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Abstract: Scattering prevents light from being focused in turbid media. The effect of scattering
can be negated through wavefront shaping techniques when a localized form of feedback is
available. Even in the absence of such a localized reporter, wavefront shaping can blindly form
a single diffraction-limited focus when the feedback response is nonlinear. We developed and
experimentally validated a model that accurately describes the statistics of this blind focusing
process. We show that maximizing the nonlinear feedback signal only results in the formation
of a focus when a limited number of reporters are contributing to the signal. Using our model,
we can calculate the minimal requirements for the number of controlled spatial light modulator
segments and the order of nonlinearity to blindly focus light through strongly scattering media.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Refractive index inhomogeneities in a turbid medium scatter light in a complex manner. Con-
sequently, a focus inside these types of media becomes more aberrated with increasing depth,
until ultimately no ballistic light is left and the focus decays into a random speckle pattern.
Even at this depth, light can still be focused through wavefront shaping techniques [1, 2]. These
techniques have been used to focus light inside scattering media for various applications, such as
optical manipulation [3], optogenetics [4] and fluorescence microscopy through an intact skull
of a mouse [5]. Using wavefront shaping techniques, light has been focused through several
centimeters of biological tissue [6].
The main limitation of these techniques is the need for a localized reporter (e.g. guide star),

providing feedback of the light intensity at the focus location. Many different mechanisms can
act as localized reporters, such as point detectors, fluorescent or nonlinear markers, acoustically
tagged light and photoacoustic absorbers [2]. However, a localized reporter is not always available.
For instance in multiphoton fluorescence excitation microscopy, generally all structures of interest
are stained with fluorescent markers, which will all generate a signal when illuminated. When a
weak ballistic unscattered component is still preserved, wavefront shaping with this mixed form
of feedback can be used to correct focus aberrations [7–9].

Katz et al. [10] showed that even in the absence of a localized reporter and a ballistic component,
light can be focused through a strongly scattering layer. In their experiment, the nonlinear
feedback signal was generated by many indistinguishable fluorescent sources hidden behind the
opaque layer. Maximizing the total nonlinear feedback signal using wavefront shaping resulted
in the formation of a single diffraction-limited focus. We term this technique ‘blind focusing’
since the scattered light is spatially focused without the need for any information about the
location of the sources or about the scattered light distribution. In the case of a pulsed light
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Fig. 1. Illustration of the blind focusing experiment. SLM: Spatial light modulator.

source, blind focusing is not limited to spatial focusing only, but can also result in a temporally
compressed focus [11, 12]. Therefore, blind focusing is potentially a powerful technique for
nonlinear deep-tissue microscopy. So far, a theoretical understanding of this iterative optimization
process has been missing, and, therefore, it is not known under which conditions the blind
focusing method will converge to a single diffraction-limited focus.

Here, we present and validate a model that accurately describes the statistics of blind focusing.
Using this model, we show that focusing is only possible when certain minimal requirements are
met. Additionally, we are able to predict the evolution of the optimized speckle pattern during
the optimization process.
We will first derive the exact solution of the scattered field behind a strongly scattering layer

for a single (known) realization of the scattering medium. Afterwards, we formulate a statistical
model that describes the probability density function of the light intensity, averaged over the
ensemble of possible samples. Our predictions are validated in a set of experiments with first,
second and third order feedback.

2. Theory of blind focusing

A simplified illustration of the blind focusing experiment is shown in Fig. 1. The goal of this
experiment is to form a single diffraction limited focus through a scattering layer at the target
plane using nonlinear feedback from M targets. A spatial light modulator (SLM) is used to
control the field Ea at the input plane. The feedback signals from the individual targets cannot be
distinguished and only the total generated signal is recorded. We define this feedback signal as

S ≡
M∑
b

|Eb |
2n, (1)

where Eb is the electric field at target b and n is the order of feedback. For instance, in fluorescence
imaging, n = 2 corresponds to two-photon excitation microscopy.
We start the experiment by constructing an arbitrary field using the SLM. Afterwards, we

perform the stepwise sequential wavefront shaping algorithm [1] to optimize the feedback signal
S. In contrast to the genetic wavefront shaping algorithm [13] used in previous work by Katz
et al. [10], our method is deterministic and can be analyzed analytically. Each iteration of the
algorithm results in an optimized incident wavefront, which is used as the starting wavefront of
the next iteration of the algorithm. This process is repeated until the algorithm has reached a
fixed point, where the optimized wavefront does not change anymore. In Appendix A, we prove
that such a fixed point always corresponds to a (local) maximum of S.

