual
improvement after learning and improved faster. Motivated by these results,
we investigated whether haptic interaction would also facilitate learning to
move in a new dynamic environment.

In our first experiment (Chapter 3), pairs tracked a common randomly-
moving target in a plane, similar to the tracking task of Ganesh et al. [1].
The participants were intermittently coupled with a compliant connection,
which allowed each participant to still move independently. A velocity-
dependent force field was then introduced as a new dynamic environment to
elicit motor learning. Participants who haptically-interacted while learning
the force field did not show better individual performance or faster learning
rates compared to the individuals who learned the force without interaction
(see Fig. 7.1A). Haptic interaction also did not interfere with motor learning.

The benefits of haptic interaction on motor learning could have been lim-
ited because the learning task — the force field — and the interaction were in
the same sensory domain. We, therefore, repeated the experiment of Ganesh
et al. [1] (see Chapter 4), in which the haptically-interacting participants
now learned to track the common target in the same visuomotor rotation.
Ganesh et al. [1] briefly suggested that haptic interaction enabled individuals
to attain additional information about the task, which would have improved
learning, but they did not test this hypothesis. So, to better understand why
haptic interaction would improve motor learning, we investigated how learn-
ing was influenced by the amount of time spent interacting and the strength
of the interaction. In contrast to Ganesh et al. [1], haptic interaction did not
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Figure 7.1. | Motor performance over the course of the force field (A) and visuomotor rotation
(B) experiments. Participants performed the task alone (in single trials) or coupled
to their partner (connected trials). The solo group always practiced the tasks alone.
The figures are from Chapters 3 and 4, respectively.

improve individual motor learning in the visuomotor rotation (see Fig. 7.1B).
More interaction time or increased interaction strength also did not lead to
better individual performance or faster learning. While haptic interaction did
not improve individual motor learning in our learning tasks, it also generally
did not impede learning.

Why is individual motor learning in a collaborative task not improved
by haptic interaction?

Our motor learning results are in line with observations in error-based learn-
ing and robot-assisted motor learning. The force field and visuomotor rota-
tion are perturbations that create discrepancies between the predicted and
executed hand trajectories, resulting in movement errors. These movement



errors are a key training signal for a process in which humans learn to
adapt to the perturbation [8-11]. The motor system minimizes the move-
ment errors using feedback control and updates an internal model based
on the experienced errors to compensate for the perturbation [9, 10, 12].
We and others (e.g., [1]) showed that haptic interaction with a partner sig-
nificantly reduced movement errors in a visuomotor rotation or force field
compared to someone practicing those tasks alone. Hence, purely from an
error-based motor learning perspective, we would not expect any benefits of
haptic interaction on motor learning.

In addition, motor variability is considered to be an important factor in
motor learning, as it lets participants explore the space of possible move-
ments and solutions [13, 14]. Wu et al. [13] found that individuals with
high motor variability learn a velocity-dependent force field faster than in-
dividuals with lower levels of motor variability. Our results showed that
haptic interaction significantly decreased motor variability (see Chapter 6),
which could be an additional reason why haptic interaction did not speed
up individual learning.

Our motor learning results are also consistent with several studies on
robotic training strategies, in particular those who studied the effect of hap-
tic guidance on motor learning [15]. Robotic haptic guidance is a training
strategy in which a robot haptically interacts with an individual to guide the
individual over a desired trajectory by reducing movement errors. Although
robotic haptic guidance typically improves performance temporarily, there is
limited evidence that it benefits individual motor learning, in particular in
tasks in which require spatial accuracy (e.g., a tracking task) [16—23]. Haptic
human-human interaction through a compliant spring can be regarded as
a form of haptic guidance. Like robotic haptic guidance, haptic interaction
gives an erroneously good impression of performance, especially when the
interacting partners are unaware of the interaction, but reduces the move-
ment errors as a driving factor for motor learning [17]. Haptic guidance
could facilitate learning for initially less-skilled individuals [24]. However,
we did not find any evidence that haptic interaction was more helpful for
less-skilled individuals. Interaction with a better partner also did not result
in more improvement for the less-skilled individual.
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Another possible reason why we found no learning benefits of haptic
interaction is that participants were not made aware of the interaction. If
the participants extracted any task-relevant information from the interaction
force to improve their motor learning, it is likely that they had to learn
how to interpret the interaction forces, while they learned the force field
or visuomotor rotation at the same time. Learning multiple motor processes
has been shown to interfere with each other [25, 26].

Also, we did not assign roles to the partners, such as leader-follower or
student-teacher. In collaborative tasks, roles emerge spontaneously or do not
emerge at all (Chapter 5), and it is not certain which roles partners will
assume beforehand [6, 27]. If partners first had to develop or negotiate roles,
it is possible that this process counteracted the potential learning benefits
of haptic interaction. Even when we allowed participants more time to
haptically interact, such that they could negotiate roles or learn to ‘use the
force’, we still did not see faster learning or better individual performance
after learning (Chapter 4).

In addition, we found that partners did not need exchange information
to explain the motor behaviors during interaction (Chapter 6). This could
indicate that no information relevant for motor learning was exchanged
(Chapter 6).

7.1.2. Motor adaptation versus motor skill learning

We used a force field and a visuomotor rotation, which are well-established
paradigms to study motor adaptation, to elicit learning [7, 28]. Because
our robotic setup allowed movements in a horizontal plane with limited
workspace, the force field and visuomotor perturbations enabled us to evoke
significant and consistent motor learning. Pilot tests showed that making the
target movements more difficult — for example by adding more frequency
content to the target motion — led to inconsistent learning and interaction
results.

However, the applicability of the visuomotor rotation and force field tasks
to real-world learning scenarios is limited [29]. Acquiring a motor skill,
which involves improving performance beyond your initial skill level [30],
takes a considerable amount of time and does typically not occur within a sin-
gle experiment session [31, 32]. Studies on the effect of haptic human-human
interaction on more complex motor tasks, such as whole-body movements,
are scarce and do not report benefits on learning (e.g., [33]).



7.1.3. How should we proceed to study the potential benefits of
haptic interaction for motor learning?

Next, we will discuss some possible research avenues in haptic human-human
interaction that could be useful to complement the design of robotic training
strategies.

Predefining roles in haptic human-human interaction, such as student-
teacher or athlete-coach, in cooperative tasks is considered to be vital for
effective motor education [5, 6, 15]. Surprisingly little work has been done
concerning how pre-assigning roles in haptic interaction affects individual
motor learning. Recently, Sawers et al. [33] investigated how a dancing
couple used haptic interaction to coordinate dancing moves. The pairs were
instructed to perform sequences of backward and forward steps. Roles were
predefined: the leader was aware of the stepping sequence and had to guide
and initiate the steps; the follower had to infer the leader’s intentions from
the interaction force. Stepping performance only improved over time in pairs
with two experts, but not in expert-novice or novice-novice pairs. This result
suggests that you have to be an expert to generate useful interaction forces,
but you also need to be an expert to correctly interpret the forces to improve
performance over time.

Still, little is known regarding how a teacher should apply forces onto
the student to encourage motor learning [6]. Galvez et al. [34] found that
experienced therapists exerted substantially different forces on individuals
with spinal cord injury during physical rehabilitation. Different teachers
likely use different haptic education methods for the same motor learning
task. For example, one teacher might constantly correct the student, whereas
another teacher might focus on providing a safe environment and lets the
student learn more independently. In addition, haptic education strategies
will likely need to be tailored to each specific motor task [16]. To increase
our knowledge on how experts or teachers use haptic interaction to teach
students, observational studies could be performed, however classifying the
possible haptic education strategies will be a challenge (e.g., [27]), let alone
how to implement such strategies in a robotic training paradigm. A frame-
work on how to investigate and analyze haptic education between humans
in cooperative motor tasks would be helpful but is, to our knowledge, not
yet available.

Another, more scientifically structured approach would be to instruct the
teacher on how to educate the student based on existing learning theo-
ries. According to the challenge point theory, the teacher could keep task
difficulty appropriate for the participant’s skill level to facilitate learning
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[35]. In robotic training studies, haptic guidance benefits learning of initially
less-skilled individuals, whereas individuals with an initially high skill level
learned more when they are challenged [16, 24, 36].

Furthermore, the robotic haptic training can be beneficial for motor learn-
ing, but the benefits likely depend on the type of task. The effect of haptic
human-human interaction on motor learning has only been investigated in
a limited number of tasks that primarily required spatial accuracy ([1] and
our own work, among others). Robotic haptic guidance has been shown
to benefit learning of time-critical motor tasks [24, 37, 38]. For example, a
teacher could haptically educate a student when to initiate a forehand stroke
in tennis [24]. Furthermore, it is possible that haptic interaction between
two humans will have benefits for learning more complex motor skills. In an
unpublished study, we studied how haptic interaction with an expert — who
was aware of the interaction — would influence the motor learning of novice
individuals in a complex tracking task in three dimensions. The expert prac-
ticed the tracking task for twenty hours and was instructed to haptically
assist the novices as he saw fit. However, despite that the novices improved
during interaction, haptic interaction did not benefit their individual motor
learning, similar to our other learning studies. Haptic interaction could ben-
efit learning of complex tasks that are comprised of multiple sub-tasks; a
teacher could haptically support the student in one sub-task, such that the
student can focus on learning one of the sub-tasks [39].

