
RAPID DEVELOPMENT OF EMBEDDED CONTROL SOFTWARE USING
VARIABLE-DETAIL MODELLING AND MODEL-TO-CODE

TRANSFORMATION
Tim Broenink
Jan Broenink

Robotics and Mechatronics
University of Twente

Enschede, Netherlands
Email: t.g.broenink@utwente.nl

KEYWORDS
systems, variable-detail, rapid prototyping, agile develop-
ment, embedded control software, segway, model struc-
ture, model-to-code transformations.

ABSTRACT
This paper shows a method for the development of

embedded control software of a cyber-physical system.
The approach consists of two parts, a cycle for the rapid
development of a set of features based on agile software
development, and a variable-detail approach using model-
driven development to develop and test single features.
The method is used to develop the control system of a
mini-segway, which is able to balance, steer and drive.
This structured method gives effective results and a large
set of models for future development.

INTRODUCTION
The development of cyber-physical systems comes

with a set of challenges (Lee 2008). These can be tackled
using a combination of model-driven development, (co-
)simulation, and physical prototypes. A structured way to
apply these different techniques when designing a cyber-
physical system is required. This research focusses on
the implementation of the cyber part of the system and
assumes the physical part to be known. More specifically
it focusses on the embedded control software. The physical
part is made from off-the-shelf components, with known
specifications and limitations. However this does not mean
that the same techniques cannot be applied to the physical
part of the system.

In this paper a structured way of developing and testing
embedded control software is described. The design of
these control systems should take into account both the
limitations of the cyber and physical parts. The aim of this
approach is to reduce the development of these systems
to a series of short cycles based on rapid development
principles and modelling techniques (Jensen et al. 2011).
Rapid development techniques take their inspiration from
software development strategies (Chandra 2015; Krishnan

2015). The aim of this is to break up the development into
steps that can be individually tested. These immediate tests
make it possible to receive feedback about the performance
of the system and to spot errors earlier. This allows
errors to be fixed early in the development process, thus
requiring less effort. The short cycles make it possible to
create simulations and prototypes early in the development
process. When combining this with techniques to rapidly
build a prototype, an early working version of the system
can be made.

The approach outlined in this paper is based on two
different cycles, a inner and an outer cycle (shown in
Figure 1). The outer cycle details how to add features
to the design at hand and how to come to a finished
product. The inner cycle uses a variable-model detail
approach (Broenink and Broenink 2018) to develop and
test a feature.

The approach is demonstrated using a case study of
a mini-segway (shown in Figure 5), a piece of hardware
used for education in dynamic systems and control theory,
where it is used to develop the control software.

This document first outlines the overall methodology.
Then the inner and outer cycle of this development method
are detailed. Then the example case is shown using a mini-
segway, and the example case is evaluated. Finally the
conclusions and recommendations for future research are
discussed.

METHODOLOGY
The development method combines two different cy-

cles, the rapid development cycle to develop embedded
control software, and the variable-detail approach to im-
plement and test the different features. The requirements
of the control software are divided into different features,
which are then individually implemented and tested.

When combining the two cycles, we get the following
series of steps (see Figure 1):

• Order and split the features and levels of detail as

Communications of the ECMS, Volume 33, Issue 1, 
Proceedings, ©ECMS Mauro Iacono, Francesco Palmieri, 
Marco Gribaudo, Massimo Ficco (Editors) 
ISBN: 978-3-937436-65-4/978-3-937436-66-1(CD) ISSN 2522-2414 

151



1

2

3

B

A

C

Prep

Eval

Outer cycle

Inner cycle

N Pn

Qn

Fig. 1. The different cycles of the development process, of N features.
whereby the amount of internal cycles for feature n are denoted as Pn

and Qn

preparation
1) Design new feature and tests.
2) Implement and test a new feature.

A) Design a feature based on an ideal model
B) Combine the feature with a more detailed

version of the rest of the system, adding more
detail when needed.

C) Determine if the tests pass if so, add more
detail (go to B.). If it fails, redesign the feature
(go to A).

3) Continue to next feature, until all features are im-
plemented.

• Evaluate and reflect on the cycle process.

The details of these different cycles are explained in the
following sections. An overview of these cycles is given
in Figure 1.

