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Abstract

Timetables are typically generated based on passenger demand and travel time expecta-
tions. This work incorporates the travel time and passenger demand uncertainty to gen-
erate robust timetables that minimize the possible loss at worst-case scenarios. We solve
the resulting minimax problem with a genetic algorithm that uses sequential quadratic
programming to evaluate the worst-case performance of each population member. Our
approach is tested on a bus line in Singapore demonstrating an improvement potential of
' 5% on service regularity and excessive trip travel times.

Keywords: Bus scheduling; Robust timetabling; Dispatching time determination;
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1. Introduction

The rapid adoption of telematics and fare collection systems from bus operators has
improved the monitoring and reliability of transit services (Pangilinan et al., 2008). Pub-
lic transport authorities use monitoring to penalize (reward) underperforming (overper-
forming) bus operators with direct monetary incentives (Jansson and Pyddoke, 2010).
As an example, the introduced Bus Service Reliability Framework (BSRF) in Singapore
provides to bus operators 2,000 Singaporean dollars per month for every 6-second im-
provement of the passenger excess waiting times (EWT) (Leong et al., 2016). This has
motivated bus operators to improve their daily operations by incorporating new forms
of user-generated data such as social media (Grant-Muller et al. (2014); Gkiotsalitis and
Stathopoulos (2015); Chaniotakis and Antoniou (2015); Gkiotsalitis and Stathopoulos
(2016)), cellular (Toole et al. (2015); Calabrese et al. (2015)) or Automated Fare Collec-
tion (AFC) data (Uniman et al., 2010).

User-generated data can be used at the strategic planning and the tactical planning
which consists of the (i) frequency setting; (ii) timetable design and (iii) vehicle and crew
scheduling (Ceder (2007); Farahani et al. (2013); Gkiotsalitis et al. (2019)). For instance,
Gkiotsalitis and Cats (2018) set reliable frequencies for the bus services in central Stock-
holm using insights from operational automated vehicle location (AVL) and AFC data.
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Along the same lines, Wang et al. (2017) developed data-driven timetables using smart-
card records. There is also a distinct line of recent works in rail and metro operations that
use different forms of user-generated data to improve the strategic and tactical planning
(Niu et al., 2015a,b; Sels et al., 2016; Yang et al., 2017; Yin et al., 2018; Sun et al., 2018).

Besides the strategic and tactical planning, bus operators are also willing to improve
their operational planning. For instance, bus operators occasionally deploy a variety of
near real-time control measures such as stop-skipping (Sun and Hickman, 2005; Chen
et al., 2015; Yu et al., 2015; Gkiotsalitis, 2019), bus holding (Newell, 1974; Hernández
et al., 2015; Wu et al., 2017; Gkiotsalitis and Cats, 2019) and short-turnings (Zhang et al.,
2017) to recover from exogenous disruptions. Nevertheless, those corrective measures can
inflict undesirable secondary effects such as an increase of in-vehicle travel times due to
bus holding (Fu and Yang, 2002); deadheading times due to short-turning (Gkiotsalitis
and Maslekar, 2018a); and, missed boardings due to stop-skipping (Liu et al., 2013).
Other potential undesirable effects are the disruptions of crew and vehicle schedules and
“schedule sliding” where future trips are delayed.

Given the negative effects of the corrective control measures during the actual op-
erations, this study focuses on the improvement of timetables at the tactical planning
stage. One of the main problems in the generation of timetables is the uncertain nature
of trip travel times and passenger demand. That is, timetables that plan the dispatching
times of daily trips based on the historical averages of trip travel times and passenger
demand result in services that underperform even under the presence of slight disruptions
(Ibarra-Rojas et al., 2015). As a remedy, other approaches generate timetables based on
stochastic optimization methods by using the estimated probability distributions of travel
times and passenger demand. Such timetables tend to perform well on cases which are
close to the average, but unsatisfactory at the low-probability regions of the probability
distributions (Marzat et al., 2016). That is, such timetables are ineffective in the case of
less common disruptions. This motivates our work: we propose an evolutionary optimiza-
tion method that can generate robust timetables which perform well even in worst-case
scenarios of travel time and passenger demand disturbances.

The potential benefit of robust timetables is twofold: (i) they do not require the esti-
mation of probability distributions for the passenger demand and the interstation travel
times of all trips - which is a laborious task; and (ii) their performance can be satisfactory
even at worst-case scenarios that appear at the low-probability regions of the probability
distributions. We define robust timetables as timetables that maintain their operational
performance in worst-case scenarios of passenger demand and travel time disturbances.
Their importance was highlighted by Gkiotsalitis and Kumar (2018) who showed that
timetables based on demand/travel time averages or stochastic optimization were coun-
terproductive when the actual travel times varied by more than 30% from their expected
values. This was also one of the main conclusions in the survey paper of Ibarra-Rojas
et al. (2015) which proposed the use of historical AVL and automated passenger count-
ing (APC) data to develop robust timetables that can cope with the uncertainty of the
bus operations. Our work contributes to this line of research by developing a method
for robust timetable optimization. To this end, we incorporate the inherent uncertainty
of travel times and passenger demand in the generation of timetables and introduce a
genetic algorithm that uses sequential quadratic programming to solve the resulting min-
imax problem. In our experiments at a service line in Singapore, we demonstrate an
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improvement potential of ' 5% on service regularity and excessive trip travel times.
The remainder of this paper is structured as follows: in the next section, we provide

a review of related works and highlight the contributions of this study. Section 3 models
the movement of buses by considering the travel times. This model is used in section
4 together with practical operational constraints to form a mathematical program for
the timetabling problem. The robust timetable problem is reformulated in section 5 to
relax the inequality constraints that cannot be satisfied in all cases. A solution method is
presented in section 6. Experimental results from a service line in Singapore are presented
in section 7.

2. Related works on timetable optimization

A distinct line of works has proposed the simultaneous optimization of the route net-
work design, the frequency setting, and the timetabling problems (Yan et al., 2006; Zhao
and Zeng, 2008). Other works, such as Furth and Wilson (1981); Gallo and Miele (2001);
Peeters and Kroon (2001) and Ávila-Torres et al. (2017), proposed the simultaneous op-
timization of bus frequencies and timetables. Contrary to the above, most works on
timetable optimization, such as Sun et al. (2015); Wang et al. (2017) and Yu et al. (2017),
decouple the frequency settings problem from the timetabling problem and solve them in
sequential order.

Ceder et al. (2001); Cevallos and Zhao (2006); Wei and Sun (2017) and Gkiotsalitis
and Maslekar (2018b) concentrate on timetable synchronization to minimize the waiting
times of passengers at transfer stops. The seminal work of Ceder et al. (2001) was later
extended by Eranki (2004) and Ibarra-Rojas and Rios-Solis (2012) to develop flexible
timetables that provide some buffer time at the synchronization (transfer) points to cope
with operational delays. Lately, Kang et al. (2019) developed a last train and bus bridging
coordination model to mitigate the number of stranded passengers by the last train of the
day. Along the same lines, Guo et al. (2018) proposed a mixed integer programming model
to smoothen the synchronization from rail first-trains to the bus service. Nevertheless,
the line of research that considers transfer synchronizations is not the primary focus of
this work; thus, we will not expand further on this topic.

Another line of works embeds proactively slack times in the daily trips to add flex-
ibility during the operations. Introducing long slack times though requires more buses
to maintain the same service frequency. Adamski and Turnau (1998), Zhao et al. (2006)
and Daganzo (2009) studied this problem and introduced robust optimization methods
to calculate efficient slack times.

Other works on timetable optimization strive to ensure that the dispatching times of
trips are evenly-spaced throughout the day. For instance, Ceder (2011) and Ceder et al.
(2013) strive to achieve a desired even-load level for all buses at their maximum loading
point by determining trip dispatching times that do not deviate significantly from the
desired even headways. Similarly, Daduna and Voß (1995) and Shafahi and Khani (2010)
generated timetables with evenly-spaced dispatching times incorporating the additional
objective of synchronizing passenger transfers.

Another classification of the literature in timetable optimization is the categorization
into works that use deterministic travel and dwell times during the optimization process
and works that use stochastic ones. The latter body of works is closer to our work
which uses historical AVL and APC data to generate robust timetables. One example
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of such works is the work of Wu et al. (2015) which assumed stochastic bus travel times
to calculate slack times at transfer stops and improve the synchronization of timetables.
Studies on operational control have also considered stochastic travel times. Xuan et al.
(2011) used stochastic travel times to derive dynamic bus holding strategies and improve
adherence to the planned schedule. Additionally, Hickman (2001) developed an analytical
bus holding model that considers stochastic link travel times and boardings/alightings.
Such works, use a typical probability distribution that approximates the stochastic nature
of travel times and find a solution by solving a stochastic optimization problem.

