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a b s t r a c t

We consider generalizations of parity polytopes whose variables, in addition to a parity
constraint, satisfy certain ordering constraints. More precisely, the variable domain is
partitioned into k contiguous groups, and within each group, we require xi ≥ xi+1 for all
relevant i. Such constraints are used to break symmetry after replacing an integer variable
by a sum of binary variables, so-called binarization. We provide extended formulations for
such polytopes, derive a complete outer description, and present a separation algorithm
for the new constraints. It turns out that applying binarization and only enforcing parity
constraints on the new variables is often a bad idea. For our application, an integer
programming model for the graphic traveling salesman problem, we observe that parity
constraints do not improve the dual bounds, and we provide a theoretical explanation of
this effect.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

The term binarization refers to techniques to reformulate mixed-integer linear programs by replacing general integer
(bounded) variables by sets of binary variables. Roy compared several approaches with the goal to separate strong cutting
planes in the reformulation and project it back [7]. Recently, Bonami and Margot continued this line of work using simple
split disjunctions of ranks 1 and 2 to generate cutting planes [2]. The strongest bounds were obtained by a binarization in
which an integer variable z ∈ {0, 1, . . . , n} is replaced by the sum of n binary variables x1, . . . , xn, and symmetry-breaking
constraints

1 ≥ x1 ≥ · · · ≥ xn ≥ 0 (1)

are added. We denote by Xn
ord the set of ordered binary vectors x ∈ {0, 1}n satisfying (1) and by Pn

ord their convex hull. Note
that Inequalities (1) already describe Pn

ord since the corresponding matrix is totally unimodular (every row has at most one
+1 and atmost one−1, see Theorem 19.3 in [8]) and the right-hand side is integral. We call the vectors in Xn

ord ordered binary
vectors.

In this article we consider the strong binarization in combinationwith parity constraints on the affected integer variables.
For this we define the ordered even parity polytope for a vector r ∈ Nk as

P r
even := conv{(x(1), . . . , x(k)) ∈ X r1

ord × · · · × X rk
ord |

k∑
i=1

ri∑
j=1

x(i)j even}.
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The integer points in P r
even are precisely those binary vectors of length n := r1 + · · · + rk whose entry-wise sum is even and

which are ordered within each of the groups defined by r . In the special case of r = 1n (the all-ones vector), P r
even is the even

parity polytope, which has the following outer description [4] (with [n] := {1, 2, . . . , n}):

P1n
even = {x ∈ [0, 1]n |

∑
i∈[n]\F

xi +
∑
i∈F

(1 − xi) ≥ 1 for all F ⊆ [n] with |F | odd} (2)

Outline. We start by describing an extended formulation for P r
even for arbitrary r ∈ Nk, which implies that the associated

optimization problem can be solved in polynomial time (in the dimension of P r
even). In Section 3 we state and prove the

main result of this paper, a complete outer description for P r
even in the original space. After transferring the result to odd

parities in Section 4 we derive in Section 5 a simple linear-time algorithm that solves the respective separation problems.
Section 6 is dedicated to an application in which binarization is applied to an integer programming model for the graphic
traveling salesman problem. During computations for this model we observed that the corresponding parity constraints did
not improve the dual relaxation value. In Section 7 we provide a theoretical explanation of this effect.

2. Extended formulations

In this section we review well-known extended formulations of parity polytopes based on dynamic programming,
and adapt them to the ordered case. The linear-size formulation for P1n

even introduced by Carr and Konjevod [3] works
as follows. We define a digraph D = (V , A) with nodes V := {0, 1, 2, . . . , n} × {0, 1} \ {(0, 1), (n, 1)} and arcs A :=

{((i − 1, α), (i, β)) ∈ V × V | i ∈ [n], α, β ∈ {0, 1}}. We call the nodes s := (0, 0) the source and t := (n, 0) the sink. Clearly,
the set P s–t

flow(D) of s-t-flows y ∈ RA
+
of flow-value 1 in any such acyclic digraph is described by the linear constraints

y(δout(v)) − y(δin(v)) = 0 for all v ∈ V \ {s, t}
y(δout(s)) = 1

y(δin(t)) = 1
ya ≥ 0 for all a ∈ A,

where we denote by δout(·) resp. δin(·) the set of outgoing resp. incoming arcs. Furthermore, again due to the total
unimodularity of D’s incidence matrix (see Application 19.2 in [8]), P s–t

flow(D) is an integral polytope. We claim that the
following map projects P s–t

flow(D) onto P1n
even:

π : RA
→ Rn with π (y)i :=

{y((0,0),(1,1)) for i = 1
y((i−1,0),(i,1)) + y((i−1,1),(i−1,0)) for 2 ≤ i ≤ n − 1
y((n−1,1),(n,0)) for i = n.

