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Abstract. We show that the quality of Nd1.85Ce0.15CuO4 films grown by pulsed laser

deposition can be enhanced by using a non-stoichiometric target with extra copper

added to suppress the formation of a parasitic (Nd,Ce)2O3 phase. The properties of

these films are less dependent on the exact annealing procedure after deposition as

compared to films grown from a stoichiometric target. Film growth can be followed

by a 1 bar oxygen annealing, after an initial vacuum annealing, while retaining the

superconducting properties and quality. This enables the integration of electron-doped

cuprates with their hole-doped counterparts on a single chip, to create, for example,

superconducting pn-junctions.
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1. Introduction

With the substitutional doping in cuprates by Ce in electron-doped Nd2−xCexCuO4

and Sr in hole-doped La2−xSrxCuO4, the parallel to semiconductors is easy to make.

Indeed, various theoretical analyses have been made on the properties and possibilities of

combinations of electron- and hole-doped cuprates, ranging from the formation of a Mott

insulator depletion zone [1], unconventional Josephson junctions [2, 3] and superradiant

light emission [4]. Oxygen plays an important role in the realization of combinations

of electron- and hole-doped cuprates. The role of oxygen in n-type cuprates is widely

researched and debated [5, 7, 6, 8, 9, 10, 11, 12]. The consensus is that an oxygen

reduction is necessary for superconductivity and that strong oxygenation leads to loss of

superconductivity and increasing resistance. However, the exact mechanism for oxygen

reduction is still under debate, in particular where oxygen is removed from the unit

cell and what the consequences are for the structure of the cuprate [9, 10, 11, 13].

The necessity of a reduction is in stark contrast with the oxygenation needed for

optimal superconductivity in the p-type cuprates: in general, p-type cuprates require

an oxygenation step at high oxygen pressures. These conflicting annealing requirements

are one of the main hurdles to realize combinations of electron- and hole-doped cuprates.

In this work we investigate the effect of strong oxygenation, needed for the growth

of a p-type cuprate like La2−xSrxCuO4, on the n-type cuprate Nd2−xCexCuO4. Growth

of RE2−xCexCuO4 (RE = Nd, Pr, . . . ) as single crystals grown by e.g. the traveling-

solvent floating-zone technique [11, 14, 15, 16] or as thin films by pulsed laser deposition

(PLD) [12, 13, 17, 18] is almost always accompanied by the formation of a parasitic phase

of (RE,Ce)2O3, due to copper deficiency during growth and during oxygen reduction.

Other techniques like molecular beam epitaxy [19] and dc sputtering [20] appear to be

less sensitive to the formation of the (RE,Ce)2O3 phase. For PLD, it has been shown

that this parasitic phase can be suppressed in Pr2−xCexCuO4 by adding extra copper to

the PLD target [13]. We show that the parasitic (Nd,Ce)2O3 phase in Nd1.85Ce0.15CuO4

can also be suppressed by using copper-rich targets and that these films retain their

quality and superconducting properties when subjected to oxygen annealing procedures

suitable for the growth of p-type cuprates.

2. Experimental details

We compare films grown by PLD using two different targets with effective compositions

Nd1.85Ce0.15CuO4 (NCCO) and Nd1.85Ce0.15Cu1.1O4 (NCCO+), the latter containing

10% extra copper. The targets are prepared by solid state synthesis and the crystal

structure is verified by X-ray powder diffraction. The films are deposited at a heater

temperature of 820 ◦C in 0.25 mbar oxygen using a KrF excimer laser with a fluency

of 1.2 J/cm2, a spot size of 5.7 mm2 and a repetition rate of 4 Hz. All films are grown

on (001) oriented [LaAlO3]0.3[Sr2AlTaO6]0.7 (LSAT) substrates that have been annealed

in flowing oxygen for 10 hours at 1050 ◦C to obtain an atomically smooth surface, as
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measured by atomic force microscopy (AFM). We have grown films varying in thickness

between 30 and 500 nm, with most of the films being 70 nm. We have chosen this value

with future device fabrication requirements in mind, although with this thickness the

lattice strain from the substrate slightly suppresses Tc [18].

