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Abst rac t  

In this paper we improve a model checking algorithm based on the tableau 
method of Stifling and Walker. The algorithm proves whether a property ex- 
pressed in the modal mu-calculus holds for a state in a finite transition system. 
It makes subsequent use of subtableaux which were calculated earlier in the 
proof run. These aubtab|eaux are reduced to expressions. Examples show that 
both size of tableaux and execution time of the algorithm are reduced. 

1 I n t r o d u c t i o n  

The modal mu-calculus is an active area of research. It stands in the tradition of 
Hoare logic, Dynamic logic, Process logic, and linear and branching time logics IS]. 
Model checking in the modal mu-calculus plays a part in verification of parallel pro- 
cesses with both finite [CS1] and infinite state spaces [BS], and finds application in 
preorder models [CS2] and in Petri nets [B}. 
The main approaches are symbolic model checking [BC] [EFT], model checkers based 
on the fixpolnt induction principle [EL], and tableau based model checkers as in [SW] 
[C]. An advantage ~of the latter is its ability to deal also with infinite state spaces. 
In comparison to the approximation techniques they work locally, i.e. they do not 
determine the set of all states satisfying a property, but prove a modal formula only 
for one state. Unfortunately the attractiveness of tableau methods suffers by their 
complexity. A main reason for this is that these model checkers do not make subse- 
quent use of subresults. 
This paper presents a method whereby a tableau based model checker for the full 
modal mu-calculus can recycle subtableaux, which have been calculated earlier in the 
model checking algorithm. An implementation of these ideas has confirmed an im- 
pressive improvement in execution speed in a variety of examples. 
The following section introduces briefly the modal mu-calculus and its semantics. In 
section 3 the underlying standard tablean model checker is described. The motivating 
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ideas of tableau recycling and the necessary notions are contained in section 4. Sec- 
tions 5 and 6 present the algorithm and the proofs of its correctness and completeness. 
Some surprising examples can be found in section 7. Section 8 concludes this paper. 

2 T h e  M o d a l  M u - C a l c u l u s  

This section gives a brief introduction to the modal mu-calculus. For more details see 
Is]. 

The syntax of the modal mu-calculus is defined with respect to a set Q of atomic 
propositions including true and false, a finite set/~ of action labels and a denumerable 
set Z of propositional variables. A formula of the modal mu-calculus is an expression 
of the form: 

A ::= Z I Q I -~A IAA A I [a]A I uZ.A 

where Z E Z, Q E Q and a E/ : ,  and where in uZ.A every free occurence of Z in A 
falls under an even number of negations. The standard conventions for the derived 
operators are: 

A1 V A2 := -~(-~Ax A -'A2) 
(a)A := -,[a]-,A 
#Z.A := ",,Z.-,A[-~Z/Z]. 

Formulae of the modal mu-calculus with the set /: of action labels are interpreted 
relative to a labelled transition system 7" = (S, {'~l" a E/~}) ,  where S is a finite set 
of states and ~ C  S •  • S for every a E / :  a binary relation on states. A valuation 
function ~) assigns to every atomic proposition Q in Q (and propositional variable Z 
in Z) a set of states I,'(Q) c S (P(Z) c S) meaning that the proposition Q (variable 
Z) holds for every state in P(Q) (1)(Z)). The pair T and P is called a model of the 
mu-calculus. The semantics of each mu-calculus formula A is the set of states IIAIIv z 
defined inductively as follows: 

IlZllv ~ = V ( z )  
IIQII~ = v ( Q )  
II-~Allv ~ = S- I IAIIv  ~ 
IIAx A A~II~ = Ilmdl~ n IIA=U~ 
II[a]AIIv r = {s E S I Vs'. i f  s ~ s' then s' e IIAIIv ~ )  
IluZ-AIIv ~ = U{s' _ s i s '  c Ilall~vts,/zl} 

3 A S t a n d a r d  T a b l e a u  M o d e l  C h e c k e r  

This section sketches a standard tableau method based on the model checker of Stifling 
& Walker [SW I. The notation used here is a mixture of the notations of Cleaveland 
[C] and Stirling • Walker [SW]. Some additional notions are necessary. 
The modal mu-calculus is extended by a set of propositional constant symbols. Let 
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U, Ul... range over these symbols. A definition is a declaration U = A, where U 
is a constant symbol and A a formula of the modal mu-calculus which may contain 
constant symbols. A definition list A consists of a sequence of definitions (UI = 
A~). . .  (U,, = Am). I t  fulfills the requirement that  every Uj appearing in Ai is defined 
before Ui, i.e. j < i, and that Ui # U i for i # j .  For A being such a definition list the 
function A(UI) = Ai is declared. A hypothesis is an expression of the form s E U, 
where s is a state of a transition system and U a constant symbol. Hypotheses are 
collected in a hypothesis set H. A sequent H ha s E A expresses that the formula A 
is valid at the state s with respect to the hypotheses of H.  We drop empty As and 
Hs. 