It is not hard to see that the integer points in π (P s–t
flow(D)) are precisely the binary vectors with an even number of 1’s, since an

s-t-path in D must use an even number of diagonal arcs. The claim follows because P s–t
flow(D) is integral and because π maps

integral points to integral points. Fig. 1 illustrates the constructed network and the projection (denoted by ri = 1).
We can now modify the network such that a similar projection yields P r

even for arbitrary vectors r ∈ Nk. The new
construction works as follows. The node set of the new digraph is the same as the old digraph for n = k, i.e., the node
set of a (2 × (k + 1))-grid graph without the lower-left and lower-right corner nodes. Again, s and t are the left-most and
right-most nodes, respectively. The arcs again go from left to right, and the arcs from the k grid-layers correspond to the sets
of variables x(i) for i ∈ [k] in the sense that the projection of an arc variable only has impact on a subset of the corresponding
x-variables. For every layer i ∈ [k] and every node (i − 1, α) (for α = 0 if i = 1 or i = k, and for α ∈ {0, 1} otherwise) on
the left of this layer there are ri + 1 outgoing arcs, each associated to one of the possible values ℓ ∈ {0, 1, 2, . . . , ri}. The arcs
with even ℓ all go to the same node (i, α), and the arcs with odd ℓ all go to node (i, 1 − α).

The projection map is defined by a 0/1-matrix. We describe it column-wise, i.e., we state for each arc in which rows
(corresponding to x-variables) it contains a 1-entry. Consider an arc going fromnode (i−1, α) to node (i, β) that is associated
to ℓ ∈ {0, 1, 2, . . . , ri}, and thus satisfies α + β ≡ ℓ (mod 2). The column of the projection matrix that corresponds to this
arc contains 1’s in rows corresponding to the variables x(i)1 , x(i)2 , . . . , x(i)ℓ . The last part in Fig. 1 illustrates a layer for ri = 3.

The correctness of the modification is justified similarly to the ordinary construction. First, the flow polytope is integral
due to total unimodularity of its constraintmatrix. Second, the projectionmatrix is integral. Third, the integral s-t-flowsmap
to the correct vectors x. To see this, observe that for every i ∈ [k], the corresponding arcs of the network correspond to the
vectors in X ri

ord, and that the number of diagonal arcs in such a path must be an even number.

3. Outer description

We begin with the simple observation that for ordered binary vectors, parity can bemeasured using a linear function. For
n ∈ Nwe define f : Pn

ord → R via f (x) :=
∑n

i=1(−1)i−1xi. From

f (x) = x1 − x2  
≥ 0

+ x3 − x4  
≥ 0

+x5 − · · · ± xn and
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Fig. 1. Flow-extensions of (ordered) even parity polytopes.

f (x) = x1
≤ 1

− (x2 − x3)  
≥ 0

− (x4 − x5)  
≥ 0

+ · · · ± xn

we obtain that f maps Pn
ord into [0, 1]. Thus, for x ∈ Xn

ord, the value f (x) is binary, and it is easy to check that f (x) = 1 holds if
and only if x has an odd number of 1’s. Note that we will use f for different values of n, and assume that it is clear from the
context. We can now state our main theorem.

Theorem 1. Let r ∈ Nk. The ordered even parity polytope P r
even is equal to the set of those points (x

(1), . . . , x(k)) ∈ P r1
ord ×· · ·×P rk

ord
that satisfy the inequalities∑

i∈[k]\F

f (x(i)) +

∑
i∈F

(1 − f (x(i))) ≥ 1 (3)

for all F ⊆ [k] with |F | odd.

In order to prove the theorem we will make use of the following lemma.