Estimating probability distributions that are representative of the stochastic nature
of travel times and demand is not an easy task. The recent works of Hans et al.
(2015a,b) showed that the shapes of typical probability distributions (normal, log-normal
and Gamma distributions) that have been predominantly used to fit the observed intersta-
tion travel times (see Andersson and Scalia-Tomba (1981); Daganzo (2009)) do not exhibit
good performance. Hans et al. (2015b) calibrated the parameters of the above-mentioned
probability distributions for each link using the maximum likelihood estimation (MLE)
method and found that (i) the typically used probability distributions do not perform
well (i.e., they are inferior to manually refined distributions) and (ii) their fitness varies
significantly from case to case leading to a laborious calibration effort.

Other common problems with commonly used stochastic optimization approaches are:
(i) estimating the probability distributions of travel times and passenger demand is a
laborious task; (ii) the fitted probability distributions for a particular bus line cannot
be generalized to other lines leading to numerous, repeated calibrations; and (iii) the
performance of the resulting timetable is unsatisfactory if the realized travel and dwell
times are at the low-probability regions of the fitted probability distributions (Marzat
et al., 2016).

As a remedy, this work considers the uncertain nature of travel times and passenger
demand and seeks timetable solutions that perform well even at worst-case scenarios. This
work is different from the above-mentioned works because it does not use probability dis-
tributions to approximate the observed travel times and passenger demand. Instead, we
use uncertainty sets within which we can have any kind of passenger demand and travel
time disruption. To model this, we introduce a bus movement model that incorporates
the uncertainty of travel times and passenger demand. The resulting robust timetable
minimizes the possible loss at a worst-case scenario and is determined by the introduc-
tion of a solution method based on evolutionary optimization and sequential quadratic
programming.

The incremental contribution(s) of this work to the state-of-the-art are: (a) the con-
sideration of in-vehicle times as a problem objective to avoid prolonging trip travel times
that appear in other works (see Fu and Yang (2002)); (b) the development of a timetable
optimization model that uses (bounded) uncertainty sets of travel times and passenger de-
mand, instead of typical probability distributions (Hickman, 2001; Wu et al., 2015); and
(c) the inclusion of practical, regulatory constraints in the generation of the timetable
such as the resting times of bus drivers, the required deadheading times and the maxi-
mum dispatching headway limits.
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3. Modeling the movement of buses

3.1. Assumptions

The main assumptions of this work are:

(1) Link travel times, where a link is considered as the road segment between two
consecutive bus stops, are time-dependent and they are related to the time of the
day when the link is traversed (as in several other works such as the work of Wang
et al. (2017)).

(2) Passenger arrivals at stops are random (follow the uniform distribution). This is a
common assumption for high-frequency services (see Welding (1957); Randall et al.
(2007)) where the headways are so small that passengers cannot coordinate their
arrivals at stops with the arrivals of buses.

(3) The determined frequencies (that precede the timetabling stage) ensure that the
load of the buses does not exceed the capacity. This is a reasonable assumption
since frequencies are determined such that all passengers at the maximum load
point of the line can be accommodated (Vuchic, 2017).

3.2. Movement modeling

To consider the temporal variations of the link travel times, we partition a day into
even time periods T = {1, ..., τ, ..., |T |}. Each link travel time is stochastic, and the
domain of its values depends on the time the link is traversed (time-dependent link travel

time). We can assign any time of the day, T , to a time period τ =
⌈
|T |

86400
T
⌉
, where T is

expressed in seconds.
The scheduled dispatching time gn of each daily trip n ∈ N (where N is the set of all

daily trips) is determined from the frequency settings phase. In this work, we explore the
possibility of defining robust timetables with uneven trip dispatching times. That is, we
allow a deviation (offset) xn from each originally scheduled dispatching time gn.

The dispatching time deviations of all daily trips, x ∈ Z|N |, are the decision vari-
ables because they modify the originally planned dispatching times, gn, to increase the
robustness of the timetable. Each element from vector x = {x1, ..., xn, ..., x|N |} expresses
the dispatching time offset in minutes and is an integer number. To describe the main
components of the robust timetabling problem, we introduce the notation in Table 1.

When modeling the movement of a bus trip n in time and space, the departure time
of any bus trip n ∈ N \ {1} from any bus stop s is equal to the arrival time, an,s(x), plus
the dwell time, kn,s(x):

dn,s(x) =

{
gn + xn if s = 1

an,s(x) + kn,s(x), ∀s > 1
∀n ∈ N \ {1} (1)

where

an,s(x) = dn,s−1(x) + ts−1,τ ∀s ∈ S/{1} where τ =

⌈
|T |

86400
dn,s−1(x)

⌉
(2)
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Table 1: Notation

Indices
n indexes of bus trips
s indexes of bus stops

Sets
S = {1, ..., s, ...} set of ordered bus stops for the examined bus line
N = {1, ..., n, ...} set of ordered trips for the examined bus line. The number of trips is defined

already from the frequency settings stage
R = {1, ..., %, ..., 24} set of ordered hourly time periods of the day for modeling time-varying

origin-destination matrices
T = {1, ..., τ, ...} set of temporal partition of the day into time periods for modeling time-

varying link travel times
Z = {Z1, ..., Zi, ...} discrete set of all possible dispatching time deviations from the originally

planned dispatching times in minutes (or 60-second intervals)
Vs,τ (sec) uncertainty set from which the uncertain parameter ts,τ can take any value
Us,% (pass./h) uncertainty set from which the uncertain parameter βs,% can take any value

Uncertain Parameters
β = {βs,%} (pass./h) βs,% is the uncertain parameter of the boardings in passengers per hour at

stop s for hour % where % is one of the 24 hours of the day
t = {ts,τ}(sec) ts,τ is the uncertain parameter of the link travel time between consecutive

stops s and s+ 1 for the time period τ

Parameters
ws (sec) the planned headway at stop s ∈ S
cn (pass.) the capacity of bus trip n in number of passengers
ϕn (sec) the layover time (the required break and deadhead time for a bus that

completed its trip, n, before starting the next one)
O% = {oi,s,%} (%) oi,s,% is the percentage of boarded passengers at stop i < s that will alight

at stop s when the boardings at stop i occurred within the hourly period %
bn (unitless) bn returns the trip number of the previous bus trip that was operated by

the same bus as trip n ∈ N
p0 (sec) the minimum time a bus is held at a bus stop if there are no board-

ings/alightings
p1 (sec/pass.) the time needed for each passenger boarding
p2 (sec/pass.) the time needed for each passenger alighting
gfirst (sec) the originally planned dispatching time of the first trip of the day
gn (sec) the originally planned dispatching time of each daily trip n ∈ N
H (sec) a maximum limit of the dispatching headways of two subsequent buses to

ensure a minimum level of service (sec)

Decision variables
x = {x1, ..., xn, ...}
(sec)

the dispatching time deviation from each originally planned dispatching
time gn. They can take any value from the discrete set Z

Variables
dn,s(x) (sec) the departure time of each bus trip n ∈ N from stop s ∈ S
an,s(x) (sec) the arrival time of each bus trip n ∈ N at stop s ∈ S
hn,s(x) (sec) the headway at stop s ∈ S between bus trip n ∈ N and its leading bus trip

n′

kn,s(x) (sec) the dwell time of trip n ∈ N at stop s ∈ S
qn,s(x) (pass.) the number of passengers that board trip n ∈ N at stop s ∈ S
rn,s(x) (pass.) the number of alightings of trip n ∈ N at stop s ∈ S
ln,s(x) (pass.) the busload (defined as the total number of onboard passengers) for trip

n ∈ N at stop s ∈ S
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The dwell time kn,s(x) of a bus trip n at stop s depends on the number of boardings
and alightings (Kraft and Bergen (1974)). Detailed studies on estimating the dwell times
such as Levinson (1983), Guenthner and Sinha (1983) and Bertini and El-Geneidy (2004)
showed that the dwell time is equal to a minimum value that can range from 0-5 seconds
in case of no boardings/alightings. This value increases by 1.5 − 4.5 seconds for each
extra passenger boarding and 1−2 seconds for each passenger alighting depending on the
fare payment structure. Selecting values of the parameters p0, p1 and p2 from the above,
yields the following dwell time expression:

kn,s(x) = kn(qn,s(x), rn,s(x)) = p0 + max{p1qn,s(x), p2rn,s(x)} (3)

Remark 1: Eq.3 assumes that the front door of the buses is used for passenger boardings
and the back door for alightings. If passengers who are willing to board need to wait
until the onboard passengers exit the bus, Eq.3 should be substituted by: kn,s(x) =
p0 + p1qn,s(x) + p2rn,s(x).