In this section, we will derive how the target field Eb changes as the nth-order feedback signal
S is optimized by iteratively running the algorithm. Although S is nonlinear, we can describe the
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light propagation to the target plane as a linear combination of input fields

E (k)
b
=

N∑
a

tbaE (k)a . (2)

Here, tba is an element of the transmission matrix T, N is the number of independently controlled
segments on the SLM and the superscript number k between brackets indicates the iteration
number. We take the total incident intensity

∑N
a |Ea |

2 = 1.
For the (k +1)th wavefront shaping iteration, we use the optimized wavefront from the previous

iteration as our new starting wavefront. Then we shift the phase of a single incident field segment
a’, such that E (k)a′ → E (k)a′ + E (k)a′ [e

iφ − 1]. We measure S as we vary φ from 0 to 2π in P steps.
Using Eq. (1) and Eq. (2), the intermediary feedback signal can now be written as

S̃(k+1)(φ) =

M∑
b

(
|E (k)

b
|2 + |tba′E

(k)
a′ |

2 |eiφ − 1|2 + (E (k)
b

t∗ba′E
(k)∗
a′ [e

−iφ − 1] + c.c.)
)n
, (3)

where ∗ represents the complex conjugate. The effect of the perturbation E (k)a′ [e
iφ − 1] on the

feedback signal is expected to be small. Therefore, we expand S̃(k+1) in terms of the perturbation
to arrive at

S̃(k+1)(φ) ≈ S(k) +
M∑
b

(
W (k)

b
t∗ba′E

(k)∗
a′ [e

−iφ − 1] + c.c.
)
, (4)

with the nonlinearly weighted target field W (k)
b
≡ n|E (k)

b
|2(n−1)E (k)

b
(see appendix A for a rigorous

mathematical treatment).
Following the processing steps as described in [14], we then find the optimized wavefront by

isolating the contribution of φ using the following expression

E (k+1)
a′ =

c(k+1)

E (k)∗a′ P

P∑
p

S̃(k+1)(φp)eiφp = c(k+1)
M∑
b

W (k)
b

t∗ba′, (5)

where c(k+1) is a normalization factor, which normalizes total incident intensity again to 1. The
phase shift φ at segment a′ is set back to 0 and the process is then repeated for all other SLM
segments. Finally, by inserting Eq. (5) into Eq. (2), we arrive at an expression for the resulting
target field after the (k + 1)th wavefront shaping iteration

E (k+1)
b

= c(k+1)
N∑
a

M∑
b′

tbat∗b′aW (k)
b′
. (6)

We recognize that the optimized target field in Eq. (6) is the nonlinearly weighted sum over the
phase conjugated fields propagated from the target locations. The nonlinear weighted field scales
with the field strength to the power 2n − 1, and thus the brighter targets will have a stronger
contribution to the optimized incident field. Performing multiple iterations of wavefront can
therefore ultimately result in a focus being formed at one of the targets.

The expression in Eq. (6) can be connected to previous iterative wavefront shaping experiments.
For linear feedback, W (k)

b
reduces to E (k)

b
. In this case, after performing the wavefront shaping

algorithm multiple times, E (k)
b

will converge to the eigenvector of matrix T with the highest
eigenvalue [15]. In other words, instead of forming a focus, the algorithmwill instead optimize the
total transmission through the scattering sample. Alternatively, for n > 1 in a weakly scattering
medium, where T is close to unitary, the optimized target field becomes E (k+1)

b
∝ |E (k)

b
|2(n−1)E (k)

b
.
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Now the brightest targets are enhanced more than the dimmer targets until finally a focus is
formed at the brightest target [16]. However, we will show that when T is not close to unitary, as
is the case in strongly scattering media, maximizing S is not necessary equivalent to forming a
focus.

3. Statistical model for blind focusing through strongly scattering media

Next, we want calculate the optimized target intensity distribution through a strongly scattering
medium with a non-unitary transmission matrix. Finding the exact value of the target field, using
Eq. (6), requires full knowledge of the transmission matrix, which often cannot be obtained.
Therefore, we will instead calculate the probability density function of E (k+1)

b
, averaged over

the ensemble of possible samples. We assume that W (k)
b

is known and independent of T. The
transmission matrix is assumed to be a random matrix with independent elements, such that the
expectation value 〈t

ba
t∗
b′a′
〉 = δb′bδa′a〈|tba |2〉, where δ is the Kronecker delta. In Appendix B,

we derive that for an imperfect wavefront shaping setup the probability density function of E (k+1)
b

is a complex normal distribution of the form:

P(E (k+1)
b
) =

1
πI0

exp

(
−
|E (k+1)

b
− µ
(k+1)
b
|2

I0

)
. (7)

Here, the average optimized field µ(k+1)
b

and I0 are given by

µ
(k+1)
b
≡

W (k)
b√∑M

b′ |W
(k)
b′
|2
γ
√

NI0 and I0 ≡ 〈|tba |2〉, (8)

where the quality of the wavefront modulation is described by the fidelity parameter |γ |2. This
parameter’s value ranges between 0 and 1, where a value of 1 corresponds with a perfect wavefront
modulation. Unlike regular speckle fields, E (k+1)

b
will have a non-zero average value µ(k+1)

b
because of the performed wavefront shaping iteration.

