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Preface 

Every morning we open our eyes, check our phones, browse the 
social networking sites and read the unfortunate news of many disasters 
around the world. These disasters vary in their causes, but they are 
consistent with the results: losses of money and lives. Epidemics are one 
of these disasters that take hundreds of lives every day throughout the 
Globe. The spread of infectious diseases does not differentiate between 
humans in any part of the world they inhabit. What limits their spread is 
the procedures taken by governments to control them and save the lives 
of thousands, especially children and elders. Therefore, in order for 
governments to formulate correct policies in the area of health and 
prevention, scientific and technical tools such as agent-based models must 
be available. These simulation models help policymakers to study and 
analyse past epidemics and their patterns of diffusion, apply different 
scenarios and prepare for any future emergencies. 

My study of Computer Science in the bachelor's degree and then the 
master's degree in Geoinformatics has provided the fundamentals and 
important principles in dealing with simulation tools and methods of 
programming and running them such as artificial intelligence algorithms, 
coding with different high-level languages, management and processing of 
spatial database, and data mining techniques. These fundamentals helped 
me in my doctoral studies and specialize in the application of artificial 
intelligence algorithms to steer and enhance the behaviour of individuals 
in simulation models. This in turn will provide decision makers with a tool 
that simulates the behaviour of individuals during their risk perception and 
the impact of their spatial and social intelligence on their coping decisions. 

Understanding the learning processes of agents in the disease simulation 
can assist in developing better strategies in health problem-solving and 
coordination mechanisms. Ideally, the development of policy-oriented 
agent-based models should go in participatory settings where 
policymakers could co-design assumptions and develop realistic 
intervention scenarios. This is the main objective of using and 
implementing artificial intelligence techniques in these simulation models. 
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1.1 Background 
Despite the immense progress in science and technology, humanity 

is still vulnerable to a range of events that disturb the way societies live 
and develop. In 2018 alone, disasters varied from wildfires in America and 
Australia (Washington Post, 2018), to epidemics in the developing world 
(WHO, 2018), as well as to mass migration driven by war or by limited 
livelihood options in home regions (UNHCR, 2018). These disruptive events 
continue to generate thousands of human victims and billions of dollars of 
economic losses annually (IFRC, 2016). Such risk-related problems are 
complex and involve various actors who participate, interact, learn, and 
must adapt to constantly changing environments. Effective decisions are 
made with a short availability of information, under conditions of 
uncertainty, and limited resources. 

Therefore, there is an urgent need for decision-makers and policy-makers 
to have hands-on scientific tools to help anticipate possible options and 
develop solutions and interventions, before common risks scale up to 
become disasters. Policy-makers use applied scientific models to identify 
and assess possible social and environmental impacts of alternative 
policies. Simulation tools are particularly prevalent in assessing policy 
impacts in the domain of sustainable development (Monto, et al., 2005). 
Simulation models help to identify processes behind unfolding disasters 
and provide a safe simulated environment to explore managerial strategy 
responses. Like complex adaptive systems, social-environmental systems 
(SES) facing risks may exhibit unforeseeable behaviour. Randomness, 
heterogeneity, and interactions between different entities often make SES 
mathematically untraceable (Barnes and Chu, 2010; Parunak, et al., 1998; 
Sun and Cheng, 2005), calling for advanced simulation tools. 

In a review of modelling tools for sustainable development, Boulanger and 
Bréchet (2005) recommend agent-based modelling (ABM) as the most 
promising approach to support decision-making. An integration of several 
strengths put ABMs above other methods. ABM is a bottom-up approach 
that explicitly represents micro/macro relationships and accommodates 
agent heterogeneity and adaptive behaviour. ABMs allow feedback 
between the (spatial) environment and cumulative agent behaviours, and 
are able to integrate a variety of data inputs, such as aggregated and 
disaggregated data, qualitative information, or even common-sense 
knowledge (An, 2012; de Marchi and Page, 2014; Filatova, et al., 2013; 
Fonoberova, et al., 2013; Parker, et al., 2003). 

https://www.washingtonpost.com/nation/2018/11/25/camp-fire-deadliest-wildfire-californias-history-has-been-contained/?noredirect=on&utm_term=.af76dcfec144
https://www.who.int/csr/don/archive/year/2018/en/
https://www.unhcr.org/figures-at-a-glance.html
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In addition, ABMs serve as a cross-disciplinary platform to integrate 
advances in social, spatial, and computer sciences when representing 
behaviour at various temporal and spatial scales, as well as ontological and 
institutional levels. Further, ABMs of SES often combine elements of other 
modelling techniques, such as cellular automata, artificial intelligence, and 
analytical and statistical modelling. In addition, they advance the 
representation of emergent system properties and phenomena as an 
outcome of interactions among heterogeneous adaptive agents. 

The spatial dimension appears central when studying SES dynamics, 
especially when risks and societal responses are concerned. ABMs that 
integrate the model with heterogeneous landscapes are known as spatial 
agent-based models (SABMs). SABMs explicitly model dynamic 
environmental processes, ranging from natural environmental processes 
[e.g., succession of vegetation (Yospin, et al., 2015), flooding 
(Dubbelboer, et al., 2017), and erosion (Crooks and Castle, 2012))], to 
the dynamics of a built environment [e.g., growth of cities and settlements 
(Cantergiani and Delgado, 2016), the construction of roads (Huynh, et al., 
2014)], to the emergence of social clusters in space (Sierhuis and 
Diegelman, 2007). SABMs focus on the "where" question. They often use 
spatial data from geographic information systems (i.e., GIS data to 
construct real geographic environments). 

Agents are assigned locations in the simulation space, representing their 
homes, their school or work, or their location during movement. SABMs 
reflect the richness and variety of the real world that is crucial for an 
explanation of how spatial structures, such as cities and rivers change and 
evolve (Crooks, 2010). ABMs in general, and SABMs in particular, are often 
developed for very specific phenomena or situations with distinct context 
and data (Simoes, 2012). 