The model checker here is tableau based. This corresponds to a top-down proof 
method, starting with the intended conclusion and reducing it stepwise to (atomic) 
premisses. The rules for a tableau method are inverse to the usual rules of natural 
deduction. Here we take the conclusions and premisses to be sequents. The root 
sequent h s E A contains the state s and the modal property A, which we want to 
prove for this state. The root sequent has an empty hypothesis set and an empty 
definition list. The rules of the tableau system are: 

l~H~-as E -~-~A 
" 

3) H ~'a s ~ -,(A ^ B) 
H hA s E "~A 

H ha s E [a]A 
5)i~-~, s, e A . . .H~-a  s~ e A 

HI-z~ s E A A B  
2 ) H h a s E A  H ) - a s E B  

ha s E ",(A h B) 

{ ~ , , . . . , s , }  = { s ' l s - ~  ~'} 

6~ H I-zx s E -~[a]A 
" -HF2~; f f4 - ]  s e ,  s' 

. H h a s E u Z . A  A ' = A . ( U = t , Z . A )  
) - f f ~ [ , - ; e  u 

8] H I-a s E "~vZ.A A' 
" h-~:-~ ~ - 5  = a .  (U = ",~Z.A) 

H I-a s E U (s E U) r H, A(U) = uZ.A, H' = H O {s E U} 
9) H '  ha s E A[Z := U] 

F,, s e v (s e u) r H, ~(t] )  = -~.Z.A, H' = Xr U {s e ~}  
lO) H' I-a s E "-,A[Z := -~U] 

A proof tree is constructed by applying the rules to the root sequent, and then to its 
successors etc. The proof tree is maximal if no rule is applicable to a leaf sequent. 
Such a maximal proof tree is called a tableau. A tableau is successful, if all its leaves 
are successful. A leaf sequent H ~-a s E B is successful, if it satisfies one of the 
properties (i)-(iv): 
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(i) B = Q and s �9 );(Q) 

(ii) B = -~Q and s t/~ ])(Q) 

(iii) B = [a]C 

(iv) B = U and A(U) = vZ.U 
and (s �9 U) �9 H 

(i') B = Q a n d ,  r V(Q) 

(ii') B = -,Q and s �9 V(Q) 

(iii') B = (a)C 

(iv') B = V and A(U) = -,vZ.C 
and (s �9 U) �9 H 

If one of the dual forms (i ')-(iv') of these requirements holds for a leaf sequent, 
then it is not successful. In an unsuccessful tableau there is at least one leaf, which is 
not successful. 
For later considerations the definition of a computation tree is also neccessary. A model 
checker algorithm based on the tableau rules builds a tree starting with I- s �9 A 
as root sequent and applying nondeterministically the rules. When a leaf fails the 
algorithm has to use backtracking techniques to try other paths. It will build up this 
tree until it is sure that a sequent has a successful subtablean or not. In the first 
case the tree includes a successful tableau, in the second case it is not necessary that 
the tree contains any maximal  proof tree. We call a tree created by such a model 
checker algorithm a computation tree, if it sufficient to decide, whether there exists a 
successful tableau or not. 
Note that such a computation tree determines an "and-or-tree", if the successful 
leaves are identified with true, the unsuccessful ones with false, the nondeterministic 
branching as disjunction and the deterministic branching as conjunction. It can be 
evaluated to true, iff the computation tree contains a successful tableau. 
For simplicity of notation in this paper the definition lists A, A' are considered to be 
global for all different subtrees of one computation tree, i.e. there are no two different 
definition lists (in two different subtrees) At,  Az and for any U, At(U)  # A2(U). 

4 T a b l e a u  R e c y c l i n g  

This section starts by describing a basic source of inel~cieney in the standard model 
checker. Then it considers how the efficiency might be improved, and finally means 
for an algorithm are presented that  gives a significant gain in efficiency. 

