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Abstract

Disributed control systems often exhibit aperiodic sampling
behavior due to varying communication delays and execu-
tion times. In such cases traditional analysis methods fall
short because the functional and temporal behaviors need
to be analyzed simultaneously. Therefore such systems are
often modeled by Hybrid Automata (HA) with clock and
non-clock variables, and verified using reachability analysis.
However, modern reachability tools introduce a large over-
approximation error because non-clock variables, as well as
clock variables, are equally treated by the algorithm.

In this paper we present a reachability algorithm which
exploits the explicit separation of clock and non-clock vari-
ables in the Hybrid Automata with Clocked Linear Dynam-
ics (HA-CLD) subclass, as well as restricting that guard and
invariant constraints can only be specified in the HA-CLD
model for clock variables. These properties of HA-CLD al-
low independent computation of tight reachable set over-
approximations, in the form of flow-pipes, of clock and non-
clock variables. A computationaly efficient and tight intersec-
tion operation is obtained by relating segments of the clock
flow-pipe with segments of the non-clock flow-pipe.

We demonstrate the effectiveness of our approach using
two benchmarks, in the context of verifying stability. From
the results it can be concluded that our reachability ap-
proach obtains significantly tighter results with an up-to
65 times smaller run-time compared to the start-of-the-art
model checker SpaceEx.

CCS Concepts

• General and reference → Verification; • Comput-
ing methodologies → Model verification and valida-
tion; • Hardware → Model checking; • Software and
its engineering → Model checking; Software verifica-
tion; Software safety ; Software verification and validation; •
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1 Introduction

Reachability analysis of HA is an important and extensively
studied problem in the hybrid systems community. The
reachability problem is to compute the set of all the pos-
sible states that a system can reach from a given initial set,
as the system evolves over time. Equivalently, it is a problem
of exhaustively evaluating all possible state trajectories. This
reachable set is then used to verify certain safety and liveness
properties.

However computing the reachable set exactly is usually
not possible and as a result it is typically derived as a set
of over-approximated sub-sets, a process known as flow-pipe
construction. The most common representations of the sub-
sets are convex polytopes, zonotopes, ellipsoids and oriented
box hulls, etc [3, 5–7, 9, 12, 13, 18]. A problem with this
method of computing the reachable set is the accumulation
of error due to over-approximation, also known as the wrap-
ping effect [16]. Typical causes for this are 1) mixture of
different types of variables, for which one representation may
not be universally tight; 2) set operations that produce one
representation from another, e.g. intersection of zonotopes;
3) and over-approximations introduced to reduce the com-
plexity of a set representation, and reducing the number of
sub-sets (clustering). While there exist methods to avoid
over-approximation when performing Continuous-Time (CT)
and discrete-event reachability independently for certain sub-
classes of the HA, it is unavoidable when combined.

In this paper we consider Hybrid Automata with Clocked
Linear Dynamics [10], and present an efficient approach for
their reachability analysis. In these models the CT state-space
is partitioned into two types: clock and non-clock variables.
Clock variables (clocks) have simple linear dynamics in the
form of �̇� = 1, while non-clock dynamics are specified by linear
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Ordinary Differential Equations (ODEs). This separation of
variables allows applying type-specific reachability techniques
on lower-dimensional subspaces, which increases the accuracy
and efficiency. Additionally, the invariants and guards are
only defined for clocks, which greatly simplifies computing
intersections.

In [24, 25] the decomposition of general HA models is
considered, where the entire state-space is partitioned based
on the complexity of the continuous dynamics. However, a key
difference with the work presented in this paper is that these
works do not introduce an efficient intersection technique.

We present the results of two benchmarks for control sys-
tems with sampling jitter. In the first benchmark sampled
sensor data received by the controller is only delayed, whereas
in the second benchmark the data might be lost. The results
for these benchmarks obtained with our model checker are
compared with results obtained with the state-of-the-art
model checker SpaceEx [12].

The rest of this paper is organized as follows. In Section 2
we review related work. Section 3 discusses the basic idea of
our approach and introduces common reachability analysis
issues. Section 4 defines the semantics of HA-CLD model.
In Section 5 we describe the flow-pipe construction process.
In Section 6 we present the complete reachability algorithm
and the key techniques that simplifies the intersection opera-
tion. Our benchmark results are presented in Section 7. Our
conclusions are presented in Section 8.

2 Related Work

In this section we discuss approaches that are closely related
to our work and outline the differences.

The works by Frehse and Le Guernic et al. [13, 18] present
a reachability analysis approach for Linear Time Invari-
ant (LTI) systems with extensions to Hybrid Automata with
Linear Dynamics (HA-LD). Here they utilize symbolic sup-
port function representations of the over-approximated sets,
allowing certain operations to be applied efficiently. The
methods presented in these works have been successfully
integrated into the SpaceEx model-checker [12]. However
SpaceEx does not exploit separability of clock and non-clock
variables for HA-CLD models to improve the accuracy and
computational efficiency. In contrast our approach specifically
targets HA-CLD models.

An approach by Schupp et al. [24, 25], similarly to our
work, proposes a reachability algorithm (implemented using
HyPro [22]) that utilizes syntactical separation of the vari-
ables into partitions with dynamic-specific classes, namely
(1) zero-derivative, (2) timed (clocks), (3) constant-derivative
and (4) linear. Existing class-specific flow-pipe techniques are
then applied to each partition separately to achieve better
efficiency and accuracy. They also observe that segments in
different partitions are related and note that if a guard or
invariant, i.e. a predicate, for a segment of one flow-pipe does
not hold, then there is no need to evaluate the predicates of
the other flow pipes, which improves the efficiency. A differ-
ence with our work is that in the HA-CLD model guards and

invariants can only be defined for clocks, and checking these
predicates on clocks is always easy. Furthermore, Schupp does
not present an efficient way to compute over-approximated
intersections. We present an efficient intersection approach
which is based on the relation between the segments of clock
and non-clock flowpipes.

A recent work by Bogomolov et al. [6] describes an ap-
proach which considers decomposing a highly dimensional
system into 2 × 2 sub-systems that can be independently
analyzed more efficiently and accurately. A cartesian prod-
uct of the resulting reachable sub-sets is then computed,
which over-approximates the reachable set of the original
system. However, the approach does not make an explicit
type distinction between the sub-spaces. As such, efficient
guard/invariant intersection and flow-pipe construction ap-
proaches for each sub-space are not considered. A reachability
algorithm is also not presented.

The works by Khatib et al. [1, 2] present a stability verifi-
cation approach using reachability analysis of systems, where
the temporal and functional behaviors are explicitly specified.
The models considered are very similar to our HA-CLD, and
the algorithms presented exploit the separability of temporal
and functional variables to compute reachable sets efficiently
and synthesize schedules. However, an important difference
is that their approach supports only a single clock and one
discrete mode, whereas our approach supports models with
multiple clocks and multiple modes.

3 Basic Idea

In this section we describe common issues associated with
reachability analysis and the basic idea of our approach.