SABM have evolved as tools for studying and simulating complex real world 
processes (Heppenstall, et al., 2012; Borrill and Tesfatsion, 2010). SES 
applications include agricultural dynamics (Balmann and Happe, 2001; 
Berger, 2001; Polhill, et al., 2001), land markets (Filatova, 2014; He, et 
al., 2014; Parker, 2014), and land use in general (Brown, et al., 2005; 
Matthews, et al., 2007), as well as natural hazards (de Koning, et al., 
2017; Magliocca and Walls, 2018), evacuation (Collins, et al., 2014; Li, et 
al., 2018; Tkachuk, et al., 2018), disaster management (Drakaki, et al., 
2018), and the diffusion of infectious diseases (Alshammari and Mikler, 
2018; Augustijn, et al., 2016). The rapid evolution and powerful 
computational abilities on the hardware side enable a large number of 
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mutually interacting spatial agents to be simulated (Husselmann and 
Hawick, 2011). While agents exhibit adaptive behaviour in SABMs, and in 
ABMs in general, many models have a simplistic representation of 
behaviour. A manner in which both social and spatial factors affect agents’ 
learning and, eventually, their adaptive behaviour, varies greatly among 
models. 

1.2 Intelligent Agents in ABMs 
To provide a realistic test bed for mimicking human behaviour and 

societal dynamics, ABMs should consider a range of options to implement 
learning among agents. The term ‘learning’ in this thesis refers to activities 
(processes) of optimising, predicting, decision-making, and adaptation 
that an agent will execute with the intention to achieve a particular goal. 
Intelligence and learning are closely related terms (Sen and Weiss, 1999). 
The ability of a system to learn reflects the intelligence level of that system 
(Honavar, 2006; Russell and Norvig, 2016). In ABMs, intelligent agents 
are defined as computational, social interactive, proactive or reactive, and 
self-directed objects (Macal and North, 2015). They accomplish their 
internal goals via decisions that are based on strategies or a set of internal 
rules in dynamic environments due to their ability to learn (Abdou, et al., 
2012; Epstein and Axtell, 1996; Gilbert and Terna, 1999; Jennings, 2001; 
Macal and North, 2015). 

Ideally agents should adjust their internal models-- their knowledge about 
how the world works-- and explore ways to automate the inductive process 
of generating correct outputs for a large number of input data (Russell and 
Norvig, 2016). Often, one should develop a measure of success to check if 
agents have learned correctly about their changing worlds, since learning 
is defined in terms of improving performance on the basis of some metric 
(Talwar and Kumar, 2013). 

In an SABM, agents operate in a realistic geographically explicit landscape 
with actual coordinates and can alter this environment or move around 
over time. Interactions between agents or between agents and their 
environment have an impact on multiple spatial scales and over various 
timescales. Therefore, agents must change their behaviour based on their 
experience over time in response to their environment in a systematic way 
(North and Macal, 2011). Typically, agents have multiple “options” or 
“types of behaviour” they can choose to display to reach their internal goal. 
This can be a one-time decision or when the same decision is repeated. 
For the latter, the success rate of each attempt is measured so that agents 
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learn to make “smarter” decisions based on experiences. For a one-time 
decision, agents rely on their prior knowledge and/or the experience of 
other agents. Smarter decisions can be made by using machine learning 
techniques, such as genetic algorithms or neural networks, as well as 
statistical methods, such as regression models (Asadi, et al., 2009; 
Lorscheid, 2014; Rand, 2006; Sharma, et al., 2012). 

1.3 Machine Learning Algorithms 
Machine Learning (ML) is a domain of artificial intelligence (AI) that 

focuses on the development of computer systems, which can learn to 
improve task performance, and adapt and change when introduced to new 
data. These systems are able to acquire new knowledge and enhance or 
refine skills, as well as to recognise prior experience based on newly 
acquired knowledge. In other words, a computer system learns to improve 
its predicted future performance (Langley, 1988; Langley and Simon, 
1995; Nilsson, 1998). 

ML algorithms are useful tools to design intelligent agents with 
autonomous behaviour (Luger and Stubblefield, 1993; Nilsson, 1998) that 
have abilities to perceive, reason, and act (Winston, 1992), function more 
realistically, and perform tasks that require intelligence (Kurzweil, 1990). 
Researchers in both cognitive science and AI created a wish list of the 
aspects of intelligence an agent can have (Honavar, 2006). Ideal 
characteristics of an intelligent agent are perception, action, reasoning, 
adaptation and learning, communication, autonomy, creativity, 
awareness, and reflection. Moreover, an intelligent system could also 
exhibit ingenuity, expressiveness, and curiosity. 

Learning processes come in a variety of forms. Two features of the learning 
processes that are relevant to this research topic are the learning method 
and learning feedback (Sen and Weiss, 1999). Learning methods vary from 
rote learning (memorisation), learning from instruction, and learning from 
examples, to learning by discovery. The main difference between these 
methods is the amount of learning effort required. For example, the effort 
required in rote learning is to memorise given facts with no inferences 
extracted from input information, while learning from instruction requires 
an instructor that gives new information to be integrated with prior 
knowledge. Moreover, learning with examples requires the learner to infer 
and acquire useful examples, from him/herself, a teacher, or the external 
environment. Finally, learning by discovery requires more effort to perform 
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more inference and learn on the basis of trial-and-error, since no teacher 
or examples are provided (Michalski and Carbonell, 2013). 

To indicate the performance level achieved by agents in the learning 
process, learning feedback is used. The feedback is provided either by the 
agents themselves or by the system’s environment and comes in one of 
the following forms: 

• Supervised learning: the feedback evaluates whether the desired 
activity of the agent and the objective of the agent match and 
minimise the differences. The feedback provider acts like a 
“teacher”. 

• Unsupervised learning: the feedback is not explicitly provided. 
However, this approach aims to identify useful and desirable 
activities on the basis of self-organisation and trial-and-error 
processes. The feedback provider is a passive observer. Agents are 
left on their own to learn and discover how best to achieve their 
own goals. 

• Reinforcement learning: the feedback evaluates the utility of the 
actual activity of the agent in the current state to maximise the 
utility value. The feedback provider is the critic. This feedback 
increases the probability of choices, which has delivered the highest 
utility in the past, to be chosen more frequently from a set of 
possible actions. 

The three types of learning can be implemented via a range of different 
algorithms that vary from path finding algorithms (such as, breadth-first 
search, A*, and hill-climbing algorithms), evolutionary computation (such 
as, genetic algorithms (GAs)), biological based algorithms (such as, 
artificial neural networks (NNs)), ML algorithms (such as, decision trees 
(DT), and random forest (RF)), reinforcement learning algorithms (such 
as, the Markov decision process), to Bayesian networks (BNs) (see Russell 
and Norvig, 2016). More details about the implementation of these 
algorithms in ABMs can be found in Chapter 2. 