The passenger boardings at trip n and stop s are associated with the inter-departure
time between trip n and its preceding trip n′ at that stop. If passengers board trip n at
stop s within the %th hour of the day, the number of passenger boardings is:

qn,s(x) :=
βs,%

3600(sec/hour)
(dn,s(x)− dn′,s(x)) (4)

The alightings of trip n at stop s, rn,s(x), can be related to the actual passenger
boardings at previous stops, qn,i(x) where i = {1, ..., s−1}, using the hourly O% = {oi,s,%}
origin-destination matrix. oi,s,% is the percentage of boarded passengers at stop i < s that
will alight at stop s and can be used for defining the alightings:

rn,s(x) :=
i=s−1∑
i=1

qn,i(x)oi,s,% where % =

⌈
|R|

86400
an,i(x)

⌉
(5)

The term
⌈
|R|

86400
an,i(x)

⌉
in eq.5 yields the hour-long time period, %, within which the

bus trip n arrived at stop i. In addition, oi,s,% is the percentage of boarded passengers at
stop i < s that will alight at stop s for which

∑
s∈S oi,s,% = 100% ,∀i ∈ S, % ∈ R.

Furthermore, the passenger load of trip n after departing from any stop s can be
expressed by the passenger flow conservation law:

ln,s(x) :=
i=s∑
i=1

qn,i(x)−
i=s∑
i=1

rn,i(x) (6)

The number of passenger boardings qn,s(x) can be used in eq.5 for deriving the number
of alightings at the next stop, s + 1. This information is used in eq.6 for deriving the
busload at the current stop and in eq.3 for deriving the dwell time at the current stop.

8



The time headway hn,s(x) between bus trip n and its preceding bus trip n′ upon their
arrival at stop s is:

hn,s(x) := an,s(x)− an′,s(x) (7)

Note that if we do not have any overtaking(s), n′ = n− 1 because the trips maintain
their dispatching order.

Plugging eq.3, 7 and 2 into eq.1 yields the following bus movement expression:

dn,s(x) =dn,s−1(x) + ts−1,τ + p0 + max{p1qn,s(x), p2rn,s(x)}

, ∀s ∈ S/{1}, ∀n ∈ N/{1} where τ =

⌈
|T |

86400
dn,s−1(x)

⌉
(8)

which is a recursive formula that can return the departure time of each bus trip from
each bus stop. Expressing the departure time of buses with this recursive formula allows
us to calculate the effect of the dispatching time deviations, x, to those departure times.
Later on, we can link the departure times with possible travel time and passenger boarding
fluctuations to find a robust solution.

4. Modeling the objectives and the constraints of the timetabling problem

4.1. Constraints

4.1.1. Layover time constraint

The layover times are the required deadheading and recovery times of consecutive trips
operated by the same bus. Minimum layover times are explicitly included in labor union
contracts. A layover time can span from zero to several minutes depending on the resting
time of the bus driver and the required turn-around time.

The layover time dictates that a bus trip bn should spend at least a time period of
ϕbn ≥ 0 seconds before starting its next trip, n. Therefore, the layover constraints for all
daily trips are expressed as:

abn,|S|(x) + kbn,|S|(x) + ϕbn ≤ gn + xn ∀n ∈ N \ {1} (9)

The above expression dictates that a bus trip n should be dispatched after the previous
bus trip operated by the same bus is completed factoring in its layover time.

4.1.2. Constraining the dispatching times of the first and the last trip of the day

As a general practice, bus operators do not modify the starting time of the first trip
of the day Ceder (2011). This requirement can be modeled by deactivating the decision
variable related to the first trip of the day: x1 = 0.

To avoid schedule sliding and maintain the duration of the daily operations, the last
trip of the day, |N |, is generally requested to be dispatched before a pre-defined time of
the day, Tlast. This results in the additional constraint:

ab|N|,|S|(x) + kb|N|,|S|(x) + ϕb|N| ≤ Tlast (10)
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4.2. Maximum dispatching headway constraint

Maximum dispatching headways are typically requested by the transit agency to ensure
a minimum level of service. This results in the inequality constraints

(gn + xn)− (gn−1 + xn−1) ≤ H, ∀n ∈ N \ {1} (11)

where H is the maximum limit of the dispatching headways of two subsequent buses.
Note that the bus operators might select different values of H for peak and off-peak
periods because of the different requirements about the level of service.

4.3. Objective definition

The determined trip frequencies from the frequency settings phase dictate the desired
headways at bus stops. During the actual operations, the desired headways cannot be
maintained because of the travel and dwell time fluctuations. Those deviations of the
actual headways from their desired values are a common indicator of the service regularity
(Trompet et al., 2011).

To measure the service regularity during the daily operations, we compute the square
root of the average squared deviation of the actual headways from the desired/planned
ones:

f1(x) =

√√√√ 1

|S|(|N | − 1)

∑
s∈S

∑
n∈N\{1}

(
hn,s(x)− ws

)2

(in seconds) (12)

where ws is the desired/planned bus headway at any stop s ∈ S.
The objective of our study is to minimize f1(x) to improve the regularity of the service.

f1(x) is selected as an indicator of the service regularity instead of the average absolute de-

viation from the desired headways, which can be expressed as 1
|S|(|N |−1)

∑
s∈S
∑

n∈N\{1}

∣∣∣hn,s(x)−

ws

∣∣∣, because it penalizes progressively the deviations from the planned headways.

Another problem objective is to ensure that our modified dispatching times do not
prolong significantly the trip travel times, as it is usually the case in practice (Fu and
Yang, 2002). This is an important issue because the delayed completion of bus trips
has several negative effects. First, it increases the passenger travel times, and second, it
delays the dispatching of future trips resulting in “schedule sliding” (Ibarra-Rojas and
Rios-Solis, 2012).

In practice, transport authorities set a maximum travel time limit for the operating
trips to penalize the unusually delayed ones. The travel time limit of bus trips, Tmax,
is usually defined during the frequency settings stage. Given that an,s=|S|(x)− dn,s=1(x)
expresses the trip travel time of any trip n ∈ N , the term max{0,

(
an,s=|S|(x)−dn,s=1(x)−

Tmax
)
} expresses the excessive completion time of a trip.

This objective is selected instead of the objective of minimizing the total travel times
of all passengers. The reason is that bus operators want to adhere to the scheduled
trip completion times to avoid delayed future dispatches that can affect the vehicle and
crew schedules. Notwithstanding the above, future studies can add the travel times of
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passengers as a third objective and examine also this effect. Minimizing the excessive trip
travel times of all daily trips can be expressed as:

f2(x) =

√
1

|N |
∑
n∈N

(
max{0,

(
an,s=|S|(x)− dn,s=1(x)− Tmax

)
}
)2

(in seconds) (13)

where f2(x) is the square root of the average squared travel time prolongation of trips
beyond the maximum travel time limit, Tmax.

By definition, f2(x) cannot be negative since max{0,
(
an,s=|S|(x)−dn,s=1(x)−Tmax

)
} ≥

0, ∀n ∈ N . If the travel times of all daily trips are less than the maximum imposed trip
travel time limit Tmax, then f2(x) receives its minimum possible value (f2(x) = 0). In
such case, an,s=|S|(x)− dn,s=1(x) ≤ Tmax, ∀n ∈ N .
Remark 2: Analyzing further the total trip travel time, we get

an,s=|S|(x)− dn,s=1(x) =
∑

s∈S\{|S|}

ts,τ + kn,s(x) where τ =
|T |

86400
dn,s(x)

This travel time is the sum of the link travel times and the dwell times from the begin-
ning of the trip until the last stop. Given that our decision variables control only the
dispatching times of trips, we can affect the total trip travel time only indirectly.

After introducing the two objectives, it is worth noting that one should not sacrifice
service regularity to ensure that all trips will be completed according to plan and vice
versa. Instead, a satisfactory trade-off between those two objectives should be established.
Given that our problem has two objectives, it can be formulated as a multi-objective
optimization problem:

argmin
x

(
f1(x), f2(x)

)
(14)

The multi-objective optimization problem of Eq.14 can be cast as a single-objective
one with the use of the weighted sum approach. This approach introduces weight factors
to establish an acceptable trade-off between the service regularity and the excessive trip
travel times (see Marler and Arora (2010)). In the following, we form this single-objective
function by introducing the weight factors 0 ≤ λ1, λ2 ≤ 1 which establish the trade-off
between the two objectives of the problem:

f(x) := λ1f1(x) + λ2f2(x)

s.t. λ1 + λ2 = 1

0 ≤ λ1, λ2 ≤ 1

(15)

5. Reformulation of the robust timetabling problem to an unconstrained one

Each link travel time, ts,τ , can take any value from the uncertainty set Vs,τ and the
hourly passenger boardings, βs,%, can take any value from the uncertainty set Us,%. There-
fore, the objective function value of Eq.15 can change based on the realizations of the link
travel times and the hourly passenger boardings.
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In robust optimization, we seek the dispatching time modifications, x, that minimize
the worst-case cost given the uncertainty sets of the link travel times and the passenger
boardings as is expressed below using the minimax method (Wald (1945)):

min
x

max
t,β

f(x, t,β) (16)

where

f(x, t,β) = λ1

√√√√ 1

|S|(|N | − 1)

∑
s∈S

∑
n∈N\{1}

((
an,s(x, t,β)− an′ ,s(x, t,β)

)
− ws

)2

+λ2

√
1

|N |
∑
n∈N

(
max{0,

(
an,s=|S|(x, t,β)− dn,s=1(x, t,β)− Tmax

)
}
)2

(17)

and t = {ts,τ} and β = {βs,%} are the disturbance matrices of the link travel time and
the hourly passenger boarding parameters where each element from those matrices can
take values from the corresponding uncertainty set.