We have investigated three different annealing procedures for the Nd1.85Ce0.15CuO4

films, see table 1. The first is a standard vacuum annealing where the film is cooled

down from 820 ◦C in deposition pressure and then annealed in vacuum for 8 minutes

at 740 ◦C followed by a cool down in vacuum at 10 ◦C/min (procedure standard in

table 1). The other two procedures are two opposite cases, to explore the stability of

the Nd1.85Ce0.15CuO4 films under long reduction and strong oxygenation, respectively

(procedures long and oxygen in table 1). For the long reduction, the dwell time at 740 ◦C

is extended to 45 minutes. For the strong oxygenation procedure there is an initial 8

minute vacuum annealing at 740 ◦C and then at 600 ◦C the conditions are changed

to a common recipe we employ for p-doped superconductors like La2−xSrxCuO4 and

YBa2Cu3O7−δ. Here, the film is first annealed in 1 bar oxygen for 15 minutes at 600 ◦C

and then for 30 minutes at 450 ◦C and subsequently cooled down further in 1 bar oxygen.

The film thickness and quality is investigated by X-ray diffraction (XRD), cross-

sectional transmission electron microscopy (TEM) and by AFM. The thickness is

measured by AFM using an edge fabricated by a hard mask lift-off of amorphous

YBa2Cu3O7−δ (lift-off using 1% H3PO4) or gold (lift-off using a KI solution). XRD

shows that all films are c-axis oriented with a c-axis length of 12.08(1) Å, this is also

what is observed for optimally doped single crystal [16]. We measure an RMS surface

rougness with AFM on a scan area of 2 µm× 2 µm of 3 nm for the Nd1.85Ce0.15CuO4

films grown using the target with extra copper and 1.5 nm for the Nd1.85Ce0.15CuO4

films from the stoichiometric target, both for films of 70 nm thickness.

The samples are contacted at the corners by Al bond wires on Au/Ti contact pads

in a standard Van der Pauw geometry for sheet resistance and Hall measurements in a

Quantum Design 9 T PPMS system. Hall measurements are performed up to 4 T and

for low temperatures up to 9 T. The sheet resistance is measured both during warm up

and cool down at a rate varying between 0.1 ◦C and 3 ◦C per minute.

Table 1. Overview of the three different annealing procedures, standard, long and

oxygen. All procedures start with a cool down in deposition pressure from 820 ◦C to

740 ◦C and all temperature changes are performed at 10 ◦C/min. Cool down II is

performed in vacuum and Oxygen annealing and Cool down III in 1 bar oxygen.

Procedure Vacuum annealing Cool down II Oxygen annealing Cool down III

standard 8 min. at 740 ◦C 740 ◦C to RT† – –

long 45 min. at 740 ◦C 740 ◦C to RT – –

oxygen 8 min. at 740 ◦C 740 – 600 ◦C 15 min. at 600 ◦C, 450 ◦C to RT

30 min. at 450 ◦C

†Room temperature
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Figure 1. Detail of X-ray diffraction θ − 2θ scans normalized to the LSAT (002)

peak (not shown in figure) on 70 nm Nd1.85Ce0.15CuO4 films deposited from the

stoichiometric target (NCCO, blue) and the non-stoichiometric target with extra

copper added (NCCO+, red), showing the suppression of the parasitic (Nd,Ce)2O3

phase. Both samples have been annealed for 8 minutes in vacuum at 740 ◦C (standard

procedure).

3. Results and discussion

3.1. Suppression of the (Nd,Ce)2O3 parasitic phase

This section compares films grown using the targets with and without extra copper

added. Figures 1, 2 and 3 compare the same two samples, representative for the general

behavior we have observed, both are 70 nm thick and are annealed in vacuum for 8

minutes at 740 ◦C after deposition. Figure 1 shows a detail of the XRD θ − 2θ spectra

for the two Nd1.85Ce0.15CuO4 films, grown with and without extra copper in the target,

showing the Nd1.85Ce0.15CuO4 (004) and the (Nd,Ce)2O3 (004) reflection. The spectra

are normalized to the (002) Bragg reflection of LSAT (not shown in the figure). With

the addition of extra copper to the target, we see a reduction of nearly an order of