1.4 Implementation of ML in ABMs 
Researchers in the field of ABM are aware of the effectiveness of 

engaging ML algorithms in their models. ML algorithms are employed in 
ABMs in various ways and for different purposes. ML is considered to be a 
suitable tool for various steps of ABM design (Oloo and Wallentin, 2017; 
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van der Hoog, 2016). Currently, ML algorithms are used to improve the 
performance of the ABM in three ways: 

• for processing of input data to calibrate an ABM (Category A in 
Figure 1-1), 

• for employing ML algorithms as agents’ brain (Category B in Figure 
1-1), and 

• for using ML for identifying trends in and visualising of ABM 
outputs, validating ABMs, and improving their performance 
(Category C in Figure 1-1). 

In this thesis I seek to explore how ML could be used to enhance intelligent 
behaviour of agents, hence, I focus exclusively on Category B. Out of all 
the variety of ABMs using ML algorithms to increase the intelligence of 
agents’ brain, this research is confined to ABMs of coupled SES. 

 
Figure 1-1: Integration of ML algorithms and ABMs 

Behaviour of human agents in ABMs may employ various ML algorithms to 
form expectations and opinions about the environment and future trends 
of other variables of interests (Balmann and Happe, 2001; Chakraborti, et 
al., 2011; Happe, 2004; Kirman, 2010). From a social perspective, human 
agents can be implemented as individuals (Hu, et al., 2017) or as groups 
(Plikynas, et al., 2014). In addition, an intelligent entity may receive 
information and exhibit actions either through interactions with other 
agents ‘socially’ (Czarnowski and Jędrzejowicz 2018) or with 
‘environments’, which, in socio-economic and spatial ABMs may be spatial 
(Li, et al., 2018). 

One barrier in the use of intelligence in ABMs in general, and spatial ABMs 
specifically, is that most learning algorithms require extensive training 
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data (Van Der Ploeg, et al., 2014). In the case of data availability, ML 
algorithms could be trained before they are implemented in ABMs in a 
supervised learning style (Pope and Gimblett, 2017). When no data is 
available, the expert may define the parameters of the ML algorithm before 
implementing it in the ABM. In this case, the training will be done during 
the simulation (Shen, et al., 2016). In either case, for ABMs to function 
properly, the behaviour of agents should capture the essential elements of 
human behaviour. 

Models with intelligent agents may help policy-makers to extract 
important, possibly hidden relationships and correlations among large 
heaps of data (data mining). The learning capability increases the 
autonomy of agents that drive unexpected results on micro- and macro-
levels (Alonso, et al., 2001; Lorscheid, 2014). Moreover, learning 
behaviour endows agents with an ability to rationalise in an uncertain and 
dynamic world (Russell and Norvig, 2016). In summary, the benefits of 
employing ML in ABMs are vast (Nilsson, 1998; Stone and Veloso, 2000): 

• ML enables agents in ABMs to adjust their internal models-- their 
prior knowledge on how the world works-- and explore ways to 
automate the inductive process that help them to perform well on 
their core tasks. 

• When designing a model, a system developer has incomplete 
knowledge about the environment in which the system will be 
applied. ML provides the ability of using “on-the-job” betterment of 
existing system designs. 

• Certain tasks might require too much knowledge to be explicitly 
encoded by the developer. Therefore, there is a demand for having 
systems that gradually extract and learn to use this knowledge to 
help the developer capture certain behaviours. 

• Using ML could help the developer to write less programming codes 
while handling large knowledge and designing agents’ tasks. 

• The dynamic nature of environments requires agents to promptly 
adapt and respond, thus, ML can be used to avoid static design. 

There are two pronounced research gaps in implementing learning in SES 
ABMs. First, many ABMs use naive deterministic algorithms, which are 
rule-based or condition-based, to simulate a behavioural change in agents 
(Heppenstall, et al., 2016). While agents in ABMs are sometimes endowed 
with memory (prior knowledge), actual learning in an AI style is rarely 
implemented (Balbi, et al., 2010; van der Hoog, 2016). The study of 
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adaptation, expectations formation, and behavioural changes involves a 
change in agents’ preferences or perceptions within the ABMs and could 
greatly benefit from the use of state-of-the-art knowledge developed 
within the AI community (Rand, 2006). Yet, the ML-based endogenous 
switching of behavioural choices of agents and their expectations formation 
about consequences or future events is underdeveloped in ABMs of SES 
(Kocabas and Dragicevic, 2013; van der Hoog, 2016). Moreover, a 
structured comparison of ABMs with zero-intelligence vs. ML-based 
learning is missing. 

Second, the majority of SES ABMs employ both social and spatial 
dynamics, implying that both processes may affect agents’ decision-
making. ML could support an integration of both social and spatial 
dynamics to assure agents’ learning in rich SES environments. Yet, to date, 
such modelling examples are scarce. A combination of both social and 
spatial factors influencing individual agent decision-making can be based 
either on a theoretical model, on data, or on both. However, limited data 
recording both spatial and social factors is available to guide a data-driven 
model. The second knowledge gap is in the lack of developments of 
methods to integrate social and spatial factors, both from a data and from 
an ML algorithm point of view. 

This thesis addresses these gaps at the overlay of the three domains 
(Figure 1-2). It relies on the methods from ML to enhance the agent’s 
intelligence in a spatial ABM, employing the insights from social sciences 
on risk perception, in particular, using Protection Motivation Theory (PMT) 
and data from a social survey on factors affecting risk perception. 

 
Figure 1-2: This PhD thesis at the intersection of three scientific domains 
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1.5 Research Objective and Research Questions 
The main goal of this research is “to get insights into the 

implications of ML integration in agent-based simulation models”. It 
focuses on how ABMs are developed to support realistic policy decisions 
that may be advanced by enhancing agents’ intelligence with ML 
algorithms. Specifically, the thesis compares ABMs that pursue the various 
operationalisation of ML algorithms accounting for spatial and social 
intelligence that drive agent behaviour. Two sub-objectives serve as 
stepping stones to achieve this main research goal, in line with the above-
mentioned gaps. Each objective is supported by related research questions 
(RQ): 

Sub-Objective 1: to provide insight on how ML algorithms can be 
integrated into ABMs of SES. 