Lastly, we only studied the effect of haptic interaction on motor learning;
we did not assess the influence of other cognitive aspects involved in joint
action (see [40] for an overview). Social interaction with another learner may
also motivated partners to set more difficult goals than they normally would
or attempt to outperform their partner [41]. Studies showed that playing an
exercise-based game with someone else benefits the user’s motivation and
even rehabilitation outcome [42, 43]. Visually observing someone else learn
a task can improve learning as well [41, 44-46]. Similarly, having a student
observe someone else learn a motor task through haptics - hence feeling
how the individual learns a new motor task — may improve learning in the
student as well. Lastly, although it is important to understand how different
modes of interaction affect motor control and learning by studying them
in isolation, future work should assess the complementary effect of haptic
interaction and other aspects of joint action, such as competition and social
facilitation, on individual motor learning to help the development of more
complete and effective robotic training paradigms.
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7.2. Haptic communication in collaborative tasks
(theme 11)

7.2.1. Rigidly-coupled partners in a collaborative reaching task
did not coordinate motion plans

In one of the earliest studies on haptic human-human interaction, Reed
and Peshkin [2] found that pairs who rotated a crank as fast as possible
to stationary targets were faster than either of the partners reaching to
the target alone. They found that partners specialized into roles in which
one partner accelerated while the other decelerated the crank. The authors
proposed that the partners negotiated these roles through the interaction
forces. How did the partners achieve such coordination, and how did the
roles emerge trial-by-trial?

To answer these questions, we examined how two rigidly-coupled individu-
als coordinated their actions trial-by-trial during a collaborative reaching task
to a common stationary target (Chapter 5). The joint reaching movements
were remarkably consistent across the trials. Pairs also produced opposing
forces between them that they did not minimize over trials. Using a compu-
tational model of the joint reaching movement, we found that each partner
had a distinct motion plan that did not change with time. These results sug-
gest that the rigidly-coupled pairs performed joint reaching movements by
relying on pre-programmed motion plans that ignored their partner’s behav-
ior. The results also suggest that the partners did not exchange information
through the interaction force — also referred to as haptic communication -
to coordinate actions.

7.2.2. Is haptic communication necessary to explain the motor
improvements in a collaborative tracking task?

While haptic communication was not needed to explain the motor behaviors
of rigidly-coupled individuals in a joint reaching task, it does not mean
that haptic communication is not necessary in other tasks. Some stud-
ies that investigated haptic collaboration in tasks that required tracking a
randomly-moving target proposed that participants had to exchange informa-
tion through the interaction force to explain their results [47-49]. Here we
further test whether haptic communication was crucial (see Chapter 6).
Pairs performed trials in which they tracked a similar common randomly-
moving target alone (single trials) and coupled to their partner (connected
trials) with a compliant connection: a spring (ks = 150 Nm™!) with a damper
(bs = 2Nsm™'). The compliant connection enabled partners to exert forces
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onto each other, but still allowed independent movement. Importantly, like
[47-49], we did not make the participants aware of the haptic interaction.

Haptic interaction with a partner in a collaborative tracking task
improves motor performance

Consistent with previous work [1], we found that haptic interaction improved
performance for both partners in the tracking task, also when a force field
or visuomotor rotation was introduced (see Chapter 6). The amount of im-
provement depends on the relative individual performance of the partner
(see Fig. 7.2). The data revealed two interesting findings. First, haptic inter-
action with a worse-performing partner still improved performance; though
the interaction benefits converged to I = 0% when connected to an increas-
ingly worse-performing partner. Second, when we superimposed a velocity-
dependent force field on the interaction force and tracking task — impairing
the perception of the interaction force — haptic interaction still improved per-
formance similarly compared to when no force field was present (Fig. 7.2).
In fact, the improvement due to interaction did not dependent on the type
of task (force field, visuomotor or no perturbation); we found no significant
differences between the improvement curves of both experiments (ANCOVA
with relative partner performance as covariate and experiment (perturbation
+ no perturbation) as factor F(3,1413) = 1.57, p = 0.1947).

Haptic communication is not necessary to explain the performance
improvements due to haptic interaction in a tracking task

How does haptic interaction improve performance, especially when coupled
to a worse-performing partner? To explain these results, we developed a
computational model in which we mechanically coupled two partners who
performed the tracking task independently (similar to the joint reaching task
in Chapter 5). The model assumed that no haptic communication - such
as estimating the partner’s state or actions — through the interaction force
occurred between the partners. The ‘no haptic communication’ model accu-
rately predicted the improvement due to interaction for the majority of our
data (Fig. 7.2). Additional model analysis suggested that performance was
improved because the compliant connection partially compensated for the
motor output variability — which includes tracking errors such as overshoots
— for both partners. The worse-performing partners in a pair additionally ben-
efited from the haptic guidance provided by their better-performing partner.
Hence, the model suggested that the participants did not need to haptically
communicate to improve performance.
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Figure 7.2. | Improvement due to interaction versus the relative performance of the partner. The
relative improvement per participant is calculated as I = 1 — E./Es, where E. is the
tracking performance in a connected trial and E; is the performance in a single (or
unconnected) trial of each participant. The relative performance R = 1 — Es ,/Es,
where Es ) is the partner’s single performance. We combined the data from the ex-
periments in Chapters 3 and 4 (a total of forty participants), which included blocks
with a force field or visuomotor rotation and blocks without any perturbation. The
data are binned across relative performance and error bars indicate the standard error
of the mean.

This conclusion is in contrast with the goal integration model of Tak-
agi et al. [47], who hypothesized that haptically-interacting individuals ex-
changed information through the interaction force to improve performance
in a similar collaborative tracking task. They proposed that each individual
estimated their partner’s movement goal solely from the interaction force
and used it to improve their own visual estimate of the target movement,
which is then used to enhance tracking performance.

Comparing the no haptic communication model with the goal integration
model, there are important differences in the model assumptions. Our model
made as few assumptions as possible about the haptic interaction: (1) the
partners were unaware of the haptic interaction and had no knowledge of the
connection dynamics; (2) the individuals did not estimate their partner’s state,
actions or goals; and (3) the partners did not need to accurately perceive the
interaction force. In contrast, the goal integration model made two important
assumptions about the haptic interaction, which we will discuss below.
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First, Takagi et al. [47] assumed that each individual had accurate knowl-
edge of the connection dynamics (i.e., the partners new the exact stiffness
and damping of the compliant connection). However, as in our study, the
participants were not made explicitly aware of the haptic interaction; they
were only told that they would feel forces that would sometimes assist or
resist their motion. In a post-experiment questionnaire, most of our par-
ticipants indicated that they were unaware of the connection. Perhaps the
partners were able to accurately estimate the connection dynamics over time.
Humans can learn to move objects with complex but unknown dynamics
from one point to the other, but only after extensive practice and with lim-
ited success [50]. In our and Takagi et al’s experiments, the main source of
information for learning the connection dynamics was the interaction force
that depended on the position and velocity of both partners, making the
estimation of the connection dynamics much more complicated. We, there-
fore, suggest it unlikely that the interacting individuals were able to build a
representation of the connection dynamics accurate enough to be used for
estimating their partner’s movement goal.

The second assumption is that the individuals were able to and needed to
accurately perceive the continuously changing interaction force in the fast-
moving tracking task. However, when we impaired the perception of the
interaction force by superimposing a velocity-dependent force field, haptic
interaction still improved performance similar to when no force field was
present (Chapter 6). We showed that the interaction force was biased in
direction and magnitude by the force field, even when assuming that the
partners learned a substantial, but incomplete internal model of the force
field. These results suggested that that haptically-interacting individuals did
not need to have an accurate perception of the interaction force to yield
similar performance improvements during interaction.

Furthermore, several studies suggested that human force perception con-
tains uncertainty (random errors) and systematic errors (biases). The system-
atic errors in force magnitude are, among others, manifested in incorrect
force reproductions; humans typically produce higher forces than the exter-
nally presented force (in the range of 10N to 20N), indicating that humans
overestimate externally applied forces (such as an interaction force) [51-54].
Moreover, when asked to reproduce a force of 10N by moving a spring
with low stiffness (~100 Nm™'), individuals relied more on position sensory
feedback than force sensory feedback, indicating that force perception is in-
accurate at low force levels [54]. Humans are also inaccurate at estimating
the direction of a force and perceive forces applied to the hand as smaller
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or larger depending on the configuration of the arm [55, 56]. It is unclear
whether the aforementioned force reproduction errors are due to an incorrect
force representation in the brain or because the correctly perceived force is
reproduced incorrectly by our motor system [51, 53, 57]. It is still possible
that systematic errors are present in force perception that biased or limited
the accuracy of the information exchanged through the interaction force.