3.1 Reachability of HA-LD

HA-LD are automata, of which HA-CLD is a sub-class, where
the CT state variable 𝑥 ∈ 𝒳 in a mode 𝑞 ∈ 𝑄 evolves ac-
cording to a system of first order linear ODEs. Each mode
has a polyhedral set of constraints (invariants), Inv(𝑞), which
are defined using systems of linear inequalities over the con-
tinuous state-space 𝒳 . The discrete transitions (edges) from
each mode, 𝑒 ∈ 𝐸, are equipped with linear reset maps and
polyhedral constraints (guards), 𝐺(𝑒), which are also defined
as systems of linear inequalities over 𝒳

The reachability algorithm for HA-LD and HA-CLD alike
is summarized in the following steps:

(1) CT reachability: for each 𝑞 ∈ 𝑄 an initial set 𝑋𝑞
𝑘 is

intersected with the respective invariant Inv(𝑞), and a
flow-pipe over-approximation is computed as a set of
segments that satisfy the invariant.

(2) Discrete-Event (DE) reachability: for each edge 𝑒 ∈ 𝐸
the computed flow-pipes are intersected with a respec-
tive guard 𝐺(𝑒), and a reset map is applied.

(3) Clustering and aggregation: the computed sets are
clustered and aggregated in each mode, and used as
initial sets in the next iteration.

(4) Steps 1-3 are repeated in subsequent iterations, until a
fixed-point condition is satisfied.
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3.2 Common issues

Traditionally, the set over-approximations are represented
using geometrical or numerical objects, which have certain
advantages and disadvantages over each other with respect to
the computational effort and over-approximation error intro-
duced by set operations. For example linear transformations,
Minkowski sums and testing intersection are computation-
ally efficient operations for zonotopes, but computing the
intersection itself is not [11, 15]. Then these representations
change over the course of the algorithm into further over-
approximations during steps 2 and 3, and as a result amplify
the error. Furthermore the error scales with the dimension-
ality of the system and certain representations become less
tight when variables with simple dynamics are mixed into the
state-space, such as clocks and Piece-Wise Constant (PWC)
variables [23, 24]. Finally, when simple guard and invari-
ant constraints are defined for e.g. clocks, an intersection
and inclusion operation can be more expensive than needed,
as an unnecessary complex representation also suitable for
non-clock variables is used.

As an example consider a distributed cyber-physical con-
troller implemented on a multi-processor architecture with a
shared memory. Due varying execution times, the controller
may be affected by sampling jitter which deteriorates its
performance. To verify whether the system still functions
correctly within some safety and performance margin one
may derive a HA-LD model, given that the bounds on the
execution time of the controller are known. This automa-
ton consists of a single mode wherein the dynamics of the
plant are described by a state-space representation, while
the control law is specified by a transition with a reset map.
Additionally, a clock is introduced to model the execution
time of the controller. The invariant and guard are intervals
over the clock variable, which specify an upper and a lower
bound on the execution time. Thus the plant, controller and
clock variables, 𝑥(𝑡),𝑢(𝑡) and 𝑐(𝑡), respectively, form the
state-space of the automaton. In this case it is obvious that
an explicit intersection of the reachable sets is not necessary,
because the time duration in the given mode can be exactly
derived and the clock flow-pipe can be trivially computed.
However, modern reachability algorithms do not usually make
this type distinction and equally apply a common technique
to all variables. Intersections are also then applied explicitly
on the whole state-space, which is computationally intensive
and may lead to large over-approximations of the reachable
set. A consequence is that the analysis may conclude that
the system does not satisfy the requirements, even though in
reality it does.

In the spirit of this example we take into consideration
that separating clock and non-clock variables can have great
benefits for the reachability analysis, and exploit this concept
in our approach. For example the flow-pipe of the non-clock
variables is more tightly computed since the dimensionality
is reduced, because clock variables are considered seperately.

(a) (b)

(c)

Figure 1: Disjoint flow-pipes 𝐶(𝑡) and 𝑋(𝑡) (1a and
1b respectively, and the combined flow-pipe 𝑍(𝑡) (1c),
intersected by a guard 𝐺.

3.3 Difficulties with intersections in the

clock domain

Separation of variables introduce a challenge when the guard
and invariant intersections with the flow-pipes need to be
computed exactly. Typically, they are over-approximated
instead. To show why computing exact flow-pipe intersections
is difficult when the clock and non-clock domains are disjoint,
consider a simple automaton with variables 𝑐, 𝑥 ∈ R, where
𝑐 is a clock. Also consider a guard 𝐺 defined only for the
clocks, which enforces the constraint that 𝑐 ≤ 𝑐. Assume
that the sets 𝐶0 and 𝑋0 are initial state sets for 𝑐 and 𝑥,
respectively, which continuously evolve until a trajectory
for a given initial state 𝑐0 reaches the guard’s boundary.
When treated separately, the flow-pipes 𝐶(𝑡) and 𝑋(𝑡) are
independently evolving from 𝐶0 and 𝑋0, respectively, and
contain all of the possible trajectories. The flow-pipes are
shown in Figures 1a and 1b, respectively, where eventually the
upper and lower bound trajectories of 𝐶(𝑡), shown as arrows,
intersect with the boundary of 𝐺 at times 𝑡 and 𝑡, respectively.
Notice that for a trajectory 𝑥(𝑡) ∈ 𝑋(𝑡) the time of exact
intersection, 𝑡′ ∈ [𝑡, 𝑡], is not captured within the interval [𝑡, 𝑡].
Furthermore, there is no explicit relation between individual
trajectories in 𝑐(𝑡) ∈ 𝐶(𝑡) and the corresponding trajectories
𝑥(𝑡) ∈ 𝑋(𝑡). The only information that is derived is the upper
and lower bound of the interval [𝑡, 𝑡]. Because the relation
between trajectories is not derived, all possible states reached
within the time interval [𝑡, 𝑡] are considered as end points for
each trajectory in 𝑋(𝑡), and as result all are considered as
the potential intersection boundary of 𝑋(𝑡). This is handled
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as non-determinism and the flow-pipe segment within [𝑡, 𝑡] is
included in the reachable set, which is an over-approximation.

Now consider the case where the variables are not treated
independently and a combined flow-pipe is computed instead.
Specifically the set of trajectories for every tuple (𝑐, 𝑥) ∈ 𝑍0 ⊆
R2 is considered, where 𝑍0 = 𝐶0 ×𝑋0. The corresponding
flow-pipe is thus 𝑍(𝑡), and is shown in Figure 1c. Notice
here that the guard 𝐺 is extended to cover the domain of
variable 𝑥, and is thus a half-space described by the set
{(𝑐, 𝑥) ∈ R2 | 𝑐 ≤ 𝑐}. In this case the guard exactly intersects
with the flow-pipe, and a time instance of intersection for the
each individual trajectory can be determined.