RQ1: What is the state-of-the-art in employing intelligent agent 
learning into ABMs of SES to enhance agents’ decisions? (Chapter 
2) 

RQ2: How can the spatial and social intelligence driving agents’ 
decisions under risk be implemented in an ABM? (Chapter 3) 

RQ3: How can the supervised learning of ML algorithms be 
implemented in ABM, given scattered micro-level data? (Chapters 
4 and 5) 

Sub-Objective 2: explore the implications of learning, including social and 
spatial intelligence, on the behaviour of agents choices in risky contexts. 

RQ4: How comparable are results of an ABM with intelligent 
decision-making agents to the one with zero-intelligent agents 
(i.e., rule-based learning)? (Chapter 3) 

RQ5: Given the reliance of ABMs on social interactions, what 
differences does the level of collective intelligence make when 
implementing an ML algorithm in an ABM? (Chapter 6) 

To achieve this goal, different implementations of BNs are tested in a 
spatial ABM using a Cholera disease diffusion ABM as an example. A 
learning target of agents is the risk perception and their behaviour when 
facing risk. 
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1.6 Case Study: Modelling the Spread of an 
Infection Disease 
Cholera ABM (CABM) is a geographically explicit model that 

simulates an environmental reservoir of Cholera bacteria in the urban area 
of Kumasi, Ghana (Augustijn, et al., 2016). The objective of the original 
CABM was to test the role of a water runoff from open refuse dumpsites 
as a pathway for the dissemination of Cholera. CABM simulates two 
different Cholera infection pathways, via the environment (lower 
infectiousness) and human-environment-human infection (hyper-
infectious). When passing through the digestive system, Cholera bacteria 
transition to a hyper-infectious state. When faecal materials from Cholera 
patients are deposited at open dumpsites, runoff during heavy rains can 
carry the infection to nearby rivers, and as people use the river water for 
domestic use, this runoff can contribute to the diffusion of the disease. This 
model incorporates environmental and human behavioural elements, and 
could be used to explore policy interventions to reduce the spread of 
Cholera. 

There are three agent types in CABM: households, individuals, and rain 
particles. Household agents are collections of individual agents. The model 
consists of three sub-models: a hydrological model, a household activity 
model, and a disease model. Agents are positioned in the geographically 
explicit environment which consists of different spatial layers of GIS data 
for the city of Kumasi. Households and individual agents are 
heterogeneous in terms of their attributes, such as income level, hygiene 
level, water source, as well as the location for households, and age, 
educated/not, gender, blood type, and health status (susceptible, infected, 
and recovered) for individuals. However, in the original version, 
households were homogeneous in their behaviour and individual behaviour 
was not explicitly implemented. The agent population (households and 
individuals) is generated using a synthetic population generator that 
provides the model with its largest stochastic element. 

The study area is 19 km2 and consists of 21 communities (Figure 
1-3, left). There are no administrative boundaries for these communities. 
However, for this model, the developers determined the boundaries using 
Thiessen polygons. The spatial environment of the CABM consists of: (1) 
elevation surface data (DEM) to define the hydrological dynamics that 
determine the flow direction and flow accumulation of the rain drops, (2) 
the dumpsites with actual locations gathered using a global positioning 
system (GPS), (3) the house layer with income levels ranging from high to 
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medium and to low; (4) the river, and (5) the centre and ID of communities 
(Figure 1-3, right). 

 
Figure 1-3: CABM study area that is located in the North-East part of Kumasi 

The original model simulated the process of Cholera diffusion without 
elaborating the decision-making of the household and individual agents 
(Figure 1-4). Agents had a fixed activity pattern. Depending on their 
income level, household agents obtained water with either a tap, by 
purchasing water, or by fetching it from the river nearest to their home. 
They also used the closest dumpsite to their home location. The model was 
originally developed to advance the spatial dynamics and could be 
expanded by including change of behaviour among individuals based on 
disease awareness. 

The learning skills of the individuals are missing in the current model. This 
opens the door to use this SABM to implement different learning strategies. 
ML algorithms can be employed in the CABM within the two agent types 
(households and individuals) based on their activities in the model: 

• Households and individual agents in the CABM could benefit from 
intelligent decision-making when: 

o Searching for the best source of water (river, tap, or buy 
bottled-water) based on their risk perception (e.g., the 
number of disease cases the household is aware of). This is 
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an iterative process where households adjust their 
behaviour based on constant risk perception during the 
simulation. 

o Changing the place where the water is collected from the 
river. This requires that the agent has an understanding of 
spatial patterns and can judge the difference between the 
various parts of the river. 

o Adjusting one’s hygiene level (e.g., treating water or not) 
based on previous experience and awareness of the 
disease. 

o Sensing whether any of the neighbours are infected. 

o Drinking/using the water. 

 
Figure 1-4: Original model scheme where the intelligence elements will be added during the 

process of collecting water from the river (yellow box) 
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Consequently, an agent in the case study of SABM will move through a 
cycle during the simulation time (Figure 1.5). With every timed step, the 
agents have their own demands and needs to make a decision, however, 
this decision is governed by the agent’s sensitivity to risk perception. The 
result of the decision the agent makes will be stored in their memory as 
its learning experience, as shown in the figure below: 

 
Figure 1-5: Agent's life activity cycle inside CABM 

 

1.7 Modelling Behaviour Changes in Risky 
Contexts 
Adaptive behaviour of individuals is crucial when modelling SES. 

Understanding factors affecting a shift in behaviour of an individual enables 
one to trace cumulative consequences for a community, city, and society 
in an ABM. This is especially important when studying decisions under risk 
and major events that adversely impact societies. Reconstructing a social 
phenomenon from the bottom-up in a simulated environment offers the 
decision-makers an artificial society to test alternative response strategies 
that minimise losses from disasters and societal costs. 

