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ABSTRACT Approximate computing studies the quality-efficiency trade-off to attain a best-efficiency
(e.g., area, latency, and power) design for a given quality constraint and vice versa. Recently, self-healing
methodologies for approximate computing have emerged that showed an effective quality-efficiency trade-
off as compared to the conventional error-restricted approximate computing methodologies. However,
state-of-the-art self-healing methodologies are constrained to highly parallel implementations with similar
modules (or parts of a datapath) in multiples of two and for square-accumulate functions through the pairing
of mirror versions to achieve error cancellation. In this article, we propose a novel methodology for Internal-
Self-Healing (ISH) that allows exploiting self-healing within a computing element internally without
requiring a paired, parallel module, which extends the applicability to irregular/asymmetric datapaths while
relieving the restriction of multiples of two for modules in a given datapath, as well as going beyond
square functions. We employ our ISH methodology to design an approximate multiply-accumulate (xMAC),
wherein the multiplier is regarded as an approximation stage and the accumulator as a healing stage. We
propose to approximate a recursive multiplier in such a way that a near-to-zero average error is achieved
for a given input distribution to cancel out the error at an accurate accumulation stage. To increase the
efficacy of such a multiplier, we propose a novel 2 × 2 approximate multiplier design that alleviates the
overflow problem within an n×n approximate recursive multiplier. The proposed ISH methodology shows
a more effective quality-efficiency trade-off for an xMAC as compared to the conventional error-restricted
methodologies for random inputs and for radio-astronomy calibration processing (up to 55% better quality
output for equivalent-efficiency designs).

INDEX TERMS Approximate computing, approximate accelerators, approximate multiply-accumulate,
approximate multiplier, internal-self-healing methodology, radio astronomy processing.

I. INTRODUCTION
Approximate Computing has shown high efficiency gains
with regard to power, performance, and chip-area for er-
ror resilient applications [1], [2]. Such applications include
machine-learning, multimedia digital signal processing, and
scientific computing that can tolerate a quantified error within
the computation while producing an acceptable output. The
quantification of error tolerance is achieved by utilizing error-
resilience analysis tools [3]–[8]. Approximate computing
techniques exploit this error tolerance to optimize the com-
puting systems at software-, architecture- and circuit-level to
achieve the aforesaid efficiency gains [9]–[12].

The conventional approximate computing methodology

suggests utilizing fail-small, fail-rare, or fail-moderate
strategies [8], [13], wherein the errors are restricted as per
their magnitudes and rates to avoid high loss in the output-
quality. This is referred to as the conventional methodology in
this article. The fail-small technique allows approximations
within the computing system that can have high error rates
with low error magnitudes [8]. On the other hand, the fail-
rare technique refers to the introduction of approximations
that introduce high error magnitudes with low error rates
[8]. The fail-moderate technique allows moderate error mag-
nitude with moderate error rate approximations [13]. An
important drawback of the conventional methodology is a
limited design-space, which excludes the approximations that

VOLUME x, 2018 1



G.A. Gillani et al.: MACISH: Designing Approximate MAC Accelerators with Internal-Self-Healing

introduce high error magnitudes and high error rates. This
limitation hinders the achievable efficiency gains for a given
quality constraint and therefore limits the efficacy of the
quality-efficiency trade-off [14], where a high quality means
a low error at the output and a high efficiency means a
low computational cost in terms of chip-area, latency, and
power/energy.

Recently proposed fail-balanced techniques for approxi-
mate computing have alleviated the aforesaid limitation in
the design space. These techniques do not restrict the ap-
proximations based on their error profiles but provide an
opportunity for the error cancellation to deliver an effective
quality-efficiency trade-off [14], [15]. This is referred to
as the self-healing methodology here. Consider an example
of a computing architecture, composed of two computing
elements: P1 and P2, as shown in Fig. 1. The input stream is
fed to P1 while the output is obtained from P2. The conven-
tional methodology suggests approximating both computing
elements with controlled error rates and error magnitudes
to avoid an unacceptable (high) loss in the output-quality;
see Fig. 1a. On the other hand, the self-healing methodology
considers P1 as an approximation stage and P2 as a healing
stage. The approximations are applied at the approximation
stage (approximate P1) in such a way that their correspond-
ing error is canceled out (partially or fully) in the subsequent
healing stage (accurate P2). To achieve this, a pair of approx-
imate P1 elements is required with a mirror error effect, i.e.,
the error introduced by each P1 in a pair is an additive or
multiplicative inverse of the other [14]; see Fig. 1b.

A serious limitation of the state-of-the-art self-healing
methodology is that it can only be employed in parallel
architectures that have similar computing elements (or parts
of a datapath) in multiples of two, so that the mirror error
effect is achieved by pairing the similar computing elements.
However, in case of irregular/asymmetric datapaths that do
not have similar elements in multiples of two, an approxi-
mation methodology is required that can provide the mirror
error effect within a single computing element, as targeted in
this article.

A. NOVEL CONTRIBUTIONS

The principal contribution of this work is a novel Internal-
Self-Healing (ISH) methodology where the approximation
stage (P1, see Fig. 1c) is designed for an internal mirror
error effect without requiring a parallel paired computing
element. To elaborate on the ISH methodology, the following
is proposed in this article,

• The approximate multiply-accumulate (xMAC) concept
with ISH methodology (Section III).

• Design of an n×n recursive multiplier with near-to-zero
mean error and its efficacy for xMAC (Section III-A).

• Overflow handling scheme for near-to-zero mean error
recursive multipliers and design of a novel approximate
2 × 2 multiplier that alleviates the overflow problem
(Section III-B).
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FIGURE 1: An overview of the conventional, the self-healing
and the proposed approximate computing methodologies.
The proposed ISH methodology does not require parallel
computing elements but provides mirror error effect within
a single approximate element (P1).

We also present a design space exploration based on a
given input distribution (Section IV). We compare the con-
ventional and the proposed ISH methodologies for chip-area
and power optimized designs considering data with uniform
and normal distributions and data obtained from a radio
astronomy application (Section V).

II. BACKGROUND AND RELATED WORK
This section reviews the essential concepts concerning ap-
proximate multipliers, MAC, and the designs available in
literature that correspond to the conventional and self-healing
methodologies.

Approximate circuits for multipliers [14], [23]–[31] and
adders [16]–[22] have been investigated for their pivotal
role in digital signal processing architectures. Approximate
recursive multipliers have been designed for their benefits of
low power consumption and the possibility of fine-grained
optimization based on the input distribution [14], [23]–[25].
An n × n recursive multiplier utilizes elementary 2 × 2
multiplier modules. An approximate 2 × 2 multiplier (M1)
[23] features a lower complexity of the circuit (see Fig. 2b) as
compared to the accurate design (M), see Fig. 2a. This brings
a better chip-area, power and latency of M1 as compared to
M. However, M1 brings one error case out of sixteen possible
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(f) M3: 3*37→11.

FIGURE 2: 2 × 2 Multiplier designs; M1 [23] and M2 [24]
correspond to the conventional methodology, while M3 [14]
corresponds to the self-healing methodology.

input combinations (3*3 7→7), where the error_rate=1/16 and
error_magnitude=2. Another approximate design, M2 [24],
also provides a better efficiency as compared to M, while
producing three error cases (Fig. 2c, 2d) with error_rate=3/16
and error_magnitude=1. M1 has a higher error magnitude
and a lower error rate as compared to M2, therefore M1
can be regarded as a fail-rare design while M2 as a fail-
small design, and M1 and M2 correspond to the conventional
approximate computing methodology. To enable self-healing
(fail-balanced design), [14] proposes M3 (Fig. 2e, 2f) that is
a mirror of M1, i.e., it produces an error case (ε = +2) which
is an additive inverse of M1 (ε = −2). Although, M3 requires
more hardware as compared to M1, combining M1 and M3 in
a pair has shown an overall effective quality-efficiency trade-
off for square-accumulate architectures [14].

In case of approximate MAC (xMAC) accelerators, ap-
proximate multipliers that produce near-to-zero mean error
provide the opportunity of error cancellation at the accumu-
lation stage. A related approximate multiplier, DRUM, has
been demonstrated for producing a near-to-zero mean error
for uniformly distributed input, by optimizing the widths of
input operands of a multiplier [26]. However, the applications
that exhibit other input distributions (e.g., Gaussian) cannot
utilize DRUM. On the other hand, the approximate recursive
multipliers can be optimized based on the input distribution
but they do not exhibit a near-to-zero mean error by original
design [26]. Interestingly, we demonstrate in Section III that
they can be re-designed to achieve a near-to-zero mean error
profile while retaining their primary benefits.