Lemma 2. Let X0, X1 ⊆ Rm and Y0, Y1 ⊆ Rn be finite sets. Then the polytope

conv ((X0 × {0} × Y0) ∪ (X1 × {1} × Y1))

is equal to the polytope

conv ((X0 × {0}) ∪ (X1 × {1})) × Rn
∩ Rm

× conv (({0} × Y0) ∪ ({1} × Y1)) .

Proof of Lemma 2. The inclusion ‘‘⊆’’ is simple since for i ∈ {0, 1}, every vector (x, i, y) ∈ Xi×{i}×Yi satisfies (x, i) ∈ Xi×{i}
and (i, y) ∈ {i} × Yi.

To see ‘‘⊇’’, consider a point (x, λ, y) from the second set, which clearly satisfies 0 ≤ λ ≤ 1. Thus (x, λ) is a convex
combination of a point (x(0), 0) ∈ conv (X0) × {0} and a point (x(1), 1) ∈ conv (X1) × {1}. From the λ-coordinate we obtain
x = λx(0) + (1 − λ)x(1). Similarly, there exist points y(0) ∈ conv (Y0) and y(1) ∈ conv (Y1) such that y = λy(0) + (1 − λ)y(1)
holds. This implies that (x, λ, y) = λ(x(0), 0, y(0)) + (1 − λ)(x(1), 1, y(1)) holds, which concludes the proof. □

In our situation this lemma implies that if we ‘‘glue together’’ arbitrary 0/1-polytopes at a single coordinate, then the
outer description of the resulting polytope is obtained by taking the union of the outer descriptions of the two component
polytopes. We can now prove Theorem 1.
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Proof of Theorem 1. We start with the validity of Inequalities (3) for P r
even. Let F ⊆ [k] be of odd cardinality. Since

f (x(i)) ∈ {0, 1} for every x(i) ∈ X ri
ord, the inequality can only be violated if all summands are equal to 0, i.e., if f (x(i)) = 0

for all i ∈ [k] \ F and f (x(i)) = 1 for all i ∈ F . This in turn means that x(i) contains an odd number of 1’s if and only if i ∈ F
holds, contradicting the fact that the overall number of 1’s is even because |F | is odd.

We now turn to the proof that Inequalities (3) cut off those points in X r1
ord × · · · × X rk

ord that have an odd number of 1’s. Let
x = (x(1), . . . , x(k)) be such a point and define F to be the set of indices i ∈ [k] for which x(i) has an odd number of 1’s. Since x
has an odd number of 1’s, we have that |F | is odd. Furthermore, the left-hand side of (3) is equal to 0, i.e., x violates it.

It remains to prove that Inequalities (3) together with the inequalities that define each P ri
ord for i = 1, 2, . . . , k yield an

integral polytope. We show this by induction on the number ℓ of components of r that are strictly greater than 1. For ℓ = 0
we have r = 1n, and P r

even is, according to (2), the even parity polytope.
Let ℓ ∈ N. W.l.o.g., we can assume that rk ≥ 2 holds since otherwise we permute the variables suitably. By induction

hypothesis we know that

P (r1,...,rk−1,1)
even =

{
(x(1), . . . , x(k−1), λ) ∈ P r1

ord × · · · × P rk−1
ord × [0, 1] | (x(1), . . . , x(k−1), λ) satisfies (3)

}
holds, and is a 0/1-polytope. Furthermore, the polytope

Q :=
{
(λ, x(k)) ∈ [0, 1] × P rk

ord | λ = f (x(k))
}

is affinely isomorphic to P rk
ord. Since the latter is a 0/1-polytope and since f maps X rk

ord to {0, 1}, Q is also a 0/1-polytope.
Applying Lemma 2 to P (r1,...,rk−1,1)

even and Q yields that

R := {(x(1), . . . , x(k−1), λ, x(k)) ∈ P r1
ord × · · · × P rk−1

ord × [0, 1] × P rk
ord | λ = f (x(k)) and

(x(1), . . . , x(k)) satisfies (3)}

is an integral polytope. The orthogonal projection of R onto the x-variables is again an integral polytope and due to the
equation λ = f (x(k)) it is equal to the one in question. □

4. Odd parities

In this section we derive the outer description of the ordered odd polytopes. The latter are defined as

P r
odd := conv{(x(1), . . . , x(k)) ∈ X r1

ord × · · · × X rk
ord |

k∑
i=1

ri∑
j=1

x(i)j odd},

again for r ∈ Nk. The result corresponding to Theorem 1 is the following:

Corollary 3. The ordered odd parity polytope for r ∈ Nk is the set of (x(1), . . . , x(k)) ∈ P r1
ord ×· · ·×P rk

ord that satisfy Inequalities (3)
for all F ⊆ [k] with |F | even.