Further in the paper we describe our solution for the
computation of precise, but not exact, intersections when
clock and non-clock flowpipes are computed independently.

4 Semantics of Hybrid Automata with

Clocked Linear Dynamics

In this section we present the formal definition of HA-CLD
and discuss its semantics.

4.1 Notation

Throughout the paper vectors and matrices are displayed
with bold letters, e.g. 𝑥 = (𝑥1, ..., 𝑥𝑛)

⊺ ∈ R𝑛 and 𝐴 ∈ R𝑚×𝑛.
The matrix 𝐼𝑛 ∈ R𝑛 is the identity matrix with columns
𝑒𝑖, 𝑖 = 1, ..., 𝑛, where 𝑒𝑖 is a standard basis vector with the
𝑖-th component equal to 1 and the rest 0. Multiplication of a
matrix 𝐴 with a set 𝑋 ⊆ R𝑛 is the set 𝐴𝑋 = {𝑥 ∈ 𝑋 | 𝐴𝑥}.
Adding a vector 𝑏 ∈ R𝑛 to a set 𝑋 is simply 𝑋 + 𝑏 =
{𝑥+𝑏 | 𝑥 ∈ 𝑋}, while adding a set 𝑌 ⊆ R𝑛 to𝑋, an operation
called a Minkowski sum, is 𝑋+𝑌 = {𝑥+𝑦 | 𝑥 ∈ 𝑋 and 𝑦 ∈
𝑌 }. If a set 𝑋 is finite, then |𝑋| is the number of its elements.
For a matrix 𝐴 with entries 𝑎𝑖𝑗 , |𝐴| is a matrix with entries
|𝑎𝑖𝑗 |. A unit ball is the set ℬ𝑝 = {𝑥 ∈ R𝑛 | ‖𝑥‖𝑝 ≤ 1},
where ‖·‖𝑝 is any vector 𝑝-norm. The 2-norm is assumed
throughout the paper and the subscript is omitted unless
otherwise specified. Given a set 𝑋, then the set Conv(𝑋)

is its convex hull. Given vectors 𝑥 and 𝑦, then 𝑥 ◇ 𝑦 ≜
𝑥1 ◇ 𝑦1 ∧ · · · ∧ 𝑥𝑛 ◇ 𝑦𝑛, ◇ ∈ {<,≤,=,≥, >}, min{𝑥,𝑦, ...} ≜
(min{𝑥1, 𝑦1, ...}, ...,min{𝑥𝑛, 𝑦𝑛, ...})⊺. Given an 𝑥 and 𝑦 ≥ 0,
then a box (interval hull) is the set Box(𝑥,𝑦) = [𝑥1, 𝑥1+𝑦1]×
· · ·×[𝑥𝑛, 𝑥𝑛+𝑦𝑛]. Let 𝑓 : R𝑖1×· · ·×R𝑖𝑁 → R𝑜1×· · ·×R𝑜𝑀 be
a function, then given the sets 𝑋1 ⊆ R𝑖1 , ..., 𝑋𝑁 ⊆ R𝑖𝑁 and
applying 𝑓 to each of them results in the set 𝑓(𝑋1, ..., 𝑋𝑁 ) =
{𝑓(𝑥1, ...,𝑥𝑁 ) | (𝑥1, ...,𝑥𝑁 ) ∈ 𝑋1 × · · · ×𝑋𝑁}.

4.2 Definiton

We use a similar definition as the one provided in [19]:

Definition 4.1. A Hybrid Automata with Clocked Linear
Dynamics is a tuple 𝒯 = (𝑄,𝒳 , 𝒞, 𝑓, Init, Inv, 𝐸,𝐺,𝑅𝑥, 𝑅𝑐,𝒰)
where

∙ 𝑄 = {𝑞1, ..., 𝑞𝑁} is a finite set of discrete states (modes);
∙ 𝒳 = {𝑥1, ..., 𝑥𝑛} is the set of CT state variables;
∙ 𝒞 = {𝑐1, ..., 𝑐𝑝} is the set of clock variables;
∙ 𝑓 : 𝑄×𝒳 → 𝒳 is an affine flow assignment map;

∙ Init ⊆ 𝑄×𝒳 × 𝒞 is the set of initial states;
∙ Inv : 𝑄 → 2𝒞 is a clock invariant assignment map;
∙ 𝐸 ⊆ 𝑄×𝑄 is a set of edges;
∙ 𝐺 : 𝐸 → 2𝒞 is a transition guard assignment map;
∙ 𝑅𝑥 : 𝐸 ×𝒳 → 2𝒳 is a state reset assignment map;
∙ 𝑅𝑐 : 𝐸 × 𝒞 → 2𝒞 is a clock reset assignment map;
∙ 𝒰 : 𝑄 → R𝑚 is a bounded input set assignment map;

The map 𝑓 assigns an affine function for each mode 𝑞 ∈ 𝑄,
such that the continuous state 𝑥 ∈ 𝒳 evolves over time
according to:

�̇�(𝑡) = 𝐴𝑞𝑥(𝑡) +𝐵𝑞𝑢(𝑡); 𝑢(𝑡) ∈ 𝒰(𝑞), (1)

where 𝐴𝑞 ∈ R𝑛×𝑛,𝐵𝑞 ∈ R𝑛×𝑚 and 𝑢(𝑡) ∈ R𝑚 is a bounded
input signal, i.e. 𝒰(𝑞) ⊆ 𝜇𝑞ℬ+𝑢𝑞, 𝜇𝑞 ∈ R+. The clocks evolve
in all modes according to �̇�(𝑡) = 1, where 1 = (1, ..., 1)⊺ ∈ R𝑝.
State evolution is only allowed as long as the clocks satisfy
the mode’s invariant, i.e. 𝑐(𝑡) ∈ Inv(𝑞).

For a mode 𝑞 the clock invariant is an interval hull of
the form Inv(𝑞) = Box(�̌�𝑞, �̂�𝑞 − �̌�𝑞). Similarly for an edge
𝑒 ∈ 𝐸 the transition guard is an interval hull of the form
𝐺(𝑒) = Box(�̌�𝑒, �̂�𝑒−�̌�𝑒).

The reset maps 𝑅𝑥 and 𝑅𝑐 assign affine reset functions
for each edge 𝑒 = (𝑞, 𝑞′) ∈ 𝐸, which are triggered whenever
the transition 𝑞 → 𝑞′ occurs at time 𝑡′. Assuming a guard is
enabled for an edge 𝑒 at time 𝑡, i.e. 𝑐(𝑡) ∈ 𝐺(𝑒), then a reset
assigns new values to the clock and non-clock variables at
𝑡′, such that lim𝑡′→𝑡+ 𝑥(𝑡′) = 𝐺𝑒𝑥(𝑡) and lim𝑡′→𝑡+ 𝑐(𝑡′) =
𝐶𝑒𝑐(𝑡) + �̄�𝑒.