Truncated multiplication in a MAC architecture has also
been studied [32], [33], where the primary aim is to restrict
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FIGURE 3: Approximate MAC designs, (a) utilizing the
state-of-the-art self-healing methodology [14], (b) utilizing
the proposed ISH methodology (MACISH), where approxi-
mation is achieved with ±δ errors within a single multiplier
module, which can be averaged out at the accumulator.

the bit-width of multipliers and produce low error MAC
computations by diminishing the effects of truncation. Other
design approaches for approximate MAC utilize hybrid re-
dundant adders [34], and an offset compensation to alleviate
the inaccuracies of the approximate multiplier stage [35].
However, no exploitation of the self-healing methodology
has been studied to the best of our knowledge.

III. DESIGNING AN APPROXIMATE MAC WITH THE
INTERNAL-SELF-HEALING (ISH) METHODOLOGY
A MAC operation computes,

N∑

i=1

(Ai ∗Bi) (1)

where A and B are the input vectors of length N . To design
an approximate MAC (xMAC) in compliance with the state-
of-the-art self-healing methodology [14], the multiplication
is considered as an approximation stage and the accumula-
tion as a healing stage; see Fig. 3a. A pair of approximate
multipliers is utilized such that they produce errors that are
additive inverse of each other, i.e., ε1 = +δ and ε2 = −δ,
so that the expected value of the mean error approaches
zero. This helps the accurate accumulator to cancel out the
errors originated in the approximate multipliers. However,
such a methodology is limited to architectures that have
multiple MAC pairs in parallel, which is not always the case
as discussed in Section I. Therefore, we propose an xMAC
accelerator where an approximate multiplier can generate
+δ and −δ errors internally, without requiring a parallel
multiplier; see Fig. 3b. This relieves the restriction of multi-
ples of two computing units. Moreover, the proposed xMAC
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can also be utilized for parallel architectures by deploying
a number of xMACs as per the desired level of parallelism.
Our design is also well-suited for asymmetric datapaths,
i.e., accelerators where the number of multipliers or MAC
processing iterations are not a multiple of two.

A. APPROXIMATE MULTIPLIER FOR MAC
A key challenge in employing the ISH methodology for
xMAC is to achieve an approximate multiplier that exhibits a
near-to-zero mean error profile for a given input distribution,
so that the subsequent accurate accumulator can average out
the errors originated in the approximate multiplier. Here we
discuss an approximate n × n unsigned recursive multiplier
with the desired property, where n is the bit-width of input
operands, n ∈ {2, 4, 8, 16, ...}.

An n× n recursive multiplier is constructed using (n/2)2

elementary (2× 2) multipliers [23]–[25]. These 2× 2 multi-
pliers generate partial products. Summation of the bit-shifted
partial products produce the overall output of an n × n
recursive multiplier. Fig. 4 shows cases of 4 × 4 (O4×4)
and 8× 8 (O8×8) recursive multiplication that are composed
of four and sixteen 2 × 2 multipliers, respectively. Any
number out of the set of 2 × 2 multipliers and/or adders can
be approximated to achieve an approximate multiplier [23],
[24]. However, in this work we only apply approximations in
the 2 × 2 multipliers as in [14]. Therefore, any combination
of approximate 2× 2 multipliers, e.g., M1, M2 and M3 (Fig.
2), can be utilized to form an approximate n× n multiplier.

To achieve a near-to-zero mean error profile, the 2 × 2
multipliers that have equal numerical weights (shown as
same colored boxes in Fig. 4) can be approximated with +δ
and−δ errors. For example, in case of a 4× 4 multiplier, the
output (O4×4) can be expressed as follows (see Fig. 4a),

O4×4 = AL ∗BL + 4(AL ∗BH)+4(AH ∗BL)

+16(AH ∗BH) (2)

where the constants 4 and 16 are representing the shift
factors. If M1 is deployed for AL ∗ BH , M3 for AH ∗ BL,
and M for the other two, the expected mean error value of the
multiplier (for uniformly distributed input vectors) is zero.
Therefore, an xMAC utilizing such an approximate multiplier
has an expected error value of zero for uniformly distributed
input vectors. Likewise, near-to-zero expected error value
configurations can be chosen for other input distributions.

B. OVERFLOW HANDLING
A challenge for designing an n × n recursive multiplier
with near-to-zero mean error is the requirement of positive
error (ε = +δ) 2 × 2 approximate multipliers like M3,
which may result in the overall output exceeding the 2n bits.
We define an overflow configuration as the configuration of
an n× n multiplier consisting of any combination of 2× 2
multipliers like M, M1, M2 and M3 that may overflow for
any possible input combination. Here we discuss how to
identify the overflow configurations in order to discard them
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(a) 4× 4 recursive multiplication requires four 2× 2 multipliers.

exploration, and also propose a novel 2 × 2 approximate
multiplier design that helps to alleviate such configurations.

1) Overflow Examples: Consider a 4 × 4 multiplication
operation as shown in Fig. 4a. Let A = (1111)2 and B =
(1111)2. This implies AH = AL = BH = BL = (11)2 = 3,
therefore (2) becomes,

O4×4 = 3 ∗ 3 + 4(3 ∗ 3) + 4(3 ∗ 3) + 16(3 ∗ 3)
assuming M3 (3∗3 7→ 11) is deployed for all 2×2 multipliers,

O4×4 = 11 + 4(11) + 4(11) + 16(11)

= 275 = (1 0001 0011)2

the output exceeds 8 bits (2n). Therefore the above example
is an overflow configuration for a 4× 4 multiplier, and is not
desired. In case of a 4 × 4 multiplier, the overflow occurs
as the value of the output is greater than 255, i.e., 22n −
1. However, while constituting a higher order multiplier, say
8 × 8 multiplier, a 4 × 4 multiplier with an output value of
less than 255 may also overflow the higher order multiplier.
Note that 255 is still considerably larger than the maximum
possible accurate output value of a 4× 4 multiplier, which is
225. Consider an 8 × 8 multiplication (Fig. 4b), and let the
constituting four 4× 4 multiplications be represented by Ma,
Mb, Mc and Md such that the least significant multiplication is
Ma while the most significant is Md. The following expression
represents the 8× 8 computation,

O8×8 =Ma + 16(Mb) + 16(Mc) + 256(Md) (3)
where the constants 16 and 256 are representing the shift
factors. Let A = (1111 1111)2 and B = (1111 1111)2. Let
M3, M3, M1 and M are employed to compute the AL ∗ BL,
AL ∗BH , AH ∗BL and AH ∗BH partial products respectively
for each of the 4× 4 multipliers. Therefore, each of the 4× 4
multipliers will generate,

O4×4 = 11 + 4(11) + 4(7) + 16(9) = 227

and (3) becomes,
O8×8 = 227 + 16(227) + 16(227) + 256(227)

= 65603 = (1 0000 0000 0100 0011)2

the output exceeds 16 bits (2n), therefore this is an overflow
configuration. So, even in cases where none of the 4 × 4
multipliers lead to overflow, the resulting 8× 8 multiplier can
cause overflow.

2) A Novel 2 × 2 Approximate Multiplier: In order to
alleviate the overflow problem, we propose an approximate
2 × 2 multiplier design (M4), as shown in Fig. 5, which
provides a larger negative error (ε = −4) as compared to M1.
Note that M4 can be balanced with two M2 (ε = +2) in order
to achieve the internal-self-healing. Interestingly, M4 is useful
in the design of near-to-zero mean error recursive multipliers
as it reduces the maximum possible output value of an n× n
multiplier. For instance, if M4 is employed to only AH ∗BH

in (2), it averts the possibility of overflow no matter which of
the combination out of the given choices (M/M1/M2/M3/M4)
is used for the other three 2× 2 multipliers.

3) Overflow Handling Scheme: In order to identify the
overflow configurations, we propose to assess each configura-
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(b) 8× 8 recursive multiplication requires sixteen 2× 2 multipliers.

Fig. 4: Recursive n×n multiplication utilizes elementary 2×
2 multipliers. The same colors show equal numerical weight
2 × 2 multipliers that can be approximated with +δ and −δ
errors to enable ISH.
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(a) Truth table of M4.
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(b) M4: 3*37→5.

Fig. 5: A proposed 2× 2 approximate multiplier for overflow
compensation.

tion step-wise for 4×4, ... , n/2×n/2 and n×n cases. Without
loss of generality, here we elaborate on an 16× 16 recursive
multiplication operation. For each 16×16 configuration, firstly,
we need to check an overflow for each of the sixteen 4 × 4
multipliers,

max value 4 < 28 (4)

where max value 4 is the maximum possible value of a
4 × 4 multiplier. If Eq. (4) fails for any of the sixteen 4 × 4
multipliers, the configuration is discarded. Secondly, we need
to check an overflow for each of the four 8× 8 multipliers,

max value 8 =
4∑

j=1

[max value 4(j) ∗ S(j)] < 216 (5)

where max value 8 is the maximum possible value of an
8 × 8 multiplier, which is essentially the summation of the
products of maximum possible values of constituting 4 × 4

{
{
{
{

Md

Mc

Mb

Ma

(b) 8× 8 recursive multiplication requires sixteen 2× 2 multipliers.