In principle we could repeat the proof for Theorem 1, and exchange ‘‘odd’’ and ‘‘even’’ suitably. Insteadwe present a proof
that uses the previous result.

Proof. We claim that P (r1,...,rk)
odd is the projection of the face defined by x(k+1)

1 = 1 of the polytope P (r1,...,rk,1)
even onto the variables

x(1), . . . , x(k). This is justified by the fact that fixing the last component to 1 exchanges the meaning of ‘‘odd’’ and ‘‘even’’ for
the sum of the (remaining) components.

FromTheorem1we know the outer description of P (r1,...,rk,1)
even , so it remains to carry out the projection. The only constraints

that involve the last component are the bounds 0 ≤ x(k+1)
≤ 1 and the Inequalities (3) for odd-cardinality sets F ⊆ [k + 1].

The former need not be considered, and if k + 1 ̸∈ F holds, then the latter inequalities are redundant since they read∑
i∈[k]\F f (x

(i)) + 1 +
∑

i∈F (1 − f (x(i))) ≥ 1, and for x(i) ∈ P ri
ord we know that f (x(i)) and 1 − f (x(i)) are nonnegative. It remains

to consider the case of k + 1 ∈ F , in which the inequality is
∑

i∈[k]\F f (x
(i)) +

∑
i∈F∩[k](1 − f (x(i))) + (1 − 1) ≥ 1, which is

equivalent to Inequality (3) for F ∩ [k] in the projection. Note that F ∩ [k] has even cardinality. □

5. Separation

In this section we show how to solve the separation problem for Inequalities (3).

Theorem 4. Let r ∈ Nk and let x̂ = (x̂(1), . . . , x̂(k)) ∈ P r1
ord × · · · × P rk

ord. We can decide in linear time if x̂ ∈ P r
even holds, and if this

is not the case, obtain an odd set F ⊆ [k] whose associated Inequality (3) is violated by x̂.
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Proof. It is easy to see that it suffices to compute λ̂i := f (x̂(i)) ∈ [0, 1] for every i ∈ [k] and then to minimize∑
i∈[k]\F λ̂i +

∑
i∈F (1 − λ̂i) over all F ⊆ [k] of odd cardinality. This is done by computing the set F ′

:=

{
i ∈ [k] | λ̂i > 1

2

}
.

If |F ′
| is odd, then F := F ′ is the minimizer. Otherwise, we let F := F ′∆{î} (by ∆ we denote the symmetric difference,

i.e., A∆B := (A ∪ B) \ (A ∩ B)) where î ∈ [k] is the index for which |λ̂î −
1
2 | is minimum.

The computation of λ̂ can obviously be done in linear time. Furthermore, the construction of F ′ and the search for î can
be carried out in time O (k) which results in a linear total running time. □

Directly from Corollary 3 we obtain the separation algorithm for the ordered odd parity polytopes. The only difference to
the even case is that |F | must be even, i.e., we set F := F ′∆{î} (for the same î) if and only if |F ′

| is odd.

Corollary 5. Let r ∈ Nk and let x̂ = (x̂(1), . . . , x̂(k)) ∈ P r1
ord × · · · × P rk

ord. We can decide in linear time if x̂ ∈ P r
odd holds, and if this

is not the case, obtain an even set F ⊆ [k] whose associated Inequality (3) is violated by x̂.

6. Strengthened Blossom Inequalities for the graphic TSP

In this section we consider the graphic traveling salesman problem (GTSP), defined as follows. The input consists of an
undirected graph G = (V , E), and the goal is to find a minimum-length closed walk in G that visits every node at least once.
Recently, Sebő and Vygen developed a 7/5-approximation algorithm for this problem [9].

