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1. Introduction

In spatially inhomogeneous systems carriers create com-
plex spatial pathways and their band-structure becomes 
more difficult to connect with the physical properties of the 
material [1, 2]. High temperature superconductors belong 
to this latter class of materials where a non-Fermi liquid is 
observed [3].

Most of the manifestations of non-Fermi liquid behaviour 
occurs in material with a very high degree of inhomogeneity 
which is quite difficult to control [4, 5]. Although disorder and 
inhomogeneities in strongly correlated electron systems could 
be considered an annoyance, it seems on the other hand that 

they are unavoidable as shown in several experiments with 
atomic scale resolution [6–10].

In prototypical cuprate superconductors, x-ray images have 
considered that correlated disorder could be actually benefi-
cial [11, 12]. It has been experimentally observed that nano-
structures of the quenched disorder within the spacer layer are 
anti-correlated with the charge density puddles accompanied 
by local lattice distortions of the active layer [13–15] [17] 
[18]. Moreover, the tuning of the superconducting properties 
in the active layers is inseparably given by the properties of 
the spacer layers that can also be controlled through a con-
tinuous light illumination [16]. As a result of the tuning, an 
optimal mix of anti-correlated fractal nanostructures between 
the active and the spacer layer has been suggested to deter-
mine an optimal spatial pathways for supercurrents [14, 18].

However, the morphology of these spatial pathways of 
supercurrents and their collective behaviour is considered an 
open problem [19]. In superconducting networks the supercon-
ducting critical temperature is dependent on the geometrical 
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Abstract
As the complexity of strongly correlated systems and high temperature superconductors 
increases, so does also the essential complexity of defects found in these materials and the 
complexity of the supercurrent pathways. It can be therefore convenient to realize a solid-state 
system with regular supercurrent pathways and without the disguising effects of disorder in 
order to capture the essential characteristics of a collective dynamics. Using a square array of 
superconducting islands placed on a normal metal, we observe a state in which magnetic field-
induced vortices are frozen in the dimples of the egg crate potential by their strong repulsion 
interaction. In this system a dynamic vortex Mott insulator transition has been previously 
observed. In this work, we will show the symmetric dynamic behaviour with respect to field 
reversal and we will compare it with the asymmetric behaviour observed at the dynamic vortex 
Mott transition.
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parameters of the network [20–23]. The relevance of the geom-
etry for the spatial pathways of supercurrents is shown by a 
recent experiment on an artificial man-made superconducting 
proximity array where supercurrents can flow in regular and 
well controlled pathways [24]. In this array of supercon-
ducting islands, the supercurrents pathways form vortices that 
are trapped between the islands in the areas of weaker prox-
imity-induced superconductivity. Since the Feyman pathways 
interpretation of quantum mechanics [25] and of continuous 
quantum phase transitions [26], this system can be mapped to 
a Mott insulating state that forms when the particle concentra-
tion matches the density of the regular potential minima [27]. 
Via the vortex-particle mapping, in fact, the vortices sitting at 
the sites between the islands take the role of electrons in an 
electronic Mott insulator. With the application of an electric 
field, a collective dynamic phase transition between a vortex-
Mott-insulator and a vortex-metal is observed [24].

In this weakly coupled superconducting proximity array, a 
classical critical dynamics of the vortex lattices is observed. 
We will show the transition upon magnetic field reversal, dis-
cussing the symmetrical aspects in comparison with its asym-
metric counterpart observed at integer fillings of the vortex 
lattice.

2. Experimental method

A square array of 270-by-270 Nb islands was grown on a 
40 nm thin layer of gold on top of a Si substrate. The gold 
layer was fabricated with photolithography and DC sputtering. 
The Nb islands were fabricated with e-beam lithography and 
DC sputtering. The islands have a diameter of 180 nm and 
the array has a lattice constant of 250 nm. A four-point probe 
measurement was done to obtain the voltage and differential 
resistance as a function of a transverse magnetic field. The 

Figure 1. Comparison of the critical behavior around f  =  0 and f  =  1. The upper left panel shows the differential resistance, /V Id d , around 
f  =  0. The lower left panel shows the corresponding resistance around f  =  0. The upper right panel shows the differential resistance, /V Id d , 
around f  =  1. The lower center panel shows the corresponding resistance around f  =  1. The color bar shows the external current, and the 
resistance panels have the same current range as their respective /V Id d  panel. The lower right panel shows the SEM image of a portion of 
the superconducting proximity array. The scale bar is 1 μm.
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transport measurements were done in a liquid helium bath 
cryostat at 4.14 K.

3. Results and discussion

Vortices occur in superconductors because the phase of the 
superconducting order parameter around a closed loop can 
pick up an integer times π2 . In contrast to Abrikosov vortices, 
where this loop encircles a normal core, the loop contains the 
weak links between the superconducting islands. If one forms 
a closed path between four such links along the Josephson 
junctions, the sum of the phase difference picked up in the 
junctions must add up to an integer times π2 . This integer 
counts the number of Josephson vortices.

The number of Josephson vortices in the square array is 
proportional to the perpendicular external magnetic field. The 
magnetic field at which the number of vortices matches the 
traps in our square array is /= ΦB a0 0

2, with /πΦ = � e0  being 
the magnetic flux quantum [28]. The vortex filling fraction is 
defined as f  =  B/B0. This means that f  =  1 corresponds to one 
vortex per lattice cell. The vortices repel each other, and the 
in the ground state the vortices form a periodic pattern. If the 
filling factor is a rational value p/q, the ground state vortex 
configuration is a q by q superlattice. The ground state energy 
energy versus f is described by the Harper equation [29]. The 
minima in the magnetoresistance as described in [24] are 

resulting from a Hofstadter-type energy spectrum [30]. In this 
experiment, we apply an external current and measure the 
regime where a finite voltage is measured, so phase slips occur 
and the Josephson vortices are not stationary.

Figure 1 shows a scanning electron microscopy image 
(SEM) of the superconducting array of Nb islands, the meas-
urements done around f  =  0 and f  =  1 for comparison upon 
the application of a current. The resistances corresponding 
to the differential resistance, /V Id d  are shown. The resist-
ance around f  =  0 and f  =  1 show pronounced dips indicating 
strong pinning at rational f. The minima remains even at the 
currents where /V Id d  shows profound maxima. The vortex 
phase pinned around f  =  1 is a vortex Mott insulator [31], and 
the transition is a dynamic vortex Mott transition [24].

In this superconducting proximity array the dip to peak 
reversal for f  =  0 occurs in the range of 80 to 160 μA. Visual 
inspection of the shape of this current driven transition shows 
a symmetry around the magnetic field reversal. The nature of 
this symmetry is further shown in figure 2. Here the two side 
of the transition are plotted one on the top of each other. The 
superposition shows the symmetric behaviour. Around f  =  1, 
this mirror symmetry around f  =  fc is clearly broken. In the 
analogy with the electronic Mott insulator proposed in [24], 
the asymmetry is explained by noting that the f  <  1 regime 
corresponds to a hole doped Mott insulator, while the f  >  1 
regime corresponds to an electron doped, which need not have 
the same physical behaviour.

In conclusion, we have showed the differential resist-
ance in a superconducting proximity array and compared its 
symmetric behaviour at f  =  0 with the dynamic vortex Mott 
insulator to metal transition, observed at f  =  1. Further exper-
imental and theoretical investigations are under way to deter-
mine the origin of this difference and its implication for the 
strongly correlated electronic systems.
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