Preparatory work
For this method, models with different levels of detail

of the physical system are used. It is assumed that the de-
velopment process is started with an ideal, or more abstract
model. During the development process richer models are
then used, until a point is reached where the model is
competent to describe the behaviour of the prototype. The
detail that is added represents the different aspects of the
physical system or prototype, which can be included or
abstracted away. When the model is competent, all aspects
that influence the behaviour of the system to a significant
degree have been added.

The order of adding these aspects should be determined
before the cycles are started, as they influence the struc-
tures of the models that are required. The order in which
the different aspects are added should be chosen carefully,
as this can have a large impact in how quickly errors
are found. Aspects of the design that are expected to be
critical should be implemented first. As these aspects have
a large chance of invalidating the current design (Chance
of Failure). Furthermore steps that take a lot of effort to

implement should be done as late as possible, as to change
these again and again takes lots of time (Cost of Change).
Taking into account these two qualifications one can try
to minimize the amount of time a single iteration takes
before finding an error, and reduce the time it takes to
redo.

Cycle evaluation
Given a single Feature n, there are a certain amount

of iterations of Pn and Qn. These describe the amount of
design variations of a feature, and the amount of different
detail levels used respectively. Qn contains the detail steps
for all design variations. Pn is dependent on how well the
initial implementation is designed. Qn can be at most the
amount of aspects that need to be added, for a single pn. If
one would plot the different iterations of step B, as shown
in Figure 2, the efficiency of the method is indicated by
how empty the matrix is. As there is a minimum amount
of iterations needed, the best distribution of step B would
only fill the top row and the rightmost column. In the
ideal situation, which requires no redesigns, this matrix
would be only a single filled column. In an situation
where there are some design errors, requiring redesigns,
this would look like the matrix shown in Figure 3. This
is the minimal amount of B cycles required for a certain
amount of redesigns (Pn).

When there are a lot more B cycles, it would suggest
that the order in which the details were implemented was
sub optimal. For example when most iterations reach Bp,3

it might be useful to test the aspect embodied by 3 first.
2

6664

B1,1 B2,1 · · · Bp,1

B1,2 B2,2 · · · Bp,2
...

...
. . .

...
B1,q B2,q · · · Bp,q

3

7775

Fig. 2. A matrix plotting the instances of Step B for p and q.

2

6664

B1,1 B2,1 · · · Bp,1

Bp,2
...

Bp,q

3

7775

Fig. 3. A matrix plotting the instances of Step B for p and q, in a fairly
ideal situation

Set of models
Both of these cycles results in a set of models and

descriptions of the complete system that can be used for
further development. An overview of the set of models is
shown in Figure 4.

It should be noted that subsequent features are not only
designed and tested with the model of the physical system,
but also with the models of the previous features. Thus the
set of models representing the system is expanded at every
detail level. As the physical part of the system was made

152



Model Feature 1 Feature 2

de
ta

il

alternatives

Physical Cyber

prototype

Fig. 4. The structured model set build with this methodology. Models
at the same detail level are compatible and can be simulated together.

beforehand, an assumption is made that there are models
available of the system.

After every rapid development cycle a new set of
models is added, detailing the development and implemen-
tation of a feature. This feature can then be implemented
and tested, either by using a model-to-code transformation
(Hemel et al. 2008) or by implementing these models as
code manually. The next feature can then be developed
using the models of the physical system and models of all
previous features. The method results in a set of models
detailing the design and testing of all different features and
changes in the embedded control software. Thus allowing
later revisions and checks.

OUTER CYCLE
The outer cycle is a rapid development cycle based

on short development cycles reminiscent of agile (Martin
2002) or spiral (Boehm 1988) software development tech-
niques. To utilize these cycles properly it is important that
intermediate stages of the design can be tested. Both to
validate if it even works at all, and to test the performance
of the system.

The testing of these intermediate stages of the design
can be based on simulations or based on a prototype. The
simulations requires that a simulation method is available
to simulate the system competently enough to be sure of
the results. It also requires a more extensive model of
the physical system. If a prototype is used it requires that
the intermediate stages of the development process can be
quickly deployed on the prototype. This would typically
require some form of model-to-code transformation or
hardware-in-the-loop simulation. Usually a combination of
the two is the most practical.

The cycles of this process are based on the features
of the embedded control software. The functionality of
this control software needs to be broken down into dif-
ferent features that can be individually implemented. It

is important to note that these features should be split
in such a way that the results of the individual cycles is
testable. A cycle of the rapid development cycle contains
the following steps:

1) Design new feature and the corresponding tests.
2) Implement and test a new feature.
3) Continue to the next feature, or finish the product.