This allows us to cast the robust timetabling problem that considers the full set of
regulatory and physical constraints as:

(Q) : min
x

max
t,β

f(x, t,β)

s.t. abn,|S|(x, t,β) + kbn,|S|(x, t,β) + ϕbn − (gn + xn) ≤ 0, ∀n ∈ N \ {1}
ab|N|,|S|(x, t,β) + kb|N|,|S|(x, t,β) + ϕb|N| − Tlast ≤ 0

(gn + xn)− (gn−1 + xn−1) ≤ H, ∀n ∈ N \ {1}
x1 = 0

where ts,τ ∈ Vs,τ , ∀s ∈ S, τ ∈ T
βs,% ∈ Us,%, ∀s ∈ S, % ∈ R
xn ∈ Z, ∀n ∈ N

(18)

Note that for different values of x, t,β in the above mathematical program, the values
of the objective function, the arrival times of buses at stops, the number of boardings
and alightings at each stop and the busloads are computed by equations 1-8, 17. The
mathematical program (Q) has 2|N |−1 inequality constraints. To evaluate the satisfaction
of the inequality constraints related to the layover times, one can introduce a set of
|N ||S| − 1 functions:

Ii(x, t,β) = abn,|S|(x, t,β)+kbn,|S|(x, t,β)+ϕbn−(gn+xn), ∀i ∈ {1, 2, ..., |N |−1} (19)

To evaluate the satisfaction of the schedule sliding inequality constraint:

Ii(x, t,β) = ab|N|,|S|(x, t,β) + kb|N|,|S|(x, t,β) + ϕb|N| − Tlast for i = |N | (20)
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and the maximum headway limit inequality constraints:

Ii(x, t,β) = (gn + xn)− (gn−1 + xn−1)−H, ∀i ∈ {|N |, |N |+ 1, ..., 2|N | − 1} (21)

Given the uncertainty of the link travel times and the hourly passenger boardings,
the solution feasibility of the mathematical program (Q) cannot be guaranteed. That is,
there exists a sufficient condition under which at least one of the inequality constraints
cannot be satisfied.

Lemma 5.1. If ∃ t0,β0 for which ab|N|,|S|(x, t
0,β0) + kb|N|,|S|(x, t

0,β0) + ϕb|N| > Tlast,
then the schedule sliding constraint cannot be satisfied.

Proof. The arrival and the dwell times of trip b|N | at the last stop depend on the dis-
patching time modifications x and t,β. We define Y0(x, t,β) := ab|N|,|S|(x, t,β) +
kb|N|,|S|(x, t,β). The function Y0(x, t,β) does not have an upper bound in R≥0. That

is, there exists a disturbance t0,β0 such that Y0(x, t0,β0) > Tlast − ϕb|N| , ∀x ∈ Z which

means that program (Q) does not have a feasible solution for such t0,β0.

Given that for some t0,β0 the mathematical program (Q) can be infeasible, we intro-
duce an exterior point penalty function. The exterior point penalty function approximates
the inequality constraints of (Q) by transforming (Q) into (Q̃). The exterior point penalty
function of (Q̃) approximates the constrained optimization problem (Q) by adding penalty
terms to the objective function that prescribe a high cost for each violation of the con-
straints (see Bertsekas (1990)).

Introducing the penalty function, P(x, t,β), mathematical program (Q) becomes:

(Q̃) : min
x

max
t,β
P(x, t,β) := f(x, t,β) +

2|N |−1∑
i=1

Wi(max[0, Ii(x, t,β)])2

where ts,τ ∈ Vs,τ , ∀s ∈ S, τ ∈ T
βs,% ∈ Us,%, ∀s ∈ S, % ∈ R
xn ∈ Z, ∀n ∈ N
x1 = 0

(22)

where Wi ≫ 0 ∀i ∈ {1, ..., |N ||S| + |N |} and always takes a sufficiently high value to
ensure that each constraint violation is over-penalized.

The penalty function, P(x, t,β), is equal to the objective function, f(x, t,β), if∑2|N |−1
i=1 Wi(max[0, Ii(x, t,β)])2 = 0. This indicates that all constraints are satisfied

for such values of x, t,β. The term
∑2|N |−1

i=1 Wi(max[0, Ii(x, t,β)])2 is the added term
to the objective function of (Q) and dictates that if a constraint Ii(x, t,β) is violated
(which occurs when Ii(x, t,β) > 0), then max[0, Ii(x, t,β)] = Ii(x, t,β). This adds a
penalty Ii(x, t,β) to the objective function f(x, t,β). In that case, the objective func-
tion f(x, t,β) is penalized by the positive term WiI

2
i (x, t,β).

Remark 3: Wi is a weight factor for every constraint expressing the violation prominence
of one constraint compared to all others. If all constraints i ∈ {1, 2, ..., 2|N |− 1} have the
same weight factor, then they are all equally treated.

13



6. Solution method for the robust timetabling problem

Applying a classical exact optimization method to solve (Q̃) requires an exponential
number of penalty function evaluations to find a globally optimal solution. For instance,
the required number of penalty function evaluations with the brute-force method is |Z||N |
and a globally optimal solution cannot be computed in practice (i.e., for a typical bus
service with 200 daily trips and a set Z = {−180,−120,−60, 0,+60,+120,+180} seconds,
the number of required penalty function evaluations is |Z||N | = 7200 = 1.046184E + 169).

Instead of using exact optimization methods, heuristic optimization algorithms, such
as the ones from the area of evolutionary optimization, can be employed. Even if evolu-
tionary optimization algorithms do not guarantee global optimality, they can be applied
to attain improved solutions. In this work, we devise a genetic algorithm (GA) that incor-
porates sequential quadratic programming (SQP) to solve the minimax problem of (Q̃).
This solution method searches for the dispatching times that perform best in worst-case
scenarios of travel time and passenger demand disturbances.

The main stages of our proposed GA are: (1) encoding the initial population; (2)
evaluating the fitness of each population member at the worst-case scenario using SQP;
(3) selecting parents for offspring generation; (4) crossover; and (5) mutation.

6.1. Encoding

We initially introduce a GA population P = {x1,x2...,x|P |}, where each population
member xi ∈ P is an initial solution guess of the robust dispatching time optimization
problem. The genes of each population member xi = {xi1, xi2, ..., xi|N |} denote the dis-

patching time modification of each trip {1, 2, ..., |N |}. When initializing the population,
each gene xin receives a random value from the set Z.

6.2. Fitness Evaluation

Because we seek a robust timetable, the fitness of a population member xi ∈ P is
evaluated by calculating its performance under the worst-case travel time and passenger
demand disturbance. That is, the fitness F(xi) of a population member xi ∈ P is the
optimal value function of

F(xi) :=

{
max
t,β
P(xi, t,β), s.t. ts,τ ∈ Vs,τ , ∀s, τ, βs,% ∈ Us,%, ∀s, %

}
(23)

This maximization problem can be denoted as (Q̃max) and is a nonlinear programming
problem (NLP). (Q̃max) can be solved with numerical optimization methods for nonlinear
programming, such as the sequential quadratic programming (SQP) method. In Appendix
A we provide a detailed description of applying a multi-start SQP algorithm for solving
the mathematical program (Q̃max).

(Q̃max) must be solved |P| times to return the fitness values F(xi) of each population
member xi ∈ P. One population member xi ∈ P is more fit for reproduction if its
F(xi) value is low indicating a good performance at the worst-case scenario. Using
the well-known roulette-wheel selection method Goldberg and Deb (1991), population
members with better fitness have a higher probability of being selected for reproduction.
In more detail, the probability of a population member xj to be selected for reproduction

is F(xj)∑
xi∈P

F(xi)
.
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6.3. Crossover and Mutation

For each pair of parents that are selected by the roulette-wheel selection method, a
cross-over occurs at a randomly selected crossover point to produce two offsprings (recom-
bination). The same process is repeated until the total number of generated offsprings is
equal to the population size |P|.

In the mutation stage, a mutation can occur at any gene of an offspring allowing the
exploration of new information that does not belong to the parents. That is, each gene has
a very small probability of being replaced by a random value from the set Z of dispatching
time deviation options.