One of the aspects that impacts individual behaviour during a disaster is 
the perception of risk. Individuals form expectations on how risky a 
situation is and respond by adapting their behaviour to a new situation. 
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Risk perception (RP) is an integral part of a decision-making process in 
uncertain situations. Moreover, RP can be understood as an individual's 
evaluation of risk in a particular situation. This evaluation is the resolution 
of an individual uncertainty on how threatening and controllable the 
situation is. The sufficiency of any risk evaluation is based on the adequacy 
of accessible risk information (Pablo, et al., 1996). Accordingly, risk 
impacts the evaluation of available options, the eventual decisions, and 
perceptions of the decision problem (Williams and Noyes, 2007). Risks that 
an agent may face can be objective, such as the probability of low rainfall, 
but they can also be subjective based on individual exposure to various 
shocks (Doss, et al., 2006). Agents’ subjective assessments associate their 
expectations about the probability of various events with agents’ beliefs 
about their capabilities to deal with various emergencies. 

Humans have a limited cognitive ability, which affects an individual’s RP 
evaluation which, in turn, could result in inadequate decisions. The 
sufficiency of any risk evaluation is based on the sufficiency of the 
accessible risk information. To realise the effect of RP on the process of 
decision-making, the way risk information is communicated and received 
by agents should be understood (Williams and Noyes, 2007). Factors that 
influence RPs are the message, the source of the message (other agents, 
and/or the environment), and the target of the message (agents). These 
factors need to be considered to design effective risk communications and 
to facilitate decision-making. It is reasonable to conclude then that any 
effort to understand the effects of exogenous variables on decision-making 
must consider the role of the RPs (Sitkin and Weingart, 1995). 

Social science has a long-standing tradition of studying RP, factors 
affecting it, and its serving as a trigger for behavioural change (Sjöberg, 
2000; Slovic, 2010). Protection motivation theory (PMT) is prominent in 
conceptualising this process and is used extensively to study health risks 
(Floyd, et al., 2000). By assuming that decisions in a risky context are 
made in two steps, as a risk appraisal followed by a coping appraisal, PMT 
provides a clear link between factors affecting RP and a choice of actions. 
Besides being used frequently in empirical studies, PMT seems to be a 
straightforward way to formalise an ABM. Hence, taking the CABM as this 
case study model, this research further explores how RP is shaped by 
various factors: whether it triggers a behavioural change among 
households, and where and how intelligence makes a difference. 
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1.8 Data 
Any model requires a range of input data: spatial data, agent 

attributes data, and data to formalise learning. For the CABM, data from 
the Ghana Bureau of Statistics (GSS, 2012) is used to create the synthetic 
population of individuals and households. Poverty data is derived from 
literature (Augustijn, et al., 2016). Data on access to tap water was 
derived from national statistical information from the Ghana Statistical 
Service (GSS, 2012). The dataset of confirmed Cholera cases for the 2005 
epidemics were confirmed by a bacteriological test and were reported to 
the Disease Control Unit (DCU) by reporting facilities (Osei and Duker, 
2008). The DEM was downloaded from CGIAR website as a Geotiff image. 
Flow direction and flow accumulation layers have been calculated based on 
this DEM using ArcGIS. Houses were digitised based on the Google image 
of the area (2006), and refuse dump locations have been collected using 
GPS (Osei, et al., 2010). 

Limited datasets are available about the way the spatial environment 
influences human decision-making. Most sources discuss RP by evaluating 
how RP varies in space (e.g., Sridhar, et al., 2016), omitting the role the 
environment itself plays in the process of shaping RP. Therefore, two online 
surveys were conducted to gather data on people’s RP for Cholera disease: 
the MOOC survey (Geohealth online course) and Google survey (an online 
survey). While most of the questions were identical in the two surveys, 
there was one difference. In the MOOC survey, participants chose to use 
or not to use river water for drinking by judging its quality by visual 
appearance (pictures shown in Chapter 4). The Google survey collected 
information on the influence of individual risk factors on the willingness to 
use river water without visuals, using only a textual description of the 
water quality. The survey data on RP and factors affecting it were used to 
introduce intelligent judgements about risks and options to cope with 
disease in the CABM. 

1.9 Outline of the Dissertation 
The thesis consists of seven chapters (Figure 1-6) that sequentially 

address the research questions: 

http://srtm.csi.cgiar.org/
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Figure 1-6: The overview of the thesis 

Chapter 1 introduces the reader to the field of ABMs and the growing need 
for developing simulations with intelligent agents. Intelligent agents may 
use ML algorithms to integrate social and spatial factors to improve their 
tasks in SES models. The benefits and limitations in the implementation of 
ML algorithms in ABMs are briefly outlined. The main goal of the thesis, its 
sub-objectives, and related research questions aim to address the gaps at 
the intersection of ML, ABM, and social science domains. The chapter 
presents the case study models to be used and the nature of the datasets 
employed. 

Chapter 2 reviews recent ABMs of SES that employ various learning 
algorithms to create intelligent agents with a focus on spatial ABMs. Here, 
a systematic structured analysis is provided of (1) the ways learning 
algorithms are employed in ABMs for only social, only spatial, or combined 
social-spatial intelligent decision-making, (2) their specific 
operationalisation in an agent’s decision-making for various tasks: 
individual versus group learning and the treatment of spatial and social 
environment in the design of learning algorithms, and (3) the level of 
empirical data used in ABMs in either the pre-training of the ML algorithm 
or training during a simulation. This chapter highlights the trends in the 
current practice of ML algorithms used to enhance ABMs, which social 
simulation modellers may rely on when designing future simulations. 
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Chapter 3 presents an innovative approach to extend agent-based 
disease models by capturing behavioural aspects of decision-making in a 
risky context using ML techniques. This is illustrated with a case of Cholera 
in Kumasi, Ghana, accounting for spatial and social risk factors that affect 
intelligent behaviour and corresponding disease incidents. The thesis 
discusses the results of computational experiments by comparing spatial 
and temporal patterns of disease diffusion among zero-intelligent agents 
with those produced by a population of intelligent agents. A spatial disease 
ABM is presented with agents’ behaviour grounded in PMT from 
psychology. To introduce agents’ intelligence, I designed and coded two 
BNs in R statistical language, and integrated them with the NetLogo-based 
CABM. The first BN is a one-tier (BN1), the only RP, and the second is a 
two-tier (BN2) for risk and coping behaviour. 

Chapter 4 is a continuation of the study presented in Chapter 3. It focuses 
on validating the spatial intelligence by collecting data on people’s RP for 
Cholera via two online surveys: the MOOC and Google surveys. Spatial 
intelligence refers to the fact that agents sense their environment, perform 
a judgement on its dynamically changing conditions, and adjust their 
behaviour based on this judgement. Objectives of this chapter are twofold: 
to examine the effect of spatial and social RP on disease spread, and to 
compare the risk awareness of agents with data collected on the RP of the 
survey participants. 