The tests mentioned in these steps are an important part
of the development process. When defining a feature one
should have a clear image of how the feature should
perform and how to test this performance. This clear
definition allows one to quickly determine if a simulation
or prototype performs as expected. It should also describe
how to test the system and what to expect. This also
gives the advantages inherent in a test-driven develop-
ment approach (Janzen and Saiedian 2005). Step 2, the
implementation and testing of the features is implemented
using the variable-detail approach detailed in the following
section.

INNER CYCLE
The inner cycle is a variable-detail approach, which is

used to design and test the different features as selected
by the rapid development cycle. The approach goes from
a very low-detailed model, for example a control law, to
a very detailed model that can be synthesised into code.
This is done by adding all the aspects, as decided in the
preparation phase, to the design. Within the design of this
feature the following steps are used:

A) Design a feature based on an ideal model
B) Combine the feature with a more detailed

version of the rest of the system, adding more
detail when needed.

C) Determine if the tests pass if so, add more
detail (go to B.). If it fails, redesign the feature
(go to A).

The large set of different models is used to leverage the
advantages of model-based design of cyber-physical sys-
tems (Jensen et al. 2011) to a large degree. The variable-
detail method assumes that there is not only a single model
of the plant available, but that the plant model is available
in multiple levels of detail. If these versions of the plant
model do not exist, but a detailed model is available, these
less detailed models can be made. As this paper focusses
on embedded control software, the approach is explained
using a control perspective.

The least detailed version of the controller is the control
law. A single transfer function designed based on a linear
representation of the plant, is the most abstract represen-
tation of the plant relevant to the problem. This control
law can be designed using PID tuning, pole placement, or
a compensator, etc.

153



If a controller is designed that is sufficient for the
linearised plant it can be then tested on the non-linearised
model. If the controller is still able to control the physical
system, one can continue to the next step. If not, the
controller has to be redesigned.

The following steps are to keep adding more detail
and/or constraints to the plant model, and updating the
controller accordingly. Examples of this could be to in-
clude limitations of IO, sensor processing, or discrete time.
Every time detail is added, the new system can be tested
using the more detailed implementation of the controller
and the more detailed model of the plant.

In order to easily switch between these detail levels
it is imporant that both the model and the controller are
structured in a way to allow this. One way to do this
is proposed in Broenink and Broenink (2018), but any
method that allows rapid switching of detail will do.

When a level of detail does not conform to the spec-
ifications or tests, one must take a step back and look at
the design decisions made in this step and in the previous
steps. However the cause of the problem should be easy
to determine, as only one step of detail was added.

When the feature is finished it should be detailed
enough that it can be implemented on the prototype. This
would be the case when all sensor processing, limitation
and timing behaviour reflecting the real system are imple-
mented.

MINI-SEGWAY EXAMPLE
To test it, the overall method is applied on a mini-

segway (shown in Figure 5). This mini-segway is used
for education of students in system dynamics and con-
trol theory. A model of the mini-segway is known. The
mini-segway contains a raspberry-pi 3 and electronics
to control the motors and sensors. It is also supported
by the 20-sim4C (www.20sim.com/features/20sim4c.html)
model-to-code tooling.

A complete model of the physical part of the mini-
segway is available. This model is first abstracted into a
few simpler models. The most basic model is the lineari-
sation of the complete mini-segway around an equilibrium
point. A more detailed abstraction is the non-linear model
of the segway without any limitations and ideal sensors.
This is followed by a model which takes into account
the limitations of the motors. Then, there is a model with
sensors, but still in continuous time. The last simulation is
done with a model which also contains the discrete-time
behaviour of the system. Finally the physical prototype of
the mini-segway model is used. An overview of all models
and steps used in this process is shown in Figure 6

The embedded control software of this mini-segway
has to implement three tasks:

Fig. 5. The mini-segway used in this example, motor drivers, and Inertail
measurement unit (IMU) and absolute wheel encoders.

1) Balancing the mini-segway upright
2) Steering the mini-segway
3) Driving forward and backward

These three tasks are implemented using the posed
methodology, as three different features. They are imple-
mented in the order shown.

