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Summary 
 
Mass-lumped finite elements on tetrahedra offer more flexibility than their counterpart on hexahedra for the 
simulation of seismic wave propagation, but there is no general recipe for their construction, unlike as with 
hexahedra. Earlier, we found new elements up to degree 4 that have significantly less nodes than previously known 
elements by sharpening the accuracy criterion. A similar approach applied to numerical quadrature of the stiffness 
matrix provides a speed improvement in the acoustic case and an additional factor 1.5 in the isotropic elastic case. 
We present numerical results for a homogeneous and heterogeneous isotropic elastic test problem on a sequence 
of successively finer meshes and for elements of degrees 1 to 4. A comparison of their accuracy and computational 
efficiency shows that a scheme of degree 4 has the best performance when high accuracy is desired, but the one 
of degree 3 is more efficient at intermediate accuracy. 

 



Introduction

Seismic wavefield modelling with the finite-element method can be a better alternative for the finite-
differencemethod in the presence of rough topography or large geological contrasts. The spectral element
method (SEM) on hexahedra (Komatitsch and Tromp, 1999) is popular among seismologists. Tetrahedra
offer more flexibility in meshing complex geological models. Unlike as for the SEM, there is no closed-
form expression for the construction of higher-degree elements, which are usually more efficient than
the lower-order ones. Elements of degree 2 (Mulder, 1996) and 3 (Chin-Joe-Kong et al., 1999) have
been known for some time, but are quite expensive because they have about 2.5 times as many nodes
as the standard elements for those degrees. The discontinuous Galerkin method, incidentally, leads to
a similar cost increase over the standard element because of the additional fluxes that handle continuity
across elements and the block-diagonal mass matrix. More recently, Geevers et al. (2018a,b) found new
mass-lumped elements of degree 2, 3 and 4 by refining the accuracy conditions. The new elements are
more efficient than the older ones because they have less nodes and allow for larger time steps.

Here, we present a further acceleration of the method by applying tailor-made numerical quadrature
instead of exact evaluation to the computation of the stiffness matrix times the solution vector. After a
brief review of the method, we compare exact and approximate evaluation of the stiffness matrix for a
homogeneous elastic problem and observe the expected convergence rates when refining the mesh. We
then repeat the exercise for an inhomogeneous example.

Method

In the Galerkin finite-element approximation of the wave equation in second-order form, the spatial
derivatives lead to a product of a stiffness matrix and a vector containing the coefficients of the solution
expansion, whereas the temporal derivatives involve a mass matrix. Inversion of the sparse mass matrix
slows down the time stepping, but can be avoided by replacing the matrix by a diagonal one that is
easily inverted. Mass lumping diagonalizes the mass matrix by taking row sums and placing them on
the diagonal. Stability for explicit time stepping requires that the diagonal elements are strictly positive.
Accuracy requires that the lumped values, apart from a volume factor, corresponds to quadrature weights
that are exact for polynomials of sufficiently high degree. In the SEM with Legendre-Gauss-Lobatto
nodes for polynomials of degree p, mass lumping in 1D is equivalent to exact quadrature with positive
integration weights up to degree 2p−1. In 2D on triangles, mass lumping does not have this property,
except for the simplest linear element of degree 1. For degree 2, some of the nodes have zero weights.
Positivity can be restored by an adding a bubble function that is zero on the triangle’s edges and one at the
centroid. Since the bubble function is of degree 3, this means that the set of polynomial basis functions
of degree p = 2 is augmented by a polynomial of degree p′ = 3 in the interior. With this choice and
the accuracy requirement that quadrature be exact for polynomials of degree p+ p′− 2 (Ciarlet, 1978),
positive weights are obtained—also known as Simpson’s rule on the triangle. For degree 3, the product
of the bubble function and degree-1 polynomials should be added to the set of basis functions (Cohen
et al., 1995). The generalization to tetrahedra requires bubble functions on the faces, similar to those on
triangles, as well as a bubble function in the interior, which is zero on the faces and edges and one at the
centroid (Mulder, 1996; Chin-Joe-Kong et al., 1999).

The accuracy requirement of exactness for degree p+ p′− 2 has a self-defeating character: positivity
requires an increased p′ > p but a higher p′ makes it more difficult to find node positions and quadrature
weights with the desired properties. On tetrahedra, only elements up to degree 3 were found, with about
2.5 times more nodes than the standard elements. Geevers et al. (2018a,b) could reduce the number of
extra nodes by a sharper accuracy condition: quadrature should be exact for Pp−2⊗ Ũ with Pp−2 the space
spanned by polymials up to degree p−2 and, for degrees p = 2 and 3, Ũ = Pp ⊕ (b f Pp f −3) ⊕ (biPpi−4) ⊂
Pp′, involving polynomials up to degree p in the edges, the product of the cubic face bubble functions
b f with polynomials up to degree p f − 3 and the product of the degree-4 interior bubble function bi
with polynomials up to degree pi − 4. As Ũ is a smaller subset of Pmax(p,p f ,pi ), the resulting new
elements have less nodes, allow for larger time steps, and are therefore more efficient than the ones
previously know. Also, three new elements of degree 4 were found where instead of just Pp f −3 and

81st EAGE Conference & Exhibition 2019
3–6 June 2019, London, UK



(a) (b)

Figure 1 RMS errors for a homogeneous elastic problem as a function of (a) the cube root of the number
of scalar degrees of freedom N and (b) the elapsed wall clock time.