magnitude in the ratio between the intensities of the (Nd,Ce)2O3 (004) diffraction peak

and the Nd1.85Ce0.15CuO4 (004) peak. Together with this reduction, we observe a higher

intensity for the Nd1.85Ce0.15CuO4 (004) peak, while the full width at half maximum is

slightly decreased (from 0.23◦ to 0.19◦), indicating a higher crystallinity for the films

grown with extra copper. The (Nd,Ce)2O3 phase is still not fully suppressed, suggesting

that an even higher percentage of copper may be required for full suppression. We find

no appreciable difference in the c-axis lattice parameter between the different annealing

procedures for films grown with either of the two targets.

Figure 2 shows TEM close ups of two Nd1.85Ce0.15CuO4 films near the substrate/film

interface, grown using the two targets without, figure 2(a), and with extra copper, figure

2(b), both annealed in vacuum for 8 minutes at 740 ◦C. For the film grown using the

stoichiometric target, the presence of the parasitic (Nd,Ce)2O3 phase is confirmed by the
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Figure 2. Transmission electron microscopy close ups near the substrate of 70 nm

Nd1.85Ce0.15CuO4 films deposited from the stoichiometric target (a) and the non-

stoichiometric target with extra copper added (b), both films are annealed following

the standard procedure, see table 1. (a) Nd1.85Ce0.15CuO4 from the stoichiometric

target shows Moiré fringes (indicated by the yellow lines), caused by the overlapping

of the Nd1.85Ce0.15CuO4 (103) lattice planes and the (Nd,Ce)2O3 (222) lattice planes,

both identified by the white lines; (b) Nd1.85Ce0.15CuO4 from the non-stoichiometric

target with extra copper shows higher Nd1.85Ce0.15CuO4 phase purity with only a

small inclusion of the parasitic phase, indicated by the white arrows in the top and the

bottom of the figure.

appearance of Moiré patterns in the TEM image. The image shows the crystal planes

of Nd1.85Ce0.15CuO4 and areas with a different periodicity; here, a Moiré pattern is

formed by an overlap of the Nd1.85Ce0.15CuO4 lattice with the lattice of the (Nd,Ce)2O3

parasitic phase, namely the Nd1.85Ce0.15CuO4 (103) lattice planes and the (Nd,Ce)2O3

(222) lattice planes. The (103) and the (222) planes are sketched in figure 2(a), as

well as a set of overlapping planes on top of one of the Moiré patterns. The planes

are not arbitrary, Nd1.85Ce0.15CuO4 (103) and (Nd,Ce)2O3 (222) are also the planes

that would give the strongest signal in X-ray powder diffraction. The periodicity of the

Moiré pattern (dM) can be calculated from the difference between the g-vectors of the

individual lattices [21]:

dM =
d(103)d(222)

√

d2(103) + d2(222) − 2d(103)d(222) cos β
, (1)

where d(103) and d(222) are the lattice spacing of the Nd1.85Ce0.15CuO4 (103) planes and

the (Nd,Ce)2O3 (222) planes, respectively, and β is the angle in radians between the

g-vectors, normal to these planes. Using the lattice parameters for Nd1.85Ce0.15CuO4

and (Nd,Ce)2O3 from Kimura et al. [16] (d(103) = 2.82 Å, d(222) = 3.22 Å and β = 0.16

rad), we find a Moiré pattern spacing of 14.4 Å, which is also what we observe in the

TEM images.

With the addition of extra copper to the target, we observe a significantly lower

density of the parasitic phase in the film. Figure 2(b) is a typical example, showing a

higher Nd1.85Ce0.15CuO4 phase purity with only a small inclusion of the parasitic phase

at the substrate interface and in the top of the image (indicated with white arrows).
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As was also observed in XRD, see figure 1, the parasitic phase is strongly, but not

completely, suppressed.