The basic problem with the standard model checker is that  it does not store any 
intermediate results (subresults). It  is possible that  it proves the same formula for 
the same state arbitrarily often, as the following example will show: 

Fa, 6 ~  
= .x.[.l@X 

informal meaning: "every a - s u c c e s s o r  
h a s  a b-succe-.aor for which 

this property holdsjecur~vely." 

Fig. 1. 

�9 b �9 b a ~  

.@5.- "%/"  

model with tableau of exponentional size 
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Here the formula ~ is proved n times for the state 82, n 2 times for the state s3, . . . ,  n k - I  

times f6r the state sk. The number of nodes in the computation tree is exponential 
with respect to the length k of this transition system. 
Moreover, a look at computation trees shows that in many cases, different subtahleaux 
of a state and a formula are very similar. 

The most obvious way to improve efficiency would be just to store the information 
"the sequent H F s E ~ has a successful (or no successful) subtableau" , and use it 
whenever the same state and formula appear again in the computation tree. 
Unfortunately this idea is too simple: 

The first obstacle is that the constants used in different subtableaus have differ- 
ent names. It therefore does not happen that exactly the same sequent appears 
twice. A notion of equivalence will help to solve this problem. 

Secondly the hypothesis sets can differ, even when formulae and states are identi- 
cal. It is obvious that the shapes of the computation subtrees differ accordingly, 
since they depend on the hypothesis sets. Therefore in order to recycle a compu- 
tation subtree of a similar sequent with even a slightly different hypothesis set, 
one has to store also the shape of the computation subtree. It turns out that 
the shape of such a subtree can be reduced to an expression which is sufficient 
for the derivation of all useful information. 

A cornerstone of the tableau recycling algorithm is a notion of equivalence, which 
allows different sequents in a computation tree to be compared. The basis for this is 
the definition of equivalent constants, which have different names but identify syntac- 
tically the same formula. In the following let for Z1, . . . ,  Z ,  being the free variables 
in r denote r  Uj.) = r  Uj./Z,] ,  meaning that every occurence of 
Zi in ~ is substituted by Uj~. 

D E F I N I T I O N  1 ( E q u i v a l e n c e )  

(1) A formula r  Uj.) is equivalent to the formula O(Uk,,. . .  Uk,,), 
denoted r  Uj.) ~ r  U~.), iff 
for 1 < i < n all constants Uj~ ~ Uk~. 

(~) A constant Ua is equivalent to the constant Us, denoted Ux ~ Us, iff  Uz = Us 
o r  A ( u , )  ... a ( u , ) .  

Note that this equivalence is essentially Mpha-conversion with respect to constants. 
The main insight now is that equivalent sequents can have identical computation sub- 
t rees .  
We will now show how the shape of a computation tree can be reduced to an expres- 
sion. 
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D E F I N I T I O N  2 ( Hypo thes i s  Tree)  
A hypothesis tree is an expression of the form: 

HT  ::= true I false I unknown I Y I Y; H T  I Vle, HTi I Aiet HTi 

where I is a finite index set and Y is a hypothesis, e.g. s E U. 

If the termination behavior of all paths of the computation tree is known, it is deter- 
mined whether there is a successful subtableau or not. Some of the paths terminate 
with the rules (i)-(iii) and their dual forms. This kind of termination is independent 
of the hypothesis sets. The other paths terminate with rule (iv) and its dual form. 
In this case the kind of termination depends on the hypothesis set and whether for 
the terminal sequent H ~ b a s  E U the constant U stands for a maximal or negated 
maximal (minimal) fixpoint formula. 
The reduction of a computation tree to a hypothesis tree reflects this idea: 
transform the computation tree to an "and-or tree", but leave all hypotheses in it. 

D E F I N I T I O N  3 ( Reduc t ion  to  a Hypo thes i s  Tree)  
Reduce a computation tree to a hypothesis tree in the following way: 

�9 Replace every leaf terminating with rules (i)-(iii) or their dual forms by true or 
false respectively. 

�9 Replace every leaf terminating with a hypothesis which is not contained in the 
root hypothesis set by true if the leaf is successful or false otherwise. 

�9 Replace every nondeterministic branching by a disjunction. I f  not all of the 
nondeterministic rules were applied, extend this disjunction by a leaf unknown. 
The number of all possible nondeterministie rules is called the arity of the dis- 
junction. 

�9 Replace every deterministic branching by a conjunction. I f  not all of the de- 
terministic rules were applied, extend this conjunction by a leaf unknown. The 
number of all possible deterministic rules is called the arity of the conjunction. 

�9 Drop all sequents which are not of the form H t-A s E U, and drop all hypothesis 
sets. 