6.4. Population Evolution and Termination

After completing the above stages, the initial population is replaced by the new gen-
eration. This procedure is repeated resulting in population evolutions κ = {1, 2, ...}. At
each population evolution, there is an incumbent solution xκ for which xκ ≤ xi, ∀xi ∈ P.
The population evolutions continue until reaching a pre-determined limit of population
generations without any further improvement as presented in alg.1.

Algorithm 1 Solution of the minimax problem

1: function MiniMax
2: Set iteration κ← 1;
3: Initialize population P = {x1,x2...,x|P |};
4: while the termination criterion is not achieved do
5: Evaluate the fitness F(xi), ∀xi ∈ P by solving (Q̃max) using SQP (see alg.2);
6: Find the incumbent solution xκ ≤ xi, ∀xi ∈ P that has the best performance in

the worst-case scenario;
7: Perform the crossover and mutation steps and generate a new population P;
8: Set iteration κ← κ+ 1;
9: end while

10: return the final solution x∗

11: end function

7. Experimental results

7.1. Case study description

The case study is a high-frequency circular bus service in Singapore with 214 daily
trips. From all daily trips, only the trips dispatched within 07:00 and 19:00 operate
under a regularity-based scheme. The rest are scheduled based on punctuality and are
not part of our timetabling problem. The total number of trips that operate from 07:00
until 19:00 are |N | = 132. The circular service covers 7.5 km and serves |S| = 22 bus
stops with an average trip travel time of 37 minutes. The circular bus service is a feeder
service covering residential blocks, schools, public amenities and connecting them to a
Mass Rapid Transit (MRT) station as presented in Fig.1. In this bus line operate 12-
meter single-decker buses with a seated capacity of 42 passengers and standing capacity
of 33 passengers (75 passengers in total). From this line, detailed five-month AVL and
APC datasets are available. The datasets contain a total number of 2,254 trips with
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Figure 1: Bus line topology - locations of stops [map source: Google maps]

complete information regarding arrival times at stops, link travel times, boardings and
alightings.

The values of the parameters for the robust timetabling problem are summarized in
tables 2 and 3. Tmax is derived after consultation with the bus operator and is defined as
the 90% quantile of the observed total travel times. This is not restrictive though (i.e.,
bus operators are free to select their preferred trip travel time limits).

Table 2: Parameter values of the circular bus service

S (bus stops) {1,2,...,22}
|N | (number of trips that operate under service regularity) 132
ϕ (layover time) 180 sec → 3 min
p0 (dwell time in case of no boardings/alightings) 0 sec
p1 (required time per passenger boarding) 3 sec
p2 (required time per passenger alighting) 1.5 sec
gfirst (dispatching time of the first trip) 25200 sec → 07:00
Tlast (latest possible dispatching time of the last trip) 68340 sec → 18:59
Tmax (maximum trip travel time limit) 2520 sec → 42 min
H maximum allowed limit of the dispatching headways 480 sec → 8 min
ws,ρ (planned headway at any stop s ∈ S in time period 07:00-10:30) 300 sec → 5 min
ws,ρ (planned headway at any stop s ∈ S in time period 10:30-19:00) 360 sec → 6 min
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Table 3: Originally planned trip dispatching times

N Planned dispatching time of each trip, gn, ∀n ∈ N

{1,...,12} 7:00 7:05 7:10 7:15 7:20 7:25 7:30 7:35 7:41 7:47 7:53 7:58
{13,...,24} 8:03 8:08 8:13 8:18 8:23 8:28 8:33 8:38 8:43 8:48 8:53 8:57
{25,...,36} 9:02 9:06 9:11 9:15 9:20 9:24 9:29 9:33 9:38 9:42 9:47 9:52
{37,...,48} 9:57 10:02 10:07 10:12 10:17 10:23 10:29 10:36 10:43 10:49 10:55 11:01
{49,...,60} 11:07 11:13 11:19 11:25 11:31 11:37 11:43 11:49 11:55 12:01 12:07 12:13
{61,...,72} 12:19 12:25 12:31 12:37 12:44 12:50 12:56 13:02 13:08 13:15 13:21 13:28
{73,...,84} 13:34 13:41 13:47 13:54 14:00 14:07 14:13 14:19 14:25 14:32 14:38 14:45
{85,...,96} 14:51 14:57 15:03 15:09 15:19 15:22 15:24 15:29 15:34 15:38 15:42 15:47
{97,...,108} 15:51 16:01 16:04 16:09 16:14 16:18 16:22 16:26 16:30 16:38 16:42 16:43
{109,...,120} 16:48 16:53 16:58 17:03 17:09 17:15 17:21 17:27 17:33 17:39 17:45 17:51
{121,...,132} 17:57 18:03 18:09 18:14 18:19 18:24 18:30 18:36 18:42 18:48 18:53 18:58

Table 3 presents the originally planned dispatching times for the circular bus service
from 07:00 until 19:00. The weight factors of constraints Wi, ∀i ∈ {1, 2, ..., 2|N | − 1} are
given the sufficiently high values of 10E + 5 to ensure that the satisfaction of all problem
constraints is prioritized. Later, in fig.5, we will show that the two terms f1, f2 of the
objective function have values in the range of [0.5, 2]. Hence, a weight factor value of
10E + 5 prioritizes the satisfaction of constraints. A practical approach to select such
weight factors is to evaluate the value of the objective function by applying an initial
solution guess and then select weight factor values that are significantly higher than the
objective function score.

Furthermore, we apply several different weight factor values λ1, λ2 that dictate the
trade-off between the service regularity and the excessive trip travel times to investigate
the solution sensitivity to their changes. These values are presented in table 4.

Table 4: Examined pairs of weight factor values, λ1, λ2 ∈ R≥0 | λ1 + λ2 = 1

I II III IV V VI

λ1 0.8 0.66 0.5 0.09 0.05 0.025
λ2 0.2 0.33 0.5 0.91 0.95 0.975

In Fig.2 the upper and lower limits for the link travel times are visualized as a function
of the time of the day. These limits are used to form each uncertainty set, Vs,t, of the link
travel times where the lower and upper bounds of each set are defined as:

Vs,τ = [Vmin
s,τ ,Vmax

s,τ ] (sec) (24)

where Vmin
s,τ = max{tfree-flow

s , µs,τ − 1.96σs,τ} and Vmax
s,τ = µs,τ + 1.96σs,τ and µs,τ , σs,τ are

the mean and standard deviation of the observed travel times of a specific link inside the
time period τ . µs,τ±1.96σs,τ are the 95% confidence intervals of the observed travel times
and tfree-flow

s is the free flow travel time on the specific link assuming that a bus is driving
at its maximum allowed speed and is not stopped by traffic lights.

The mean and standard deviation of the link travel times are estimated using Gaussian
Processes (Rasmussen and Williams, 2006). Gaussian processes assume that the underly
process, in this case, the travel time at each link, is Gaussian and has a correlation function
which is given by a kernel function. In our experiment we use the GPy python library
(GPy, since 2012) and RBF ((Gaussian) radial basis function) or square exponential
kernel.
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Figure 2: Upper and lower limits of the link travel times at each time of the day derived from the AVL
data records
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Figure 3: An example of the upper and lower limits of travel times for each 1-minute time period between
6 and 7pm. The blue lines show the computed link travel time intervals within each 1-minute period

In Fig.3, we focus explicitly in a one-hour period of a specific link from stop 3 to 4.
There, we show the computed upper and lower limits of the Gaussian process approxi-
mation. In this work, we split the day into |T | = 1440, 1-minute time periods. Then,
we derive the uncertainty set of link travel times for each time period. Therefore, each
set Vs,τ represents the uncertainty of link travel times for the minute of the day that
corresponds to the respective time period of τ . In Fig.3, some values of the link travel
times are outside the 95% confidence interval (outliers). Additionally, from Fig.2, 3 one
can note that the mean of the link travel times varies considerably during the day.

Finally, in Fig.4 we present the lower and upper limits of the hourly passenger board-
ings at each stop derived from the APC data after following the same approach. The
lower and upper limits are used to define the lower, Umin

s,% , and upper bound, Umax
s,% , for

each uncertainty set Us,% = [Umin
s,% ,Umax

s,% ] at each stop s ∈ S and hourly time period, % ∈ R.

7.2. Investigating the trade-off between service regularity and excessive trip travel times

As presented in Fig.5, f1 and f2 receive significantly different values for different values
of the weight factors λ1, λ2. The key observations from this analysis are:

� For λ2 ≥ 0.95, f2 cannot be improved any further. A possible explanation is that
there is a point (λ ≥ 0.95) after which the travel times of some problematic trips
cannot be further improved with dispatching time modifications;

� The excessive trip travel times (f2) can be improved by 21.1% for a service regularity
(f1) sacrifice of 10.8%;

� The service regularity (f1) can be improved by 9.7% for a sacrifice of the excessive
trip travel times (f2) of 17.4%. Note that 17.4% is the deterioration of the excessive
trip travel times from 0.6075 min (when λ2 = 0.95) to 0.7354 min (when λ2 = 0.2);

� The service regularity (f1) is more sensitive to changes in the weight factors λ1, λ2;
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Figure 4: Upper and lower limits of the hourly passenger boardings at each stop derived from the APC
data records
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Figure 5: Plot of f1 and f2 for the values of the weight factors λ1, λ2 in table 4. Note that the horizontal
axis is modified to keep the same distance among scenarios.