4.3 Reachability

Let 𝒯 be a HA-CLD as defined in Definition 4.1. Given a state
𝑠 = (𝑞,𝑥, 𝑐) ∈ 𝑄×𝒳 × 𝒞, then the forward continuous-time
reachable set (flow) relation from 𝑠 is defined as:

Flow(𝑠)={(𝑞, 𝜉𝑞(𝑡,𝑥,𝒰(𝑞)), 𝑐+ 𝑡1) |
𝑐+ 𝑡1 ∈ Inv(𝑞), 𝑡 ∈ R+}, (2)

where 𝜉𝑞 is a trajectory function that satisfies equation (1).
A discrete transition (jump) relation from a state 𝑠 ∈ Inv(𝑞)
is defined as

Jump(𝑠) = {(𝑞′,𝐺𝑒𝑥,𝐶𝑒𝑐+ �̄�𝑒) |
∃𝑒=(𝑞, 𝑞′) ∈ 𝐸 : 𝑐 ∈ 𝐺(𝑒)}. (3)

Definition 4.2. Let 𝑆𝑘 = Jump(Flow(𝑆𝑘−1)), 𝑘 ∈ N ∖ {0},
with 𝑆0 = Init, then an execution of the hybrid automaton
𝒯 is the sequence {𝑠𝑘}∞𝑘=0, such that ∀𝑘 ∈ N : 𝑠𝑘 ∈ 𝑆𝑘 and
𝑡𝑘 is a time moment when a discrete transition 𝑞𝑘−1 → 𝑞𝑘
takes place.

The reachable set of states after 𝑘 iterations is defined as

ℛ𝑘 =

𝑘⋃︁
𝑗=0

𝑆𝑗 = 𝑆𝑘 ∪ℛ𝑘−1. (4)

The reachability problem is to compute ℛ𝑘 for some finite 𝑘.
Traditionally ℛ𝑘 is iteratively computed until the condition
𝑆𝑘 ⊆ ℛ𝑘−1 is satisfied for some 𝑘, or a maximum number of

iterations, 𝑘, is reached.
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Figure 2: A clock flow-pipe 𝐶(𝑡) (light blue), and it’s

box over-approximation [𝐶0, 5]
↑ (dark green) over an

invariant Inv(𝑞).

5 Continuous time reachability

In this section we describe in detail the computation of
Flow(𝑆) using flow-pipe over-approximations from a single
initial set 𝑆 = (𝑞,𝑋0, 𝐶0).

5.1 Clock flow-pipes

Clock variables in HA-CLD have simple dynamics, and thus
computing the flow-pipe is easier compared to the non-clock
variables. For every mode 𝑞 ∈ 𝑄 given an initial clock val-
uation 𝑐0, the new value at time 𝑡 ≥ 0 is symbolically rep-
resented as 𝑐(𝑡) = 𝑐0 + 𝑡1. If one has an initial set 𝐶0 in-
stead, then the unconstrained flow-pipe representation is
𝐶(𝑡) = 𝐶0 + 𝑡1. However, as discussed previously, this repre-
sentation is not suitable further on when guard and invariant
intersections need to be computed. Additionally, as it will be
shown further in this section, a non-clock flow-pipe cannot
be derived exactly and is instead over-approximated by a
union of segments, computed over fixed time-intervals. Thus,
in order to retain a discrete-time relation between clock and
non-clock flow-pipes, and to simplify their guard and invari-
ant intersections, a similar quantization technique is also
applied to the clock flow-pipe which we describe below.

5.1.1 Over-approximation
Before computing the flow-pipe, a tight time interval,

[0, 𝑇 ], and a time step, 𝛿 ∈ R+, are selected in order to
guarantee that 𝐶(𝑡) eventually reaches a boundary of the
invariant Inv(𝑞) for some 𝑡 ∈ [0, 𝑇 ]. Next, the flow-pipe
is over-approximated by a set of 𝑧 ∈ N ∖ {0} segments,

[𝐶0, 𝑧]
↑ = {𝐶1, .., 𝐶𝑧}, such that the flow-pipe is completely

covered by their union. We use box over-approximations for
the segments, since they simplify guard/invariant intersec-
tions and require minimum storage. Suppose the initial set
is specified as 𝐶0 = Box(𝑐,𝑤), then a segment is:

𝐶𝑖 = Box(𝑐𝑖,𝑤 + 𝛿1), 𝑖 = 1, .., 𝑧 (5)

where 𝑐𝑖 = 𝑐+ (𝑖− 1)𝛿1. It is easy to show that ∀𝑡 ∈ [0, 𝑇 ] :
𝐶(𝑡) ⊆ 𝐶1 ∪ · · · ∪ 𝐶𝑧. An example flow-pipe computation
is shown in Figure 2, where 𝑧 = 5. We observed that while
this representation is over-approximative, the introduced
error does not greatly affect the outcome of the reachability
algorithm.

5.1.2 Computing 𝑧 directly

(a)

Figure 3: Exact flow-pipe successors 𝑋(𝑖𝛿) (or-
ange) and the corresponding approximations
𝑋1, 𝑋2, 𝑋3 (blue)

Another observation is that selecting a 𝑇 is unnecessary,
and the exact amount of segments 𝑧 can be derived di-
rectly given a time step 𝛿, an initial set 𝐶0, and an invari-
ant Inv(𝑞), provided that at least 𝐶0 ∩ Inv(𝑞) ̸= ∅. Given
these preconditions, 𝑧 can be directly computed according to

𝑧 =
⌈︁

max𝑡{𝑐∈𝐶0 | 𝑐+𝑡1∈Inv(𝑞)}
𝛿

⌉︁
. Given that 𝐶0 = Box(𝑐,𝑤)

and Inv(𝑞) = Box(�̌�𝑞, �̂�𝑞−�̌�𝑞), then this simplifies to:

𝑧 =

⌈︂
min{�̂�𝑞 − 𝑐−𝑤}

𝛿

⌉︂
, (6)

where the minimum in this expression is taken over the compo-
nents of a vector. This is possible because the clock variables
increase linearly with time toward the upper boundaries of
the invariant, and never toward the lower, see Figure 2.