When E (k+1)
b

follows a complex normal distribution with a non-zero mean, the corresponding
optimized target intensity I(k+1)

b
≡ |E (k+1)

b
|2 follows a modified Rice distribution [17]. For

µ
(k)
b
= 0, this probability density function reduces to an exponential distribution as normally seen

in speckle statistics. For now, we are mainly interested in the average optimized intensity and the
corresponding standard deviation at target b, which are given by

〈I(k+1)
b
〉 = |µ

(k+1)
b
|2 + I0 = I0

(
N |γ |2

|W (k)
b
|2∑M

b′ |W
(k)
b′
|2
+ 1

)
, (9)

σI =

√
I0 |µ

(k+1)
b
|2 + I2

0 = I0

√√√
N |γ |2

|W (k)
b
|2∑M

b′ |W
(k)
b′
|2
+ 1, (10)

respectively. Note that 〈I(k+1)
b
〉 increases with N , whereas σI increases with

√
N .

After the (k + 1)th wavefront shaping iteration, the average intensity at target b depends on the
nonlinearly weighted fields at all targets. The targets which are generating a strong signal will
contribute more to the feedback signal S, and will therefore, on average, be enhancedmore than the
weaker targets. We recognize that if nearly all of the feedback signal is coming from a single target,
then the average intensity enhancement can be approximated by 〈η〉 ≡ 〈I(k+1)

b
〉/I0 ≈ N |γ |2 + 1.

This expression is equivalent to the enhancement in a conventional single target wavefront shaping
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Fig. 2. Schematic of the experimental setup. λ/2: half wave plate, Pol: Polarizer, SLM:
Spatial light modulator, CMOS: Complementary metal oxide semiconductor camera.

experiment [14]. However, when a large number of targets are contributing to the feedback signal,
the expected enhancement is reduced to 1, and as a result, no focus is formed at all.
To summarize, during the blind focusing experiment, we attempt to focus light through a

strongly scattering sample using wavefront shaping. In this experiment, multiple targets contribute
to the total feedback signal. We developed a statistical model that predicts how much the light
intensity at each feedback targets will be optimized. The average value and standard deviation of
the optimized target intensities are given by Eq. (9) and Eq. (10), respectively. This model can be
used to analyze the evolution of target intensity distribution during the blind focusing process.

4. Experimental validation

4.1. Experimental setup

We will now experimentally validate the expected optimized intensity as predicted by Eq. (9).
Our experimental setup is illustrated in Fig. 2. Light from a HeNe laser is expanded and
modulated by a phase-only spatial light modulator (Hamamatsu X13138-07). With two lenses
in a 4f-configuration, the SLM-modulated wavefront is conjugated to the back focal plane of
a microscope objective (Zeiss A-Plan 100x/0.8), which focuses the light onto the surface of
a scattering sample. As our source of feedback, we chose to use a CMOS camera (Basler
acA640-750um), which measures the intensity distribution at the back surface of the scattering
sample through an identical microscope objective. On the camera, we set groups of 3 × 3 pixels
(corresponding to 0.16 × 0.16 µm2) as independent targets for the wavefront shaping algorithm.
Using this experimental setup, we can choose the order of feedback, and we can accurately set the
number of targets contributing to the feedback signal. We would like to emphasize that in these
experiments only the total n-th order intensities summed over all targets was used as the feedback
signal, mimicking the nonlinear response of fluorescent markers in a multiphoton fluorescence
excitation microscope.

As a scattering sample, we used a glass substrate dip-coated in a suspension of 5% zinc-oxide
(Sigma Aldrich, average grain size 200 nm) and demineralized water. The thickness of the layer
were measured to be 37.6 ± 9.8 µm. Based on previous work [18], the transport mean free path of
the zinc-oxide sample is expected to be around 0.6 µm, ensuring that all light passing through the
sample is multiple scattered. The sample is mounted on a translation stage (Zaber T-LSM050A),
to allow the interrogation of different sample locations for statistical averaging. The average
wavefront shaping fidelity of our setup was measured to be 〈|γ |2〉 = 0.39 with N = 208.
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Fig. 3. Results of the blind focusing experiment using two feedback targets. (a) Example
image of the initial intensity distribution (I(0)), and (b) the corresponding intensity distribution
after wavefront shaping (I(1)). The red (right) and blue (left) circles mark the locations
of targets 1 and 2. (c)-(e) The optimized target intensities plotted as function of the ratio
of target intensities before the optimization. The optimized intensities at target 1 and 2
are represented by the red circles and blue squares, respectively. The experiments were
performed using (c) first-order, (d) second-order, and (e) third-order feedback. All intensities
are normalized to Imax = N |γ |2I0. The predicted mean value for the optimized intensity
and the corresponding standard deviation, as given by Eq. (9) and Eq. (10), are represented
by the colored solid lines and the shaded areas, respectively.