� Between λ2 = 0.2 and λ2 = 0.91 (λ1 = 0.8 and 0.09 respectively) the service
regularity, f1, and excessive trips travel time, f2, changes are very small denoting
that this is a stable region.

The bus operator might select any weight factor pair λ1, λ2 to compute an optimal
solution where (λ1 = 0.8, λ2 = 0.8) places more emphasis on service regularity and (λ1 =
0.05, λ2 = 0.95) places more emphasis on the enforcement of the trip travel time limits. If
the operator has no specific preference though, the region of 0.2 ≤ λ2 ≤ 0.91 is the most
preferable because it exhibits a balanced trade-off between the service regularity and the
excessive trip travel times. Noting that λ1 = λ2 = 0.5 is the most natural choice because
it places the same emphasis on the service regularity and the excessive trip travel times,
we select this value to continue our analysis. We should note though that this does not
prohibit the use of other values of λ1, λ2 if the transport operator has a specific preference.

7.3. Computation of the robust timetable

The robust timetable results after solving the problem of (Q̃) with alg.1 are presented
in Fig.6 and the proposed robust dispatching times in table 5. The y-axis of Fig.6 presents
the performance of the incumbent solution at each population evolution (iteration). In
the first iteration, the maximization step easily finds a way to disrupt the current minimal
solution. However, from iteration 20 the computed solutions start to exhibit some degree
of robustness that is then consolidated after iteration 50. In the remaining iterations, the
solution is only marginally improved.
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Table 6: Assigned hyperparameter values to the eaSimple() algorithm from the Deap package for finding
a new solution xκ at each iteration

Algorithm Hyperparameters

eaSimple() pop1=60 cxpb2=0.5 mutpb3=0.2 ngen4=50
1pop: population size
2cxpb: probability of pairing each individual at each generation
3mutpb: probability of mutating each individual at each generation
4ngen: number of generations to accomplish

Table 5: Robust trip dispatching times. Changes from the original dispatching times are in italics

N Planned dispatching time of each trip, gn, ∀n ∈ N

{1,...,12} 7:00 7:05 7:10 7:15 7:20 7:25 7:30 7:35 7:41 7:47 7:53 7:58
{13,...,24} 8:03 8:08 8:13 8:18 8:23 8:28 8:33 8:40 8:45 8:50 8:55 8:59
{25,...,36} 9:04 9:08 9:13 9:17 9:22 9:26 9:31 9:35 9:40 9:44 9:49 9:54
{37,...,48} 9:59 10:04 10:09 10:14 10:19 10:25 10:31 10:38 10:45 10:51 10:57 11:03
{49,...,60} 11:09 11:15 11:21 11:27 11:33 11:39 11:45 11:51 11:57 12:03 12:09 12:15
{61,...,72} 12:21 12:27 12:33 12:39 12:46 12:52 12:57 13:04 13:10 13:17 13:23 13:28
{73,...,84} 13:36 13:43 13:49 13:56 14:02 14:09 14:15 14:21 14:27 14:34 14:40 14:47
{85,...,96} 14:53 14:57 15:03 15:09 15:15 15:22 15:24 15:29 15:34 15:38 15:42 15:47
{97,...,108} 15:51 15:57 16:04 16:09 16:14 16:18 16:22 16:26 16:30 16:36 16:40 16:43
{109,...,120} 16:48 16:53 16:58 17:03 17:09 17:15 17:21 17:27 17:33 17:39 17:45 17:51
{121,...,132} 17:57 18:03 18:09 18:14 18:19 18:24 18:30 18:36 18:42 18:48 18:53 18:58

To solve (Q̃max) at each population evolution κ for all population members, we employ
the multi-start SQP method described in alg.2. This algorithm is programmed in Python
2.7. More specifically, we deploy a multi-start SQP strategy where we generate multiple
initial solution guesses. For each initial solution guess, we apply the SQP steps by using
the Feasible Sequential Quadratic Programming (FSQP) method from the pyOpt Python
package described in Lawrence and Tits (1996).

The GA that evolves the population is implemented with the use of the Distributed
Evolutionary Algorithms in Python (Deap) package (Fortin et al., 2012). From this pack-
age, we use the eaSimple() algorithm with the hyperparameter values of table 6. In this
study, the hyperparameter values of the GA expressed in table 6 are determined after a
limited scale trial-and-error calibration. The scale of the calibration is limited because a
full calibration of the hyperparameters when solving a problem instance requires to exam-
ine all possible parameter combinations (which is practically impossible given the large
population size, crossover rate options, mutation rate options, and population evolution
combinations). In this limited scale calibration, the GA convergence did not improve
significantly for population sizes of more than 60 individuals and population evolutions
of more than 50 generations. Additionally, mutation probabilities of more than 20% did
not improve the solution space exploration; thus, justifying the selected hyperparameters
in table 6.

After the 50th population evolution, the computed dispatching time solutions maintain
a good performance in worst-case scenarios and the most robust solution is observed at
the 72nd iteration for which F(xκ=72) = 2.34 (expressed in min). Since the GA search
cannot guarantee global optimality, the solution quality needs to be further examined. In
Appendix B we analyze the solution quality in a small-scale, idealized scenario where it is
possible to evaluate the performance of all solutions using as a benchmark the brute-force
method that can return a globally optimal solution.
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7.4. Comparative analysis of the robust and the originally planned dispatching times in
the worst-case scenario

To compute the performance of the robust timetable and the originally planned one in
the worst-case scenario, we solve (Q̃max) for the robust solution xκ=72 (worst-case scenario
of the robust dispatching times) and the originally planned solution xκ = {0, ..., 0}. The
corresponding results are presented in figures 7 and 8 respectively.

In Fig.7, we present the performance of the service regularity with the use of the
originally planned and the robust dispatching times. The service regularity at each stop
is calculated with the metric f1 demonstrating a daily improvement of 9.5% when using
the robust dispatching times (from 1.8832 min to 1.7036 min).

Fig.8 presents the worst-case trip travel times of the 132 trips from 07:00 until 19:00
when using the originally planned and the robust dispatching times. From Fig.8 one can
observe that:

� the number of trips with travel times beyond the Tmax limit of 42 min is reduced
from 15 to 12 when applying the robust dispatching times;

� the overall travel time which exceeded the 42 min limit is reduced from 16.165 min
to 9.588 min when applying the robust dispatching times.

It is worth noting that several of the trips from n = 75 to n = 115 exceed the
maximum travel time limit and the dispatching time modifications of xκ=72 cannot satisfy
this requirement. This requirement cannot be satisfied even if we place more emphasis
on maintaining the trip travel times below the Tmax limit. Therefore, the bus operators
should be aware that, given the uncertainty of link travel times and hourly passenger
boardings, there might be some problematic daily trips that cannot be completed on
time.

7.5. Simulation-based validation using actual travel times and passenger boardings

In the previous analysis, we compared the performance of the originally planned dis-
patching times and the robust dispatching times in the respective worst-case scenarios.
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Nevertheless, a worst-case scenario will rarely occur in practice. In this section, we sam-
ple values from the observed link travel time and hourly passenger boardings using the
5-month AVL and APC data to perform a more realistic validation.

In this simulation-based validation, we perform a large number of Monte Carlo simula-
tions using repeated random sampling of link travel times and hourly passenger boardings
from realistic data (namely, our 5-month AVL and APC datasets). In each Monte Carlo
simulation, we sample the values of t and β representing the realizations of the link travel
times and the hourly passenger boardings from the historical data. To avoid the effect of
sampling bias in the validation process, we run a large number of Monte Carlo simulations,
M = 2000.

The f1, f2 values are evaluated for each Monte Carlo simulation of a daily scenario
when using the originally planned dispatching times and the robust ones. Note that the
originally planned dispatching times correspond to the optimal dispatching times when the
uncertainties of the interstation travel times and hourly passenger boardings are not taken
into consideration. Note also that we compare the performance of our robust timetable(s)
against the performance of the optimal timetable in the average case and not against other
classic methods (i.e., the even-headway and even-load methods Ceder (2007)) because our
proposed model has a profoundly different objective than such methods.

The performance of the originally planned dispatching times and the robust ones at all
scenarios is summarized in Fig.9 utilizing the Tukey boxplot convention (Tukey, 1977).
Following this convention (i) the first quartile, Q1, is the middle number between the
smallest number and the median of the data set, (ii) Q2 is the median of the data set,
(iii) the third quartile, Q3, is the middle value between the median and the highest value
of the data set, (iv) the minimum is the lowest datum still within 1.5 of the interquartile
range (IQR) of the first quartile and, (v) the maximum is the highest datum still within
1.5 IQR of the third quartile. All other values outside the [minimum, maximum] set are
outliers.