FIGURE 4: Recursive n × n multiplication utilizes elemen-
tary 2×2 multipliers. The same colors show equal numerical
weight 2 × 2 multipliers that can be approximated with +δ
and −δ errors to enable ISH.

during design space exploration, and also propose a novel
2 × 2 approximate multiplier design that helps to alleviate
the overflow problem.

1) Overflow Examples
Consider a 4 × 4 multiplication operation as shown in Fig.
4a. Let A = (1111)2 and B = (1111)2. This implies AH =
AL = BH = BL = (11)2 = 3, therefore Eq. (2) becomes,

O4×4 = 3 ∗ 3 + 4(3 ∗ 3) + 4(3 ∗ 3) + 16(3 ∗ 3)

assuming M3 (3∗3 7→ 11) is deployed for all 2×2 multipliers,

O4×4 = 11 + 4(11) + 4(11) + 16(11)

= 275 = (1 0001 0011)2

the output exceeds 8 bits (2n). Therefore the above example
is an overflow configuration for a 4× 4 multiplier, and is not
desired. In case of a 4 × 4 multiplier, the overflow occurs
as the value of the output is greater than 255, i.e., 22n − 1.
However, while constituting a higher order multiplier, say
8 × 8 multiplier, a 4 × 4 multiplier with an output value of
less than 255 may also overflow the higher order multiplier.
Note that 255 is still considerably larger than the maximum
possible accurate output value of a 4 × 4 multiplier, which
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(a) Truth table of M4.
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(b) M4: 3*37→5.

FIGURE 5: A proposed 2 × 2 approximate multiplier for
overflow compensation.

is 225 (i.e., (2n − 1)2). Consider an 8 × 8 multiplication
(Fig. 4b), and let the constituting four 4 × 4 multiplications
be represented by Ma, Mb, Mc and Md such that the least
significant multiplication is Ma while the most significant is
Md. The following expression represents the 8× 8 computa-
tion,

O8×8 = Ma + 16(Mb) + 16(Mc) + 256(Md) (3)

where the constants 16 and 256 are representing the shift
factors. Let A = (1111 1111)2 and B = (1111 1111)2. Let
M3 (3*37→11), M3, M1 (3*3 7→7) and M (3*37→9) compute
theAL∗BL,AL∗BH ,AH∗BL andAH∗BH partial products
respectively for each of the 4×4 multipliers. Therefore, each
of the 4× 4 multipliers will generate,

O4×4 = 11 + 4(11) + 4(7) + 16(9) = 227

and Eq. (3) becomes,

O8×8 = 227 + 16(227) + 16(227) + 256(227)

= 65603 = (1 0000 0000 0100 0011)2

the output exceeds 16 bits (i.e., 2n), therefore this is an
overflow configuration. So, even in cases where none of
the 4 × 4 multipliers lead to overflow, the resulting 8 × 8
multiplier can cause overflow. In general, any n×nmultiplier
configuration that is not an overflow configuration in itself
but has a maximum output value of greater than (2n − 1)2,
may overflow a higher order 2n× 2n multiplier.

2) A Novel 2× 2 Approximate Multiplier
To alleviate the overflow problem, we propose an approxi-
mate 2× 2 multiplier design (M4), as shown in Fig. 5, which
provides a larger negative error (ε = −4) as compared to
M1 (ε = −2). Note that M4 can be balanced with two
M2 (ε = +2) in order to achieve the internal-self-healing.
Noteworthy, M4 is useful in the design of near-to-zero mean
error recursive multipliers as it reduces the maximum possi-
ble output value of an n×n multiplier. For instance, if M4 is
employed to onlyAH ∗BH in Eq. (2), it averts the possibility
of overflow no matter which of the combination out of the
given choices (M/M1/M2/M3/M4) is used for the other three
2× 2 multipliers.

3) Overflow Handling Scheme
To identify the overflow configurations, we propose to assess
each n × n multiplier configuration step-wise, from 4 × 4

constituting multipliers to an overall n×nmultiplier. Without
loss of generality, we elaborate on an 8×8 recursive multipli-
cation operation. For each 8×8 configuration, firstly, we need
to check an overflow for each of the four 4× 4 multipliers,

Γ4 = max(O4×4) < 28 (4)

where Γ4 is the maximum possible output value of a 4 × 4
multiplier. If Eq. (4) fails for any of the four 4×4 multipliers,
the configuration is discarded. Then we need to check the
maximum possible output value of an overall 8×8 multiplier
(Γ8),

Γ8 =

4∑

j=1

[Γ4(j) ∗ S(j)] < 216 (5)

which is essentially the summation of the products of maxi-
mum possible values of constituting 4×4 multipliers (Γ4(j))
and their respective shift factors (S(j)). Likewise, additional
steps can be added to identify overflow, or, to select non-
overflow configurations for higher order recursive multipli-
ers.

To automate overflow handling for an n × n approximate
multiplier configuration, we propose to utilize a recursive
function (see Section IV for details), where at each stage
(nr), the function checks the following condition for iden-
tifying valid configurations,

Γnr < 22nr (6)

here nr is the current recursive stage, nr ∈ {4, 8, ..., n/2, n}.
The related maximum possible output value (Γnr

) can be
computed as,

Γnr
=

4∑

j=1

[Γ(nr/2)(j) ∗ S(j)]

= ΓMa + 2nr/2ΓMb
+ 2nr/2ΓMc + 2nΓMd

(7)

where ΓMa
,ΓMb

,ΓMc
and ΓMd

are the maximum possible
output values of the constituting nr/2 × nr/2 multipliers
(sub-multipliers).

C. COMPARISON OF THE PROPOSED ISH WITH THE
CONVENTIONAL APPROXIMATE COMPUTING
METHODOLOGY
1) Terminology and Notation
We follow the notation introduced in [11] and extend that to
incorporate approximate recursive multipliers. Let I be a set
of inputs that is mapped to O as the function f is executed
in its exact form, i.e., f : I 7→ O. Let f∗ : I 7→ O∗
and f∗′ : I 7→ O∗′ be the execution of the same function
in approximate form by utilizing the conventional and the
ISH methodologies, respectively. Let D be the design space
offered by an approximate computing methodology, which is
essentially a set of all possible design configurations offered
by the respective methodology, i.e.,

D = {C1, C2, C3, ..., Cg} (8)
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here g is the number of design alternatives/configurations of-
fered by the respective approximate computing methodology,
and eachCi is a design configuration that characterizes a spe-
cific point: (ei, qi) in the quality-efficiency trade-off. Where
ei is efficiency and qi is quality offered by Ci. We assume a
high efficiency of design that offers a low computational cost
(chip-area, power consumption or latency) and vice versa.
Similarly, we assume a high quality of design that offers a
low output error and vice versa.

Supposing an n × n recursive multiplier, the function f
corresponds to multiplication operation. Let D∗ and D∗′

be the design space offered by the conventional and the
ISH approximate computing methodologies respectively. The
conventional approximate computing methodology utilizes
the conventional error-restricted elementary (2×2) multipli-
ers (M1, M2) along with the accurate version (M). Let K∗ be
a set of elementary multipliers utilized by the conventional
approximate computing methodology, i.e., K∗ = {M, M1,
M2}. On the other hand, the proposed ISH methodology
utilizes the conventional and the proposed self-healing based
elementary multipliers, ∴ K∗′ = {M, M1, M2, M3, M4},
where K∗′ is a set of elementary multipliers utilized by the
ISH methodology. It can be noted that all elements of K∗ are
included in K∗′, i.e., K∗ ⊂ K∗′. Therefore,

D∗ ⊂ D∗′ (9)

2) Comparison
To compare the trade-offs offered by two methodologies, we
define effectivity (E), such that E is a function of quality
and efficiency. A design methodology (with an effectivity
of E1) is considered to be more effective than the other
(with the effectivity of E2), i.e., E1 > E2, if and only if it
provides a better efficiency for a given output quality, and a
better quality for a given efficiency. As shown in Eq. (9), the
design alternatives offered by the proposed ISH methodology
include the design alternatives offered by the conventional
methodology, and at the top of that, the ISH methodology
also offers new designs that help error cancellation. Conse-
quently, the proposed ISH methodology provides a quality-
efficiency trade-off that is always more effective (or at least
equally effective in the worst case) as compared to that of the
conventional methodology counterpart, i.e.,

E(f∗′:I7→O∗′) ≥ E(f∗:I7→O∗) (10)