Limitations of the no haptic communication model

The no haptic communication model is not able to explain the improvements
for all individuals. The no haptic communication model predicts that haptic
interaction would hinder performance when interacting with a partner whose
performance is ~50 % worse than yours, whereas the majority of the data
suggested that the improvement converges and plateaus around I ~ 0%
(Fig. 7.2). While our data are scarce for R < =50 % (only 5% of the data), other
studies that used similar tracking tasks and similar compliant connection
dynamics found that haptic interaction with a partner in this range either
slightly hindered performance or led to no improvement for individuals,
depending on the task [48, 49]. To illustrate the plateau that these studies
observed, we regressed an exponential function (I = By+f; e’ X, where R is the
relative partner performance) to the data and extrapolated the improvement
to R = —-125% in Fig. 7.3. The no haptic communication model shows
a mismatch with the extrapolated data, underestimating the improvement
when interacting with a worse partner.

The goal integration model could explain the improvements in this rela-
tive performance region (R < —50%) [48, 49]. However, we question how
the goal integration mechanism would help to improve performance for in-
dividuals that are already superior in the tracking task in this region (we
will discuss this later). Furthermore, closer inspection of the data of Takagi
et al. [48, 49] in this region suggested that the data density is limited in
their studies as well, which questions the reliability of their regression model
fits. Also, Takagi et al. [48, 49] rely on the regression model fits — quadratic
linear models — to base their conclusion, while the regression model choice
is debatable; binning the data, as performed by Ganesh et al. [1] and in our
studies makes less assumptions about the data. Lastly, this relative perfor-
mance region represents the few cases in which the performance difference
between partners is very large. Although this region is important to con-
sider, one can argue about its relevance, in particular compared to the more
relevant range of —50% < R < 50 %, which accurately predicted by the no
haptic communication model.
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Figure 7.3. | Interacting partners likely use different interaction strategies based on the perfor-
mance of their partner. We divided the figure into three parts based on the im-
provement and relative partner performance. The figure also shows the measured
improvement data from Fig. 7.2. We added the extrapolated ‘improvement plateau’
when interacting with a much worse partner. Note that the data density is low for
R < =50 % to support this extrapolated improvement curve. The no haptic commu-
nication model prediction is shown as well.

7.2.3. One model fits all? Do haptically-interacting partners
adopt the same or different interaction strategies?

Our no haptic communication model and the goal integration model of Tak-
agi et al. [47] assumed that both partners did not change their control
behavior based on the interaction and selected the same interaction strategy:
they either both executed the task independently or they both estimated and
used each other’s movement goals through the interaction force. This is
an important assumption that is up for debate; humans have been shown
to co-adapt when interacting with adaptive robotic controllers (e.g., [58-62]),
hence each individual likely modulated their control behavior and interaction
strategy with respect to their partner because of the haptic interaction.
Here we hypothesize, based on the results in this thesis and findings
in human motor control, how individuals adapt their control behavior and
interaction strategy due to the haptic interaction with another partner in
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a collaborative fast-moving tracking task. We limit our discussion to three
possible interaction strategies; however, many more interaction strategies
are possible and individuals could use multiple strategies simultaneously.
We propose that individuals adapt control behavior based on the relative
performance of their partner in collaborative tracking tasks.

We split the improvement versus relative performance data into three parts
based on the improvement and relative partner performance (see Fig. 7.3).
Part A consists of the individuals whose partner is relatively bad at the
tracking task (R < —50%). As mentioned before, our data density is limited
in this range, and we base our hypothesis on the extrapolated improvement
curve. Part B consists of the range in which interaction with a worse partner
still yields performance improvements (-50% < R < 0%). Part C includes all
participants who interacted with a better partner (R > 0 %).

The no haptic communication model strongly suggests that the interacting
partners in parts B and C chose a strategy in which they both independently
perform the tracking task. Furthermore, partners did not need to exchange
information about each other or the task through the interaction force to
improve performance. The improvements in parts B and C are primarily
because of the mechanical coupling between the partners. The individuals
in part B primarily improve because the compliant connection with their
partner reduced their motor variability (Chapter 6).

The relatively worse-performing individuals in part C additionally bene-
fited from the haptic guidance provided by their better-performing partner
(Chapter 6), as predicted by the no haptic communication model. However,
the model seems to underestimate the performance improvement starting
around R > 40% (Fig. 7.3). Although we found no evidence that partners
estimated each other’s goals through the interaction force, we do not rule
out the possibility that individuals were able to extract some, less accurate
information from the interaction force. It is possible that some individuals —
who were significantly worse at the tracking task compared to their partner
— could get an idea of the usefulness of the interaction force (for example,
the force seems to be pointing toward the target most of the time) or par-
ticipants could get an idea of the skill level of their partner. Based on this
information, participants could decide to let the force help them move closer
to the target to improve performance even more (e.g., similar to haptic guid-
ance), which could explain the slightly higher improvement around R > 40 %.
A stiffer connection allows the worse partner to benefit even more from
the guidance of the interaction force [48], similar to a stiffer robotic haptic
guidance [20].
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Lastly, because the data are scarce in part A, we can only hypothesize what
strategy individuals used when interacting with a much worse-performing
partner. The no haptic communication model shows a mismatch with the
extrapolated data in part A (Fig. 7.3), which indicates that, to improve dur-
ing interaction, either information was exchanged through the interaction
force (e.g., the goal integration mechanism) or that the better partner inde-
pendently changed his/her control behavior. The goal integration model of
Takagi et al. [47] predicted a similar improvement to their data and our ex-
trapolated improvement trend for the individuals in this part (see Takagi et al.
(48, 49]). However, how can a superior partner — who presumably already
has an accurate estimate of the target — improve their target movement
estimate by inferring the movement goal of their much worse-performing
partner? Theoretically, following optimal multisensory integration, the su-
perior individual’s estimate of the target could be improved by using the
partner’s less accurate goal estimate, but only if the estimate of their infe-
rior partner’s movement goal is not biased. However, as discussed earlier,
we question whether such accurate goal estimation through an interaction
force is even possible in a fast-moving tracking task.

We propose an alternative, and in our view more intuitive but untested
mechanism to explain the improvement in part A. Because of the substan-
tially inferior performance of their partner, the superior partner experiences
the interaction force as a disturbance. This causes the better partner to
choose a more robust control strategy to counteract the force disturbance
and to minimize the reliance on the partner’s behavior, for example by
increasing the arm impedance through muscle co-contraction [27, 63, 64].
Selecting such a strategy would minimize the hindering influence of the
worse-performing partner, leading to only slightly worse performance (or no
difference in performance) during interaction.

To conclude, we have only begun to understand which interaction strate-
gies individuals could use in haptic interaction; ranging from independently
executing joint reaching tasks by ignoring each other’s behavior (Chapter 5)
or independently performing a tracking task while being mechanically con-
nected to someone else (Chapter 6), to using haptic communication to infer
each other’s motor actions (e.g., [47]). Instead of assuming that both partners
use the same interaction strategy, we need to investigate whether interacting
partners adopt the same or different interaction strategies, which interaction
strategies they adopt, and how these interaction strategies emerge over time.
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7.2.4. Can humans estimate accurate information about each
other through an interaction force?

In the previous section we mentioned that it is possible that some form of
haptic communication could occur in complex movement tasks, such as our
fast-moving tracking task, despite the fact that our no haptic communication
model suggests otherwise. We do not argue that no exchange of information
could occur in haptic interaction. We do reason that the exchange of accurate
information, specifically estimating the precise state, actions, and goal of the
partner solely from the interaction force as proposed by Takagi et al. [47], is
unlikely to occur. Of course, less accurate but still very useful information
can be conveyed through an interaction force, such as a general direction in
which the partner intends to move in the case of human-human interaction
[65], or the boundaries of a safe operation zone by a robotic system, such as
a distance-keeping system in cars [66] or a flight envelope protection system
in aircraft [67].

To support our view, a recent study showed that haptically-interacting
individuals can only exchange incomplete information to each other through
an interaction force [68]. In their study, participants were haptically coupled
with a compliant connection while they performed joint reaching movements.
Chackochan and Sanguineti [68] varied the amount of information that indi-
viduals received from their partner, ranging from only the interaction force
to a combination of the interaction force and the visual position of their part-
ner. When only receiving haptic information from their partner, participants
adopted interaction strategies that minimized the need-to-know about their
partner; they planned their motions independently and ignored the behavior
of their partner. We found similar results in our joint reaching study (Chap-
ter 5) and tracking task (Chapter 6) for the haptic information only condition
of [68]. Only when adding visual information of the partner, individuals
seemed to estimate their partner’s actions [68]. These findings support our
reasoning that accurate information exchange through an interaction force
solely is unlikely, opposing the claims by Takagi et al. [47, 48, 49].