D E F I N I T I O N  4 ( Eva lua t ion .o f  a Hypo thes i s  Tree) 
The function eval evaluates a hypothesis tree HT together with a hypothesis set H to 
eval(HT , H) E {true, false, unknown} in the following way: 

�9 substitute every hypothesis s E U in HT which is contained in II by true if  
A(U) = vX.A,  else by false . 

�9 substitute every hypothesis which is not contained in H by unknown. 

�9 Evaluate this tree with the following rules which are extended in the obvious way 
for indexed conjunction and disjunction: 
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V true false unknown A true false unknown 

true 

false 

unknown 

true true true 

true false unknown 

true unknown unknown 

true 

false 

unknown 

true false unknown 

false false false 

unknown false unknown 

The operator ";" is treated as follows: 

eval( unknown ; HT , H ) = eval(HT , H) 
eval( true ; HT  , H ) -- true 
eval( false ; HT  , H ) = false 

The following definition reflects the idea that hypothesis trees with equivalent 
roots partlculary have a common structure. Combining two hypothesis trees then 
means that the common structure is identified and extended by both non common 
structures parts. 

D E F I N I T I O N  5 ( C o m b i n a t i o n  of  H y p o t h e s i s  Trees)  
Consider two sequents t t l  ~ s E U1 and H2 ~ s E U2, U1 e~, U2, TI is the hypothesis 
tree constructed from a computation tree of  the first sequent, r2 from the second one. 
Let rz = "ci o r2 be the combination oft1 and ~'2 such that 

�9 The root of rz is the root of rl. 

�9 I f  t E U~ is a successor of s E U1 with the subtree r~ and t E U~ is a successor 
ors E U2 with the subtree r~ such that U~ ~ U~, 
then r~ o r~ is a direct subtree of the root of r3. 

�9 I f  t E U~ is a successor of s E U1 with the subtree r~ and there is no successor 
t E U~ ors E U2 such that U~ ~ U~, 
then r~ is a direct subtree of the root of t3.  (symmetrically f o r t  E U~) 

�9 I f  the successors of s E UI and s E U2 are disjunctions (neccessariIy with the 
same arity} then the successor of the root of r3 is also a disjunction with the 
same arity and those branches are combined pairwise which correspond to the 
same rule applied at this place in the computation tree. Branches of one disjunc- 
tion which have no correspondin 9 branch of the other disjunction appear directly 
in the combined disjunction. I f  the arity of the disjunction and the number of 
branches are equal all leaves unknown in this disjunction are dropped. (analo- 
gously for conjunction) 

5 The Tableau Recycling Model Checker 

The standard tableau model checker is extended by a set of hypothesis trees 7-17". In 
the beginning 7"/7" is initialized with the empty set. 
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Every time, when a computation tree is built up for a sequent H ha s E U, the 
hypothesis tree r is derived and inserted in 7-/T. If there already exists a hypothesis 
tree rl in 7-/T with a equivalent root s E U t, U ,-, U ~, the combined hypothesis tree 
r o rl is added to 7-/T replacing rl. 
The tableau rules 9) and 10) are extended by a further requirement: 

9') 

10') 

H ~ s e U (s e U) r H, Z~(U) = ~Z.A, H' = H u {s C U} 
H'  ha s e AIZ := U] 

and there is no r E 7"/T such that the root s E U ' ,  U N U' and 
eval(r, H) e {true, false}; 

H ~ - a s 6 U  ( s e U ) ( _ H ,  A(U)=-,vZ.A,  H ' = H U { s 6 U }  
H' bas 6 -,A[Z := ",U] 

and there is no r E ~ T  such that the root s E U ' ,  U ,~ U' and 
eval(r, H) E {true, false}; 

in addition to the conditions (i)-(iv) stated in section 3 a leaf sequent H t-,x s E U of 
a tableau constructed by by rules 1)-8), 9') and 10') is also successful if it fulfills the 
following property: 

(v) There exists a r E "/'/T such that the root s E U ' ,  U ,-~ U' and eval(r, H) = true. 

The number of elements in the set 7-/T is bounded: for every state in the transi- 
tion system T and every fixpoint operator in the root formula there is at most one 
hypothesis tree contained in "HT. 

The example on the next page should clarify the algorithm. 

6 Correc tnes s  and C o m p l e t e n e s s  

In this section it will be shown tl~at the recycling model checker produces the same 
results as the model checker from Stifling & Walker [SW]. Then correctness and 
completeness of the model checker presented here follow from the correctness and 
completeness proved in [SW]. 