Besides the overall trade-off, it is also important to analyze
the error bounds of an approximate circuit that affect its fea-
sibility for a target application. Marzek et al. [29] formalized
the Worst Case Error (WCE) of a recursive multiplier as,

WCEn = WCEMa
+ 2n/2WCEMb

+2n/2WCEMc

+2nWCEMd
(11)

where WCEn is the worst case error of an n × n recursive
multiplier, and WCEMa

,WCEMb
,WCEMc

and WCEMd
rep-

resent the worst case errors of the four constituting (n/2 ×

n/2) multipliers (sub-multipliers) respectively. In case of an
approximate multiplier that is designed in a conventional
way, Eq. (11) represents the WCE that occurs when a worst
case input triggers the error cases of all the approximate
sub-multipliers. On the other hand, consider Mb and Mc

are mirrored, such that they have error magnitudes that are
additive inverse of each other, i.e., utilizing the proposed
ISH methodology. If an input triggers an error case for each
sub-multiplier, the second and third terms in Eq. (11) cancel
out. In fact, the WCE for such an ISH based approximate
multiplier occurs when one of the Mb or Mc does not have
an error triggering input and is given as,

WCEn = WCEMa
+2n/2WCE(Mb,Mc)

+2nWCEMd
(12)

where WCE(Mb,Mc) is the worst case error of Mb and Mc,
which occurs when only one of them introduces an error, and
the error has a same direction (sign) as that of Ma and Md.
Hence, the worst case error (WCEn) of the ISH methodology
can never be greater than that of the conventional methodol-
ogy. Keeping in view the design space relation in Eq. (9), and
the worst case errors for the conventional (see Eq. (11)) and
the ISH (see Eq. (12)) methodologies, we have,

WCE(f∗′:I7→O∗′) ≤WCE(f∗:I7→O∗) (13)

From Eq. (10) and Eq. (13), it can be concluded that it is
always beneficial to employ the proposed ISH methodology
as compared to the error restricted conventional approximate
computing methodology. Moreover, we quantify the benefits
offered by the proposed ISH methodology in the subsequent
sections.

IV. DESIGN SPACE EXPLORATION METHODOLOGY
To quantify the gains offered by the ISH methodology as
compared to the conventional methodology, we need to find
the best (optimal/near-optimal) quality-efficiency designs for
each. In this section, we present our design space exploration
methodology that leads us to such approximate multiplier
configurations for an approximate MAC unit. These designs
are referred to as the pareto-optimal designs/configurations
in this article. The methodology is designed such that it
allows us to explore the design space in a reasonably small
amount of time while using limited computational and mem-
ory resources.

A. HUGE DESIGN SPACE - A CHALLENGE
Fig. 4 shows a 4 × 4 and an 8 × 8 multiplier built using
2 × 2 elementary modules. As can be seen, the number of
elementary multipliers increases rapidly with the increase in
the number of bits per input (operand). The number of 2× 2
elementary modules required for an n × n multiplier can
mathematically be given as: (n/2)2.

The total number of possible configurations for an ap-
proximate multiplier directly depends on the number of el-
ementary multipliers and the number of types that each can
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TABLE 1: Number of configurations for a few example
scenarios with different bit-widths (n) of multipliers and
types of elementary 2× 2 designs (m).

S. No. n m
No. of

Configurations
1. 8 3 4.3× 107

2. 8 5 1.53× 1011

3. 16 3 3.43× 1030

4. 16 5 5.42× 1044

have. Assuming m as the number of types of elementary
multipliers, the total number of possible configurations for
an n× n multiplier can mathematically be given as:

No. of configurations = m(n/2)2 (14)

As can be inferred from Eq. (14), the number of configura-
tions grows rapidly both with m and n. To further highlight
the requirement of a systematic design space exploration
methodology, Table 1 presents the number of possible con-
figurations for a few example cases with different m and n
values. It can be seen that a huge design space has to be
explored for a 16 × 16 multiplier case with only 5 options
for elementary 2 × 2 designs (S. No. 4). To tackle such an
enormous design space, we propose a heuristic that prunes
the search space in order to find the pareto-optimal configu-
rations effectively.

B. PROPOSED METHODOLOGY FOR DESIGN SPACE
EXPLORATION
Our design space exploration methodology employs a recur-
sive algorithm with intermediate pruning for fast exploration.
The intermediate pruning is employed to prune less-effective
parts of the overall design space at each intermediate stage
to reduce the design space for the next subsequent stage. The
overall flow is illustrated in Fig. 6 and the related algorithms
are given in Appendix A. The main steps of the methodology
are as follows.

Initialization
In this step, we define a variable E_Configs which stores the
error and cost characteristics as well as the identities (IDs) of
the elementary (2 × 2) multipliers. The error characteristics
are stored in the form of an error map (E_Maps), which
contains the output error for each possible input combination
of a 2 × 2 multiplier. An example illustration of an E_Map
is shown in Fig. 7. The cost characteristics include the area
and/or power values of the elementary multipliers.

Step 1
Given the probability distributions of the input operands, i.e.,
ρx and ρy , the first step involves input probability compu-
tation of all the individual elementary (i.e., 2 × 2 in our
case) multipliers in an n×nmultiplier. The input probability
distribution of all the elementary modules is stored in a
matrix ρ, where each entity of the matrix represents the input

probability distribution of a single elementary multiplier and
has a cumulative sum of 1.

To compute the input probability of all the elementary
multipliers, we first independently compute the probability
distribution of the pairs of bits of the input operands x and y
which are the inputs to these elementary multipliers. Similar
to [25], the probability distribution of a pair of consecutive
bits of the input operand x can be given as:

Px{i}(k) =

2n−2i−2−1∑

q=0

22i−1∑

p=0

ρx(q × 22i+2 + k × 22i + p)

(15)
where i defines the pair of bits in the input operand, i.e.,
ith pair consists of the bits at locations 2i and 2i + 1,
and k defines the combined decimal value of the bits (i ∈
{0, 1, 2, ..., n/2 − 1} and k ∈ {0, 1, 2, 3}). Similarly, the
probability distribution of a pair of consecutive bits (defined
by j) of the input operand y can be given as:

Py{j}(l) =

2n−2j−2−1∑

r=0

22j−1∑

s=0

ρy(r × 22j+2 + l × 22j + s)

(16)
where j ∈ {0, 1, 2, ..., n/2 − 1} and l ∈ {0, 1, 2, 3}. Using
Eq. 15 and Eq. 16, and assuming x and y as independent ran-
dom variables, the input probability distribution of a specific
2 × 2 multiplier (represented by ρ{i, j}) can be computed
using the following equation:

ρ{i, j}(k, l) = Px{i}(k)× Py{j}(l) (17)

As an example, consider a 4 × 4 multiplier that consists
of four 2× 2 multipliers. The probability distributions of the
four 2 × 2 multipliers are given as ρ{0, 0}, ρ{0, 1}, ρ{1, 0},
and ρ{1, 1}, where the probability distribution of each 2× 2
multiplier, say ρ{0, 1}, has a probability-value for each input
combination, i.e., ρ{0, 1}(0, 0), ρ{0, 1}(0, 1), ρ{0, 1}(0, 2),
ρ{0, 1}(0, 3), ρ{0, 1}(1, 0), ..., ρ{0, 1}(3, 3).

Step 2
The ρ computation step is followed by a recursive step where
at each call the nr × nr multiplier is divided into four
nr/2×nr/2 sub-multiplier units (see Fig. 4a for an example
of a 4 × 4 multiplier) and for each sub-multiplier Step 2 is
called again with the corresponding multiplier size and input
distribution (Step 2a). Note that for the very first call to Step
2 (i.e., while moving from Step 1 to 2) the variable nr is
initialized with n where nr represents a local variable that
defines the bit-width of the inputs of the multiplier at a par-
ticular recursive stage. From each intermediate stage, the step
returns at maximum X number of highly-efficient configu-
rations given a defined multiplier size and input probability
distribution. HereX represents a parameter which defines the
maximum number of representative configurations that can
be selected from an intermediate recursive stage. It should
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Inputs: !, "#, "$, %, &_()*+, ,-+.+

Step 1: Compute " using "#, "$, and the size of 
elementary modules

Step 2: DSE with Intermediate Pruning

n0 = 2?
Yes

No

Step 2a: Segment the !3×!3 multiplier into four 
56
7
×
56
7

sub-multipliers and for each call Step 2

Step 2b: Fuse the 56
7
×
56
7

multiplier 
configurations to build configurations for !3×!3

multiplier → 8!.9:_,-!;<=+

>-. -; ,-!;<=+ <!
8!.9:_,-!;<=+> %?