4.2. Blind focusing experiment with two feedback targets

We performed a blind focusing experiment, where two targets were simultaneously optimized
using the wavefront shaping algorithm as described before. The targets are separated by a distance
4.4 µm. On the SLM, a random pattern of N = 208 square segments was displayed, matching
the size of the light beam on the SLM. The experiment was performed 100 times, changing the
initial SLM pattern and sample lateral position in between every experiment. Examples of the
intensity distributions measured on the back side of the sample, before and after the optimization,
are shown in Figs. 3(a) and 3(b), respectively. Here, targets 1 and 2 are indicated by the red
(right) and blue (left) circles. In these Figs., the starting intensity of target 2 is much higher than
the intensity target 1. As a result, the contribution of target 2 to the feedback signal is much
larger than target 1, and therefore, only the intensity of target 2 is enhanced. Figs. 3(c)-3(e) show
the optimized intensities I(1) of target 1 (red circles) and target 2 (blue squares) as function of the
ratio of the initial intensities I(0) of the 2 targets, for first-order, second-order and third-order
feedback. All intensities are normalized to Imax = N |γ |2I0, which is the average optimized
intensity obtained by performing a single-target wavefront shaping experiment. The solid lines
and the shaded areas indicate the average optimized intensities and the standard deviation as
predicted by Eq. (9) and Eq. (10).
In Figs. 3(c)-3(e), we see that even when both targets contribute to the feedback signal, the

target intensities are not necessarily equally enhanced. Neither are the optimized intensities
I(1) randomly distributed, but rather the optimized intensities are directly related to the starting
intensities of target 1 and 2, as expected from Eq. (9). For n = 1, the optimized intensities at the
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targets are linearly proportional to the initial intensities, since in that case |W (0)
b
|2 reduces to I(0)

b
.

For higher-order feedback measurements, the relation between the initial intensity ratio and the
optimized intensity becomes nonlinear. As a result, a small difference in I(0) between the two
targets can result in a big difference between optimized intensities. For instance for n = 3, only
approximately 65% of the total initial intensity is required in one target to ensure that, in most
experiments, only the intensity of that target is optimized. This thresholding effect for n > 1,
observed in Figs. 3(d) and 3(e), is the mechanism that allows the blind focusing method to form
a single diffraction-limited focus even when multiple targets contribute to the feedback signal.
The data is in good agreement with our theoretical predictions and most of the data points fall
within the statistical variation as described in Eq. (10). Other deviations might be explained by
fluctuations in the fidelity during the experiment.

5. Blind focusing requirements

5.1. Minimal requirements

Now, we want to use our statistical model to find out under which circumstances the blind focusing
method is able to form a single focus, when M targets are contributing to the feedback signal.
Instead of analyzing convergence behaviour starting from a random speckle pattern, we analyze
the case where light is already focused to one target before the optimization. The focus should be
preserved after the wavefront shaping iteration when this focus corresponds to a fixed point of
the algorithm. To quantify the intensity in the focus, we use the enhancement, which is defined
as η ≡ I/I0. The starting enhancement in the focus is given by η(0). Furthermore, we assume
that all other (M − 1) targets are exponentially distributed with an average starting enhancement
of 1. Inserting these parameters into Eq. (9) produces an expression for the expected optimized
focus enhancement after a single wavefront shaping iteration

〈η(1)〉 = N |γ |2
(η(0))2n−1

(η(0))2n−1 + (2n − 1)!(M − 1)
+ 1. (11)

We recognize that 〈η(1)〉 can be smaller than η(0) for a large M . In order for the blind focusing
method to be able to form a focus, the average focus enhancement after the optimization should
be equal or larger to the enhancement before the optimization. In Appendix C, we show that
(given N , |γ |2 and n) an upper limit for the number of feedback targets can derived, which is
given by

Mmax =
(2n − 2)2n−2

(2n − 1)!(2n − 1)2n−1 (|γ |
2N)2n−1 + 1. (12)

Whenever M > Mmax , a focus can, on average, not be formed. Rather, the wavefront shaping
algorithm optimizes the intensity and contrast of the full speckle pattern to maximize the feedback
signal. We see that the order of feedback n can be increased to guarantee blind focusing
convergence for a larger number of contributing targets. Moreover, by increasing N by a factor of
α, Mmax increases by a factor of α2n−1.

5.2. Blind focusing experiment with M targets

To verify the prediction in Eq. (11), we performed a second set of experiments using larger
feedback areas containing M feedback targets. For this experiment, we used the same experimental
setup as described before. We start our experiment with a pre-optimized focus at a single target,
whereas the remaining targets in the feedback area are illuminated by a random speckle pattern.
The pre-optimized focus is obtained by first optimizing for a single target in the center of the
camera frame. Afterwards, a wavefront shaping iteration is performed using the total second-order
feedback signal from all targets within a small and a large region of interest (ROI), which have
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Fig. 4. Results of the blind focusing experiments with a pre-optimized focus using the total
second-order feedback signal from a region of interest containing M targets. (a) Example
speckle pattern with a pre-optimized focus, where the red and purple circles represent the
small (M = 96) and large (M = 2400) ROIs, respectively. (b)-(c) The enhancement η in the
pre-optimized focus before and after blind focusing with M = 96 (red circles) and M = 2400
(purple squares), with (b) N = 80, and (c) N = 208. The predicted mean value for η(1)
and the corresponding standard deviation are represented by the colored solid lines and the
shaded areas, respectively. The black solid line indicates the identity line.