Haptic information can be a vital information source for inferring the
intentions of an agent, though the haptic information needs to be comple-
mented with other sources, such as visual cues. Future research should
investigate how much information can be exchanged through an interaction
force.
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7.3. BROS: the admittance-controlled multiplayer
haptic robot

We designed and built BROS - the Bi-partner RObotic Setup - as a dual-
robotic setup to investigate haptic human-human interaction; Chapter 2 pro-
vides a description of the design and evaluation of the setup. BROS was used
for the experiments in Chapters 3, 4 and 6 and several studies by students
working on their Master’s degree, ranging from experiments on the effect of
the haptic connection strength to haptic interaction with a virtual partner.
So far, BROS has proven to be a reliable research tool: we tested over 234
participants (not counting all of the pilot tests) without any major issues.

The compact design — all sensors and actuation are integrated in each ma-
nipulandum - allows for multiple configurations of the setup. We primarily
used a configuration with two manipulanda for studying haptic interaction
between two humans. BROS could also be used for investigating bimanual
control in this configuration (Fig. 7.4). Motor tasks that require bimanual
motor control can be useful to assess upper limb motor impairment and
cognitive functions [69, 70]. For example, Bourke et al. [70] used a motor
task in which the participants had to hit all targets using both arms, while
avoiding all the other objects, which required decision motor processes and
motor action selection that could be impaired in participants with stroke.
Moreover, the handle of a manipulandum can be replaced with a finger cap.
By using two manipulanda, we are able to simulate objects that the user
can grasp with two fingers and manipulate in three dimensions (rotate and
move the object in a 2 DOF plane, see Fig. 7.4). In addition, as we built four
manipulanda, we are able to investigate haptic interactions between four
humans, bimanual object grasping and manipulation, or haptic interaction
between two individuals who are both manipulating an object in multiple
degrees of freedom.

Still, enhancements can be made to improve the performance of the manip-
ulanda. First, the inner position control loop can be enhanced by improving
the velocity estimation by adding dedicated sensors or state estimation in
general. Furthermore, the low-frequency resonance of the capstan transmis-
sion, which reduced control stability margins, could be remedied by adding
acceleration feedback or using higher-stiffness cables [71, 72].
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Figure 7.4. | Beside studying haptic interaction between two humans, BROS can also be used for
investigating bimanual motor control or object manipulation with two fingers.

7.4. Possible applications

From a parent helping their child to ride a bike to a physiotherapist physi-
cally assisting an individual who is training to regain motor functions after
a stroke, there are many anecdotal examples of how haptic interaction be-
tween humans plays a vital role in motor learning. Although we found no
evidence that haptic interaction improves individual motor learning in collab-
orative motor tasks, there is still a lot to be learned from how two humans
learn a task together. Ultimately, this knowledge could be useful to comple-
ment the development of robots that can physically interact with humans in
intuitive and biologically-inspired ways for, among others, facilitate motor
learning for example in physical therapy in neurorehabilitation or sports.

Furthermore, our results found that haptic interaction in a collaborative
task improved performance for both participants during interaction. These
findings could be useful for designing robotic assistance for tasks that re-
quire high precision, for instance in the medical field or inspection of nuclear
power plants [73]. We showed that individuals both performed the task inde-
pendently, and that the improvements are primarily due to the error-reducing
nature of the compliant connection with the other partner. Presumably, hap-
tic interaction with a human-like virtual agent that performed the same task
independently (using the relatively simple interaction model in Section 6.2.6)
could result in similar improvements compared to when two humans inter-
act. A potential benefit of modeling robotic haptic guidance based on haptic
human-human interaction is that even when the user outperforms the robotic
haptic guidance, he/she will still benefit from the haptic interaction (within
a certain range).

171



General discussion

Lastly, robotic systems are rapidly becoming more intelligent and are be-
ginning to execute certain functions autonomously while cooperating with
humans. Allowing the user and robot to (continuously) haptically-interact
could help the user to better and timelier understand the intentions of the
robot, and vice versa, but more research is needed to find the full potential
of haptic interaction.

7.5. Future work

Much more work needs to be done to better understand haptic human-
human interaction and its application in human-robot interaction strategies.
Although we mentioned possible research avenues throughout this discussion,
we will summarize the most important recommendations for future work
here.

To further investigate the potential benefits of haptic human-human inter-
action for learning, studies should focus on cooperative or competitive tasks
in which the interacting participants are aware of the interaction and in
which roles are assigned beforehand. Examples include interactions in which
one partner fulfills the teacher role, assisting a student in learning a new
task (e.g., haptic education) or interactions with a competitive element in
exercise-based games to motivate the individuals. The complementary effects
of other types of interaction, including social and verbal interaction should
also be considered when investigating haptic human interactions to develop
more complete (robotic) training strategies.

Researchers agree that haptics are a valuable means for bidirectional com-
munication between two agents, but our knowledge on the underlying mech-
anisms of haptic communication, its limitations and benefits, and how we can
promote and exploit haptic communication for more intuitive human-human
and human-robot interactions remains limited. Future work should study
how humans can communicate through haptics, in particular how much and
what kind of information can be transferred through the haptic interaction
and at which bandwidth (e.g., how well haptic interaction can continuously
transfer time-critical information).
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Lastly, individuals likely adopt different interaction strategies when haptically-
interacting with each other. A more thorough understanding of how people
co-adapt during haptic interaction, specifically which interaction strategies
they adopt, is needed.

7.6. Conclusion

We investigated how haptic interaction between two humans affects each in-
dividual’s motor behavior and learning during collaborative motor tasks. In
summary, our results showed that haptic interaction does not improve indi-
vidual motor learning of a force field or a visuomotor rotation in a collabora-
tive tracking task. We also found that haptic interaction generally improved
performance for both individuals. Interestingly, haptic interaction resulted in
the same improvements when the perception of the interaction force was sub-
stantially impaired by a superimposed velocity-dependent force field. Using
a computational model of two coupled individuals performing the tracking
task independently, we showed that the improvements in our tracking task
can be explained by the error-correcting nature of the compliant connec-
tion between the interacting partners in the range where the differences in
performance between the partners is not too large (-=50 % < R < 50 %). Com-
bining our force field results with the model-based analysis, we suggest that
participants did not need to exchange information through the interaction
force to improve in our tracking task. Lastly, consistent with the previous
conclusion, we found that two rigidly-coupled individuals do not coordinate
actions through the interaction force in a joint reaching task.
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Appendix A.

BROS
Supplementary information

Table A.1 shows the sum-of-sine excitation signal parameters which was used
for evaluating the position control loop bandwidth. The excitation signal is
calculated by summing 25 sines:

25

x(t),y(t) = Z A(kx’y) sin (anlfx’y)t + ¢§<x’y)) . (A1)
k=1

The excitation signals contained independent and non-harmonic frequencies,
which were multiple integers n®>¥) of the frequency resolution §f = 1/T,,,
where T, is the measurement time of 30s per repetition. Amplitudes were
scaled such that the signal variance was 21.25mm? The amplitudes at
frequencies above 30 Hz were reduced with a factor 2. Phases were chosen
such that the resulting time traces yielded a minimum crest factor. See
Table A.1 for the excitation signal parameters.
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Table A.1. | Excitation signal parameter values for evaluating the low-level position con-
trol loop bandwidth and system identification.

# nx) f(x) A q,(x) n) f(y) AW g[,(y)
(-] [Hz] [m] [rad] (-] [Hz] [m] [rad]
1 5 0.167 0.005 1.200 3 0.100 0.005 4.613
2 7 0.233 0.005 1.063 8 0.267 0.005 3.099
3 11 0.367 0.005 1.389 10 0.333 0.005 —1.336
4 13 0.433 0.005 -0.191 14 0.467 0.005 —0.455
5 17 0.567 0.005 4.361 19 0.633 0.005 0.316
6 23 0.767 0.005 3.551 24 0.800 0.005 —1.543
7 29 0.967 0.005 -1.299 31 1.033 0.005 1.923
8 37 1.233 0.005 —-0.010 41 1.367 0.005 3.287
9 47 1.567 0.005 1.019 53 1.767 0.005 -0.551
10 61 2.033 0.005 0.473 67 2.233 0.005 2.378
11 79 2.633 0.005 1.168 83 2.767 0.005 1.074
12 103 3.433 0.005 3.484 107 3.567 0.005 —1.422
13 131 4.367 0.005 3.250 137 4.567 0.005 2.581
14 173 5.767 0.005 1.941 179 5.967 0.005 3.603
15 223 7.433 0.005 2.594 227 7.567 0.005 0.932
16 293 9.767 0.005 1.711 307 10.233 0.005 0.818
17 379 12.633 0.005 3.758 383 12.767 0.005 1.500
18 491 16.367 0.005 3.178 499 16.633 0.005 2.751
19 631 21.033 0.005 —0.845 641 21.367 0.005 —0.286
20 821 27.367 0.005 —-0.502 823 27.433 0.005 1.980
21 1063 35.433 0.0025 2.412 1069 35.633 0.0025 2.799
22 1381 46.033 0.0025 0.958 1399 46.633 0.0025 1.804
23 1787 59.567 0.0025 4.392 1789 59.633 0.0025 4.170
24 2311 77.033 0.0025 0.447 2333 77.767 0.0025 1.541
25 2999 99.967 0.0025 —1.022 3001 100.033 0.0025 1.189
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B.1. Target signal design

The target signal is defined as a quasi-random sum-of-sine signals which are
designed following human-in-the-loop tracking signal design guidelines [1].
The target signal movement %) (t) in x and y was generated using

4
f(x’y)(t) = ZA(kx’y) sin (a)l(cx’y)t + (pgcx’y)) , (B.1)
k=1

) (x,y)

where A(kx’y) is the amplitude, wlix,y is the frequency and ¢, " is the phase
of sine k. Both sum-of-sines in x and y consist of four sines, each with a
different amplitude, frequency and phase which are listed in Table B.1.