When modeling it as an integer program (IP) one has different options. The first is based on the observation that the
problem is equivalent to the traveling salesman problem on the complete graph with |V | nodes and edge weights c ∈ RE

+

where cu,v is equal to the (combinatorial) distance from u to v in G. This model has
(

|V |

2

)
binary variables which is much

greater than |E| if G is sparse.
In order to model the problem with fewer variables we can start with the IP

min
∑
e∈E

ze (4)

s.t. z(δ(S)) ≥ 2 for all ∅ ̸= S ⫋ V (5)
ze ≥ 0 for all e ∈ E (6)
ze ∈ Z for all e ∈ E, (7)

where by δ(·) we denote the cut-sets. The solutions to this problem correspond to the 2-edge-connected spanning subgraphs
of G. Since not every such subgraph is a closed walk, this IP does not model the GTSP. The necessary additional requirement
is the parity condition z(δ(v)) ∈ 2Z for every v ∈ V . Such a constraint cannot be modeled directly, i.e., by adding linear
inequalities. To obtain a correct model, one may add integer variables yv =

1
2 z(δ(v)) for every v ∈ V . Unfortunately, this

does not contribute to the strength of the LP relaxation since relaxing yv ’s integrality constraints essentially makes them
redundant.

It is well-known that an optimum solution will never use an edge more than twice (otherwise we can decrease the value
by 2 and obtain a better feasible solution). Hencewe can restrict ze to the set {0, 1, 2}which allows us to performbinarization,
i.e., to replace, for every e ∈ E, the variable ze by x(1)e + x(2)e with x(1)e , x(2)e ∈ {0, 1}. This again leads to the same strength of
the LP relaxation, but now allows us to enforce parity constraints: since every closed walk traverses each cut δ(S) an even
number of times, the following inequalities are valid for every S ⊆ V and every F ⊆ δ(S) × {0, 1} with |F | odd.∑

(e,i)∈(δ(S)×{0,1})\F

x(i)e +

∑
(e,i)∈F

(1 − x(i)e ) ≥ 1 (8)

If we identify the variables x(1)e and x(2)e with the doubled edges of G, then these inequalities are the well-known Blossom
Inequalities. These enforce that, for every cut δ(S), the projection of x onto the variables corresponding to δ(S) is in the even
parity polytope.

We will soon strengthen these inequalities. In order to argue later why the separation problem for the strengthened
inequalities can be solved efficiently, we review the separation problem for the unstrengthened ones. The first separation
algorithm for Inequalities (8) was developed by Padberg and Rao [6]. The asymptotically fastest separation algorithm is
by Letchford et al. [5]. More precisely, they describe how to efficiently solve (a generalization of) the following problem.
Given a graph G = (V , E) and weight vectors c, c ′

∈ RE
+
, their algorithm can minimize the objective

β(S, F ) :=

∑
e∈δ(S)\F

ce +

∑
e∈F

c ′

e (9)

over all sets S ⊆ V and all odd sets F ⊆ δ(S). Clearly, by letting G be the graph obtained from G by doubling every edge
and identifying the two edges e1, e2 ∈ E with the variables x(1)e and x(2)e for e ∈ E, respectively, we can solve the separation
problem for a point x̂ ∈ [0, 1]2E by minimizing β(S, F ) with the following weight vectors:

cei := x̂(i)e and c ′

ei := 1 − x̂(i)e for all i = 1, 2 and all e ∈ E.
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In fact we do not have to double the graph’s edges for the computation: the cases where F contains none or both edges
contribute the same to the parity constraint on F . Hence, we only have to consider the case that has lower weight. Similarly,
only one of the two cases of F containing precisely one of the two edges needs to be considered. This can be implemented
using the weights

ce := min(x̂(1)e + x̂(2)e , 2 − x̂(1)e − x̂(2)e ) and c ′

e := min(1 − x̂(1)e + x̂(2)e , 1 + x̂(1)e − x̂(2)e )

for all e ∈ E.