a radius of 2.1 µm and 10.5 µm. Based on the average speckle size, the number of targets are
estimated to be M = 96 and M = 2400 for the small and the large ROIs, respectively. The blind
focusing experiments were performed for N = 80 and N = 208, and were performed 100 times for
both ROIs. In between each experiment, the lateral sample position was changed and the intensity
of pre-optimized focus was varied by adding a controlled amount of uniformly-distributed noise
to the starting wavefront.
In Fig. 4(a), an example image of a starting speckle pattern with a pre-optimized focus is

shown. The red and purple circles in the Fig. indicate the size of the small and large ROIs. In
Figs. 4(b) and 4(c), the enhancement of the pre-optimized focus intensity after the blind focusing
experiment η(1) is plotted as function of the starting enhancement of the pre-optimized focus, for
N = 80 (Fig. 4(b)) and N = 208 (Fig. 4(c)). The experiments using the small and the large ROI
for feedback are represented by the red circles and the purple squares, respectively. In Figs. 4(b)
and 4(c), the expected value for η(1) (as predicted by Eq. (11)) and the corresponding standard
deviation are represented by the colored solid lines and the shaded areas, respectively. The black
solid lines indicates the identity lines, where η(1) = η(0).
In Figs. 4(b) and 4(c), two general regions can be recognized. The data points above the
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identity line represent experiments where the focus enhancement increased, whereas the data
points under the identity line represent a decrease in the focus enhancement. In Fig. 4(b), in the
experiments with M = 96 and N = 80, nearly all measured η(1) values lie above the identity
line, meaning that the focus enhancement increases after the iteration of wavefront shaping.
However, in the experiments with the large ROI, η(1) is almost always lower than η(0). These
results suggest that the large ROI contains too many competing targets for the pre-optimized
focus to be preserved. In other words, the wavefront shaping algorithm favors optimizing the
intensity of multiple targets within the ROI over preserving the intensity in the pre-optimized
focus.
In Fig. 4(c), the number of controlled SLM segments was increased to N = 208. Here, the
〈η(1)〉 curves cross the identity curves for both the small and large ROIs, indicating that the
intensity in the pre-optimized focus is was further enhanced. Increasing N thus allows blind
focusing to preserve a focus for a higher number of targets that are contributing to the feedback
signal. The experimental data is in excellent agreement with the prediction in Eq. (11).

5.3. Breakdown of blind focusing

Finally, we performed experiments to test whether a pre-optimized focus is preserved over
multiple wavefront shaping iterations when the number of targets exceeds the blind focusing
upper limit, given in Eq. (12). The feedback signal was obtained using the same small and large
ROIs as described before, with second-order feedback and N = 80. The algorithm was performed
for 10 iterations, where for each iteration, the optimized wavefront of the preceding iteration was
used as the new starting wavefront. The resulting speckle images and the corresponding feedback
signals of these experiments are included in the supplementary materials as Visualization 1
(small ROI) and Visualization 2 (large ROI).

In all the experiments using the small feedback ROI, the initial pre-optimized focus was
preserved over all 10 iteration as the feedback signal was enhanced. However, in the large
ROI experiments, the pre-optimized focus decays into a speckle pattern after only running the
algorithm for 2 to 3 optimization iterations. Here, the feedback signal clearly increased during
the optimization even though the starting focus was lost in the process. These results demonstrate
that for n = 2 and N = 80, the blind focusing method is not be able to form a focus. This is in
agreement with the prediction in Eq. (12), since the number of feedback targets in the large ROI
(M = 2400) exceeded the upper limit, Mmax = 751. As a reference, the succesful blind focusing
experiments with N = 208 and n = 2 (shown in Fig. 4(c)) have a much higher Mmax of 13181
targets.

6. Discussion

We studied wavefront shaping with nonlinear feedback through a strongly scattering sample
using the stepwise sequential algorithm [14]. This deterministic algorithm allowed us to derive
the exact solution for the optimized field at the feedback targets, which is given in Eq. (6). This
expression shows that in weakly scattering samples, the optimization algorithm takes higher
orders of the initial target field with every iteration. As a result, only the brightest speckles
at the target plane will be enhanced [16]. Therefore, wavefront shaping and adaptive optics
techniques can be used to improve the intensity of the focus in multiphoton fluorescence excitation
microscopy without the need for a guide star [7, 8].
Previous work demonstrated that a focus can be formed through a strongly scattering layer

without the need for a localized reporter [10]. We showed that in strongly scattering samples,
the statistics of the optimized target intensities are accurately described by the Rice distribution.
However, due to the large standard deviation in the distribution, it remains hard to predict at
which target the focus will be formed when the targets are illuminated with a random speckle
pattern.
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In Appendix A, we showed that a fixed point of our optimization algorithm always corresponds
to a maximum of the feedback signal. Moreover, we experimentally demonstrated that when the
number of targets exceeds Mmax from Eq. (12), our algorithm is, on average, unable to form a
focus. As a result, maximizing S does not always guarantee the formation of a focus, but will
instead optimize the intensity and contrast of the speckle pattern. This limitation applies to
all optimization algorithms using the total nonlinear signal as feedback, including the genetic
wavefront shaping algorithm [13].

In our experiments, we only considered targets distributed across a two-dimensional image
plane. However, our model can also be employed to point targets on an arbitrarily shaped plane.
Therefore, our model can easily be generalized for scattering samples with feedback targets
distributed in all three spatial dimensions. In such samples, the light intensity will spread out
more, the deeper the light propagates into the sample. As a result, the number of illuminated
targets will also rapidly increase with focusing depth. In order for the blind focusing requirements
to be fulfilled, the labeling density of these samples might need to be restricted.