Intermediate Pruning

Step 2e: Classify the configurations in 8!.9:_,-!;<=+ into four sets 
based on whether mean error is positive or negative and @56 is greater or 
less than (2BC−1)7. Also, GH_,-!;<=+ and I9J*_,-!;<=+ ← &J*.K

Step 2c: Eliminate configurations having 
@56 > 2756

Step 2f: Determine the pareto-optimal configurations from the two sets 
having @BC > 256 − 1 7 → I9J*_,-!;<=+

Step 2d: Select all the elementary configurations, 
i.e., &_,-!;<=+ → 8!.9:_,-!;<=+

Step 2g: Select at max. 0.25 ∗ % configurations from I9J*_,-!;<=+
using clustering based on mean error and costs → GH_,-!;<=+. Also, 

I9J*_,-!;<=+ ← &J*.K

LEGEND:
P: Number of bits of the input operands
QR: Probability distribution of input operand S
QT: Probability distribution of input operand K
U: Maximum number of representative configurations that can be selected in 
intermediate pruning stage (pruning threshold)
V_WXYZ: Error maps of elementary 2×2 multipliers
[\Z]Z: Area/Power Costs of the corresponding elementary 2×2 multipliers
Q: Probability distribution matrix containing input distribution of all of the 
elementary 2×2 multipliers in an !×! multiplier
^_]_[\P`abZ: Variable for storing output configurations
Local	variable	in	Step	2	(DSE	with	intermediate	pruning):

Pc: Bit-width of the operands in an intermediate multiplier. 
dP]ec_[\P`abZ: Stores the intermediate multiplier configurations
f^_[\P`abZ: Stores optimal/near-optimal configurations
gehY_[\P`abZ: Stores optimal/near-optimal configurations temporarily

Initialization: &_,-!;<=+ ← {ID, &_()*s, ,-+.s}
Hk._,-!;<=+ ← &J*.K

Yes

Step 2l: Return 8!.9:_,-!;<=+ to Step 2a

Step 3: Determine pareto-optimal configurations based on 
absolute mean error and costs → Hk._,-!;<=+

Output: Return Hk._,-!;<=+ as the selected 
configurations for the !×n multiplier

No

Step 2h: Determine the pareto-optimal configurations from the sets 
having @BC ≤ 256 − 1 7 → I9J*_,-!;<=+

Step 2j: Select at max. % − >-. -; ,-!;<=+ <! GH_,-!;<=+ configurations 
from I9J*_,-!;<=+ using clustering based on mean error and costs

No
Yes

!3 = !?
Yes No

Assign !3 = !

,-!;<=+ <! I9J*_,-!;<=+ > 
% − ,-!;<=+ <! GH_,-!;<=+?

Step 2i: Remove configurations in I9J*_,-!;<=+ from sets, Add 
I9J*_,-!;<=+ to GH_,-!;<=+, and I9J*_,-!;<=+ ← &J*.K

Step 2k: Overwrite 8!.9:_,-!;<=+ with the configurations in 
GH_,-!;<=+, i.e., GH_,-!;<=+ → 8!.9:_,-!;<=+

FIGURE 6: The proposed design space exploration methodology for approximate recursive multipliers. Our methodology takes
into account the bit-widths and the probability distributions of inputs, pruning threshold (X), and error & cost characteristics
of the elementary multipliers to return the best (pareto-optimal/near-optimal) configurations while using limited computational
and memory resources.
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FIGURE 7: An example of E_Map (error map) for M4
elementary multiplier shown in Fig. 5.

be noted that a large number of representatives results in a
big design space when combined for larger multipliers and
thus the design space exploration consumes more time and
computational resources.

The received configurations for all the four sub-multipliers
are then combined to generate the possible configurations for
the nr × nr multiplier which are stored in Inter_Configs
(Step 2b). At the same step, the mean error values, the
maximum possible output values, and the costs of the gen-
erated configurations are also computed using the error and
cost characteristics of the corresponding sub-multipliers. The
mean error of a configuration of an nr × nr multiplier
composed of four nr/2× nr/2 multipliers can be computed
as,

MEnr
= MEa +2nr/2ME b +2nr/2ME c +2nrMEd (18)

where MEnr
represents the mean error of the nr × nr

multiplier and MEa, ME b, ME c and MEd represent the
mean error of the Ma, Mb, Mc and Md sub-multipliers,
respectively (see Fig. 4b for an example of an 8 × 8 mul-
tiplier). Similarly, the maximum possible output value of a
configuration of an nr×nr multiplier can be computed using
Eq. (7).

To compute the area and power costs of the generated
configurations, we have utilized the model that will be dis-
cussed in Section V-B. The model estimates the costs of an
overall multiplier by adding the costs of the corresponding
sub-multipliers together with their contribution to the adder
trees. Once the configurations have been generated and all
the required characteristics have been computed, the config-
urations are then checked for the maximum possible output
value to avoid overflow conditions (Step 2c), as mentioned
in Section III-B. All the configurations having a maximum
possible output value greater than or equal to 22nr (for an
nr × nr multiplier) are removed from the Inter_Configs .
At this point, the value of nr is compared with n and if
it is equal, all the configurations are forwarded to Step 3.
However, if nr is not equal to n, the remaining number of
configurations is checked and intermediate pruning (Step 2e-
2k) is applied if it is greater than a pre-specified threshold,
i.e., X . This is mainly done to reduce the number of possible
configurations at the preceding higher stage such that the
design space exploration can be performed using limited
computational and memory resources and in a time-efficient
manner.

The recursive function keeps on calling itself unless the
size of the sub-multipliers is equivalent to 2×2 (i.e., nr = 2),
which acts as the termination point for the recursive calling.
At this point, Step 2d is performed where Inter_Configs is
initialized with E_Configs (i.e., all the elementary multiplier
configurations) along with their mean errors and maximum
possible output values. The mean error for each elementary
multiplier is computed by taking the dot product of the
E_Map of the corresponding elementary multiplier with the
input probability distribution matrix. Note that Step 2d is
called for each elementary module location in an n × n
multiplier and the probability matrix used for computing the
mean errors of the elementary multipliers is the one which
contains the input probability distribution of that particular
location. After initializing the Inter_Configs , it is checked
for the total number of configurations and returned to Step
2a if the number of configurations is less than X; otherwise
intermediate pruning is performed on it. To avoid any confu-
sion, it is important to highlight that Inter_Configs in Step
2 is a local variable.

Intermediate Pruning (Step 2e - 2k)
Whenever the number of intermediate configurations in
Inter_Configs (after Step 2c or Step 2d) is greater than X
and nr 6= n, the intermediate pruning is called for choosing
a subset of X effective configurations which can be used
as the representatives of the complete design space of the
sub-multiplier. To achieve this, at Step 2e, we classify the
configurations into four sets based on the mean error and
maximum possible output value of the configurations. Set 1
contains configurations having mean error> 0 and maximum
output value > (2nr − 1)2, Set 2 contains configurations
having mean error <= 0 and maximum output value >
(2nr − 1)2, Set 3 contains configurations having mean error
> 0 and maximum output value <= (2nr − 1)2, and Set 4
contains configurations having mean error <= 0 and max-
imum output value <= (2nr − 1)2. The configurations are
divided into these four sets because of two main reasons: 1)
So that different number of configurations can be selected
from different sets based on their importance, for example,
the configurations having maximum output value greater than
(2nr − 1)2 may result in overflow as mentioned in Section
III-B and, therefore, should be given less importance; and
2) The configurations having positive and negative mean
error should be given equal importance, as only in case
configurations with both positive and negative mean error are
available, the internal self-healing can be utilized to generate
approximate configurations for larger multipliers that result
in zero/near-to-zero mean error.

To select a subset of effective configurations, we first
find pareto-optimal configurations from sets 1 and 2 based
on absolute mean error and cost and store temporarily in
Temp_Configs (Step 2f). Then, in Step 2g, we check the
number of pareto-optimal configurations. If it is greater than
25% of X , we first select the two extreme values from
the pareto-optimal configurations, i.e., configurations having
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minimum and maximum absolute mean error, and then apply
k-means clustering to find 0.25∗X−2 clusters using the rest
of the pareto-optimal configurations based on mean error and
cost. Here, k-means [36] is applied to group configurations
offering nearby error-cost points in the quality-efficiency
trade-off. The configuration closest to the cluster centroid
is then selected from each cluster as its representative. The
selected configurations are then stored in a local variable
PO_Configs . Moreover, if the number of pareto-optimal
configurations in Step 2f is less than 0.25 ∗ X , all the
configurations are selected and stored in PO_Configs . Also,
in the same step the Temp_Configs is re-initialized to empty.