Strengthened constraints. To break the symmetry of x(1)e and x(2)e we add x(1)e ≥ x(2)e for each edge e ∈ E. Thus, we can now
enforce that, for every cut δ(S), the projection of x onto the variables corresponding to δ(S) is in the ordered even parity
polytope P r

even, where r = (2, 2, . . . , 2) ∈ Z|δ(S)|. By Theorem 1, the strengthened version of Constraint (8) reads∑
e∈δ(S)\F

(x(1)e − x(2)e ) +

∑
e∈F

(1 − x(1)e + x(2)e ) ≥ 1 (10)

for every S ⊆ V and every F ⊆ δ(S) with |F | odd. Using almost the same separation procedure we can solve the separation
problem by working in the original graph G, and defining the weight vectors via

ce := x̂(1)e − x̂(2)e and c ′

e := 1 − x̂(1)e + x̂(2)e for all e ∈ E .

Note that the computational costs for separating Constraints (8) and (10) are almost equal.

7. Strength of the relaxation

We carried out computational experiments on the GTSP, and it turned out that the lower bound obtained by the linear
relaxation (4)–(6) was never improved by binarization of the variables and addition of (strengthened) parity constraints. In
fact, in the root node many (strengthened) Blossom Inequalities were added, but with no effect on the dual objective.

We investigated this effect, and observed the following weakness of the approach of binarization and addition of parity
constraints. The decisive property of our model is that only parity constraints actually use the binarization variables x(i)e : all
other variables consider the original variables ze (or, equivalently, the sum of the binarization variables x(i)e ).

In a more abstract setting we consider arbitrary (integer) variables z1, . . . , zk with domains zi ∈ [0, rk] ∩ Z for all i ∈ [k],
and apply binarization, i.e., introduce variables x(i)j ∈ P ri

ord and linking constraints zi =
∑ri

j=1x
(i)
j for each i ∈ [k]. We can

assume that further (arbitrary) constraints that link the z-variables are also present.
Now consider a parity constraint on (a subset of) the z-variables, which is of course stated in terms of the corresponding

x-variables. Supposewe have a certain fractional relaxation solution (ẑ, x̂) thatmay violate this parity constraint, but satisfies
all other constraints. If we can modify the x-variables such that the linking constraints are still satisfied (i.e., that the sums∑ri

j=1x̂
(i)
j remain constant) and such that the parity constraint is satisfied, then we obtain a feasible solution of the same

value. Unfortunately, such a modification is possible under very mild conditions. In fact, the modifications are very general
in the sense that they can be done independently for every set of binarization variables, that is, for all variables x(i)j for a single
i ∈ [k]. Furthermore, they do neither depend on the parity inequality that is actually violated nor on the parity. Hence, even
if there exist many parity constraints whose variable sets overlap, such modifications can still exist, as it is often the case for
Blossom Inequalities (note that there actually exist 2|V |−1 such parity constraints). We will now describe the modifications,
and later discuss why the conditions are often satisfied for solutions of the linear relaxation (4)–(6).

Lemma 6. Let n ∈ N, and z ∈ [0, n]. Then the maximum value of min(f (x), 1 − f (x)) over all x ∈ Pn
ord with z =

∑n
i=1xi is equal

to the minimum of z, n − z, and 1
2 .

Proof. We denote the maximum in the lemma by γ ∗, and by definition we have γ ∗
∈ [0, 1

2 ]. We distinguish three cases,
depending on where the minimum of z, n − z, and 1

2 is attained.

Case 1: z < 1
2 . Clearly, since f (x) = x1 − x2 + x3 − · · · ± xn ≤ x1 + x2 + x3 + · · · + xn = z holds, we have γ ∗

≤ z. This value
is obtained by x = (z, 0, . . . , 0, 0) ∈ Pn

ord which satisfies
∑n

i=1xi = z and f (x) = z.

Case 2: n − z < 1
2 . This implies xi ≥

1
2 and hence xi ≤ 2 − xi for all i ∈ [n]. For even nwe obtain f (x) ≤ (2 − x1) − x2 + (2 −

x3) − x4 + · · · + (2 − xn−1) − xn ≤ n − z. For odd n, 1 − f (x) ≤ 1 − (x1 − (2 − x2) + x3 − (2 − x4) + · · · + xn−1) ≤ n − z.
Together, this proves γ ∗

≤ n − z. This value is obtained by x = (1, 1, . . . , 1, z − n + 1) ∈ Pn
ord which satisfies

∑n
i=1xi = z.