The frequencies spanned a frequency bandwidth of 0.943 rads™! to 3.142rads™?,

gcx,y) of the mea-

similar to Ganesh et al. [2]. The frequencies were multiples n
surement time base frequency w,, = 27/T,, = 0.3142rads™! (the measurement
time for each trial was T,,, = 20s). The frequency multiples and frequencies
are given in Table B.1.

We used a second-order low-pass filter to determine the amplitudes [3]:

1 +T1j6<) 2
1+ TLjo

|A(o)| = (B.2)

where T; = 0.1s and T, = 0.8 s. The amplitude set in x and y were both scaled
to a variance of 12cm?. The reduced amplitudes at the higher frequencies
yields a target movement that is not overly difficult, but still results in
quasi-random movement.
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Phases were selected from a large set of randomly generated phases such
that the resulting time traces of the target signal had a minimum crest factor
(no excessive peaks in the time traces) [1].

Table B.1. | Target signal sum-of-sine parameter values.

k a® [-] a)gcx) [rads™] Agcx) [em] (pgcx) [rad] ngcy) [-] w;{y) [rads™!] Agcy) [cm] q);{y) [rad]
1 3 0.94 2.87 =7.77 4 1.26 2.71 -0.71
2 4 1.26 2.71 —8.53 5 1.57  2.53 —3.45
3 6 1.89 2.35 —4.36 7 2.20  2.16 3.92
4 9 2.83 1.80 -3.79 10 3.142  1.64 4.93

B.2. Analysis: error after learning and improvement
when connected to a better partner

We analyzed whether physical interaction with a better partner improves
your own motor performance after learning. First, we identified the superior-
and inferior-performing partner in each pair of the interaction, stiff connec-
tion and continuous interaction groups. We compared single trial perfor-
mance between the partners in a pair for all single trials in blocks 2—4 using
independent-samples t-tests. This resulted in two subgroups within each in-
teraction group: (1) a group inferior performing partners which physically
interacted with a better partner and (2) a group superior partners which in-
teracted with a worse partner. Figure B.1A shows the individual error after
learning for both groups, including the solo group error after learning for
comparison. Interacting with a better partner seemed to lead to significantly
worse error after learning compared to practicing the task alone (which is
supported by a significant Kruskal-Wallis test, y*(3) = 9.94, p = 0.019), how-
ever post-hoc tests showed no significant differences. Interaction with a
worse partner did not influence the error after learning compared to the
solo group (Kruskal-Wallis, y?(3) = 0.74, p = 0.86). Similarly, we examined
whether interaction with a better partner is more beneficial in terms of motor
improvement (see Fig. B.1B). Physical interaction with a better partner dur-
ing learning did not lead to more improvement compared to the solo group
and other interaction groups (Kruskal-Wallis test; Y4(3) = 0.99, p = 0.803).
The same held for the participants who interacted with an inferior partner:
their improvement was also not significantly different between interaction
groups and the solo group (y*(3) = 0.44, p = 0.9321).
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B.3. Analysis: improvement due to interaction
versus relative partner performance

To investigate how much motor performance improvement during interac-
tion depends on the individual performance of the partner, we calculate the
relative performance between partners and performance improvement due to
the interaction [2, 4]. The interaction group performed sets of connected and
single trials (CS) in each block. Using the performance of the connected and
single trial in each set, the performance improvement per participant due to
interaction (I) is calculated as

I=1-E./E,. (B.3)

The relative performance (R) of the partner you interact with is calculated
by
R=1-E,/Es, (B.4)

where E; , is the partner’s performance during the single trial and E; is the
participant’s own performance during the same single trial. We binned the
improvement in bins of 10 % of relative performance wide to reveal any trend
in the improvement I versus relative performance R. The mean and s.e.m. of
the improvement was calculated per bin. See Fig. B.2 for the improvement
due to interaction versus relative performance curve. Interaction with a
better partner during a connected trial improves performance. Interaction
with a worse partner also improves performance albeit less than interaction
with a better partner. Improvement benefits decrease toward zero with a
progressively worse partner. The improvements due to haptic interaction are
similar to those of Ganesh et al. [2]. Importantly, interaction with a worse
partner leads to improvement. There is one important difference between our
and their data: in our data, when your partner is approximately 40 % worse
at the task, you do not improve during interaction; their data suggests that
you still keep improving due to interaction, even with a progressively worse
partner. The data even suggest that when your partner is approximately 50 %
worse than you, interaction even hinders performance.
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B.4. Supplementary Figures
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Figure B.1. | Motor performance after learning and motor improvement. A Error after learning
of the participants who interacted with a better partner. The error after learning of
the solo group is included for comparison, as well as the error after learning of the
participant who were connected to an inferior partner. »: Mann-Whitney U test,
U = 86, p = 0.006. ¢: Mann-Whitney U test, U = 22,p = 0.056. %: Mann-Whitney
U test, U = 23, p = 0.032. B Motor improvement of the participants who interacted
with a better and worse partner.
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Figure B.2. | Physical interaction improves motor performance, regardless of relative partner per-
formance. The figure shows the improvement as a function of relative performance
performance.

188



*dno13 woroauuod Jng H
*dno13 uorjoerajur snonunuo)) g ‘sdnoid uoroerdjul pue ojog y "dnois yoea 10j juedonred A1949 10 soAIND ddueULIOjIdd TENpIAIPY] | *€ g 2SI

[—] reriL [—] TeriL [—] TeriL
08 09 ov 0¢ 0

-8

pa10auu0d ‘dnoxd uorjorIdU] o1durs ‘dnoxgd uorjorIdU] a1durs ‘dnoig o[og v

189



‘dnox3 uonoouuod Pug )
*dnoi13 uorjoeIaquI snonunuo)) g ‘sdnoid uoroeIajul pue o[og y "dnois yoes 10j juedonred A1949 10 soAIND dduRULIOjIad TENpIAIpy] | ‘€ g 2SI

[-] TeuiL [-] reuL

Haptic interaction does not improve motor learning of a visuomotor rotation —

Ig 18
pa109uu0d “uuod Jng d[duIs “uuod Pns o)
[-] TelL (=] TeriL
08 09 0¥ 02 oo 08 09 oy 02 oo
n T T T T T T T T
! e
S 1¢ 1¢
£ tmy
S 1
mu « e
..m 19 i 19
o «
5
.I.W -8 -8
S pa102uuo0d “1ur Juod Emﬁm “jur juo) q

190



References

[1] HJ Damveld, G C Beerens, M M van Paassen, and M Mulder. Design of Forcing
Functions for the Identification of Human Control Behavior. journal of Guidance,
Control, and Dynamics, 33(4):1064—-1081, 2010.

[2] G Ganesh, A Takagi, R Osu, T Yoshioka, M Kawato, and E Burdet. Two is better
than one: Physical interactions improve motor performance in humans. Scientific
Reports, 4, 2014.

[3] P M T Zaal, D M Pool, M Mulder, and M M van Paassen. Multimodal pilot con-
trol behavior in combined target-following disturbance-rejection tasks. Journal of
Guidance, Control, and Dynamics, 32(5):1418-1428, September 2009.

[4] A Takagi, G Ganesh, T Yoshioka, M Kawato, and E Burdet. Physically interacting
individuals estimate the partner’s goal to enhance their movements. Nature Human
Behaviour, 1(3):0054, 2017.

191






Appendix C.

Motion plans of rigidly-coupled

pairs change predictably in
joint reaching
Supplementary information

Table C.1. | Summary of significant differences between within-dyad binned torque patterns.

Some statistical differences were found between within-dyad binned torque patterns.
Significant differences between bins are indicated for each dyad and each coupled
and push-pull blocks as follows: first, the bins between which the differences were
found are indicated, followed by the time window of the reaching movement in which
the differences were found. For example, the significant difference in torque between
bins 1 and 2 for dyad VIII in the coupled block (see Fig. C.1) would be indicated as:
“Bin 1 - Bin 2 (0.68 s to 0.88 s)”. All the significant differences are the result of a signif-
icant F tests at a level of significance of 0.05. A dash (—-) indicates that no significant
differences were found.