The remaining configurations are selected from set 3 and
4 using Step 2h, 2i and 2j. In Step 2h, we find the pareto-
optimal configurations from the sets based on the absolute
mean error and the cost of the configurations and store them
in Temp_Configs . If the selected number of configurations
from these sets is greater than the remaining number of
configurations (i.e., greater than X− No. of configurations
in PO_Configs), we perform Step 2j to find the remaining
required configurations from Temp_Configs using cluster-
ing (similar to Step 2g). However, if it is less, we perform
Step 2i where we remove the configurations from the sets that
are present in Temp_Configs , and we add the configurations
of Temp_Configs to PO_Configs . Finally, we re-initialize
Temp_Configs to empty before moving back to Step 2h.
Then, Step 2h is performed again using the modified sets to
find near-optimal points. This cycle (Step 2h → Step 2i →
Step 2h) is repeated until the condition is satisfied (or the sets
are empty). This procedure ensures that we select the most
effective (optimal/near-optimal) configurations from the sets
as much as allowed by the X parameter. Afterwards, Step
2j is performed and the selected configurations are added to
PO_Configs . The resultant configurations are forwarded to
Step 2k where Inter_Configs is overwritten with the con-
figurations in PO_Configs . Then the intermediate pruning
function is returned to Step 2l, where the Inter_Configs
are forwarded to the higher stage (Step 2a) for generating
configurations of larger multipliers.

Step 3
From the received configurations the pareto-optimal config-
urations are found using their absolute mean error and the
area/power cost characteristics. The resultant configurations
are then returned as the final configurations for the n × n
multiplier.

C. VIABILITY OF OUR APPROACH
We utilized the above design space exploration methodology
for finding the pareto-optimal designs for 4-bit, 8-bit and 16-
bit multipliers. Table 2 shows the runtime of the simulations
(with X = 60) using MATLAB (2017a) on an Intel Core
i5-6600 CPU with 16 GB of RAM. We have also simulated
the first case (n = 8 and m = 3) exhaustively which
resulted in a simulation runtime of 43 seconds on our sys-
tem. Interestingly, the pareto-optimal configurations for the

TABLE 2: Simulation runtime for the design space explo-
ration of multipliers. While using a general purpose simula-
tion platform, our methodology explores a huge design space
(S. No. 4) in less than four minutes.

S. No. n m
No. of

Configurations
Simulation Time

(Seconds)
1. 8 3 4.3× 107 5
2. 8 5 1.53× 1011 7
3. 16 3 3.43× 1030 138
4. 16 5 5.42× 1044 209

aforesaid exhaustive simulation are exactly the same as of
our algorithm at X = 60, which has a simulation runtime of
5 seconds. Moreover, our methodology enables us to explore
a huge design space (n = 16 and m = 5) in less than
four minutes using a general purpose computer system as a
simulation platform.

V. EXPERIMENTAL RESULTS
To study the quality-efficiency trade-off for approximate
MAC accelerators and to compare the proposed internal-self-
healing (ISH) methodology with the conventional method-
ology, we have performed a design space exploration for
area- and power-optimization for uniform and normal input
distributions. As 8-bit architectures are widely used in the
signal processing applications [38]–[42], our experiments are
mainly focused on 8-bit designs. However, we also compare
4-bit and 16-bit designs to test the scalability of our method-
ology.

A. EXPERIMENTAL SETUP
A quality analysis was performed using function-accurate be-
havioral implementations of accurate and approximate n×n
recursive multipliers, and a hardware efficiency analysis was
performed utilizing Synopsys Design Compiler and Power
Compiler for the TSMC 40nm Low Power (TCBN40LP)
technology library, as shown in Fig. 8. To fix the latency bud-
get of all the synthesized designs, a fixed operating frequency
of 1 GHz has been utilized for hardware efficiency analysis.
This legitimates the area and power comparison of various
design alternatives to ensure a fair comparison. We have
utilized the compile_ultra command for synthesizing all de-
signs. Questasim has been utilized for functional verification
and to generate the switching activity for power estimation.
For normally distributed inputs, the following mean (µ) and
standard deviation (σ) values have been considered, 4-bit
case: (µ = 8, σ = 1.5), 8-bit case: (µ = 128, σ = 22.5),
and 16-bit case: (µ = 32768, σ = 6553).

B. DESIGN SPACE EXPLORATION OF THE PROPOSED
ISH METHODOLOGY
We have performed design space exploration as discussed
in Section IV to obtain the best designs offered by the
ISH methodology. These best designs are referred to as the
pareto-optimal configurations/designs, and the line joining
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FIGURE 8: Experimental setup utilized for the quality-efficiency trade-off study [14].

TABLE 3: 2 × 2 multiplier cost (conversely: efficiency)
estimation for TSMC 40nm Low Power library at 1 GHz.
The estimation also includes the costs related to the adder
trees within a higher order multiplier.

Design 4× 4 Multiplier 8× 8 Multiplier
Type Area (µm2) Power a Area (µm2) Power a

M 21.52 13.41 32.43 27.59
M1 13.29 9.18 25.20 22.34
M2 19.17 10.16 31.11 22.06
M3 19.17 13.15 31.21 27.47
M4 16.76 10.27 27.36 22.66

aPower (µW ) estimates based on uniformly distributed input.

the pareto-optimal points in the quality-efficiency trade-off
is regarded as the pareto front.

One way of estimating the hardware costs of an n × n
recursive multiplier is to add up the costs of the constituting
sub-multipliers [14], [29]. However, this ignores the hard-
ware costs related to adder trees within an n × n multiplier.
Therefore, the cost estimation proposed in [14], [29] is useful
for ranking purpose only, and has an underlying assumption
that the costs of adder trees will follow the same trend as
that of the sub-multipliers. In this work, we have utilized
a more effective way of cost estimation that also includes
the cost contributions of the adder trees related to the sub-
multipliers. Firstly, we obtain the cost of an n× n multiplier
composed of multiples of a unique 2× 2 multiplier, say M1,
using the Synopsys tool flow. Then we divide the cost of
an n × n multiplier by the number of total 2 × 2 designs
constituting an n×nmultiplier. This includes the area/power
costs of the 2 × 2 multipliers along with the related adders,
and therefore provides a plausible estimation of hardware
costs, or conversely: the hardware efficiency.

Table 3 shows the estimated hardware costs of the consid-
ered 2×2 multipliers that are utilized for estimating the costs
of design configurations during the design space exploration.
Note that an 8× 8 multiplier needs more adders as compared
to a 4 × 4 multiplier to add the partial products. Therefore,
each of the 2 × 2 multipliers in Table 3 has a lower cost
estimate while constituting a 4 × 4 multiplier as compared
to while constituting an 8× 8 multiplier.
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(a) Design space exploration for power optimization.
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(b) Design space exploration for area optimization.

FIGURE 9: Quality-efficiency trade-off study of a 4 × 4
multiplier optimized for uniformly distributed inputs.

Fig. 9 shows the complete design space of a 4×4 recursive
multiplier utilizing the five 2× 2 multiplier options (M, M1,
M2, M3, and M4), optimized for uniformly distributed input.
The absolute mean error shown at the y-axis (in all our re-
sults) is normalized to the output range of the multiplier, i.e.,
22n, where n is the bit-width of the input operands. Red aster-
isks represent the overflow configurations that are identified
and discarded (using Eq. (6)) while choosing pareto-optimal
configurations. Table 4 shows the pareto-optimal configura-
tions for a 4 × 4 recursive multiplier based on uniformly

VOLUME x, 2018 11



G.A. Gillani et al.: MACISH: Designing Approximate MAC Accelerators with Internal-Self-Healing

TABLE 4: Pareto-optimal configurations for a 4×4 recursive
multiplier based on uniformly distributed input.

Power Optimization SpArea Optimization
LSM∗ → MSM∗ LSM Spa→ MSM
M1 M1 M1 M1 M1 M1 M1 M1
M1 M1 M1 M3 M1 M1 M1 M3
M1 M2 M1 M3 M1 M4 M1 M3
M1 M4 M1 M3 M1 M4 M4 M3
M1 M4 M2 M3 M4 M2 M4 M3
M2 M4 M2 M3 - - - -
M4 M4 M2 M3 - - - -
∗LSM and MSM are the least significant and the most
significant 2× 2 multipliers respectively.

distributed input. The left column shows the power optimized
pareto-optimal configurations and the right column shows the
area optimized ones. Each configuration contains four 2 × 2
multipliers, e.g., M1 M1 M1 M1, where the left-most 2 × 2
multiplier is the Least Significant Multiplier (LSM) and the
right-most one is the Most Significant Multiplier (MSM) of
a 4× 4 configuration. The hardware efficiency increases and
the output-quality decreases as we go from the bottom row
to the top row. It can be seen that most of the pareto-optimal
configurations include the self-healing based designs like M3
[14] and M4. This substantiates the importance of M3 and
M4 designs, where M4 is a novel 2 × 2 multiplier design
proposed in this work.