Ppi−4, we have combinations of lower-degree polynomials and bubble functions. We can extend this
idea to numerical quadrature of the stiffness matrix: quadrature should then be exact for Pp−1 ⊗ DŨ,
with DŨ the space containing the spatial derivatives of elements in the earlier Ũ. For the acoustic wave
equation, exact on-the-fly evaluation for models that are piecewise constant per element required six
matrix-vector multiplication with square matrices of the size of the number of nodes in each dimension
(Mulder and Shamasundar, 2016). The 6 matrices can be pre-computing on the reference element with
exact quadrature. Numerical quadrature involves 6 non-square matrices, with one dimension equal the
number of nodes per element and the other equal to the smaller number of quadrature nodes. This speeds
up the method. For the isotropic elastic wave equation, another factor 1.5 is gained, while accuracy is
preserved (Geevers et al., 2019). Also, the model does not have to be piecewise constant per element. In
the next section, we examine the performance of this method in terms of formal accuracy and actual run
times.

Results

Homogeneous isotropic elastic problem

As a first test, we consider the isotropic elastic wave equation for a model with a constant density of
2g/cm3, P-velocity of 2km/s and S-velocity of 1.2km/s. A vertical force source at the centre of the
domain of size [−2,2] × [−1,1] × [0,2]km3 has a 7-Hz zero-phase Ricker wavelet. 56 receivers are
placed between (−1375,200,800)m and (+1375,200,800)m at a 50-m spacing. Free-surface boundary
conditions are imposed all around. The computations starts at about −0.29s, when the wavelet has an
amplitude around machine precision, and ends at 0.6s, before reflections from the boundaries reach the
receivers. Figure 1a shows the root-mean-square errors in the recorded displacement data, measured
per trace, scaled by the square root of the energy per trace, and averaged over the 3 components and all
traces. We considered a sequence of unstructured meshes. The number of nodes involved in the finite-
element discretization is denoted by N . The total number of degrees of freedom for the 3 displacement
components is 3N . The average element size scales with N−1/3. The set of numbers in the legend are:
the degree p of the element, the order of the time stepping scheme, which is 4 in all cases, and the number
of nodes per element. The extra symbol q denotes numerical quadrature of the stiffness matrix. The
expected convergence rate is proportional to (N−1/3)p+1 for degree p and is met on average. We observe
that the formal convergence rates, one higher than the degree, are met and that numerical quadrature for
the spatial operators does not make much difference in the resulting accuracy.

Figure 1b plots the errors as a function of the observed run time with an openMP implementation on 24
cores of two Intel® 2.50-GHz Xeon® E5-2680 v3 cpus (Haswell). Clearly, the newer schemes with less
nodes as well as numerical quadrature for the spatial operators are more efficient. The degree-4 element
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Figure 2 (a) S-velocity model displayed on the surface of the unstructured mesh. (b) Seismic data,
clipped at 25% of the maximum amplitude.

(a) (b)

Figure 3 RMS errors for an inhomogeneous elastic problem as a function of (a) the cube root of the
number of scalar degrees of freedom N and (b) the elapsed wall clock time.

with 65 nodes is more efficient than the ones with 60 or 61 nodes, even though it employs more nodes per
element, because it allows for a larger time step. Overall, the element of degree 3 with 32 nodes appears
to be an attractive choice.

Inhomogeneous elastic problem

The computational domain has a size [−1,1] × [−1,1] × [−1,1]km3 with free-surface boundary con-
ditions imposed all around. The P-velocity is vp = 2+ 0.8cos(πX)cos(πY )cos(πZ)km/s with X =
(x− xmin)/(xmax− xmin) and similarly for Y and Z . The S-velocity is given by vs = 0.6vp and the density
follows from Gardner’s rule (Gardner et al., 1974). A unit vertical force source located at xs = −800m,
ys = 0m and zs = −500m has a Ricker wavelet with a 5-Hz peak frequency. Receivers are placed at xr
between −700 and +700m at a 25-m spacing, whereas yr = 0 and zr = −500m. The computations start
at about −0.41s to have the wavelet peak at zero time and end at 2s. Figure 2a shows one of the coarser
meshes with the S-velocity, defining the scaling field, superimposed. Figure 2b displays the recorded
data. We chose such a simple problem to avoid potential errors caused by imperfect absorbing boundary
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condition or by corner singularities in non-trivial topography or hard subsurface contrasts.

Figure 3a shows the estimated root-mean-square errors as a function of the number of scalar degrees
of freedom, one-third of the total unknowns. Since we do not have the exact solution, we have used
the results for a still finer mesh as reference. The legend is similar to the one in Figure 1. Power-law
fits show that the orders agree with the expect rates of p+ 1, where p is the degree of the scheme, if
numerical quadrature of the stiffness matrix is applied, indicated by the q in the legend. If not, the model
parameters are set to be piecewise constant per element and we adopt the values at the centroids of the
tetrahedra. The graph shows that the schemes of degree 2 and 3 still can keep up, but convergence for
the three schemes of degree 4 stagnates with a power of about 3.5 instead of the expected 5, becoming
worse than the scheme of degree 3. Figure 3b shows the errors as function of the elapsed time on 24
cores. The schemes of degree 4 without numerical quadrature of the stiffness matrix clearly lose out.
With that quadrature, the scheme of degree 3 (3,4 32q) appears to be the most attractive. Only at high
accuracy, degree 4 (4,4 65q) starts to win.

Conclusions

A sharper accuracy criterion enabled the construction of set of new tailor-made quadrature rules for eval-
uating the stiffness matrices in mass-lumped tetrahedral finite elements. This accelerates the simulation
of elastic wave propagation by at least a factor 1.5. If model parameters vary smoothly per element, the
formal accuracy is preserved, which is not true if an effective value at the centroid in combination with
exact evaluation is chosen. In practical computations at intermediate accuracy, the scheme of degree 3
can be the best choice. Only at high accuracy, the scheme of degree 4 with 65 nodes may perform better.
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