5.2 Non-clock flowpipes

Consider the ODE as defined in eq. (1). For clarity we assume
a single-mode automaton through-out this section and omit 𝑞,
with 𝒰 ≜ 𝒰(𝑞), unless otherwise stated. At any time, 𝑡 ∈ R+,
the trajectory, 𝜉 : R× R𝑛 × R𝑚 → R𝑛, of 𝑥 from an initial
state, 𝑥0, and for a disturbance signal, 𝑢(𝜏) ∈ 𝒰 , 0 ≤ 𝜏 < 𝑡,
is defined as:

𝜉(𝑡,𝑥0,𝑢) = Φ(𝑡)𝑥0 +

∫︁ 𝑡

0

Φ(𝑡− 𝜏)𝐵𝑢(𝜏)𝑑𝜏, (7)

where Φ(𝑡) = 𝑒𝐴𝑡 is the state-transition matrix. The uncon-
strained flow-pipe is then the set of all possible trajectories
starting from every initial state for all possible disturbance
signals, i.e. 𝑋(𝑡) = 𝜉(𝑡,𝑋0,𝒰). As mentioned earlier, it can-
not be computed exactly and instead is over-approximated by
a set of 𝑧 polytopic segments, [𝑋0, 𝑧]

↑ = {�̄�1, .., �̄�𝑧}, where
𝑧 is derived by the method described earlier. A segment is
the polytope, �̄�𝑖 = Conv(𝑋𝑖−1∪𝑋𝑖)+𝛼𝑖𝑃, 𝑖 = 1, .., 𝑧, where
𝑋𝑖 is a discrete-time successor set, 𝑃 ⊆ R𝑛 is a polytope,
and 𝛼𝑖 is a “bloating” constant [14], which guarantees that
the trajectories are completely contained by the union of the
segments. Formally, ∀𝑡 ∈ [0, 𝑧𝛿] : 𝜉(𝑡,𝑋0,𝒰) ⊆ �̄�1 ∪ · · · ∪ �̄�𝑧.
Note that we assume that 𝑋0 is a polytope, and 𝑃 is chosen
such that ℬ is tightly inscribed inside 𝑃 , i.e. the minimum
distance between each face of 𝑃 and any point in ℬ is 0. The
computation of [𝑋0, 𝑧]

↑ is described below.

5.2.1 Flow-pipe over-approximation
We first describe how equation (7) is used to compute each

𝑋𝑖. Since considering all possible input signals is intractable,
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Figure 4: A set as an arrangement of hyperplanes
and intersecting half-spaces (green), and as a finite
number of points (orange).

it is reasonable to instead consider the subset of PWC signals,
𝑈𝑐 = {𝑢 ∈ 𝒰 | ∀𝜏 ∈ [0, 𝛿) : 𝑢(𝜏) = 𝑢𝑐𝑜𝑛𝑠𝑡 ∈ R𝑚}. Then by
evaluating the integral in equation (7):

𝑋(𝑖𝛿) = 𝜉(𝛿,𝑋((𝑖−1)𝛿), 𝑈𝑐) = Φ𝛿𝑋((𝑖−1)𝛿) + Γ𝛿𝑈𝑐, (8)

where Φ𝛿 and Γ𝛿 are computed by noting that 𝑒

⎛⎝𝐴𝛿 𝐵𝛿
0 0

⎞⎠
=(︂

Φ𝛿 Γ𝛿

0 𝐼𝑚

)︂
[8]. Next, we expand equation (8) and substitute

𝑈𝑐 = 𝑢𝑐 + 𝜇ℬ to derive:

𝑋(𝑖𝛿) = Φ𝑖
𝛿𝑋0 +

𝑖−1∑︁
𝑗=0

Φ𝑗
𝛿Γ𝛿𝑈𝑐 =

= �̃�𝑖 + 𝜇

𝑖−1∑︁
𝑗=0

Φ𝑗
𝛿Γ𝛿ℬ ⊆ �̃�𝑖 + 𝜇𝛽𝑖ℬ = 𝑋𝑖, (9)

where �̃�𝑖 = Φ𝑖
𝛿𝑋0 +

∑︀𝑖−1
𝑗=0 Φ

𝑗
𝛿Γ𝛿𝑢𝑐 and 𝛽𝑖 =

∑︀𝑖−1
𝑗=0‖Φ

𝑗
𝛿Γ𝛿‖.

In the last expression we make use of the following property:
given some matrices 𝑀1,𝑀2,𝑀3,... , then 𝑀1ℬ +𝑀2ℬ +
𝑀3ℬ+ · · · ⊆ (‖𝑀1‖+ ‖𝑀2‖+ ‖𝑀3‖+ · · · )ℬ. An example
of 𝑋𝑖 is shown in Figure 3a.

Finally, using equation (9), properties of the Minkowski
sum and the convex hull, a flow-pipe segment is:

�̄�𝑖 = Conv(𝑋𝑖−1 ∪𝑋𝑖) + 𝛼𝑖ℬ =

= Conv(𝑋𝑖−1 + 𝛼𝑖ℬ ∪𝑋𝑖 + 𝛼𝑖ℬ) =

= Conv(�̃�𝑖−1 + (𝜇𝛽𝑖−1 + 𝛼𝑖)ℬ ∪ �̃�𝑖 + (𝜇𝛽𝑖 + 𝛼𝑖)ℬ). (10)

Note that at this point the convex hull operation is purely
symbolic and is not actually computed. We then proceed
with replacing ℬ by a polytope 𝑃 , such that ℬ ⊆ 𝑃 . Good
candidates for 𝑃 are the regular simplex, the 1-norm ball ℬ1,
and the ∞-norm ball ℬ∞. An upper bound on the bloating
constant 𝛼𝑖 is derived in [14].

5.2.2 Set representation
There are two possible representations for the non-clock

sets: as sets of points or as an arrangement of hyperplanes (see
Figure 4). In this paper we utilize the earlier representation,
where an 𝑋 is a finite set of points, i.e. 𝑋 = {𝑥1, ..,𝑥𝑗 ∈ R𝑛}.
The main advantages of this representation compared to the
hyperplane representation are: 1) tighter over-approximation
of the flow-pipe because flow-pipes of individual points are
tighter ; 2) simplifies certain set operations such as unions
and inclusions; 3) simplifies clustering and pruning; and 4)
allows representing non-convex sets.

Algorithm 1 Reachability of a HA-CLD

Input: An automaton 𝒯 = (𝑄,𝒳 , 𝒞, 𝑓, Init, Inv, 𝐸,𝐺,𝑅𝑥, 𝑅𝑐,𝒰),
𝑘 ∈ N ∖ {0}, a time step 𝛿 and an 𝑆0 = (𝑞0, 𝑋

𝑞0
0 , 𝐶𝑞0

0 ) ∈ Init.

Output: The sets 𝑆1, ..., 𝑆𝑘, 𝑘 ≤ 𝑘.