C. SCALABILITY AND COMPARISON OF ISH WITH THE
CONVENTIONAL METHODOLOGY
To compare the proposed ISH and the conventional approx-
imate computing methodologies, we compare their pareto
fronts for area- and power-optimized designs based on each
input distribution (uniform and normal). As discussed in
Section III-C, all four approximate designs (M1, M2, M3 and
M4) are considered as 2 × 2 multiplier options for the pro-
posed ISH methodology. However, only the conventional low
error-rate (M1) and low error-magnitude (M2) approximate
designs are considered for the conventional methodology.

Fig. 10 shows the pareto fronts for 4 × 4 recursive mul-
tipliers. It can be seen that the proposed ISH methodology
presents many designs that have better efficiency for a given
quality constraint and vice versa as compared to the conven-
tional methodology counterparts. It should be noted that the
additional design points (shown in Fig. 10b and 10d) are not
worse as compared to the conventional methodology because
they increase design options in the pareto front. However,
such designs may be ignored as they do not provide much
efficiency benefits as compared to their decreased quality.
Moreover, it should be noted that Fig. 10 shows pareto-
optimal configurations based on exhaustive search (without
intermediate pruning algorithm), as the design space is small
enough for a 4× 4 multiplier case.

To verify the scalability of the proposed methodology, we
also present a comparison for 8 × 8 and 16 × 16 recursive
multipliers as shown in Fig. 11. Here the y-axis is shown

in logarithmic scale to clearly illustrate the widely spread
designs for comparison. It is to be noted that we have
performed an exhaustive search for the 8 × 8 conventional
methodology case, where the rest of the simulations (for
Fig. 11) have been performed by utilizing the intermediate-
pruning technique discussed in Section IV. It can be seen
that the proposed ISH methodology clearly outperforms the
conventional methodology for all considered input lengths by
providing many designs that have better efficiency for a given
quality constraint and vice versa.

In the case of the ISH methodology, it is noteworthy that
the error drops relatively faster for increasing area/power
costs in the beginning. This is because of error balancing that
helps to reduce the error without using the accurate modules.
However, at a certain stage, when the error is already very
low, the rate of error drop (with respect to area/power)
decreases (e.g., see Fig. 11b, designs: C6 and C7). This is
because the usage of accurate modules is necessary to further
reduce the error beyond this stage.

As discussed earlier, for 4 × 4 and 8 × 8 cases, exhaus-
tive simulation is utilized to obtain pareto-optimal designs
based on the conventional methodology, which means no
conventional design can be better than them. Although there
are some approximations involved within the intermediate-
pruning algorithm that may provide near-optimal (instead of
optimal) designs in a rare case, it generates better ISH de-
signs as compared to the conventional exhaustively searched
designs. This substantiates the fact that the ISH method-
ology performs better than the conventional error-restricted
methodology, including the higher order input cases. There-
fore we can conclude that the proposed ISH methodology
provides a more effective quality-efficiency trade-off as com-
pared to the conventional approximate computing method-
ology due to internal self-healing of the errors within the
approximate modules, and this is independent of the target
hardware efficiency (e.g., area or power), input width (e.g.,
4-bit/8-bit/16-bit), and input distribution (e.g., uniform or
normal).

D. CASE STUDY: RADIO ASTRONOMY CALIBRATION
PROCESSING

So far, we have shown results for general input distribu-
tions. Here we present the improvements offered by the ISH
methodology for an application. Radio astronomy calibration
estimates complex antenna gains (G) within a radio tele-
scope by utilizing an iterative method, known as StEFCal
[37]. For a given configuration, i.e., the number of antenna
elements and receiving channels in a radio telescope, StE-
FCal estimates G by utilizing current visibilities (V ) and
the model visibilities (M ). Considering a hardware accel-
erator design, it has three dominant kernels: complex-input
element-wise product, complex-input square-accumulate and
complex-input multiply-accumulate (MAC) [6], [14]. Here
we focus on the quality-efficiency trade-off of the complex-
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(c) Power optimization for uniformly distributed input.
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(d) Power optimization for normally distributed input.

FIGURE 10: Comparison of the pareto-optimal designs of 4 × 4 multipliers based on ISH and the conventional approximate
computing methodologies. The proposed ISH methodology outperforms for all considered optimization targets by providing
better (or at least equal) efficiency designs for a given quality constraint and vice versa.

input MAC operation, which computes,

N∑

j=1

{Zj ∗ Vj} Z, V ∈ C (19)

where Z represents an element-wise product of model vis-
ibility (M ) and gain computed in the last iteration (Gi−1)
[14]. We assume N = 496, which is the vector size for a
radio telescope configuration of 124 antenna elements and 4
channels. It is to be noted that each complex multiplication
requires four real-input multiplications. Therefore, in order
to study the quality-efficiency trade-off, we have utilized
pareto-optimal multipliers of the ISH and the conventional
methodologies for all the four multiplications. Keeping in
view the feasibility of 8-bit architectures in radio astronomy
processing [39], we considered the MAC operation utilizing
8×8 multipliers. As shown in Eq. (10), the ISH methodology
always provides better (or at least equivalent as a worst
case) designs as compared to the conventional methodol-
ogy. Therefore, here we present the cases that quantify the
maximum benefits offered by the ISH methodology. Table 5
shows equivalent-efficiency designs for the area and power

TABLE 5: Employing equivalent-efficiency approximate
MAC alternatives in radio astronomy calibration. The pro-
posed ISH designs exhibit up to 55% better quality as com-
pared to the conventional methodology counterparts.

Design Alternatives MAC Error (MSE) Hardware Cost∗
Accurate 0 A = 519, P = 439
Conven_A 1.96e-02 A = 447 (Ps =389)
ISH_A 1.44e-02 A = 447 (Ps =384)
Conven_P 2.01e-02 P = 383 (As =445)
ISH_P 9.07e-03 P = 383 (As =472)
∗ A and P are Area (µm2) and Power (µW ) estimates (respectively)
of each multiplier in a complex-input MAC accelerator.
s These A and P costs are not the primary optimization targets.

optimization. It can be seen that the area-optimized design of
the ISH methodology (ISH_A) brings 27% improvement of
the Mean Square Error (MSE) as compared to the equivalent-
efficiency conventional methodology design (Conven_A).
For power optimized designs, ISH methodology (ISH_P)
offers 55% improvement in quality as compared to the con-
ventional methodology counterpart (Conven_P).

Table 5 also shows the power costs of area-optimized
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(a) Area optimization for uniformly distributed input (8× 8).
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(b) Area optimization for normally distributed input (8× 8).
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(c) Power optimization for uniformly distributed input (8× 8).
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(d) Power optimization for normally distributed input (8× 8).
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(e) Area optimization for uniformly distributed input (16× 16).
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(f) Area optimization for normally distributed input (16× 16).
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(g) Power optimization for uniformly distributed input (16× 16).
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(h) Power optimization for normally distributed input (16× 16).

FIGURE 11: Comparison of the pareto-optimal designs of 8 × 8 ((a)-(d)) and 16 × 16 ((e)-(h)) recursive multipliers based
on the ISH and the conventional approximate computing methodologies. The proposed ISH methodology outperforms for all
considered optimization targets.
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TABLE 6: Synthesis based comparison of a few pareto-optimal configurations for an 8× 8 recursive multiplier. The proposed
ISH methodology provides more effective quality-efficiency designs, e.g., ISH_1 shows 18% better area and 14% better power
as compared to Conven_2, also with a better quality output.

Design Pareto-optimal multiplier configurations optimized for normally distributed input Quality-Efficiency
Alternatives LSM∗ → MSM∗ Error∗ Area∗ Power∗
Accurate M M M M M M M M M M M M M M M M 0 519 439
Conven_1 M1 M1 M1 M M M1 M M1 M M M1 M1 M M M M1 2.95e-5 455 387
Conven_2 M M M M M M1 M M M M M M M M M M1 1.87e-6 507 414
ISH_1 M4 M1 M1 M1 M1 M1 M4 M1 M1 M1 M1 M1 M3 M4 M1 M4 1.57e-8 415 356
ISH_2 M4 M1 M1 M M4 M4 M3 M1 M1 M M4 M1 M M1 M3 M1 9.26e-9 464 373
∗ Unit of Area is µm2. Power (µW ) is obtained utilizing switching activity based on normally distributed input. Normalized absolute
mean error is considered as an Error. LSM and MSM are the least significant and the most significant 2× 2 multipliers respectively.

designs (Conven_A and ISH_A), and area costs for power-
optimized designs (Conven_P and ISH_P). Although these
power and area costs are not the primary optimization targets,
it is important to note that they can introduce an additional
trade-off. For instance, the conventional methodology design
Conven_A consumes slightly more power as compared to
the ISH counterpart (ISH_A); on the other hand, the con-
ventional methodology design Conven_P requires less area
as compared to the ISH counterpart (ISH_P). Moreover, it is
to be noted that in case of the ISH methodology, the power-
optimized designs (e.g., ISH_P) tend to utilize more M2
multipliers as they are cheap in power, on the other hand,
they require more area (see Table 3). Keeping in view the
aforesaid comparisons, it is important to optimize a design
based on the efficiency target defined by the (application-
specific) design specifications. In cases, where both chip-
area and power consumption are equally important, a 3D
trade-off graph can be plotted to identify the pareto-optimal
points, where the x, y and z axis represent area, power and
error respectively. This case study shows that utilizing the
ISH methodology brings better quality for a given hardware
cost (or efficiency target) as compared to the conventional
methodology. However, in order to employ approximate
modules optimized for radio astronomy processing, a com-
prehensive study of error resilience and input distribution of
representative data sets is required, which is beyond the scope
of this paper.