Fig.9 shows that the robust dispatching times have on average a 5.17% improved
performance in terms of service regularity compared to the originally planned ones. More
importantly, the maximum of the boxplot related to the service regularity is improved by
5.53% demonstrating an improved performance even at extreme scenarios. In addition,
the interquartile range (IQR) of the robust dispatching times is IQR=Q3−Q1 = 1.584−
1.498 = 0.086 min and is slightly smaller than the observed IQR when implementing the
originally planned dispatching times which is equal to 0.092 min.

From Fig.9 we notice that the service regularity of the robust timetable is consistently
better than the original timetable; thus, the robust timetable is statistical dominating the
originally planned one.

The right half of Fig.9 presents the values of f2. From this, one can observe that
the excessive trip travel times are improved on average by 6.87% when using the robust
dispatching times. Additionally, the interquartile range shrank by 12.8% from 0.557-
0.432=0.125 min to 0.109 min when applying the robust dispatching times proving that
the excessive trip travel times become more stable and are closer to the mean.

Finally, we should note that defining realistic lower and upper limits for the link travel
times, [Vmins,τ ,Vmaxs,τ ], and the hourly passenger boardings, [Umins,ρ ,Umaxs,ρ ], plays an important
role in finding a robust timetable that performs well in common-case scenarios (i.e., it is
not too conservative). For this reason, as one can observe from figures 2 and 4, we use
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Figure 9: Validation results

Gaussian processes to derive realistic lower and upper limits and exclude outliers that
have low chances to occur in practice. In this way, the robust timetable performs better
in common-case scenarios while maintaining its resilience to common link travel time and
hourly passenger boarding fluctuations.

To demonstrate the performance of more conservative robust timetables, we compute
new timetables by increasing the limits of the link travel times and the hourly passenger
boardings by 10% and 20%. Then, we present the service regularity results after applying
them in the same M scenarios (table 7). Interestingly, a robust timetable which is com-
puted considering a 20% increase in the range of the limits [Vmins,τ ,Vmaxs,τ ] and [Umins,ρ ,Umaxs,ρ ]
exhibits a worst performance in terms of service regularity compared to the originally
planned timetable (the median deteriorates by 1.66%). On the contrary, the maximum
of the boxplot is reduced by 7.13% compared to the same value of the originally planned
timetable. This demonstrates that service regularity will remain very close to the median
value in extreme cases when using an overprotective timetable.

Table 7: Validation results - Service Regularity, f1 (min)

Validated Timetable min. Q1 median Q3 max. median improvement max. improvement

Originally Planned 1.448 1.582 1.626 1.674 1.810 N/A N/A

Robust Timetable1 1.370 1.498 1.542 1.584 1.710 5.17% 5.52%

Robust Timetable2 1.421 1.551 1.623 1.661 1.689 0.18% 6.68%

Robust Timetable3 1.441 1.621 1.653 1.660 1.681 -1.66% 7.13%

1Calculated using the limits [Vmins,τ ,Vmaxs,τ ] and [Umins,ρ ,Umaxs,ρ ] depicted in figures 2 and 4
2Calculated using the limits [0.90 Vmins,τ , 1.10 Vmaxs,τ ] and [0.90 Umins,ρ , 1.10 Umaxs,ρ ]
3Calculated using the limits [0.80 Vmins,τ , 1.20 Vmaxs,τ ] and [0.80 Umins,ρ , 1.20 Umaxs,ρ ]
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Summarizing our analysis, we enlist two weaknesses that might be instrumental in
future research. First, deriving robust timetables that perform (generally) well in both
common-case and worst-case scenarios requires a detailed analysis of the uncertainty sets
from which the travel time and passenger boarding fluctuations can receive values. This
analysis is an added task that is not required in deterministic methods. Second, the
solution of a robust timetable problem with discrete decision variables requires using
heuristics that do not guarantee the computation of a globally optimal solution.

7.6. Comparison of robust and stochastic optimization solutions

In the previous sub-section we compared the performances of the originally planned
timetable based on nominal conditions and the robust optimization timetable inM = 2000
daily scenarios demonstrating a potential improvement of 5.17% in terms of service regu-
larity. Another valuable test is the comparison of the robust timetable against a timetable
computed with stochastic optimization. Stochastic optimization is an alternative ap-
proach that can optimize a timetable in the presence of uncertainty. Stochastic optimiza-
tion uses random variables of known probability distributions in the optimization process
and seeks a solution that minimizes the expected performance of the objective function
in the presence such random variables (Shapiro et al., 2009; Naumann et al., 2011).

In this sub-section, we compare the performance of the robust timetable and the
stochastic optimization timetable in 2000 daily scenarios to investigate the similarities
and differences of the two approaches. To compute a timetable based on stochastic op-
timization, we use the mean µs,τ and variance σ2

s,τ of the observed travel times from the
historical, 5-month AVL data presented in Fig.2. In addition, we use the mean µ̃s,% and
variance σ̃2

s,% of the hourly passenger boardings at each stop s and hour % as they were
derived from the historical APC data (Fig.4). In stochastic optimization, the travel time
from stop s to stop s+ 1 at time τ is a random variable ts,τ that follows some probability
distribution ts,τ ∼ X (µs,τ , σ

2
s,τ ). Similarly, the hourly passenger boardings follow some

probability distribution βs,% ∼ X̃ (µ̃s,%, σ̃
2
s,%).

In accordance with previous works (Dessouky et al., 2003; Xuan et al., 2011; Hans
et al., 2015a), the normal distribution is selected as the probability distribution of the
link travel times, ts,τ ∼ N (µs,τ , σ

2
s,τ ), where ts,τ ≥ tfree-flow

s and tfree-flow
s is the lowest

possible travel time under free flow conditions. Similarly, the hourly passenger boardings
βs,ρ ∼ Ñ (µ̃s,ρ, σ̃

2
s,%) where βs,% ≥ 0, ∀s ∈ S, % ∈ R because passenger boardings cannot

receive a negative value.
Using the probability distributions, the robust optimization program Q̃ is transformed

into a stochastic optimization one:

(Q̂) : min
x

E[P(x, t,β)]

where t′s,τ ∼ N (µs,τ , σ
2
s,τ ), ∀s ∈ S, τ ∈ T

ts,τ = max{tfree-flow
s , t′s,τ}, ∀s ∈ S, τ ∈ T

β′s,% ∼ Ñ (µ̃s,ρ, σ̃
2
s,%), ∀s ∈ S, % ∈ R

βs,% = max{0, β′s,%}, ∀s ∈ S, % ∈ R
xn ∈ Z, ∀n ∈ N
x1 = 0

(25)
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The stochastic optimization program (Q̂) can be solved with iterative approximation
methods that try to minimize the expected value E[P(x, t,β)]. An example is the Sam-
ple Average Approximation (SAA) method (Robinson, 1996) that uses a combination of
sampling and deterministic optimization to provide an approximate solution of (Q̂).

SAA tries to approximate the value of E[P(x, t,β)] with the use of Monte Carlo
sampling. In this pursue, the problem is optimized considering a very large number of
realizations (ts,τ )

r
l=1 and (βs,%)

r
l=1. Program Q̂ is solved deterministically for the respective

realizations tl = (ts,τ )l and βl = (βs,%)l. SAA returns an approximate stochastic opti-

mization solution x∗ that is close to the solution of Q̂ if the sample size r is very large. To
obtain the stochastic optimization solution with SAA, the following program is solved:

min
x

1

r

r∑
l=1

P(x, tl,βl)

where (t′s,τ )l ∼ N (µs,τ , σ
2
s,τ ), ∀s ∈ S, τ ∈ T, l ∈ {1, 2, ..., r}

(ts,τ )l = max{tfree-flow
s , (t′s,τ )l}, ∀s ∈ S, τ ∈ T, l ∈ {1, 2, ..., r}

(β′s,%)l ∼ Ñ (µ̃s,ρ, σ̃
2
s,%), ∀s ∈ S, % ∈ R, l ∈ {1, 2, ..., r}

(βs,%)l = max{0, (β′s,%)l}, ∀s ∈ S, % ∈ R, l ∈ {1, 2, ..., r}
xn ∈ Z, ∀n ∈ N
x1 = 0

(26)

The obtained timetable from the SAA solution is compared against the robust timetable
when they are both applied to the same M = 2000 daily scenarios derived from real data.
The results in terms of service regularity are summarized in Fig.10 utilizing the Tukey
boxplot convention.
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Figure 10: Validation results when comparing the robust timetable against the stochastic optimization
one

On average, the stochastic optimization timetable exhibits a similar performance as the
robust timetable (Q2 ' 1.54). Nevertheless, in many daily scenarios where the travel times
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and hourly passenger boardings exhibit a mild variation from their expected values, the
stochastic optimization timetable is performing better. For instance, the service regularity
when using a stochastic timetable can fall even below 1.3 minutes when the travel time
and hourly passenger boarding realizations of a daily scenario are close to their expected
values. In contrary, in daily scenarios with significant travel time and hourly passenger
boarding disruptions, the stochastic optimization timetable underperforms (max value of
1.77 min), and the robust timetable is preferable (max 1.71 min). The reason behind this
is that the stochastic optimization timetable is unsatisfactory if the realized travel times
and boardings are at the low-probability regions of the respective probability distributions.