Figure 3. Transport measurements on 70 nm Nd1.85Ce0.15CuO4 films deposited from

the stoichiometric target (NCCO, blue squares) and the non-stoichiometric target with

extra copper added (NCCO+, red circles), both films are annealed in vacuum for 8

minutes at 740 ◦C (standard procedure). (a) Sheet resistance around Tc, showing a

higher Tc, sharper transition and lower resistance for the Nd1.85Ce0.15CuO4 film with

extra copper; (b) Hall coefficient versus temperature measured in the Van der Pauw

geometry, both films show a pronounced minimum and the Nd1.85Ce0.15CuO4 grown

from the target with extra copper shows a crossover to a positive Hall coefficient for

low temperature. The inset shows the two-band nature of the Hall resistance at 46 K

and a low field linear fit.

Figure 3 compares transport properties of the Nd1.85Ce0.15CuO4 films. The

suppression of the parasitic (Nd,Ce)2O3 phase is accompanied by in an increase of Tc

by 3.5 K to a value of 16.7 K (Tc0) for films grown using the non-stoichiometric target,

see figure 3(a). These films also show a sharper transition to the superconducting phase

and a lower normal-state resistance. The sharper transition can be explained by a more

homogeneous crystal structure for the films grown from the target with extra copper.

The higher resistance for the Nd1.85Ce0.15CuO4 films grown from the stoichiometric

target may be explained by the (Nd,Ce)2O3 phase deforming nearby CuO2 planes and

acting as nucleation site for defects and dislocations, all increasing scattering.

The Hall coefficient for both films shows a trend generally observed for n-type

cuprates around optimal doping, with an upturn towards positive values with decreasing

temperature, indicating contribution of hole-like carriers [12, 22, 23, 24], see figure 3(b).

For Nd1.85Ce0.15CuO4 films grown from the target with extra copper, the minimum in

the Hall coefficient shifts to a higher temperature. For low temperatures, a complete

cross-over to a positive Hall coefficient is observed with a cross-over region where the

Hall resistance displays both electron- and hole-like character, as shown in the inset to

figure 3(b). The data in figure 3(b) only uses a low field linear fit to the Hall data,

illustrated by the black linear fit in the inset. The difference between the two curves

can be explained by the two band nature of Nd2−xCexCuO4 around optimal doping.
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Here the Hall coefficient not only measures the carrier density, but a combination of

the density and mobility of both carrier types. As we argue that the suppression of the

(Nd,Ce)2O3 phase decreases scattering, this will lead to a higher mobility, which will in

turn be reflected in the Hall coefficient.

Figure 4. (a) Transport measurements on 70 nm Nd1.85Ce0.15CuO4 films deposited

from the stoichiometric target (NCCO, blue) and the non-stoichiometric target with

extra copper added (NCCO+, red) for three different annealing procedures as described

in table 1: standard (solid lines), long (dashed lines) and oxygen (dotted lines); (b)

closeup around Tc for the Nd1.85Ce0.15CuO4 films from the stoichiometric target; (c)

closeup around Tc for the Nd1.85Ce0.15CuO4 films with extra copper added to the

target.

3.2. Effect of different annealing procedures

Finally, we look at the effect of different annealing procedures for films grown using

the stoichiometric target and the target with extra copper added. The three annealing

procedures are as described earlier: 8 minutes vacuum (standard), 45 minutes vacuum

(long), and 8 minutes vacuum followed by 1 bar oxygen at 600 ◦C (15 min.) and

450 ◦C (30 min.) (oxygen), see also table 1. The sheet resistance for all films across the

whole temperature range (2-300 K) is shown in figure 4(a). The films grown from the

target with extra copper show a close grouping of the curves, whereas the films grown

with the stoichiometric target show a large spread. The largest deviation is found

for the Nd1.85Ce0.15CuO4 films grown using the stoichiometric target and annealed in

oxygen after the initial vacuum annealing (oxygen procedure). Here, an upturn in the

resistance is observed above Tc, indicating a shift to lower doping by oxygen inclusion

[9], increased impurity scattering and carrier localization [23, 25]. These samples

show a broad superconducting transition with a small upturn at Tc, characteristic

for sheet measurements on inhomogeneous superconductors with an out-of-line contact
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arrangement [26], see figure 4(b). We find the highest Tc for films annealed for 45

minutes in vacuum.