E. SYNTHESIS BASED COMPARISON
As yet, we have shown quality-efficiency improvements of-
fered by the proposed ISH methodology based on estimated
hardware cost models discussed in Section V-B. Here we
present the results for comparable quality-efficiency designs
to quantify hardware improvements based on the synthesis of
complete units. For instance, we synthesize a few of the best
8×8 multiplier pareto-optimal designs that are optimized for
normally distributed input. Table 6 shows the area and power
of the considered designs for the conventional (Conven_1
and Conven_2) and the ISH (ISH_1 and ISH_2) method-
ologies. As can be expected, hardware efficiency increases
as we compromise on the quality of output. For example,
Conven_1 is more efficient (requires less area and power) as
compared to Conven_2 and Accurate designs. On the other

hand, Conven_2 and Accurate designs have a better quality
of output as compared to Conven_1. Similarly, the efficiency
of ISH_1 is higher than ISH_2.

To verify the validity of the cost estimation model dis-
cussed in Section V-B, we compare it with the synthesis
based hardware cost. Fig. 12 shows the differences in area
and power costs that vary from 0-4% for the considered
designs. This shows that the estimation model provides a
viable approach to rank the designs cost-wise in order to find
the pareto-optimal configurations during the design space
exploration process, especially because it’s not possible to
synthesize the millions of designs to obtain the synthesis-
based hardware costs.

Table 6 also shows the design configurations of the con-
sidered designs. It can be seen that the designs based on the
proposed ISH methodology tend to utilize M3 and M4 as
approximate 2 × 2 multiplier options, which helps for error
cancellation and avoiding overflow situation at the same time.
It can also be noted that the approximate 8×8 designs tend to
utilize an approximate 2× 2 multiplier (M1/M4) at the most
significant position. This is because of a very low probability
of error for the considered normally distributed input (µ =
128, σ = 22.5), i.e., for the aforesaid characteristics of input,
it is hardly likely that both inputs of a 2 × 2 multiplier
(placed at the most significant position) are 3. Interestingly,
while comparing quality and efficiency of designs for the
proposed ISH and the conventional methodologies (see Table
6), ISH_1 exhibits 18% better area and 14% better power as
compared to Conven_2, and at the same time, it provides a
better quality of output (less error) due to the error cancella-
tion mechanism intrinsic to the ISH methodology.

VI. CONCLUSION
A novel Internal-Self-Healing (ISH) methodology is pre-
sented for approximate MAC accelerators, which utilizes the
proposed approximate recursive multipliers with a near-to-
zero mean error profile. In contrast to the state-of-the-art
self-healing methodologies, the proposed ISH methodology
has shown an opportunity for error cancellation within the
approximate circuits, without requiring similar computing
elements (or parts of a datapath) in multiples of two.

We have presented a quantitative analysis based on a
design space exploration of 4-bit, 8-bit and 16-bit designs
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FIGURE 12: Comparison of the model based estimated cost
and the synthesis based cost. The difference varies from 0-
4% for both area and power costs.

for area and power optimization, considering uniform and
normal input distributions, and radio astronomy calibration
processing. Our results showed a more effective quality-
efficiency trade-off offered by the ISH methodology as com-
pared to the conventional approximate computing method-
ology. By definition, the proposed ISH methodology also
considers the conventional designs in addition to the novel
designs (for error cancellation) during the design space ex-
ploration. Therefore, it always generates better or at least
equivalent designs with a higher effectivity (based on quality-
efficiency trade-off) and a lower worst-case error as com-
pared to the conventional methodology.

.

APPENDIX A PSEUDO-CODES FOR DESIGN SPACE
EXPLORATION METHODOLOGY
To ease the reproducibility of our work, we present the
pseudo-codes (Algorithm 1 and Algorithm 2) for our design
space exploration methodology explained in Section IV; see
Fig. 6 for the flow diagram. The definitions of the variables
and functions utilized in the algorithms are given in Table 7.

The main algorithm, Algorithm 1, considers the probabil-
ity distribution of the input operands and the types of elemen-
tary (2×2) multipliers in terms of their error maps (E_Maps)
and costs (Costs) for searching the pareto-optimal configura-
tions. The DEFINE_E_Configs function defines an array of
structures containing different characteristics of the elemen-
tary configurations. The DSE function is the main recursive
function used for performing the design space exploration
whereas the DEFINE_E_Configs function is just to convert
the characteristics of the elementary configurations to a well
defined array of structures (a data type).

Algorithm 2 details the INTERMEDIATE_PRUNING
function, which restricts the intermediate design space to a
limited number of points. The aforesaid function utilizes the

TABLE 7: Definition of variables and functions used in
Algorithm 1 and Algorithm 2.

Variables/Functions Definition
n Number of bits of the input operands.
nr Bit-width of the operands in an intermediate multiplier.

ρx and ρy
Probability distributions of the input operands of the
n× n multiplier.

X
Maximum number of representative configurations that
can be selected in an intermediate stage (pruning
threshold).

E_Maps
An array of matrices containing error maps of the
elementary 2× 2 multipliers.

AO_Maps
A matrix containing the accurate output values of a
2× 2 multiplier.

Costs
An array containing the area/power costs of the
elementary 2× 2 multipliers.

E_Configs

An array of structures where each element contains
the identifier of one of the elementary configurations,
the maximum possible output value that it can generate,
its area/power cost, and its error map.

Out_Configs

An array of structures which contains the final output
of the design space exploration, i.e., the pareto-optimal
configurations of the n× n multiplier along with their
error and area/power characteristics.

Temp_Configs
A variable for temporarily storing the configurations.
The type of the variable is the same as the Out_Configs .

ρ
An array of matrices which contains the input probability
distribution of each of the 2× 2 elementary multiplier
in an n× n multiplier.

ρ{x1 : x2, y1 : y2}

A block of ρ matrix which is defined by row indexes
x1 to x2 and column indexes y1 to y2. For example,
in Algorithm 1 in the DSE function the ρ
matrix has to be divided into four blocks which is
represented as ρ{(i− 1) ∗ nr/4 + 1 : i ∗ nr/4,
(j − 1) ∗ nr/4 + 1 : j ∗ nr/4} on line#24 of
the algorithm. This term means that the represented block
spans the rows from (i− 1) ∗ nr/4 + 1 to i ∗ nr/4 and
columns from (j − 1) ∗ nr/4 + 1 to j ∗ nr/4.

Max_Nominal_Output
Maximum output expected from an accurate multiplier,
i.e., (2n − 1)2 for an n× n multiplier.

Inter_Configs Stores the intermediate multiplier configurations.

PO_Configs
Stores the intermediate pareto-optimal multiplier
configurations related to a specific recursive stage (nr).

Config_set1

Set of configurations from Inter_Configs having
Mean_Error > 0 and maximum possible output
value, i.e., Γ > Max_Nominal_Output .

Config_set2

Set of configurations from Inter_Configs having
Mean_Error <= 0 and maximum possible output
value, i.e., Γ > Max_Nominal_Output .

Config_set3

Set of configurations from Inter_Configs having
Mean_Error > 0 and maximum possible output
value, i.e., Γ <= Max_Nominal_Output .

Config_set4

Set of configurations from Inter_Configs having
Mean_Error <= 0 and maximum possible output
value, i.e., Γ <= Max_Nominal_Output .

Y.z
z field of the structure Y . It can be a scalar, vector,
or a matrix. For example, E_Configs{i}.E_Map
means the E_Map of the ith elementary configuration.

dot_product(Y, Z) Dot product of the entities Y and Z.

CONFIGURATION_SELECTION function, which selects
a limited number of points from a set of pareto-optimal
configurations by applying k-means clustering [36]. To avoid
the local minima problem, k-means operation is repeated
multiple (M) times on the same set of points, each time with
different initialization [36]. For each repetition of k-means,
the loss (Lossnew ) is computed and compared with the loss
from the previous instance. If Lossnew is less than that of
the previous instance, the new set of clusters (Clustersnew )
is selected as the optimal set otherwise the previous set is
retained.
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