In our statistical model, we assumed that the nonlinearly weighted field W (k)
b

is independent of
the transmission matrix. As a result, we ignore certain properties of the matrix T known from
random matrix theory, such as the distribution of transmission eigenvalues [19]. Nevertheless,
our statistical model is in a surprisingly good agreement with the experimental data. At the
moment, our model is unable to predict the rate of convergence. Therefore, we believe that
studying these properties of random matrices will be interesting to obtain a full understanding of
this nonlinear optimization process.

Appendix A: Convergence to local maximum

We used the stepwise sequential optimization algorithm [1] in an attempt to maximize the total
feedback signal S. For linear feedback from a single target, it is well known that this algorithm
finds a global maximum for the intensity at that target in a single iteration [14]. In the case of
nonlinear feedback originating from multiple targets, however, the optimization problem has
multiple local maxima. In this situation, it is not directly trivial that the algorithm finds a local
maximum of S; it is not even directly clear that the stepwise sequential algorithm increases S at
all.
Here, we will prove that all local maxima of S correspond to attractive fixed points of the

algorithm (Eq. (6)) and vice versa. Consequentially, when the algorithm converges, it converges
to a local maximum of S as well. Furthermore, this proof implies that each local maximum of S
has a finite region of attraction for which the algorithm will converge to that local maximum.
Note that we cannot exclude the existence of initial conditions for which the algorithm does not
converge. However, we have not observed these cases in our experiments. In order to simplify
the derivations, we introduce a compact vector notation, replacing Ea by a, Eb by b etc. For
example, Eq. (2) can now be written

b = Ta, (13)

with T the transmission matrix. The incident field is normalized so that ‖a‖ = 1.

Wirtinger calculus

To analyze convergence to a local maximum, we will expand the system around a fixed point a∗ .
Here a technical complication arises: due to the complex conjugate in S, it is not a holomorphic
function of a, so the complex derivative ∂S/∂a does not exist.

In order to avoid this complication, we use Wirtinger calculus to calculate the derivatives [20].
In Wirtinger calculus, S(a) is replaced by a function S(a, a ), where a and a are independent
variables: technically, a is not equal to the complex conjugate of a. However, as long as we
restrict ourselves to only evaluate S(a, a ) in the subspace a = a∗, we can perform all derivatives in
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the usual manner and obtain correct results. Using the compact notation and Wirtinger calculus,
we can now write Eq. (1) as

S(a, a ) =
M∑
b

[(T∗a )b(Ta)b]n , (14)

where ()b denotes the b-th element of the vector in the parentheses. As an example, we use
Wirtinger calculus to calculate the first order Taylor expansion of S for small perturbations ∆
around a

S(a + ∆, a + ∆ ) = S(a, a ) +
∂S
∂a

∆ +
∂S
∂a

∆ +O(‖∆‖2). (15)

We can now evaluate the derivative towards component ai of the incident field a

∂S
∂ai
= n

M∑
b

[(T∗a )b(Ta)b]n−1 tbi =
M∑
b

w∗btbi, (16)

where the elements of w and w are given by

wb(a, a ) = n(Ta)nb(T
∗a )(n−1)

b
and wb(a, a ) = n(T∗a )nb(Ta)(n−1)

b
. (17)

By evaluating the derivative for all elements ai , we get the vector derivatives

∂S
∂a
= wTT and

∂S
∂a
= wTT∗. (18)

We can use the Taylor expansion Eq. (15) to calculate what happens during the optimization
process, when the phase of a single element of the incident field is changed. The perturbation
corresponding to changing the phase of segment a′ is given by

∆i =

{
ai(eiφ − 1) for i = a′

0 otherwise
. (19)

Inserting ∆ into Eq. (15) gives Eq. (4) from the main text.

Attractivity of fixed point

The algorithm in Eq. (5) can be thought of as a cyclical series of mappings a(k) → b(k) →
w(k) → T†w(k) → a(k+1), etc., where T† is the conjugate transpose of T. We rewrite Eq. (5) as

f(a, a ) =
T†w(a, a )

T†w(a, a )



, (20)

where f now defines the mapping from a(k) to a(k+1). Using Wirtinger calculus, we can make a
first order approximation of the mapping for a small perturbation ∆ around a fixed point of the
mapping, a∗ = f(a∗).

f(a∗ + ∆, a∗ + ∆ ) ≈ f(a∗, a∗) +

∂f
∂a

∂f
∂a

∂f
∂a

∂f
∂a

 a=a∗
a=a ∗


∆

∆

 , (21)

where the matrix is Jf (a∗): the Jacobian of f, evaluated at the fixed point a∗. When the fixed
point is attractive in some finite region, each iteration brings a closer to a∗, so we must have
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a(k+1) − a∗