The way of argumentation is as follows: the propositions here are valid for both 
versions, the standard tableau model checker and the recycling one. First some prop- 
erties of tableaux and computation trees with similar root sequents are stated. In 
the remainder it is shown that the evaluation of a hypothesis tree corresponds to the 
result derived from a computation tree. 

As a first step the notion of equivalence given in definition 1 must be extended to 
hypothesis sets and sequents. 
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D E F I N I T I O N  6 ( E q u i v a l e n c e )  

(3) A hypothesis set HI is smaller than a hypotheses set It2 with respect to the 
equivalent constants UI,U2, denoted HI <-v~,v2 1t2, iff 

- for every hypothesis (s E [./1) E t1~ the hypothesis (s E U~) is contained in 
H2, and 

- with A(Ut)  = 4 ( U j , , . . .  UI.) and A(U2) = 4 ( U t , , . . .  Uk,) for every 
1 < i < n holds 1tl <tt~,,vki 112. 

(4) Two hypothesis sets 111 and H2 are equivalent with respect to the equivalent 
constants Us, U2, denoted H~ "~v~,v2 112, 
iff HI <v~,v2 1t2 and H2 <u~,u2 tI1. 

(5) Two sequents H, F-a s e 4 ( U j , , . . . U j . )  and H2 ka s e 4(Uka, . . .Uk. )  are 
equivalent, iff for 1 < i < n UI~ ".. Uk~ , and 1tl "vj,,v,~ 1t2. 

P R O P O S I T I O N  1 ( E q u i v a l e n t  S e q u e n t s  h a v e  t h e  s a m e  S u b t a b l e a u x )  
Suppose 7-1 is a computation tree with the root sequent HI I-Lxl s E 41, and 
H2 t-zx2 s E 42 is an equivalent sequent. Then there exists a computation tree 7-2 of  
H2 ~" s E ~2 with the same branching structure as 7"x such that every node of 7"~ is 
labelled by a sequent which is equivalent to the sequent of corresponding node of t1.  

P roo f :  by induction in the structure of 7"1 

Induction hypothesis: seqx = Hi bA~ t E 4i in 7"1 and seq2 =- H i bzx~ t E 4 j  in 7"2 are 
equivalent sequents. 

Base case: the induction hypothesis is true for the root sequents of rl and r2 by 
assumption. 

Induction step: argumentat ion about  the applicable rules 

�9 leaf sequents 
If seqt is a leaf sequent and fulfills one of the requirements (i) - (iii) or their 
dual forms, then 4 / =  4 j  and there is no rule applicable to seq2. 
The more interesting case is if the leaf sequent seqa fulfills (iv) or its dual form. 
Here for 41 = Ui the hypothesis t E Ui is contained in Hi. Since for 4 j  = Uj 
Ui ..~ Uj and Hi "~v,,v~ Hi the hypothesis t E Uj must he contained in Hi. 
Therefore also seq2 is also a leaf sequent. 

�9 One of the rules 1) - 4) is applicable to the sequent seqx. 
As equivalent formulae have equivalent structure, the same rule can be applied 
to seq2. As equivalent formulae have also equivalent subformulae the successor 
seq~ of seq2 is equivalent to the successor seq~ of seql. 

�9 Rule 5) or 6) is applicable to seqa. 
41 = [al4 ~ ( or 4i = -~[al4~), hence also 4 j  = [a]4~ ( or 4 j  = -~[a]4~) and 
4~ -., 4~. All a-successors of the s tate  s depend only on the transition system. 
Therefore the same rule can be applied to seq2 and the successor sequents of 
seqz contain the same states, equivalent hypothesis sets and equivalent formulae 
as the sequent successors of seql. 
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One of the rules 7) or 8) is applicable to seql. 
A new constant U[ is generated in 7"1. As the same rule must be applicable to 
seq~, also a new constant Uj is generated in r2 with A~(U') ,,, A~(Uj). Therefore 
the successor sequent Hi I-z~ t E U[ is equivalent to H i t-t~ t E Uj. 

Rule 9) or 10) is applied to seql. 
Here Hi ~'A, t E Ui and (t E Ui) r Hi. For Hj k-t~, t fi U~ holds by induction 
hypothesis Ui ~" Uj and Hi ",, Hi. Therefore (t E Uj) ~ He. For the successor 
sequent holds 

u { t  u d  = l i l  ~ l i j  = l i j  u { t  and = 
a X . A ( X ,  U , , , . . . ,  U,.) = A,(U~) ~ Aj(U~) = ~rX.A(X, U~, , . . . ,  U~.) the succes- 
sor sequents are equal. 