Dyad

Coupled Push-pull 1 Push-pull 2

I
I
v

VI
viI

VIII

Bin 1 - Bin5(0.79s to 1.25s)
- Bin 1 - Bin 6 (0.87 s to 1.06 s)
Bin 2 - Bin 5 (0.88 s to 1.2s)

Bin 2 - Bin 3 (0.38 s to 0.45s)

Bin 2 - Bin 6 (0.78 s to 0.9 s)
Bin 2 - Bin 6 (0.81s to 1.055)

Bin 2 - Bin 4 (0.7s to 1.2s)
Bin 2 - Bin 5 (0.74s to 1.2s)

Bin 1 - Bin 2 (0.68 s to 0.88 s) 0.55100.85
Bin 1 - Bin 3 (0.57 s to 1.04s) Bin 1 - Bin g (1'035 to 1 Zs)
Bin1-Bin4 (0.5st01.25) - 0.5%5 10 0.85 s
Bin 1 - Bin 5 (0.56 s to 1.08 s) Bin1-Bin 6 (0.965 to 1 Zs)
Bin 1 - Bin 6 (0.69s to 0.86s) : .
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Figure C.1. | Torque patterns from dyads V-VIII in the coupled and push-pull blocks.
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Figure C.2. | Measured and predicted trajectories and torque waveforms from dyads V-VIII in the

coupled and both push-pull blocks.
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Figure C.2. | Measured and predicted trajectories and torque waveforms from dyads V-VIII in the
coupled and both push-pull blocks (continued).
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Figure C.3. | Example torque difference curves, coupled block, dyad VIIL. Example of all pairwise

comparisons of torque patterns between bins in the coupled block for dyad VIII. The
figures show the torque difference At between the mean torque patterns of the bins.
Black traces: mean difference curves. Blue traces: statistically significant difference
curves identified with wavelet-based single-factor ANOVA. When the blue trace is
zero, no significant differences were found between the two bins. Non-zero values
indicate significant differences. Red traces: statistically significant difference curves
identified with ANOVA performed in the time domain. For dyad VIII, bin 1 showed
significantly higher interaction torques compared to other bins (see the torque pat-
terns of dyad VIII in Fig. 5.1). Other comparisons between bins were not signifi-
cantly different. Statistically significant difference curves identified with ANOVA
in the time-domain corroborate the wavelet-domain ANOVA results. The torque
difference curves for all dyads and all connected blocks can be found online (link).



Appendix D.

Haptic communication in a
tracking task
Supplementary information

Here we provide the supplementary materials for Chapter 6, which includes
additional information on the interaction model and estimated model param-
eters (Section D.1), a comparison of the improvement curves in the force
field and visuomotor learning studies (Chapters 4 and 3) in Section D.2, and
a detailed analysis of how the force field impaired the perception of the
interaction force (Section D.4).

D.1. Interaction model

D.1.1. Connecting the two independent LQG models

The interaction model was explained in Section 6.2. Here, we describe the
connection matrix C, which coupled the two independent partners (equa-

The compliant connection coupling the partners, seen from each partner’s
perspective, is defined by (equation 6.2):

F} =k, (p2 - pl) + b, (v2 - Vl) and

D.
F2 =k, (p" = p?) + by (v} —v2) (D-1)

To implement the interaction form in connection matrix C, we divide C into
four parts:

— _CP CP
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where C, is:

06X6
(D.3)

S O O O OO

06X6 06X6

D.1.2. Estimated model parameters

Table D.1 shows the estimated model parameters (w,, w,, and o) for the
no force field blocks.

After setting the motor noise to o2 = 0N?, the model predicted that being
connected to a better partner still improved performance and being coupled
to a worse partner decreased performance. We proposed that this is because
the worse performing partner benefits from the haptic guidance of the better
partner. This is reflected in the estimated tracking gains (Table D.1). We
compared the single performance of one partner to the single performance of
the other partner in a pair using independent-samples t-tests. All highlighted
E, in Table D.1 indicate the pairs in which the single tracking performances
of the partners were significantly different. The level of significance was
set to 0.05 and we applied a Bonferroni correction to account for multiple
testing. Comparing the mean single performance between partners in a pair
and the estimated tracking gains, we generally see that the better performing
partner (i.e., with lower E;) has higher tracking gains.

In the scenario where we reduced o2 to ON? and assuming that the
partners kept the same tracking gains in the connected trials, the partners
with the higher tracking gains will likely assist the worse partner (pull
him/her toward the target), improving their performance. The worse partner
with lower tracking gains will ‘drag’ the better partner away from the target,
deteriorating the better partner’s performance.

D.2. Improvement versus relative performance:
comparison of the force field and visuomotor
rotation studies

Figure D.2 shows the improvement due to interaction versus the relative
performance in the null field (no force field) and force field blocks of the
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Table D.1. | Estimated model parameters, resulting gains and measured mean performance for
each participant’s single trial performance in the no force field blocks. The columns
denoted with K, and Ky, are the feedback tracking gains resulting from the estimated
state cost weights wy, and w,,, amongst others. The last column shows the measured
mean single performance E; per participant. The highlighted E; indicate that the
partner performed significantly different.

wp [-] wy [-] oy [N] Kp[Nm™] Ky [Nsm™]  Eg[em]

Pair 1 I 6400.9 67.1 0.306 74.75 20.14 0.945
I 15298.2 53.5 0.307 114.24 25.21 0.754

Pair » I 122774 17.8 0.332 102.99 22.78 0.829
II 9086.0 48.0 0.200 88.78 21.60 0.758

Pair I 11280.6 99.6 0.345 98.24 24.19 0.855
3 II 8158.2 44.4 0.282 84.28 20.86 0.849
Pair I 11293.7 15.3 0.255 98.93 22.14 0.771
4 I 10373.1 28.6 0.372 94.83 21.92 0.909
Pair I 6857.1 31.2 0.183 77.55 19.50 0.799
> II 6181.9 1.2 0.396 73.97 17.99 1.076
Pair 6 I 13582.2 19.2 0.262 108.13 23.53 0.722
II 7689.5 91.5 0.161 81.57 21.75 0.762

Pair I 4529.3 3.2 0.161 63.57 16.40 0.883
7 I 15668.3 12.3 0.343 115.91 24.43 0.783
Pair 8 I 19237.9 6.0 0.281 128.02 25.92 0.679
I 19511.9 3.5 0.355 128.92 25.98 0.748

Pair I 10745.6 97.8 0.294 95.96 23.84 0.824
? II 9315.6 89.5 0.236 89.57 22.79 0.789
Pair 10 I 9551.7 12.9 0.260 91.24 20.96 0.807
I 10621.4 94.4 0.264 95.44 23.69 0.779

force field study (Chapter 3) and the baseline block and visuomotor rotation
blocks of the visuomotor study (Chapter 4) We fitted the same linear model as
equation 6.12 to the data with block/experiment type as factor (e.g., no force
field, force field, no visuomotor rotation, visuomotor rotation). We found no
significant effect of block/experiment type: F(3,1413) = 1.57, p = 0.195.
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wp [ w02 0 ol [N?]
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Figure D.1. | The model’s predicted motor output variability o, depends on the position weight

wp, and motor noise o2
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Figure D.2. | Improvement due to interaction versus relative performance; comparison between
the force field and visuomotor rotation studies. The error bars indicate the s.e.m.

D.3. Improvement versus relative performance:
motor variability-reducing effect of the
compliant connection

In the chapter, we set o2 to 0N? to investigate whether haptic interaction
improves performance by partially reducing the motor variability of each
individual. To complement this approach, we also simulated the interaction
model with identical motor noise time realizations for both partners to illus-
trate that the improvements are due to the motor variability-reducing effect
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of the compliant connection. Indeed, as can be seen in Fig. D.3, the improve-
ment benefit of interacting with a worse partner disappears, indicating that
the compliant connection partially counteracts the uncorrelated motor noise

of each individual.
40r e Data
| 4 Model
Model, 0'124 = O N2
20 | = Model, same noise

30

10

0 1

_10 .

_20 .

Improvement due to interaction I [%]

Partner Partner
. . —
is worse is better

—30 L L L L J
=75 =50 —25 0 25 50 75

Relative partner performance R [%)

Figure D.3. | The compliant connection partially counteracts the motor variability due to (uncor-
related) motor noise. We simulated the interaction with the same motor noise for
both partners.

D.4. The superimposed force field impaired the
perception of the interaction force

We analyzed how the force field force impaired the perception of the in-
teraction force. To estimate the interaction force F;, participants had to
decompose the perceived total force F;, which is the (sign-adjusted) sum of
the actual interaction force F; and force field force F. (see Fig. 6.2B):

F, = F; +F.. (D.4)

To differentiate the interaction force from the force field force, people can
use an internal model of the force field (denoted as D) to predict the force
field forces F, based on their current hand velocity (F. = Dv) [1-5]. People
generally do not fully learn the force field; studies found that humans only
learn to compensate ~80% of the perturbation [3, 5, 6]. As explained in
Section 6.2, we calculated the force field compensation factor «, which served
as a measure of how much each participant on average compensated for the
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force field forces in every single trial [4, 6]. The compensation factor «
is used to model the participant’s internal model of the force field: D =
aD. The participant can estimate the interaction force F; as follows using
equation D.4:

F,=F,-F.=F, —aDv=F; + (1 - «) Dv. (D.5)

Hence, because the participant has an incomplete model of the force field
perturbation resulting in a force F., = (1 — «)Dv, the participant’s estimate
of the interaction force is biased, degrading the quality of any potential
information exchange through the interaction force.