Before the method can be used the order of detail that
have to be added has to be decided. Taking into account
the limitations of the mini-segway there are three elements
that need to be added to the ideal system:

• The maximum power of the motors
• The sensor behaviour and limits
• The sampling frequency of the raspberry-pi

The most important limit in this case is probably the
limitations of the motor, with the sensors in second place.
As the control frequency is about a 100 times faster then
the natural frequency of the system (500 Hz vs 5Hz), the
time discretization is expected to not be a problem.

For every feature first the feature and tests are described
(step 1). Then the inner cycle can be started (step 2). For
the inner cycle the different steps are be denoted as Ap,
Bp,q , and Cp,q . Where p indicated the iteration of the
design, and q the current level of detail.

The aspects added to the model are:

1) Non-linear model
2) Motor limitations
3) Sensor models including limits on readouts
4) Discrete time models
5) The prototype

Balancing
As a first feature the balancing controller is

implemented. This has to only keep the mini-segway
upright.

154



Step 1:
The assumptions are made that there is no steering,

and that driving away does not mater. Even if this causes
the mini-segway to fall over due to maximum velocities
being reached. A linearised model is used that related the
balancing angle to the motor voltage input.

Tests: The test for this feature consist of starting the
mini-segway with (slightly) different initial balancing
angles. It should be able to handle an error of at least 5�.
The mini-segway should stabilize, but does not have to
remain in a single position. It is acceptable if it falls over
eventually due to increasing speed.

Step2:
A1: The control law is designed by using pole place-

ment based on the linearised model, to control the balanc-
ing angle of the segway.

B1,1: This control law is then tested against the more
detailed model which contains the non-linear behaviour of
the mini-segway.

C1,1: With the designed controller it has been observed
that the mini-segway remains stable, and can stabilize from
a unstable starting position. What is noted however is that
the mini-segway starts driving away and requiring more
and more motor power to keep uptight.

B1,2:The first limitation is then added. The motor
voltage is limited to the maximum voltage the driver can
provide. In this case 24V.

C1,2: When the mini-segway performace is simulated
now, it is seen that it does not stabilize completely. There
are a lot of oscillations due to the limitations of the motor
in combination with the aggressive controller.

A2: The control law is made less agressive.
B2,1: The new control law is tested against the non-

linear model.
C2,1: The performance is slightly worse, but well

within bounds.
B2,2: The new control law is tested against the a model

that includes the limitations of the motors.
C2,2: There are no more oscillations and the mini-

segway stabilizes. The maximum disturbance angle from
which the mini-segway can recover is also reduced quite
severely, but this is as expected. It is still well within
bounds. When the mini-segway drives away, it can also
be seen that it falls over as soon as it needs more then
24V. This is however within the bounds of the controller.

B2,3: Until now, the controller gets the angle of
the mini-segway directly from the simulation. This is
not realistic, so the sensors need to be modelled. The
mini-segway contains a inertial measurement unit with
a 3 degree-of-freedom accelerometer and a 3 degree-of-
freedom gyroscope. In order to estimate the angle of
the mini-segway, the outputs of the accelerometer and
gyroscope are combined using a complementary filter. This
filter has to be added to the control software. To test the
implementation of the processing it is important that the
controller is simulated with the mini-segway model that

contains the sensor limitations.
C2,3:When this system is implemented it is seen that

the mini-segway has more difficulty when starting from a
unstable angle. However it can still stabilize, just after a
few more seconds.

B2,4:The final limitation before testing on the physical
mini-segway is to convert the control software to discrete
time. This is a simple operation in 20-sim.

C2,4:This control software can then be simulated with
the discrete model of the mini-segway, and it can be seen
that there is hardly any difference in performance, as was
expected.

B2,5:After converting the control model to discrete
time, it is then run on the actual mini-segway using 20-
sim4C.

C2,5:The mini-segway behaves as expected: It
stabilizes, and starts driving away, before falling over due
to the motor limitations. It does not drive straight though.

Step 3:
The feature behaves as expected. We continue to the
steering of the mini-segway. All the different detail steps
used for this controller are shown in Figure 6. The amount
of cycles is shown in the leftmost branch of Figure 8.

Steering
The second feature is to keep the mini-segway straight

while standing/driving.