Chapter 5 presents a methodology for training a learning algorithm to 
guide agent behaviour using limited survey data samples. Various 
implementation strategies were applied using survey data and BNs. By 
being grounded in probabilistic directed graphic models, BNs stand out 
among other learning algorithms in that they can be based on expert 
knowledge and/or extensive datasets. This chapter presents four 
alternative implementations of data-driven BNs to support agent decisions 
in the CABM. Chapter 5 provides a differentiation between training BNs 
before or during the simulation runs, using only survey data or a 
combination of survey data and expert knowledge. 

Chapter 6 pursues a quantitative test on the influence of agents’ ability 
to learn-- individually or in a group-- on the disease dynamics. The 
experiments illustrate that individual intelligent judgements about disease 
risks and the selection of disease coping actions are outperformed by social 
intelligence (acquired individually or leader-based). The impact of different 
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types of social learning compared to individual learning is an underexplored 
domain in disease modelling and in ABMs of SES in general. 

Chapter 7 provides the conclusion of this research. The conclusion 
includes the answers to the research questions, the reflection of this PhD 
project, and the limitations that lead to future work. 
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Chapter 2: Artificial Intelligence for 
Enhancing Actors’ Decisions in Agent-
Based Models: A Review 
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2.1 Introduction 
Agent-Based Models (ABMs) are indispensable for studying the 

aggregated impacts of individual actions of heterogeneous agents. 
Concurrently, Artificial Intelligence (AI) has been employed for decades to 
simulate autonomous actions of individual entities that react, learn and 
exchange information with an environment and one another. There are 
obvious synergies between the two computational approaches – i.e. ABMs 
and AI – as also discussed in Chapter 1. For example, AI could be used to 
enhance agents’ behaviour in ABMs. Machine learning (ML), as a method 
to implement intelligence, allows for a richer agents’ architecture. ML can 
help in the operationalization of more realistic learning for reaching 
decisions beyond a simplistic treatment of agents’ cognitive and sensory 
capacities. 

Human beings make decisions both individually and as part of a collective, 
where an individual could copy a decision taken by a group or a group 
leader (Carlson et al., 2014). Therefore, ML algorithms can be integrated 
into ABMs for individual and group learning. In either way, agents may 
learn in isolation or through interactions with relevant others, e.g. with 
neighbours or peers within own social networks (Sen and Weiss, 1999). In 
isolated learning, an agent learns independently without requiring any 
interaction with other agents. In interactive learning, several agents are 
engaged in the same process of learning, and they need to communicate 
and cooperate to learn effectively. Interactive learning can be conducted 
based on different social learning strategies (Eberlen et al., 2017). In 
addition to social intelligence – either group or interactive – agents also 
learn from the environment, which in the case of socio-environmental 
systems (SES) is often geographically explicit. Hence, spatial intelligence 
(Gardner, 2006) is also an important aspect to consider in this thesis. In 
ABMs, spatial intelligence concerns the use of ML algorithms to capture the 
process of how spatial environments, and especially changes in these 
environments, influence agents’ decisions (Anderson and Dragićević, 
2018; Ghnemat et al., 2008; Sahli and Moulin, 2006; Yang et al., 2011). 

Besides, intelligence in ABMs can be represented by a fully trained learning 
algorithm at the start of the simulation, or by training it during a simulation 
run. When applying supervised learning, ML algorithms need to be trained 
on data. One limitation in the use of intelligence in ABMs is that most 
learning algorithms require extensive training data (Van Der Ploeg et al., 
2014). Moreover, the scarcity of large sets of micro-level data on human 
behaviour, which affects the employment of ML algorithms, has been a 
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long standing problem (Kocabas and Dragicevic 2013). The performance 
of learning algorithms improves with the increasing quantity and quality of 
training data (Walczak and Walczak, 2001). When no data is available, an 
expert may define parameters’ values, and the training of an algorithm is 
done during a simulation.  However, to our knowledge, no detailed review 
has been conducted that studies the available data sources and the way 
they are used in ABMs enhanced with ML. 

Complex emerging behaviour can be the result of combinations of previous 
experiences of an agent (feedback), of social interactions with other 
agents, but also of changes in the agent’s environment. ML algorithms can 
play an important role in combining a large number of different spatial and 
social variables and in obtaining the social, spatial or social-spatial 
intelligence level required (Heppenstall et al., 2014; Manson, 2005; Van 
Der Hoog, 2016).  

There are several comprehensive reviews on the integration of learning 
algorithms in socio-economic and spatial ABMs. They include an overview 
of ML algorithms in environmental modelling and ecology models (Hamblin, 
2013; Chen et al., 2008), early efforts on the usage of AI in socio-economic 
ABMs (Chattoe, 1998; Gilbert and Troitzsch, 2005; Rennard, 2006) and a 
general discussion on the use of learning algorithms in ABMs (Lorscheid, 
2014). Also worth mentioning is the review of Eshragh et al., (2015) 
discussing the role of AI in automated negotiation in environmental 
resource management ABMs. However, these reviews either focus on a 
particular application domain (e.g. ecology, navigation), not necessary 
relating to ABMs, or on a particular agents’ task (e.g. negotiation). A 
thorough review of literature on ABMs of SES with intelligent agents is 
missing. This chapter reviews recent socio and spatial ABMs that employ 
different learning algorithms to investigate how to create intelligent agents 
with combined social and spatial intelligence. We do this by conducting a 
review of literature on ABMs of SES and differentiating between two 
groups: spatial and non-spatial ABMs.  

In this chapter I perform a systematic structured analysis of ABMs of SES 
using ML algorithms to enhance agents’ intelligence. The review focuses 
on:  

1) the way ML algorithms are employed in ABMs for only 
social, only spatial or combined social-spatial learning of 
agents,  
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2) their specific operationalization in the agents’ decision-
making for various tasks, differentiating among individual 
versus group learning, and among spatial and social 
environment in the design of learning algorithms,  

3) and the level of empirical information used in ABMs in 
either a pre-training of an ML algorithm or its training 
during a simulation run. 

This chapter highlights the trends in the current practice of learning 
algorithms used to enhance ABMs. It also offers ‘lessons learned’ from this 
practice, which social simulation modellers may rely on when designing a 
new generation of ABM simulations. 