A Fi ” Fc,u Fi L Fc,u B

Perceived F i

Fc,u\
“~Actual F; i~

Figure D.4. | Force field compensation factor and potential bias of the interaction force percep-
tion due to the uncompensated force-field force. A The perceived interaction force
is biased by to the uncompensated force-field force in the magnitude and direction
(same as Fig. 6.5A). B Example of the uncompensated force-field force (calculated
using the final compensation factor of the participant) and interaction force (mea-
sured) and the resulting perceived interaction force in part of the tracking task for
one participant.

The uncompensated force-field force can introduce a bias in magnitude
and direction in the estimation of the real interaction force; two examples
are given in Fig. 6.5B. We define the magnitude bias as the ratio of the
perceived interaction force with the real interaction force |[F;||/||F;|| and the
directional bias 6 as the angle between the perceived interaction force with
the real interaction force, both time-averaged across every trial. Figure D.5
shows the distribution of the magnitude bias and directional bias of all
participants combined. Examination of the magnitude distribution showed
that the interaction force magnitude is consistently overestimated (median of
|F:11/IIF;|| = 1.27). The directional bias has a mean and standard deviation
of =35 deg and oy = 7.5deg, respectively. Hence, even if the participants
learned 86 % of the force field, the resulting estimate of the force field
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Frequency [—]

0 [deg]

Figure D.5. | Frequency histograms of the bias in interaction force magnitude, defined as the ra-
tio of the magnitude of the perceived and real interaction force IIF:1l/IIF; || and the
direction bias 0 for all participants combined. The solid vertical lines indicate the
ideal case when no bias would be present.

would still be biased in magnitude and direction, which would degrade the
information that could be extracted from the interaction force.
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Dankwoord

Een PhD proefschrift is een Gesamtkunstwerk. Niet alleen omdat ik van alles
geleerd heb of dat het schrijven van een proefschrift een bepaalde mate van
creativiteit nodig heeft, maar voornamelijk omdat veel mensen mij geholpen
hebben om alles voor elkaar te krijgen. Hier, in het meest gelezen deel van
mijn boekje, ga ik mijn uiterste best doen om iedereen te bedanken. Voor het
geval dat ik iemand vergeet: sorry (en ik ben je een drankje verschuldigd)!

Allereerst wil ik Herman en Edwin hartelijk bedanken voor hun bege-
leiding tijdens mijn promotietraject. Herman, ik kon elke vergadering weer
bouwen op jouw kritische noten en nieuwe inzichten. Een van de belang-
rijkste dingen die ik mij zal herinneren is jouw positieve blik op mijn data:
daar waar ik er flink van kon balen zag jij juist waarde. Door de vrijheid en
verantwoordelijkheden die je me gaf heb ik me flink kunnen ontwikkelen.
Wellicht kom ik je een keer tegen op de Haute Route!

Edwin, als goedgemutste en goedlachse copromotor stond je altijd voor
me klaar. Ik zal met veel plezier terugdenken aan onze discussies en brain-
stormsessies waar je écht de tijd voor nam. Onvermoeibaar bleef je mijn vele
schrijfsels doorlezen. Naast het wetenschappelijke werk bekommer je je ook
om andere zaken omtrent je studenten, waar ik je erg dankbaar voor ben.
Binnenkort nog maar eens een rondje MTB in het Nijmeegse land doen?

Arno, hoewel jij al vroeg in mijn promotietraject een andere uitdaging
vond, wil ik je bedanken dat je me aan boord hebt gebracht. Je bleef me
pushen om mijn onderzoek praktisch te houden. Dat is niet altijd gelukt,
maar ik herken nu zeker de waarde in jouw standpunt. Bedankt!

Although my defense still has to happen as I write these acknowledge-
ments, I would like to thank my defense committee (professors Abbink,
Marchal-Crespo, Smeets, Brouwer and Buurke) for vetting my work. I am
sure that you will put my feet to the fire, as is the norm in science; I look
forward to it (well, at least now I still do)!

I was fortunate enough to spend some time in professor Etienne Burdet’s
lab at Imperial College London; one of the chapters resulted from this visit.
Etienne, thank you for your hospitality and Atsushi, thank you for the
collaboration and good times in and out of the lab.

Dat ik het naar mijn zin gehad tijdens mijn promotie komt mede door de
leuke collega’s bij de vakgroep Biomechanical Engineering. Tycho, Gijs, Vic-
tor, Joan, Serdar, Cristina, Michelle, Ronald, Guillaume, Simone, René, Kostas,
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Stergios, Frank, Amber, Mark, Iris, Arvid, de VICI-boys (Kyrian, Quint, Wol-
fie, Alan, Martijn), Claudia, Martijn Wessels, Wouter, Nikolai en nog vele
anderen: bedankt voor de fijne dagen op kantoor en gezelligheid! En mo-
gen er nog veel stiltes vallen tijdens de lunch waarin iedereen zijn of haar
onderzoek overpeinst; ik zal er helaas niet meer zijn om ze ongemakkelijk
te doorbreken. Islam, the latest addition to our office, thank you for your
friendliness and for spoiling me with good coffee every morning. Good luck
with your new lab! Daarnaast wil ik de collega’s van het Symbionics project
bedanken voor de nuttige discussies en gezelligheid: Ronald, Kostas, Stergi-
os, Teun, Claudia, Laura, Bob en Nauzef, alle PI's en de sponsoren. Claudia,
vanaf het begin was het gezellig bij ons op het kantoor en het is nog steeds
gezellig als je op de UT bent. Dank je voor al je hulp en wijze raad. Ik
heb gehoord dat de kroketjes in Rotterdam ook best goed zijn, kom je eens
langs?

Ik ken maar weinig mensen met zoveel passie voor hun vak als Victor.
Victor staat voor iedereen klaar met adviezen over mechatronica (en eigen
over alles). Al mijn kennis over drives, sensor resoluties, signaalversterkers
en EtherCAT heb ik van hem. Dankzij Victor werd ik enthousiast over mooi
gereedschap (dure hobby). En hij is ook nog eens een klimmer! Het was een
plezier om met je te mogen werken en je te leren kennen, Victor!

De echte supersterren van de groep zijn Lianne en Jeanine. Bedankt dat
jullie er altijd voor iedereen zijn en alles soepel laten verlopen ondanks dat
de groep uit zijn voegen barst. In het bijzonder wilde ik Lianne bedanken.
Lianne, bedankt dat je altijd tijd voor me nam, voor alle dingen die je
voor me geregeld hebt, voor al je adviezen en uiteraard voor de Twentse
spreekwoorden die ik van je geleerd heb.

Als je onderzoek doet naar mens-robot interactie, heb je een robot nodig.
Gelukkig kreeg ik veel hulp bij het bouwen van BROS, ‘mijn’ robotische
opstelling. Koen is de man die mijn CAD-geknutsel (gestuntel?) om wist te
toveren naar iets dat daadwerkelijk gebouwd kon worden. Bedankt, meneer
Heuver! Ooit zal ik je eruit fietsen op de mountainbike. Misschien. Daarnaast
kun je geen mens-robot interactie onderzoek doen zonder mensen. Ik wil
daarom alle deelnemers in mijn experimenten hartelijk danken voor hun tijd
en inzet.

In de ruim vier jaar tijdens mijn PhD onderzoek heb ik met een aantal
gemotiveerde studenten mogen samenwerken. Harm, Demian, Mattia, Vivi-
an, Dave, Tom, Jolein en Eline; dank jullie wel voor de leuke onderzoeken
en bedankt dat jullie me scherp hebben gehouden. Daarnaast wil ik Frits,
Jeanine en Ingrid bedanken voor alle uren die ze gemaakt hebben als expe-

208



Dankwoord

rimentleiders om de vele gigabytes aan data te verzamelen die in de meeste
hoofdstukken is gebruikt.

Hoewel een promotie een zwart gat lijkt te zijn waar al je tijd in wordt
gezogen, heb ik het geluk dat ik een hoop leuke vrienden om me heen heb
die voor de hoognodige ontspanning hebben gezorgd.

Martijn, wat kan ik zeggen? Goed om te weten dat er iemand rondloopt
die net zo tikt als ik! Ik kan je maar al te goed ongemakkelijk maken (lekker
voor je) en jij laat geen kans onbenut om mij op mijn tekortkomingen te
wijzen (we leken wel een getrouwd stel af en toe). De wekelijkse klimsessies
en doordeweekse Weizen ga ik zeker missen, maar als je dacht dat je eindelijk
van me af was, think again...

I would also like to thank Jared and Chris. Jared — undoubtedly the most
friendly Canadian in the world - thank you for all your advice, perusal of
my work (“stop writing ‘for example’!”), chatting about the good and bad
of life and academia, and for being an overall great guy, eh. Chris - the
friendliest German in Germany - the same holds for you! Always when I
thought I understood statistics, you came up with another statistical model
that made my head spin. Gents, I am sure we will see each other regularly.