1: 𝑄0 ← {𝑞0}
2: for 𝑘 = 1, ..., 𝑘 do
3: 𝑄𝑘 ← 𝑄𝑘−1

4: ∀𝑞 ∈ 𝑄 : (𝑋𝑞
𝑘 , 𝐶

𝑞
𝑘)← (∅, ∅) ◁ Flow-pipe computation

5: for each 𝑞 ∈ 𝑄𝑘−1 do
6: ℱ ← ∅
7: for each (𝑋,𝐶=Box(𝑐,𝑤))∈(𝑋𝑞

𝑘−1, 𝐶
𝑞
𝑘−1) do

8: if 𝐶 ∩ Inv(𝑞) ̸= ∅ then
9: 𝑧 =

⌈︁
min{�̂�𝑞−𝑐−𝑤}

𝛿

⌉︁
10: ℱ ← ℱ ∪ {([𝑋, 𝑧]↑ , [𝐶, 𝑧]↑)}
11: end if
12: end for
13: for each 𝑒 := (𝑞, 𝑞′) ∈ 𝐸 do ◁ Discrete reachability
14: for each (𝑋,𝐶=Box(𝑐,𝑤)) ∈ ℱ do
15: 𝑄𝑘 ← 𝑄𝑘 ∪ 𝑞′

16: if 𝐶 ∩𝐺(𝑒) ̸= ∅ then
17: �̃� = 𝐶𝑒𝑐+ �̄�𝑒 + 0.5(𝐶𝑒 − |𝐶𝑒|)𝑤
18: �̃� = |𝐶𝑒|𝑤
19: (𝑋𝑞′

𝑘 , 𝐶𝑞′

𝑘 )←({𝑋𝑞′

𝑘 ,𝐺𝑒𝑋}, {𝐶𝑞′

𝑘 ,Box(�̃�, �̃�)})
20: end if
21: end for
22: end for
23: end for
24: ∀𝑞 ∈ 𝑄𝑘 : (𝑋𝑞

𝑘 , 𝐶
𝑞
𝑘)← ClusterSets(𝑋𝑞

𝑘 , 𝐶
𝑞
𝑘)

25: 𝑆𝑘 ←
⋃︀

𝑞∈𝑄𝑘
(𝑞,𝑋𝑞

𝑘 , 𝐶
𝑞
𝑘)

26: if FixedPoint({𝑆1, ..., 𝑆𝑘}) then
27: return {𝑆1, ..., 𝑆𝑘}
28: end if
29: end for
30: return {𝑆1, ..., 𝑆�̂�}

However the disadvantages of this representation are the
increased computational effort and storage, since some of the
points may be redundant, i.e. ∃𝑋𝑟 ⊂𝑋 : Conv(𝑋 ∖𝑋𝑟) =
Conv(𝑋). We note however that the extra computational
effort is compensated by the fact that flow-pipes are tighter
and a fixed-point is found earlier.

6 Reachability algorithm for HA-CLD

In this section we lay out the complete reachability algo-
rithm and show how guard and invariant intersections are
efficiently computed. Additionally, we describe a simple clus-
tering algorithm the utilizes the box representation of clock
sets.

6.1 Discrete reachability

Discrete reachability involves evaluating the jump relation
Jump(·), or deriving an over-approximation of it. First a set of

flow-pipes, ℱ={([𝑋1, 𝑧1]
↑ , [𝐶1, 𝑧1]

↑), ..., ([𝑋𝑗 , 𝑧𝑗 ]
↑ , [𝐶𝑗 , 𝑧𝑗 ]

↑)},
computed for a mode 𝑞 is intersected with a guard 𝐺(𝑒) for
each outgoing edge 𝑒 = (𝑞, 𝑞′) ∈ 𝐸. Then a reset transfor-
mation is applied to the intersected flow-pipes for each edge.
Finally a clustering and aggregation algorithm, ClusterSets,
is applied to the sets so that their growth is reduced in sub-
sequent iterations. For further details see Algorithm 1. While
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(a) (b)

Figure 5: The over-approximated intersection of
the flow-pipes [𝐶0, 4]

↑ (5a) and [𝑋0, 4]
↑ (5b) with 𝐺,

marked in green.

Section 5 describes lines 7-12 of the algorithm, this section is
dedicated to lines 13-21.

6.1.1 Computing over-approximate intersections
Since guards and invariants in HA-CLD are boxes only

defined for clock variables, and a clock segment 𝐶𝑖 is itself a
box, intersections can be performed trivially. On the other
hand non-clock segments �̄�𝑖 cannot be exactly intersected
for the reasons described earlier in Section 3.

To allow approximate intersections we take advantage of
the fact that the flow-pipes are finite sets of segments related
by a common time-interval [𝑡𝑖, 𝑡𝑖 + 𝛿] over which they are
computed. Specifically, segments which do not intersect with
𝐺(𝑒) are discarded. Formally, ℱ ∩𝐺(𝑒) ⊆ {(�̄�, 𝐶) ∈ ℱ | 𝐶 ∩
𝐺(𝑒) ̸= ∅}. A similar procedure is done when intersecting
with an invariant Inv(𝑞).

Consider as an example a system with two clocks 𝑐1,2 and
two state variables 𝑥1,2. Let 𝑋0 = {𝑥} and 𝐶0 = Box(𝑐,𝑤)
be the initial sets, and assumed that a single clock guard 𝐺 =
[−∞,∞]× [𝑐2, 𝑐2] is specified. The flow-pipes 𝑋(𝑡) and 𝐶(𝑡),

their approximations [𝑋0, 4]
↑ and [𝐶0, 4]

↑, and the guard 𝐺
are visualized in Figure 5. Here the segment tuples (𝐶1, �̄�1)
and (𝐶4, �̄�4), highlighted in red, are outside the guard’s inte-
rior and are therefore discarded, while (𝐶2, �̄�2) and (𝐶3, �̄�3),
highlighted in green, are kept.

6.1.2 Reset map over-approximation

Figure 6: Example
over-approximation
of a clock reset.

After computing approximate
intersections the reset maps as
defined in Section 4 are applied
to the intersected sets. However,
applying a clock reset to a box
𝐶 = Box(𝑐,𝑤) results in a set
𝐶′ that is not a box, see Figure 6.
To resolve this we replace the
standard transformation with a

box over-approximation, 𝐶 = Box(�̃�, �̃�), as depicted in Fig-
ure 6, according to:

�̃� = 𝐶𝑒𝑐+ �̄�𝑒 + 0.5(𝐶𝑒 − |𝐶𝑒|)𝑤, (11)

�̃� = |𝐶𝑒|𝑤. (12)

This is derived by treating 𝐶 as a zonotope, and applying
the over-approximation technique presented in [16].

6.2 Set clustering and grouping

Once continuous and discrete reachability is complete for an
iteration 𝑘, the resulting flow-pipe segments are stored in the
set arrays 𝑋𝑞

𝑘 and 𝐶𝑞
𝑘 , which are used in the next iteration to

compute new flow-pipes. As a consequence each segment will
start its own flow-pipe in the next iteration of the reachability
algorithm. Because the number of flow-pipes grows uncontrol-
lably with each iteration, the reachability algorithm becomes
infeasible. This is worsened by the increasing number of
points for each �̄� ∈ 𝑋𝑞

𝑘 .