2.2 Methods 
This article surveys ABMs that are designed to explore the 

dynamics of SES, or at least a subsystem of them. Within this group, I 
focus on those ABMs that use ML to steer behaviour of agents in either 
spatial, social or combined socio-spatial learning. Overall, 137 articles are 
included in this review, of which 60 are non-spatial and the remaining 77 
report spatial ABMs. I selected the articles for this review following a 
number of steps: 

• Scientific web engines such as Scopus, and Google scholar (and 
other relevant databases such as ACM Digital Library, IEEE Xplore, 
Arxiv.org, and web of Science) were searched looking for different 
combination of keywords such as agent-based models or agent-
based simulation or spatial agent-based modelling or multi-agent 
systems AND machine learning or artificial intelligence or learning 
algorithm or intelligence algorithms; 

• Using the above-mentioned engines, a search was conducted for 
ABMs with AI keywords such as genetic algorithms or neural 
networks or Bayesian networks or fuzzy logic intelligent decision; 

• Snowball sampling: recursively finding relevant articles through the 
reference list of various ABM articles. 

I used the following list of criteria to review the ABM literature employing 
learning algorithms to steer agents’ behaviour and enhance agents’ 
decision-making abilities: 

1) the way learning algorithms are employed in ABMs to 
represent social, spatial or socio-spatial intelligence, 

http://www.scopus.com/
https://scholar.google.nl/
http://dl.acm.org/
http://ieeexplore.ieee.org/Xplore/home.jsp
http://arxiv.org/
http://apps.webofknowledge.com/UA_GeneralSearch_input.do?product=UA&search_mode=GeneralSearch&SID=Y1mZPnMp2CzuUGAsSDc&preferencesSaved=
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2) their specific operationalization in an agent’s decision-
making for various tasks, 

3) the level of empirical information used in ABMs to train an 
ML algorithm. 

Each of these categories will be explained in more detail in the next 
paragraphs. 

2.2.1 Type of Intelligence 

Wooldridge and Jennings (1995) defined an intelligent agent in 
spatial settings as being reactive to changes in their environment, pro-
active in the sense that they have goal-directed behaviour, and having 
social abilities. Following this, in my review, I differentiate between three 
types of intelligence: social, spatial and combined socio-spatial 
intelligence. Namely: 

• Social intelligence involves the acquisition of new skills or 
knowledge by perceiving information, experience, and the 
performance (actions) of other agents. Agents interact with other 
agents, for example, using negotiation tasks in order to reach an 
individual decision (Figure 2-1.a).  

• Spatial intelligence refers to the process of receiving information, 
from the spatial landscape. Processes can be based on spatial 
intelligence in the case of an agent using an algorithm to evaluate 
its spatial environment to make a decision (Figure 2-1.b). Decisions 
can be based on recording changes in the environment (e.g. water 
levels that are rising) or knowledge about locations (e.g. finding an 
exit or determining the shortest route) or comparing the quality of 
a spatial location (e.g. finding the best property to buy or avoiding 
heavily polluted areas).  

• In combined socio-spatial intelligence, agents have to combine the 
information from the social interactions with information from their 
spatial environment to come to a decision. A resolution on how to 
combine these different factors is challenging in this type of 
intelligences (Figure 2-1.c). 
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a. Social Intelligence b. Spatial Intelligence c. Socio-spatial 
intelligence 

Figure 2-1: Types of Agents’ Intelligence 

Further, I focus on the type of tasks that is being performed by intelligent 
agents. In ML, tasks are often classified as un-supervised, supervised and 
reinforcement learning. For this review, this classification is too coarse. In 
ABM literature, agent tasks vary from predicting a possible future own 
state or the state of the environment to negotiating with others. Therefore, 
I want to be more specific, especially since the remainder of this thesis will 
focus on “risk perception” and “coping appraisal” decisions of agents facing 
risky choices. Hence, the review differentiates between the following tasks 
of intelligent agents: 

1) Optimization (OPT) - concerns the search for the best 
action or decision from a set of alternatives based on one 
or several criteria, that might require no prior knowledge to 
learn a suitable cooperative. 

2) Negotiation (NEG) - is a dialogue with a purpose of 
reaching an agreement that may bring mutual advantages 
to involved actors.  

3) Prediction (PRED) - Prediction is an attempt to forecast the 
future.  

4) Adaptation (ADPT) - Adaptation is an alteration of 
behaviour or attributes of an agent in response to changing 
surroundings. The latter in our sample of ABM papers may 
be represented by a spatial environment, or by a society.  

Usually, agents have multiple options regarding the “types of behaviour”, 
which they can choose from to reach their internal goals. Agents in a model 
act – i.e. optimize, negotiate, predict and adapt – to eventually make a 
core decision. The decision can be a one-time or a repeated event. For the 
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latter, a success rate of each attempt is measured, so that agents learn to 
make “smarter” decisions based on their experiences. In the case of a one-
time decision, agents might rely on the experience of other agents. For the 
spatially explicit cholera diffusion ABM I use as a case-study in the thesis, 
“risk perception” is an example of a prediction action and “coping 
appraisal” can be regarded as a form of adaptation. As agents adapt their 
behaviour according to the risk they perceive, they may choose a different 
decision with respect to the source of water they use. 

2.2.2 Implementation Strategies 

When implementing ML to enhance agents’ decision making in a 
model, a choice has to be made about a specific algorithm. In many 
papers, no specific motivation is provided for this choice, hence the 
rationale behind the use of, e.g. Neural Networks (NNs) over Bayesian 
Networks (BNs) is not transparent. Many ML algorithms are available and 
preferences for one or another shift over the years as better algorithms 
are being developed. Therefore, for this review, I took a pragmatic 
approach and limit the further discussion only to the algorithms used most 
often in the dataset of papers surveyed. Finally, the following ML 
algorithms were selected: Bayesian networks, Neural networks, Genetic 
algorithm, Swarm intelligence, Hybrid algorithms and I group the 
remaining less frequently used ML methods in the ‘Other algorithms’ 
category (Figure 2-2). 

 
Figure 2-2: Use of different ML Algorithms to enhance agents’ intelligence in ABMs of SES (N=137 

reviewed papers). 
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Further, I distinguish between two different types of strategies to 
implement an ML algorithm in an ABM with respect to the object of 
intelligence, an individual agent or a group agent.  