 ≤ q



a(k) − a∗


, with 0 ≤ q < 1. From Eq. (21), we see that this condition is

equivalent to saying that the spectral radius of the Jacobian ρ(Jf ) < 1. We will show below that
this condition is always met at local maxima of S.
From the definition of f it is clear that any perturbation in the direction of a∗ will have no

effect at all. Therefore, we restrict ourselves to perturbations perpendicular to a∗, i.e. ∆
T

a∗ = 0,
hence ∆

T
T†w∗ = 0. Under this condition, we can find a simple expression for terms of the form

∆
T
∂f/∂a

∆
T ∂f
∂a

����a=a∗
a=a ∗

= ∆
T

[
T†

T†w



 ∂w
∂a
+ T†w

∂

∂a
1

T†w




]

a=a∗
a=a ∗

= ∆
T T†

T†w



 ∂w
∂a

����a=a∗
a=a ∗

, (22)

which we will use in the next section. Here the product rule was used in the first step, and
orthogonality of ∆ and a∗ was used in the second step.

Local maximum

To find local maxima of S under the constraint that ‖a‖ = 1, we apply the method of Lagrange
multipliers and minimize the Lagrange function

SL(a, a ) = S(a, a ) − λ(aTa − 1), (23)

where λ is a Lagrange multiplier and aTa − 1 represents the constraint that ‖a‖ = 1.
The first order conditions for a local maximum follow by equating the first derivatives of SL to

zero, giving

wT
∗ T − λaT

∗ = 0 (24)
wT
∗ T∗ − λaT

∗ = 0 (25)

aT
∗ a∗ − 1 = 0, (26)

with the solution λ =


T†w∗



 and a∗ = T†w∗/λ, proving that a fixed point of f is also a
critical point of SL . In order to prove that this stationary point is a local maximum (and not
a local minimum or a saddle point), we need show that any small perturbation that maintains
the first order conditions decreases the value of SL . In order to do so, we evaluate the second
derivative (the Hessian matrix H) of SL considering only perturbations perpendicular to a∗, i.e.
perturbations that maintain the constraint ‖a‖ = 1 to the first order. Using Eq. (18), we arrive at

H ≡

∂2SL

∂a∂a
∂2SL

∂a 2

∂2SL

∂a2
∂2SL

∂a∂a

 a=a∗
a=a ∗

=


T† ∂w

∂a − λ T† ∂w
∂a

TT ∂w
∂a TT ∂w

∂a − λ

 a=a∗
a=a ∗

. (27)

Using Eq. (22), we find 
∆

∆


T

H

∆

∆

 =

∆

∆


T

λ(Jf − I)

∆

∆

 < 0, (28)

with I the identity matrix. Since ρ(Jf ) < 1, from Eq. (28), Jf − I is negative definite, proving
the last step: every perturbation ∆ decreases the signal. Hence, every fixed point a∗ corresponds
to a local maximum of the constrained optimization problem.
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Conclusion

This final result in Eq. (28) shows that any small perturbation around the fixed point decreases
the signal. In conclusion, we demonstrated that, when a∗ is an attractive fixed point of mapping
f, the resulting signal S(a∗, a∗) must be a local maximum. The converse is also true, since both
statements are equivalent to the condition that ρ(Jf ) < 1. Finally, as detailed in the main text,
even though the algorithm maximizes S, such a maximum does not necessarily correspond to a
focus.

Appendix B: Derivation of the blind focusing statistical model

In this appendix, we derive Eq. (7), the complex normal distribution of the optimized target field
when blind focusing through a strongly scattering sample. We start by constructing the optimized
incident field, which is given in Eq. (5). In an imperfect wavefront shaping setup, the quality
of the wavefront modulation is described by the fidelity, |γ |2. The constructed input field is
given by Ê (k+1)

a = γE (k+1)
a +

√
1 − |γ |2∆Ea, where E (k+1)

a is the desired input field and ∆Ea is a
normalized field, which is by definition orthogonal to E (k+1)

a [21]. When this imperfect input
field is inserted into Eq. (2), we find that the constructed optimized target field becomes

Ê (k+1)
b

= γc(k+1)
N∑
a

M∑
b′

tbat∗b′aW (k)
b′
+

√
1 − |γ |2ζb . (29)

Here, ζb ≡
∑N

a tba∆Ea which is assumed to be an uncorrelated scattered field with 〈ζb〉 = 0
and var(ζb) = 〈|tba |2〉. Note that for a perfect setup with γ = 1, Ê (k+1)

b
= E (k+1)

b
(Eq. (6)). We

recognize that Eq. (29) can be written as a sum over N independent random variables χa

Ê (k+1)
b

= γc(k+1)
N∑
a

χ
(k)
a +

√
1 − |γ |2ζb with χ

(k)
a ≡

M∑
b′

tbat∗b′aW (k)
b′
. (30)

When N is large, by the central limit theorem Ê (k+1)
b

has a complex normal distribution.
To find the average and variance of Ê (k+1)

b
, we start by calculating the first and second raw

moments of the terms χa. As stated in the main text, we assume that W (k)
b

is known and
independent of T, and that 〈t

ba
t∗
b′a′
〉 = δb′bδa′a〈|tba |2〉. Under these assumptions, the first

moment is given by

〈χ
(k)
a 〉 =

M∑
b′

W (k)
b′
〈tbat∗b′a〉 = W (k)

b
〈|tba |2〉, (31)

and the second moment

〈|χ
(k)
a |

2〉 =

M∑
b′

M∑
b′′

W (k)
b′

W (k)∗
b′′
〈|tba |

2t∗b′atb′′a〉 (32)