Algorithm 2 Set clustering

function (𝑋′, 𝐶′)← ClusterSets(𝑋,𝐶)

1: (𝑋′, 𝐶′)← (∅, ∅)
2: while 𝐶 ̸= ∅ do
3: Take (�̄�, 𝐶 = Box(𝑐,𝑤)) ∈ (𝑋,𝐶).
4: (𝑋,𝐶)← (𝑋 ∖ �̄�, 𝐶 ∖ 𝐶)
5: for each (�̄�*, 𝐶* = Box(𝑐*,𝑤*)) ∈ (𝑋,𝐶) do
6: if (𝑐 ≤ 𝑐* ∧ 𝑐* < 𝑐+𝑤) ∨ (𝑤 = 0 ∧ 𝑐 = 𝑐*) then
7: (𝑋,𝐶)← (𝑋 ∖ �̄�*, 𝐶 ∖ 𝐶*)
8: 𝑤□ = max{𝑤, 𝑐* +𝑤* − 𝑐}
9: (�̄�, 𝐶)← (�̄� ∪ �̄�*,Box(𝑐,𝑤□) )

10: end if
11: end for
12: (𝑋′, 𝐶′)← ({𝑋′,Conv(�̄�)}, {𝐶′, 𝐶})
13: end while

To reduce the number of flow-pipes, clustered overlapping
segments in the clock domain are grouped by a single box hull,
while the related non-clock segments are merged and have
their redundant points removed using a convex hull algorithm.
This procedure is described in Algorithm 2, where we again
take advantage of the fact that clock flow-pipe segments are
boxes and 𝐶𝑞 = {𝐶1 = Box(𝑐1,𝑤1), ...}. Specifically, any
two sets 𝐶𝑖,𝑗 , 𝑖 ̸= 𝑗, are overlapping if

(𝑐𝑖 ≤ 𝑐𝑗 ∧ 𝑐𝑗 < 𝑐𝑖 +𝑤𝑖) ∨ (𝑤𝑖 = 0 ∧ 𝑐𝑖 = 𝑐𝑗),

holds. If the sets overlap, then they are grouped by the
box hull Box(𝑐𝑖,𝑤𝑖𝑗), where 𝑤𝑖𝑗 = max{𝑤𝑖, 𝑐𝑗 +𝑤𝑗 − 𝑐𝑖},
and Conv(𝐶𝑖 ∪ 𝐶𝑗) ⊆ Box(𝑐𝑖,𝑤𝑖𝑗). The corresponding sets
�̄�𝑖,𝑗 are then aggregated by computing Conv(�̄�𝑖 ∪ �̄�𝑗) using
the QuickHull algorithm [4]. While this approach does not
solve the problem completely, it significantly reduces the
uncontrollable growth of flow-pipes.

7 Case study

In this section we present the benchmark results that were
obtained using our approach and SpaceEx. In the first bench-
mark, sensor data received by the controller is only delayed.
In the second benchmark, data can also be lost.

7.1 Evaluation setup

In the benchmarks we consider a controller that is interfaced
to two sensors, see Figure 7, that are strictly periodically
triggered by a clock. The data from the two sensors is pre-
processed before it is sent to the controller. As a result of
the variable execution time 𝜌𝑖 ∈ [𝜌𝑖, 𝜌𝑖] of the pre-processing
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Figure 7: A multiple sensor control system setup.

task, measurement data arrives after a variable delay at the
controller. The controller is also executed as a task with
execution time 𝐿 ∈ [�̌�, �̂�]. It is assumed that this task does
not wait for data from the sensors, and uses the most recent
measurements 𝑦𝑖 that are sent to the controller. We may also
assume that data can be lost as well during transmission.
A common problem of such systems is that verifying safety
properties and stability is very challenging, because the mix-
ture of DE and CT dynamics leads to a complex non-linear
behavior.

For the considered control system we would like to ver-
ify asymptotic stability. Specifically, an initial non-clock set
𝑋0 = 𝑟ℬ∞, 𝑟 ∈ R+, is specified, and our fixed-point crite-
rion is reached whenever 𝑋𝑘 ⊂ 𝑋0 for some 𝑘 [10]. SpaceEx
and our own algorithm are used to compute the reachable
set. These model-checkers are compared based on the num-
ber of iterations and time required to reach a fixed-point.
Another performance metric that is considered is the over-
approximation error introduced by the approaches. However,
since it is difficult to acquire numerical information from
SpaceEx, we used the graphical plot outputs generated by
the tool for our comparison.

Figure 8: HA-CLD models for benchmark 1.

7.1.1 Benchmark 1 model
In the first benchmark the particular HA-CLD model that

we use is shown in Figure 8. Two clocks 𝑐1,2 model the
sampling times of the sensors and 𝑐3 the execution time of
the controller task. The variable 𝑥 is the state of the plant,
while 𝑢 and 𝑦 are PWC actuation and sensor data vectors,
respectively. Each transition represents the completion of
a task, which is allowed when a task’s respective execution
timer reaches its lower period bound. The invariant enforces
that a transition is taken when a task reaches its upper bound.
A sensor transition stores a new measurement in the variables
𝑦1 or 𝑦2, while a controller transition updates the actuation
variable 𝑢. Similar systems are considered in [27].

The plant in this benchmark is a DC motor with a state
𝑥 =

(︀
𝜃 𝑖

)︀
, where 𝜃 is the angular velocity of the shaft,

and 𝑖 is the armature load current. Additionally, the system

matrices are 𝐴 =

(︂
−10 1
−0.02 −2

)︂
,𝐵 =

(︂
0
2

)︂
. The motor is

controlled by a proportional-gain feedback controller with
gain matrix 𝐾 =

(︀
10 1

)︀
.

Figure 9: HA-CLD model for benchmark 2.

7.1.2 Benchmark 2
In the second benchmark a similar setup is considered as

shown in Figure 7, but then with only one sensor. The other
difference is that data can be lost when communicated from
the pre-processing task to the controller task. Data loss can
occur if a wireless connection is used between the sensor and
the controller. It will also occur if previously sent data to the
controller is overwritten before it can be read. If the controller
fails to receive data from the sensor within an iteration,
then the actuation value remains unchanged, otherwise the
received value 𝑦 is used to compute a new actuation. The
HA-CLD model that is used for this benchmark is shown
in Figure 9. In this model it is assumed that the controller
will miss at most 𝑞 consecutive measurements, after which at
least one measurement is always received. The clock variable
𝑐2 is used to keep track of the number of lost measurements,
while 𝑐1 represents the execution time of the controller. Note
that the modes 𝑞1 and 𝑞2 have the same continuous dynamics
as 𝑞0, and that the flow equations are denoted with a ∙.
Similarly, transitions (𝑞1, 𝑞0) and (𝑞2, 𝑞0) have the same reset
map as (𝑞0, 𝑞0), and these reset maps are denoted with △.
Now consider for example the case when 𝑞 = 2. Here if the
controller does not receive data from the sensor within two
consecutive iterations, then it is guaranteed to receive one in
the third iteration. A similar setup is considered in [17, 20].

In this benchmark, the plant to be controlled is an aircraft.
For this system an LTI state-space representation has been
derived1. Here the state vector is 𝑥 =

(︀
𝛼 𝑞 𝜃

)︀
∈ R3,

where 𝛼 is angle of attack, and 𝑞 and 𝜃 are the pitch rate
and angle of the aircraft, respectively. The derived system

matrices are 𝐴 =

⎛⎝ −0.313 56.7 0
−0.0139 −0.426 0

0 56.7 0

⎞⎠, 𝐵 =

⎛⎝ 0.232
0.0203

0

⎞⎠.