Step 1:
The assumption for the initial linearised model is that
the mini-segway does not fall over. This model shows
the relation between the different wheel inputs and the
steering velocity of the mini-segway. This model is shown
as an alternative in Figure 6.
Tests: The test for this feature is to give the mini-segway
a desired steering angle, in relation to the starting angle.
It should reach this angle and not fall over.

Step 2:
A1: Based on this model a controller is created using

pole placement to control the steering and steering velocity
of the mini-segway.

B1,1: This controller is then tested against the non-
linear model of the mini-segway that can fall over.

C1,1: The mini-segway can turn stably and reaches the
desired angle.

B1,2: Motor limitations are added to the simulation.
C1,2: The motor limits have no effect on the turning

speed of the mini-segway, as the controller is slow enough
to never reach these limits.

B1,3, C1,3, B1,4, C1,4: In the same way the sensor
models and the discrete time are added. The performance
remains approximately the same. The sensor implementa-
tion is trivial, as the mini-segway has absolute wheel angle
encoders.

B1,5: The new control software is implemented on the
physical mini-segway.

155



C1,5: The system behaves as expected, the mini-segway
still drives away, but it drives away in a straight line.
Step 3:
The combined features behave as expected. We now con-
tinue to the position control of the mini-segway. All the
different detail steps used for this controller are shown in
Figure 6. The amount of cycles is shown in the middle
branch of Figure 8.

Position control
The final feature is to keep the Forward velocity and

position of the mini-segway.
Step 1:
To implement the position control, the assumption is
made that the mini-segway does not fall over or turn,
thus a linearised model is made where the angle of the
mini-segway is assumed upright and does not turn. This
model is shown as an alternative in Figure 6.
Tests: The test for this feature is to start the mini-segway
at a position with a slight disturbance, and after a time
let it drive forward a fixed distance. It should reach the
final position with a small error.

Step 2:
A1: Based on the linearised model a controller is

designed using PID tuning, to control the forward velocity
and position.

B1,1: The model is tested against the non-linear model
of the mini-segway, including the balancing and steering
controller.

C1,1: The mini-segway does not stay at the final
position, but oscillates around it. The angle controller
cannot handle the fast changes created by the position
controller.

A2: A slower controller is designed, with a lag com-
pensator to make sure the steady state error is minimal.

B2,1: The model is tested again with the non-linear
model of the mini-segway.

C2,1: The position controller behaves as expected. Not
as fast as the initial control law, but at least it is stable.

B2,2, C2,2, B2,3, C2,3: The motor limits and the
sensors are added. There is no significant difference in
the behaviour of the mini-segway, however the overshoot
is slightly larger.

B2,4: The controller is transferred to discrete time.
C2,4: There is no significant difference.
B2,5: The complete control system is implemented on

the physical mini-segway
C2,5: The mini-segway can remain upright, and keep

position, by changing the set-point it can drive around.
Step 3:
The complete controller behaves as expected. All features
are now finished and the control software is done. New
features could now be thought of and the whole cycle
could be started again. The complete set of models made
for the design is shown in Figure 6. The amount of cycles
is shown in the rightmost branch of Figure 8.

Model Balancing Steering Driving

de
ta

il

alternatives

prototype

Linear
Steering

Linear
Driving

Linear
Balance

Nonlinear
model

Motor
limit

Sensors
limits

Discrete
time

Real
segway

Control
Law

Control
Law

Sensor
processing

Discrete
time

C code

Control
Law

Sensor
porcessing

Discrete
Time

C code

Control
Law

Control
Law

Sensor
processing

Discrete
Time

C-code

Fig. 6. The complete model structure used in controlling the mini-
segway. The models contain the key aspect or limitation added. Models
on the same detail level can be simulated together.

Evaluation
The total design flow is visualized in Figure 8. In this

figure the different features and cycles are shown. However
this does not visualize the distribution of the iterations of
step B over the different design iterations. This is why the
same matrix plot is used as described in the method, to
plot the cycles of the different features. These matrices are
shown in Figure 7.

Balance Steering Position2

66664

B1,1 B2,1

B1,2 B2,2

B2,3

B2,4

B2,5

3

77775

2

66664

B1,1

B1,2

B1,3

B1,4

B1,5

3

77775

2

66664

B1,1 B2,1

B2,2

B2,3

B2,4

B2,5

3

77775

Fig. 7. A matrix plotting the instances of Step B for the different features

When comparing these matrices to the ones described
in the method it appears that the assumptions of the
order of detail were reasonably correct. Design errors were
found reasonably early in the process.