=

M∑
b′

|W (k)
b′
|2〈|tba |2 |tb′a |2〉 (33)

=

M∑
b′,b

|W (k)
b′
|2〈|tba |2〉〈|tb′a |2〉 + |W

(k)
b
|2〈|tba |4〉. (34)

Realizing that for a Gaussian distribution, 〈|tba |4〉 = 2〈|tba |2〉2, we find

var(χ(k)a ) = 〈|χ
(k)
a |

2〉 − |〈χ
(k)
a 〉|

2 = 〈|tba |2〉2
M∑
b′

|W (k)
b′
|2. (35)
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Next, we calculate the value of c(k+1), which was introduced in Eq. (5) to normalize the total
incident intensity after the optimization. We assume that, for large N , the normalization factor is
self-averaging, such that

c(k+1) =

√
1∑N

a |
∑M

b t∗
ba

W (k)
b
|2
≈

√
1

N 〈|tba |2〉
∑M

b |W
(k)
b
|2
. (36)

To obtain the mean of Ê (k+1)
b

, we can simply add the means of χa and ζb, since the two
variables are uncorrelated. We calculate the optimized field average by inserting Eq. (31) and
〈ζ
(k)
b
〉 = 0 into Eq. (30)

〈Ê (k+1)
b
〉 = γc(k+1)

N∑
a

〈χ
(k)
a 〉 +

√
1 − |γ |2〈ζb〉 =

W (k)
b√∑M

b′ |W
(k)
b′
|2
γ
√

N 〈|tba |2〉. (37)

Similarly, we can calculate the variance of Ê (k+1)
b

by adding var(χ(k)a ) (Eq. (35)) and var(ζb) =
〈|tba |2〉 in the following manner

var(Ê (k+1)
b
) = |γ |2(c(k+1))2

N∑
a

var(χ(k)a ) +
(
1 − |γ |2

)
var(ζb) (38)

= |γ |2
N 〈|tba |2〉2

∑M
b′ |W

(k)
b′
|2

N 〈|tba |2〉
∑M

b′′ |W
(k)
b′′
|2
+

(
1 − |γ |2

)
〈|tba |2〉 (39)

= 〈|tba |2〉. (40)

When we substitute µ(k+1)
b
≡ 〈Ê (k+1)

b
〉 and I0 ≡ var(Ê (k+1)

b
), we arrive at the expressions found in

Eq. (8).

Appendix C: Derivation of the blind focusing requirements

In this section, we calculate the minimal requirements for the formation of a focus using the blind
focus method. We assume that, when a focus is formed, only the intensity at the focus location
is enhanced and that all other targets have an exponentially distributed enhancement with an
average of 1. A focus can be formed when the expected focus enhancement of the next iteration
〈η(1)〉 (as described by Eq. (11)) is larger than or equal to the current focus enhancement, for
some η(0) > 1. For simplification, we instead consider 〈η(1)〉 ≥ η(0) + 1, which is a slightly more
restrictive condition. We can write this condition as

N |γ |2
(η(0))2n−1

(η(0))2n−1 + (2n − 1)!(M − 1)
+ 1 ≥ η(0) + 1 (41)

−(η(0))2n−1 + N |γ |2(η(0))2n−2 ≥ (2n − 1)!(M − 1). (42)

Next, we derive the minimum requirements for this condition to be satisfied. Therefore, we
proceed by finding

max
η(0)

(
− (η(0))2n−1 + N |γ |2(η(0))2n−2

)
, (43)

to find out in which cases this maximum value satisfies the condition in Eq. (42). We maximize
this function by equating the derivative of this function towards η(0) to zero, giving

(2n − 1)(η(0))2n−2 = (2n − 2)N |γ |2(η(0))2n−3 (44)

η(0) =
2n − 2
2n − 1

N |γ |2. (45)
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We insert this maximized value for η(0) into Eq. (42)

−

(2n − 2
2n − 1

N |γ |2
)2n−1

+ N |γ |2
(2n − 2
2n − 1

N |γ |2
)2n−2

≥ (2n − 1)!(M − 1). (46)

Given N , |γ |2 and n, we solve Eq. (46) for M

(2n − 1)!(M − 1) <
(2n − 2
2n − 1

)2n−2 (
1 −

2n − 2
2n − 1

)
(N |γ |2)2n−1 (47)

(2n − 1)!(M − 1) <
(2n − 2)2n−2

(2n − 1)2n−1 (N |γ |
2)2n−1 (48)

M <
(2n − 2)2n−2

(2n − 1)!(2n − 1)2n−1 (|γ |
2N)2n−1 + 1. (49)

This final expression is the upper-limit for M , which corresponds to the parameter Mmax as given
in Eq. (12). Whenever M < Mmax , the condition in Eq. (42) will be satisfied, which means that,
on average, blind focusing is indeed able to form a a single focus.
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