The films grown with the target with extra copper show only a 2 K spread in Tc

with the different annealing procedures and the width of the superconducting transition

is always smaller than 1 K. The same trend as for the films without extra copper is

observed, with a 45 minute vacuum annealing (long procedure) giving the highest Tc

and a 1 bar oxygen annealing at 600 ◦C (oxygen procedure) the lowest Tc, see figure 4(c).

All films with extra copper show a higher Tc than the films grown with the stoichiometric

target.

Figure 5. Hall measurements on 70 nm Nd1.85Ce0.15CuO4 films deposited from the

stoichiometric target (a) and the non-stoichiometric target with extra copper added

(b) for the three different annealing procedures as described in table 1: standard (half

filled symbols), long (open symbols) and oxygen (closed symbols).

The Hall effect measurements confirm the observations from the sheet resistance

measurements, see figure 5(a,b). The Nd1.85Ce0.15CuO4 films grown with the standard

target show a wide spread in the Hall coefficient, especially at low temperatures, where

the characteristic minimum has completely disappeared for the films annealed following

the oxygen procedure, see figure 5(a). This was also reported for oxygenated films of

Nd2−xCexCuO4 [23] and Pr2−xCexCuO4 [10]. For the Nd1.85Ce0.15CuO4 films with extra
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copper we see a closer grouping of all the curves and they all show the characteristic

minimum, see figure 5(b). It is interesting to note that both a longer vacuum annealing

and an oxygen annealing following a short vacuum annealing suppresses the cross-over

to a positive Hall coefficient, not depending on the presence of the parasitic (Nd,Ce)2O3

phase. In the latter case this can be explained by the counter-doping effect of oxygen,

effectively shifting the doping away from optimal doping, towards underdoping [9]. The

former case is not immediately obvious. The cross-over to positive Hall coefficients for

the extra copper films with an 8 minute vacuum annealing, suggests that the samples are

already at optimal doping or even overdoped. It has been shown that, during vacuum

annealing, oxygen is removed from the CuO2 planes, suppressing anti-ferromagnetic

ordering and promoting hole-like carriers [6, 8, 10, 27]. This is accompanied by an

increased normal-state resistance for over-reduction [23, 28, 29], attributed to increased

defect and impurity scattering [27]. Annealing for 45 minutes should therefore only shift

the Hall coefficient towards more hole-like character, as is commonly observed for oxygen

reduction in Nd2−xCexCuO4 [23, 25, 30]. This is not what we observe, we do see an

increased normal-state resistance, but the Hall coefficients shifts toward more negative

values. We suggest that as more and more oxygen is removed from the CuO2 planes,

scattering is increased. As the Hall coefficient for a two-band system is also linked to

the mobility of the carriers, our observations can be explained by the scattering centers

having more influence on the mobility of the hole-like carriers than on the electron-like

carriers. This would explain both the higher normal state resistivity and the shift to a

more negative Hall coefficient.

4. Conclusions

Our experiments show that the addition of extra copper to the PLD target of

Nd1.85Ce0.15CuO4 can increase the quality and Tc of thin films by suppressing the

formation of the parasitic (Nd,Ce)2O3 phase. The presence or absence of the parasitic

(Nd,Ce)2O3 phase in Nd1.85Ce0.15CuO4 films has a strong influence on Tc and the

transport properties above Tc. For long reduction the difference is minimal, while

the biggest difference is observed for strong oxygenation. The relative minor influence

of the exact annealing procedure on Tc and the Hall coefficient for Nd1.85Ce0.15CuO4

films grown with extra copper in the target suggests that studies into the exact

role of oxygen in the reduction process for n-type cuprates should not overlook the

influence the presence of the (RE,Ce)2O3 parasitic phase can have. We have also shown

that the Nd1.85Ce0.15CuO4 films with extra copper can even be subjected to a 1 bar

oxygen annealing suitable for the growth of p-type cuprates such as La2−xSrxCuO4 and

YBa2Cu3O7−δ. This makes Nd2−xCexCuO4 grown from a non-stoichiometric target with

extra copper a prime candidate for studying pn-physics in the cuprate superconductors,

opening the way to integrate electron-doped cuprates with their hole-doped counterparts

on a single chip. Such combinations are of interest for example for the creation of

superconducting pn-junctions or to explore electron-hole interactions in the rich phase
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diagram of the cuprates.
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