The pitch angle is the measured variable, such that 𝑦 = 𝐶𝑥 =(︀
0 0 1

)︀
𝑥. It is controlled by a proportional-gain controller,

with 𝐾 = 0.75.

1http://ctms.engin.umich.edu/CTMS/
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7.1.3 Truck platooning

Figure 10: A typical truck platoon.

Truck platooning is a very practically relevant case similar
to the benchmarks considered so far, where data-loss and
delay during communication occurs quite often. Consider
the example in Figure 10. Here 𝑁 trucks are equipped with
sensors and actuators to maintain a certain velocity and
acceleration, that communicate relevant data via a wireless
network, e.g. an WLAN802.11p network, between each other
in order to keep certain distances 𝑑𝑖. A model and control
technique of such a platoon is presented by Maschuw et
al [20, 21], where the platoon dynamics are approximated
by a first-order filter, and the controller is determined by
an Linear Matrix Inequality (LMI) formulation, where the
communication topology is taken into account. Here they
model the events of data-loss as a switched system and find
a Common Quadratic Lyapunov Function (CQLF), which
gives a (sufficient) condition for asymptotic stability. Finding

(a) (b)

Figure 11: Reachable sets of 𝑥2,3 computed by
SpaceEx (11a), and our approach (11b) from bench-
mark 2, run 1 with 𝑋0 = 5ℬ∞. The set colors in 11b
range from blue to orange for 𝑘 = 1, 2, ...

a CQLF can be very difficult [10], and thus one may opt to
verify stability using reachability analysis, since it covers all
of the extreme cases. This is possible since a HA-CLD model
can be derived which is similar to the one for benchmark
2 in Figure 9, where a data packet drop-out within the
network does occur sporadically. Because the HA-CLD model
is similar, we do not present the truck platooning case as a
separate benchmark in this paper. However, we do note that
such a model would become too complex if the number of
trucks is large.

Our tool SpaceEx

Benchmark 1 Time 𝑘 Time 𝑘
(s) (s)

𝜌1 𝜌1 𝜌2 𝜌2 �̌� �̂� 𝛿

0.05 0.05 n/a n/a 0.05 0.05

0.01

1.4 30 0.761 27
0.03 0.03 n/a n/a 0.06 0.06 2.07 39 1.07 36
0.05 0.05 n/a n/a 0.03 0.07 21 67 78.32 286
0.03 0.07 n/a n/a 0.05 0.05 18 80 217.57 470
0.03 0.07 n/a n/a 0.03 0.07 40 93 1076.96 1135

0.05 0.05 0.05 0.05 0.05 0.05

0.01

3.59 51 30.77 247
0.04 0.06 0.05 0.05 0.05 0.05 34 63 2181.31 1561
0.05 0.05 0.04 0.06 0.05 0.05 43 63 779.42 876
0.05 0.05 0.05 0.05 0.04 0.06 28 66 1347.97 1074
0.02 0.02 0.04 0.04 0.06 0.06 21 104 11.33 111

Benchmark 2 Time 𝑘 Time 𝑘
(s) (s)

q �̌� �̂� 𝛿

0 0.5 0.5

0.05

41.234 79 n/a n/a
1 0.5 0.5 98 92 n/a n/a
2 0.5 0.5 2730 1113 n/a n/a
0 0.3 0.7 283 143 n/a n/a
1 0.3 0.7 655 157 n/a n/a
2 0.3 0.7 3054 232 n/a n/a

Table 1: Run parameters and evaluation results for
benchmarks 1 and 2.

7.2 Evaluation results

We evaluate our approach and SpaceEx with the previously
described benchmarks for various values of the sensor bounds
on 𝜌1,2, measurement miss factor 𝑞, and the controller execu-
tion time 𝐿, as summarized in Table 1. Here we show runs
that result in a fixed-point found after the 𝑘-th iteration. The
SpaceEx model checker is run using the STC scenario and
octagonal template. The relative tolerance of the algorithm
is set to 0.1, since lower values have occasionally caused the
tool to halt. Our approach on the other hand is implemented
using MATLAB, with a fixed time step 𝛿, see Table 1. Addi-
tionally we make use of the Parallel Computing Toolbox [26]
whenever possible. The evaluation PC is a laptop with 16
GB of DDR4 memory and an Intel© Core™ i7-6700HQ CPU
clocked at 2.60GHz.

From Table 1 one can conclude that our approach indeed
outperforms SpaceEx for the given benchmarks in terms
of run-time and number of iterations, except for the first
two and last runs in benchmark 1 where the only source
of non-determinism is from the transitions. Unfortunately
benchmark 2 proved too difficult for SpaceEx to handle, even

for the most trivial case of �̌� = �̂�, resulting in very large
over-approximations of the reachable set, regardless of the
options specified in the tool. This is evident from Figure 11,
where much larger over-approximation error is introduced by
SpaceEx compared to our approach.

The first reason why such a big difference is observed is
that flow-pipe computation is done separately for the clock
and non-clock variables. Also, intersections are greatly sim-
plified by only allowing guards and invariants for the clocks,
and utilizing the technique described earlier, leading to faster
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run-times. Finally, we suspect that SpaceEx introduces a sig-
nificant error by not making use of a tight clustering method.
Specifically, instead of applying a convex hull algorithm on
sets which are not represented by finite number of points,
SpaceEx utilizes template polyhedra. These are polyhedra
constructed using support-functions in fixed directions, and
generally introduce a large over-approximation error if the
number of variables of the system is large with respect to the
number of directions.

8 Conclusion

In this paper we present a reachability technique that is
optimized for HA-CLD, which is a sub-class of the general
HA. Despite that the HA-CLD subclass is more restrictive,
it is suitable for modeling and analyzing control systems that
experience sampling jitter and data loss. Sampling jitter and
data loss can occur in distributed control systems, and is a
result of varying execution times and communication delays.
From our benchmark results it can be concluded that for the
HA-CLD subclass significantly tighter reachability analysis
results are obtained than the state-of-the-art model checker
SpaceEx can obtain, which uses the more general HA model.
Furthermore, the run-time of our model checker was up-to
65 times smaller.

Tighter results were obtained by making use of the explicit
separation of clock and non-clock variables in the HA-CLD
model, as well as that guards and invariants can only be
specified for clocks in this model. These restrictions make
guard and invariant intersections trivial and allow the use
of a box representation for the clock flow-pipes. The non-
clock flow-pipes are represented by sets of points and are
tighter, but operations on this set representation are more
computationally intensive. An over-approximated intersection
of the non-clock flow-pipes with guards and invariants can
be obtained efficiently. This was achieved by exploiting the
fact that the segments of the clock and non-clock flow-pipes
are related by fixed time-invervals over which the segments
are computed, and by discarding tuples of related clock and
non-clock segments, provided that a clock segment in a tuple
is outside the interior of a given guard or invariant.
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