1

2

3

Balance

B

A

C

Prep

2

7

1

2

3

Steering

B

A

C

1

5

1

2

3

Position

B

A

C

2

6

Eval

Fig. 8. The different cycles of the development process, of the controller
of the mini-segway., including the amount of cycles performed.

156



CONCLUSION
The methodology proposed has been successfully ap-

plied to developing control software for the cyber-physical
system at hand. The structured approach allows for rapid
development of the embedded control software. The iter-
ative inner cycle makes it straightforward to spot small
errors while they are still easy to fix. It also allows for
staged development of the features and quickly testing on
a prototype.

The evaluation of the process gives extra insight in
the order of importance for different details of the model.
This would allow the improvement of the efficiency of the
development process by switching these around for new
features. One would have to take into account that this
switch would require extra work, as the models need to
be remade.

The model structure that is obtained by this approach is
quite extensive. There are models of the cyber and physical
part of the system at all levels of detail. These models
facilitate adding extra features or testing the system. The
different tests at different levels of detail give a lot of
insight on where certain errors or constraints originate.

FUTURE WORK
The current method could be improved by using more

data on its use. Different design challenges can be under-
taken with the same method, which can then be compared.

To further improve this method a way should be chosen
of formalizing and automating the testing of different
models during the development phase. If tests are created
when writing specifications of features, one can prevent
regressions and quickly determine whether or not a certain
controller design passes al requirements. The automation
would also allow for more extensive tests to either com-
pare different designs or to do design space exploration.

The current method uses model-to-code transforma-
tions for prototyping. This is still based on an external
connection via 20-sim4C. The possibility of generated
code for a stand-alone production environment should be
investigated.

REFERENCES
Boehm, B. W. (1988). A spiral model of software

development and enhancement. Computer, 21(5):61–
72.

Broenink and Broenink (2018). A Variable Detail Model
Simulation Methodology For Cyber-Physical Systems.
In ECMS 2018 Proceedings edited by Lars Nolle,
Alexandra Burger, Christoph Tholen, Jens Werner, Jens
Wellhausen, pages 219–225. ECMS.

Chandra, V. (2015). Comparison between various software
development methodologies. International Journal of

Computer Applications, 131(9):7–10.
Hemel, Z., Kats, L. C., and Visser, E. (2008). Code

generation by model transformation. In International
Conference on Theory and Practice of Model Transfor-
mations, pages 183–198. Springer.

Janzen, D. and Saiedian, H. (2005). Test-driven de-
velopment concepts, taxonomy, and future direction.
Computer, 38(9):43–50.

Jensen, J. C., Chang, D. H., and Lee, E. A. (2011).
A model-based design methodology for cyber-physical
systems. In Wireless Communications and Mobile Com-
puting Conference (IWCMC), 2011 7th International,
pages 1666–1671. IEEE.

Krishnan, M. S. (2015). Software development risk aspects
and success frequency on spiral and agile model. In-
ternational Journal of Innovative research in computer
and communication Engineering, (3):1.

Lee, E. A. (2008). Cyber Physical Systems: Design
Challenges. pages 363–369. IEEE.

Martin, R. C. (2002). Agile software development: prin-
ciples, patterns, and practices. Prentice Hall.

AUTHOR BIOGRAPHIES
Tim Broenink (MSc 2016) is

a PhD student at the Robotics and
Mechatronics Lab of EE at the
University of Twente. He is working
on a project for a NWO-TTW
perspective program regarding cyber
physical systems. His track within
this project relates to robust motion
control for cyber-physical systems.
His research interest includes
behavior-driven development of

hardware and software, automated testing, and co-
simulation.

Jan Broenink (MSc 1984; PhD
1990) is Associate Professor in
Embedded Control Systems at the
Robotics and Mechatronics Lab of
EE at the University of Twente.
His current research interests are
on cyber-physical systems, embedded
control systems (realization of con-
trol schemes on mostly networked
computers) and software architec-
tures for robotics. For that, he is inter-

ested in: model-driven design and meta-modeling of robot
software architectures; designing software tools includ-
ing (co)-simulation; concurrent and systems engineering.
Since July 2017 he is chairman of the Robotics and
Mechatronics group, together with prof. Stefano Stramigi-
oli, who is Scientific Director.

157