In de gangen van onze groep hoor je wel eens: Arvid heeft bijna drie
proefschriften geschreven, maar hij heeft er maar één doctorstitel voor terug
gekregen. Dat zegt veel over Arvid: hij staat altijd voor je klaar om mee te
denken over de meest complexe vragen. Het is bijzonder hoe snel jij dingen
oppikt en op hoog niveau mee kan denken. Bedankt voor al je hulp! Maar
nog belangrijker, je bent vooral een fijne kerel en goede vriend!

Liever fijne huisgenoten dan een verre buur (of zoiets). Bob! Je was een
fantastische huisgenoot en ik ben blij dat ik je heb leren kennen. Je staat
onwijs positief in het leven en weet mensen te enthousiasmeren; daar kan ik
nog een hoop van leren. Ook superleuk dat je je droom na bent gaan jagen
in Mestreech samen met Eline. Ik kom nog vaak langs bij Radium, dus zorg
maar voor genoeg taartjes of andere baksels. Met Bob kwam ook Elsa (die
een échte dokter wordt) bij ons in huis. Elsa, het was supergezellig met je
in huis, helemaal als je weer eens schaterlachend een serie zat te kijken! Ik
vond het daarom jammer toen Bob, Eline en Elsa verhuisden, maar gelukkig
kreeg ik er een echte Tukker voor terug. Coen, wat ben jij een relaxt persoon,
huisgenoot en vriend. Ik heb een hoop geleerd van je nuchtere en praktische
kijk op alles. Mooi om te horen hoe jij binnen tien seconden naar het Twents
omschakelt zodra je je familie aan de telefoon hebt. Tk weet zeker dat we
elkaar nog in de mooiste (klim)gebieden gaan zien. En veel plezier (of eerder:
succes?) met de altijd goedgemutste Nienke in je nieuwe huis!
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En natuurlijk ook de heren van de Luxe Woensdag, een begrip binnen
de woensdagen die luxe zijn. Hoewel ik geen planningswonder ben (sorry!),
vinden jullie het nog steeds leuk als ik er weer eens bij ben. Mark, Martin,
Tim en Tom, bedankt voor de leuke tijden, de goede gesprekken en het
regelmatig controleren of ‘het nog wel goed gaat daar in het verre oosten’.

Des te vlakker dat Nederland is, des te enthousiaster lijken de klimmers
die er wonen: Martijn (niet denken, maar klimmen), Manon (puppies &
ijsjes!), Erik, Nick, Boudewijn, Mariangela, Coen, Nienke, Gert-Jan en nog
velen meer. Coen, Nienke, Erik en Maikel, bedankt voor de fantastische
alpineercursussen mit der Martin (nah, das ist nicht ideal... Joa Bomber! Tip
Top!). Ik heb van alle klimavonturen genoten, met name dankzij alle leuke
mensen en de (sterke) verhalen over die ene route waar je je met trillende
beentjes toch doorheen hebt gewerkt'.

Dan zijn er nog een paar extra speciale mensen die me altijd hebben
bijgestaan.

Mijn ouders hebben alles mogelijk gemaakt. Pap en mam, ik ben jullie
eeuwig dankbaar voor al jullie steun in de leuke tijden maar ook minder
leuke perioden. Dat ik niet wegloop voor een uitdaging heb ik van jullie.
Hoewel mijn grijze haren hoofdzakelijk genetisch bepaald zijn, vermoed ik
dat ik door deze PhD nog grijzer ga eindigen dan jullie! Mijn ‘kleine’ broertje
Tom: het is fantastisch om te zien hoe jij je plek hebt gevonden in de
afgelopen jaren (en wie had ooit gedacht dat jij Arcen zou verruilen voor de
stad?)!

Als laatste: Brigit. Voor een buitenstaander lijkt het alsof ik alles uit de
kast heb getrokken om zover mogelijk van je weg te blijven (eerst Boston,
dan Enschede), maar niets is minder waar. Dank je voor je begrip, dat je
er altijd voor me was, mij sociaal hield, voor je geduld, en voor je liefde.
En aangezien iedereen dit lezen kan stop ik hier, want anders wordt het
misschien nog génant (net zoals jouw pogingen om Limburgs te praten).

Niek

Enschede, een mooie lentedag in 2019

'Mam, we weten wat we doen hoor, geen zorgen.
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About me

I got my B.Sc. and M.Sc. in Aerospace Engineering at Delft University of
Technology (2007 and 2012, respectively). My M.Sc. project focussed on
human-in-the-loop control behavior in flight simulation at the Control &
Simulation group led by professor Max Mulder, supervised by drir. Daan
Pool and drir. Ana Rita Valente Pais. During my M.Sc., I also spent several
months at TNO, performing research on spatial disorientation in the Desde-
mona flight simulator, and MIT, developing a search algorithm to support
UAV operators in identifying objects in aerial footage.

After my M.Sc. degree, I worked as a software engineer at Simendo,
where I developed virtual reality games for minimally invasive surgery in
collaboration with surgeons at various hospitals. I then got accepted to MIT’s
Aeronautics and Astronautics graduate program in which I studied how our
sensorimotor system adapts to changing gravity levels during spaceflight.

Humans interacting with robots, intelligent systems, or complex environ-
ments has interested me since my M.Sc. thesis. I, therefore, took the op-
portunity to research haptic human-human interaction with applications to
human-robot interaction at the University of Twente for my Ph.D. under the
supervision of professor Herman van der Kooij, dr. Edwin van Asseldonk,
and drir. Arno Stienen.

I enjoy working with students, being involved in education, and learning
new skills, ranging from programming in several languages to mechanical
design.

In my spare time, I enjoy rock climbing, mountaineering, hiking, and
mountain biking. If only The Netherlands had some actual mountains...










Propositions
belonging to the thesis:

Haptic human-human interaction
Motor learning & haptic communication

Niek Beckers

1. People are stubborn, they would rather hold on to their own plan at the cost of
expending more energy than collaborating with a partner that they do not fully
trust or understand (in haptic interaction and in real life).

2. Intuitive physical interaction strategies between human and robot cannot be
designed without considering haptics, but truly intuitive and natural human-
robot interaction is impossible to achieve through haptics alone.

3. To fully exploit the potential of haptics in promoting motor learning, the trainee
and trainer should be aware of what is happening and what is expected of them.

4. To understand how humans collaborate, we must construct more complex
models, but the more complex the model, the harder it is to understand how

humans collaborate (based on Bonini’s paradox).

5. Publication pressure and grant competition encourage moonshot research,
which does not benefit the overall correctness of scientific output.

6.  One swallow does not make a summer: if the scientific community was really
serious about itself, it should stimulate and reward reproduction studies more.

7.  People who refuse to accept a scientific consensus (about climate change and
vaccination) and hold their own opinion as the truth should not be allowed to
make decisions on those matters that affect others or the planet.

8.  Selecting an optimal strategy requires its own optimal strategy.

9.  Eight propositions are sufficient.

The propositions are considered to be opposable and defendable and have been approved as such by
the promotor prof.dr.ir. H. van der Kooij and co-promotor dr. E. van Asseldonk.



Stellingen
behorend bij het proefschrift:

Haptic human-human interaction
Motor learning & haptic communication

Niek Beckers

1. Mensen zijn koppig, ze houden liever vast aan hun eigen plan ten koste van meer
verbruikte energie dan samen te werken met een partner die ze niet volledig
vertrouwen of begrijpen (in haptische interactie en in het echte leven).

2. Intuitieve fysieke interactiestrategieén tussen mens en robot kunnen niet
worden ontworpen zonder rekening te houden met haptics, maar echt intuitieve
en natuurlijke mens-robot interactie is niet haalbaar door alleen op haptics te
concentreren.

3. Om het potentieel van haptics volledig te benutten voor het bevorderen van
motorisch leren moeten de leerling en de leraar op de hoogte zijn van wat er
gebeurt en wat van hen wordt verwacht.

4. Om te begrijpen hoe mensen samenwerken moeten we complexere modellen
bouwen, maar hoe complexer het model, des te moeilijker het wordt om te
begrijpen hoe mensen samenwerken (gebaseerd op Bonini's paradox).

5.  Publicatiedruk en subsidieconcurrentie moedigen ‘moonshot’ onderzoek aan,
wat de algehele correctheid van de wetenschap niet ten goede komt.

6. Een zwaluw maakt nog geen zomer: als de wetenschappelijke gemeenschap
zichzelf echt serieus zou nemen, zou ze reproductiestudies meer moeten
stimuleren en belonen.

7. Mensen die weigeren een wetenschappelijke consensus (bijvoorbeeld over
klimaatverandering en vaccinatie) te accepteren en hun eigen mening als de
waarheid zien, zouden geen beslissingen mogen nemen over deze zaken die
anderen of de planeet treffen.

8. Het selecteren van een optimale strategie vereist een eigen optimale strategie.

9. Acht stellingen zijn voldoende.

Deze stellingen worden opponeerbaar en verdedigbaar geacht en zijn als zodanig goedgekeurd door de
promotor prof.dr.ir. H. van der Kooij en de co-promotor dr. E. van Asseldonk.