Depending on the parity of n it also satisfies f (x) = z − n + 1 or 1 − f (x) = z − n + 1, i.e., we have γ ∗
= n − z.

Case 3: min(z, n − z) ≥
1
2 . Since γ ∗

≤
1
2 always holds, it remains to construct a solution of that value. We define k ∈ N

to be an integer whose distance to z is at most 1
2 , breaking ties such that k is not equal to 0 or equal to n (but arbitrary

otherwise). We furthermore define the values z−

k :=
2z−2k+1

4 ∈ [0, 1
2 ], and z+

k :=
2z−2k+3

4 ∈ [
1
2 , 1]. We again consider two

cases, depending on k:
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Case 3 (a): 1 ≤ k ≤ n − 2. We consider the vector x defined via

xi :=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1 for i ≤ k − 1
1
2

for i = k

z−

k for i ∈ {k + 1, k + 2}
0 for i ≥ k + 3,

and observe that x ∈ Pn
ord holds, and that the first (k − 1) indices have 1’s. Furthermore, we have that

∑n
i=1xi = (k − 1) +

1
2 + 2z−

k = k − 1 +
1
2 +

2z−2k+1
2 = z and f (x) =

1
2 hold.

Case 3 (b): k = n− 1. We consider the vector x = (1, 1, . . . , 1, z+

n−1, z
+

n−1,
1
2 ) and observe that x ∈ Pn

ord holds. Again, we have
that

∑n
i=1xi = (n − 3) + 2z+

n−1 +
1
2 = n − 3 +

2z−2(n−1)+3
2 +

1
2 = z and f (x) =

1
2 hold. This concludes the proof. □

Motivated by Lemma 6 we define γ (z) := min(z, r − z, 1
2 ) for a variable z ∈ [0, r]. In the following theorem we binarize

a set of variables and consider parity constraints on subsets of them.

Theorem7. Let r ∈ Nk and let z ∈ [0, r1]×· · ·×[0, rk]. Let I be a family of subsets I ⊆ [k]. If every I ∈ I satisfies
∑

i∈Iγ (zi) ≥ 1,
then there exist x(i) ∈ P ri

ord with zi =
∑ri

j=1x
(i)
j for all i ∈ [k] such that for every I ∈ I the vector (x(i))i∈I is contained in the even

and odd parity polytopes corresponding to (ri)i∈I .

Proof. Let x(i) be the maximizer from Lemma 6 for all i ∈ [k], that is, min(f (x(i)), 1 − f (x(i))) = γ (zi) holds for every i ∈ [k].
Now consider one of the sets I ∈ I and any subset F ⊆ I . From

1 ≤

∑
i∈I

γ (zi) =

∑
i∈I

min(f (x(i)), 1 − f (x(i))) ≤

∑
i∈I\F

f (x(i)) +

∑
i∈F

(1 − f (x(i)))

we obtain that Inequality (3) is satisfied, which concludes the proof. □

The theorem essentially states sufficient conditions for the case that after binarization and enforcing of several parity
constraints, the values of the original variables remain feasible. Note that in order to satisfy

∑
i∈Iγ (zi) ≥ 1 for a constraint

on variable set I , it suffices that two of the participating variables have a distance to their respective bounds of at least 1
2 (see

Lemma 6), which is not very restrictive for nonbinary variables.

Implications for the graphic TSP. We consider an optimum solution ẑ ∈ [0, 2]E of the LP relaxation (4)–(6) of the model
introduced in Section 6. The requirements for Theorem 7 are satisfied if and only if for every nontrivial cut δ(S) (S ⫋ V ,
S ̸= ∅), the inequality

∑
e∈δ(S)γ (ẑe) ≥ 1 is satisfied. This is in particular the case if every cut contains two edges e, f with

1
2 ≤ ẑe, ẑf ≤

3
2 . Note that integrality of the z-variables does not play a role here, i.e., even if ẑ is integral, and ẑ(δ(S)) has the

wrong parity for some set S, then theremay exist a (fractional) assignment for x-variables that is feasible for Constraints (10).
For the IP model this means that the Blossom Inequalities only become useful if relevant z-variables are near their bounds
or if branching or cutting restricted the x-variables further.
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