13 

P R O P O S I T I O N  2 ( Size of  the  C o m p u t a t i o n  Trees  ) 
Consider a sequent 1fl ~-~x~ s E ~ ( U 1 , . . . U , )  having rl as computation tree , and 
a sequent H2 t-A, s E ~(U1,. . .  U,) with Hi <u,,u, 112 for  all 1 < i < n. Then 
H2 I-a 2 s E ~(U1,.- .U,)  has a computation tree rz which s contained in rl as subtree, 
such that (up to the hypothesis sets). 

Proof:  by induction in the structure of rl 
omitted in this version 13 

P R O P O S I T I O N  3 ( Combina t ion  of  Hypo thes i s  Trees)  
Let rl be the hypothesis tree derived from a computation tree o f  Hi ~'t~ s ~ U 
and 1"2 be the hypothesis tree derived from a computation tree of  H2 t-tL s E U. 
Then there ezists a hypothesis set Ha with 1fl f1112 C 1tz C I l l  U 1f2, and ~'l o r2 as in 
definition 5 is the hypothesis tree derived from a computation tree of  Hz t-a s E U. 

Proof:  by induction in the structure of rl and r2 
omitted in this version t3 

P R O P O S I T I O N  4 ( Cor rec tness  I) 
Let ~'1 be a computation tree of  H ~-~ s E U and H B  its hypothesis tree. 
The hypothesis tree H B  is evaluated with the hypothesis set l i  to true, iff  t t  }-~ s E U 
has a successful subtableau. 
The hypothesis tree l i b  is evaluated with the hypothesis set H to fa l se ,  i f f  H }-4 s E U 
has no successful subtableau. 

Proof:  omitted in this version D 

P R O P O S I T I O N  5 ( Cor rec tness  I I  ) 
Let H B  be the hypothesis tree o f  a sequent H1 ~-~ s E U, and H2 a hypothesis set. 
I f  H B  together with H2 evaluates to true,  then the sequent 1t2 I-4 s E U has a 
successful subtableau. 
I f  f i b  together with ft2 evaluates to fa l se ,  then the sequent 112 ~-A s E U has no 
successful subtableau. 

Proof:  omitted in this version n 
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7 B e n c h m a r k s  

The presented algorithm is implemented in QUINTUS-PROLOG on a SUN/SPARC 
system. 
In the following examples the standard tableau model checker is compared to the 
tableau recycling model checker. As units of measurement we took the number of 
nodes in the computation tree and the system time which the model checker took to 
solve the task. 
Examples ~ to 5 from section 4, Fig.h 

n=3, k=3 
n=4, k=3 
n=3, k=4 
n=4, k=4 

standard tableau model checker 
number of nodes [ time 
105 < ls 
211 Is 
321 Is 
851 2s 

tableau recycling model checker 
number of nodes time 
25 < ls 
31 '< ls 
33 < Is 
41 < Is 

Example 6 : F 1 6 vZ.(a)#X.(a)(a)X A (a)(a)Z �9 �9 

I standard tableau model checker tableau recycling model chec 
} number of nodes I time number of nodes I time 
{ 32766 { 74s 139 { 4s 

m | 

Example 7 : F i e uZ.(a)t~X.(a)(a)X ^ (a)(a)Z �9 �9 

1' Sta, ndard tableau model checker ] tableau recycling [ode l  ch ' 
[ number of nodes I time number of nodes time 
I > 22100000 > 1.5h 218 1326s 

8 Conc lus ion  

A tableau based model checker for the full modal mu-calculus was presented, which 
profits from the idea to recycle subtableaux which have been calculated earlier in the 
model checker algorithm. The information contained in a subtablean is reduced to 
a much smaller expression. An implementation of this algorithm showed in several 
examples an impressive acceleration. 

Future work will include the following aspects: 
We continue to get more experience with real world transition systems and relevant 
modal properties when verified with the tableau recycling model checker and different 
model checking approaches. 
Secondly in this paper an idea was worked out how the maximal infoffnation can be 
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preserved during a proof run. Heuristic methods could help to do it without mazimal 
information in order to reduce memory expense. 
Finally we will continue in investigating the complexity of the model checker algo- 
rithm. 

Acknowledgement I thank Dirk Taubner for many motivating discussions. Florian 
Mengedoht implemented the algorithm. 
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