All in all, the robust and the stochastic optimization timetables exhibit a similar per-
formance (on average) when applied in the 2000 daily scenarios. The main difference is
that the robust timetable performs better in worst-case scenarios, whereas the stochastic
optimization timetable exhibits a superior performance in the normal cases with mild
disruptions. This indicates that selecting a robust timetable instead of a stochastic opti-
mization one is a delicate task and depends on the observed variability of the travel times
and passenger demand from day to day. Thus, transport operators should be aware of
that and examine the trade-off between performance improvement in the normal cases
and in worst-case scenarios given the variability of their daily services.

8. Concluding remarks and managerial implications

In this work, we introduced a bus movement mathematical model that can cope with
travel time and passenger boarding uncertainty in the pursuit of developing robust timeta-
bles. The performance of the robust timetable for the worst-case link travel time and
hourly passenger boarding scenario in a circular bus line in Singapore demonstrated an
improvement potential of 9.5% in terms of service regularity.

The performance of the robust timetable against the optimal timetable in the average
case was validated using AVL and APC data from a 5-month period. In the validation, the
average service regularity improved by 5.17%. Additionally, the excessive trip travel times
improved by 6.87% demonstrating the potential of improving both the service regularity
and the excessive trip travel times by modifying the dispatching times of the daily trips.

The results of this research suggest some important managerial implications for bus op-
erators. One managerial implication is possible changes at the crew schedules. Although
the pre-determined frequencies remain unchanged when adopting a robust timetable, the
dispatching times of trips should be modified. As presented in table 5, the requested
dispatching time modifications when switching from an originally planned to a robust
timetable are small. Therefore, switching from originally planned to robust timetables is
expected to have a minor effect to the pre-determined crew schedules.

Another managerial implication is that practitioners need to thoroughly consider the
bounds of the uncertainty sets for travel times and passenger boardings when developing
a robust timetable. As shown in table 7, if practitioners plan timetables that are robust
to significant disturbances which rarely appear in practice, the timetables will exhibit
inferior performance in common case scenarios (and vice versa).

Although this study demonstrated the potential benefits of adopting robust timetables,
the findings should be viewed in light of some limitations. First, our robust timetables
are planned for high-frequency services where it is safe to assume that passengers cannot
coordinate their arrivals at stops with the arrivals of buses (Welding, 1957; Randall et al.,
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2007). Second, the determined frequencies that precede the timetabling stage should be
such that passenger demand is met even at the maximum load section. If this is not
the case, overcrowding issues might alter the improvement potential of robust timetables.
Finally, the bus drivers should be willing to operate according to the new dispatching times
of the robust timetables. If bus drivers do not conform to the recommended dispatching
times, the potential benefit might shrink.

In future research, the proposed robust timetabling approach can be applied to other
problems such as the timetable synchronization problem which is typically solved with
deterministic approaches (Wu et al., 2015). Moreover, our approach can be applied to
the optimal slack time problem. The latter can be instrumental in the application of
real-time control measures such as bus holdings and stop-skipping without resulting in
schedule sliding or affecting the vehicle and crew schedules.
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Figure A.11: Comparison between max[0, γi] and softplus(γi) for γi ∈ [−4,+4]

Appendix A. Solving (Q̃max) with multi-start sequential quadratic program-
ming

SQP converges to a locally optimal solution for a given initial solution guess. Hence, one
should compute several locally optimal solutions with the use of SQP for increasing the prob-
ability that one of the locally optimal solutions is also a globally optimal one. Eq.23, which is
maximized by the multi-start SQP approach, contains several terms of the form max[0, γi] where
γi can be any inequality constraint Ii(x

κ, t,β). Such functions of the form max[0, γi] are known
as activation functions and, in practical implementations, they can be approximated by smooth
functions for facilitating the use of SQP. One of the most well-known smooth approximation
functions of max[0, γi] is the softplus function log(1 + exp γi) proposed by Dugas et al. (2001)
which is fully differentiable with a derivative of 1

1+exp(−γi) . Fig.A.11 presents the behavior of

the max[0, γi] function and the softplus approximation function near γi = 0.
Similarly to other optimization algorithms, finding one locally optimal solution with SQP

is an iterative procedure. The procedure begins with an initial guess of link travel times and
hourly passenger boardings denoted as tδ=0 and βδ=0 and generates a sequence of improved
estimates until it terminates at a locally optimal solution.

SQP generates new iterates of the initial guess, tδ=0,βδ=0, by solving inequality constraint
quadratic sub-problems (IQP) at each iterate δ. The idea behind the SQP solution method is
to model the dispatching headways of the current iterate, tδ,βδ by a quadratic programming
subproblem and then use the maximizer of this sub-problem to define a new iterate, tδ+1,βδ+1,
until convergence.

For all those inequality QP sub-problems that should be solved at each iteration, the well-
known active-set method can be utilized. In the active-set method, the equality constraints are
always active and the active-set is updated at any iteration by solving an equality QP where
different inequality constraints are considered as active (Murty and Yu, 1988). To summarize,
the maximization problem that returns the worst-case scenario for a given solution xi ∈ P is
solved following the steps of alg.2.
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Algorithm 2 Compute worst-case ti and βi for a GA population member xi ∈ P

1: function Multi-start SQP
2: Set a maximum number for the multi-start solution searches maxstarts;
3: for j ∈ {1, ...,maxstarts} do
4: Set iteration δ ← 0;
5: Set initial guess tδ,βδ by sampling random values from the corresponding uncer-

tainty sets V and U ;
6: while SQP has not converged to a locally optimal solution of eq.23 do;
7: Calculate new iterates tδ,βδ;
8: Set iteration δ ← δ + 1;
9: end while

10: Return the locally optimal solution tδ,βδ and set tj ← tδ and βj ← βδ

11: Store the value of the jth locally optimal solution P(xi, tj,βj)
12: end for
13: return the locally optimal solution j∗ for which P(xi, tj

∗
,βj

∗
) ≥ P(xi, tj,βj) ∀j;

14: Set ti ← tj
∗

and βi ← βj
∗
;

15: end function

Appendix B. Examining the solution quality in a small-scale, idealized sce-
nario

The solution quality of our solution method can be demonstrated in a small-scale scenario
because in such case a globally optimal solution can be computed with the use of simple enu-
meration. For this reason, we consider an idealized, small-scale scenario with only four trips for
computing an optimal solution by simply evaluating all possible solutions.

Let these four trips of the small-scale scenario be the four trips of the examined bus line
in Singapore, with originally planned dispatching times at 07:05, 07:10, 07:15 and 07:20 as
presented in table 3. If the dispatching time modification for each trip can be in the range
of {−3, ..., 0, ...,+3} min, then the number of decision variable combinations that should be
evaluated is 74 = 2, 401 (which means that the continuous NLP of eq.23 should be solved 2,401
times). In addition, if we assume that all other problem parameters are the same as the ones in
table 2, we can compute the worst-case performance of each one of the 2,401 potential solutions
and select the best-performing one. The results of this evaluation are presented in Fig.B.12a.
The optimal solution with simple enumeration can be used as a benchmark for evaluating the
convergence of the solution method proposed in this study. For this reason, we apply our solution
method in the same idealized scenario and we report its results in Fig.B.12b.

The computation time of our solution method is 5 min and 49 sec whereas the computation
time when evaluating the performance of all 2,401 decision variable combinations is 87 min and
32 sec. From the results of Fig.B.12 one can note that the computed solution with our solution
method is 2.179 min (only 2.1% greater than the solution computed with simple enumeration).
This indicates that our solution method exhibits a high convergence rate even if it explores a
small fraction of the entire solution space. A possible explanation is the presence of multiple
solutions that have a performance close to the optimal solution x = {−2,−1,−1,−1} min as
presented in fig.B.12a.

Obviously, this analysis of the solution quality cannot be generalized to large-scale scenarios
that include hundreds of daily trips. Nevertheless, it (a) indicates the convergence potential of
our solution method; and (b) demonstrates the possible existence of multiple solutions close to
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Figure B.12: (a) Optimal solution after evaluating the performance of all possible 2,401 solutions with
simple enumeration; (b) Solution when using the GA and SQP solution method in the same scenario

the globally optimal one that increases the possibility of finding a (good) solution with the use
of evolutionary optimization.
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