Individuals versus groups 

An object that pursues intelligent behaviour – an ‘individual’ or a ‘group’ – 
employs various ML methods in the reviewed articles. Here a ‘group’ should 
not be mistaken for a set of separate agents connected through social ties. 
For example, individuals belonging to the same neighbourhood may be 
influenced by one another but make individual decisions without 
necessarily having a group goal. With group intelligence, individual agents 
either individually or jointly use a learning algorithm to support their 
decision making while striving to achieve a common group goal. 

This review further uses the following definitions: 

• Individual Intelligence refers to the process of gaining skills or 
knowledge, which an agent pursues individually to support its 
individual task (Russell and Norvig, 2010). In this case an algorithm 
is implemented at the agent level and its types or parameterization 
may vary across agents. Learning depends on prior knowledge such 
as memory, experience, and/or the perceived knowledge 
awareness of the environment or actions of others. 

• Group Intelligence is the process of acquiring new skills or 
knowledge undertaken collectively in a group of several agents 
(Sen and Weiss, 1999). In this case, a group performs a unique 
group task, and ML is used to help the group reach its goal. Group 
intelligence can be realized by introducing one learner-enhanced 
agent who learns for the whole group to help it accomplish its group 
task (e.g. an opinion-leader or a leader-dictator). Alternatively, 
group intelligence is implemented by using individual ML algorithms 
for various group members who learn individually or perform 
specific sub-tasks that support the entire group reaching its goal. 
A group then makes a decision by combining this individual 
knowledge, e.g. by majority vote. 

Either an individual or a group could make decisions and pursue its goals 
in isolation or in interactions with other individual or group agents. 
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Isolated versus Interactive learning 

The process of learning includes interactions between the learners – 
individual or group agents – and the environment or other agents (Shalev-
Shwartz and Ben-David, 2013). Social interactions are a core attribute of 
ABMs. Hence, nearly every model has agents pursuing interactions with 
other agents to achieve their goals but not every ABM would enhance this 
process with ML. According to Sen and Weiss (1999) an intelligent agent 
may pursue isolated (centralized) or interactive (decentralized) learning.  

This review further uses the following definitions: 

• An isolated learner receives information only through the 
environment without direct interactions with other agents. 
In this case information comes from own experience, 
spatial environment, media or institutions.  

• Interactive learning implies that agents communicate and 
interact with each other to learn effectively. Such 
interactions are often implemented by instantiating social 
networks in ABMs or by connecting agents in spatial 
neighbourhoods.  

When an ABM includes social interactions among agents, we define this 
model as socially interactive, otherwise we call agents isolated.  

2.2.3 Data for Training ML Algorithms 

The lack of empirical data may play a role in the selection and 
specification of an ML algorithm. The availability of data influences whether 
an ABM developer can calibrate model parameters, extract and estimate 
missing information for agents’ decision rules, or train an ML algorithm. 

Training of the ML Algorithms 

Any ML algorithm should have a mechanism to select the rule for achieving 
the learning task it strives for. Hence, a learning algorithm needs to be 
trained to learn how and what answer to give using a feedback. The 
Learning feedback are used to indicate the performance level achieved by 
the agent. The feedback is provided either by the agent itself or by the 
system environment. The learning feedback might be realized as a 
supervised, unsupervised or reinforced learning. The choice of a training 
method of an algorithm often depends on the availability of data for the 
feedback. Specifically: 
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• Supervised learning is possible when empirical data is 
available. Here the algorithms’ learning parameter values 
can be driven directly from the dataset.  

• Unsupervised learning When no data is available, the 
expert may define the parameters’ values and the 
algorithm training will be done during the simulation.  

• Reinforced learning involves data gathering on the go 
through iterative tasks such as negotiation. It relies on a 
performance evaluation and requires feedback from the 
environment. 

The ML algorithms require training that can be either pre-training (before 
implementing the algorithm in the ABM) or training during simulation: 

• In the case of pre-training, the algorithm learns from the 
data and it connects every set of inputs with the 
corresponding outputs. In this case, agents have the 
answers for every situation and know what to do in which 
case. The agents learn how to match their prior knowledge 
with the current status of the environment to react 
accordingly. Supervised learning relies on pre-training.  

• In the case of training during the simulation, agents and 
their ML algorithm learn together and upgrade based on 
the experience of the agents. In addition, the learning 
parameters of the ML are adjusted during the simulation 
using the data from the model itself. Unsupervised and 
reinforced learning rely on the training that occurs as 
simulations run.  

Data Types 

Not all data used to train the ML algorithm is empirical behavioural data 
on the actual choices. At the same time, a design of ML in ABMs may 
depend on the type of data that is available. This applies to the learning 
algorithm that is chosen, or the type of training applied. Not all data used 
to train the ML algorithm is empirical behavioural data.  Many different 
types of data have been used in ML algorithms. We differentiate between 
the following data categories: empirical behaviour data, survey data on 
elicited behaviour in hypothetical situations, simulated data, secondary 
data from the literature, and expert knowledge.  
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2.3 Setup of the Research 
Given the variety of types of intelligence (Section 2.2.1), 

alternative ways of implementing it in ABMs (Section 2.2.2) and reliance 
on data (Section 2.2.3) I have defined three corresponding categories of 
interest for this review. To understand the status of these different 
approaches used in the reviewed articles, I report on the trends in the 
current modelling practice along these categories for spatial and non-
spatial ABMs. Given these aspects of intelligence, an overview is provided 
in Figure 2-3. 

 
Figure 2-3: A sequence of steps when selecting an ML algorithm for ‘agents’ brain’ in ABMs for 
various socio-economic and spatial application domains 

 
2.4 Results 

Despite an avalanche of ABM papers in the recent years, still only 
a small group of ABM developers apply ML algorithms to enhance agents’ 
decision-making. This number is even smaller amongst developers of 
spatial ABMs, while a lot of models focusing on the dynamics of SES are 
geographically explicit (Figure 2-4). Unfortunately, developers of ABMs 
often do not provide any explicit motivation for their choices related to the 
use of ML algorithms. It inhibits learning about the benefits of AI methods 
and diffusion of advanced practicing within the ABM community. 
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Figure 2-4: Current practice of using ML in ABMs for agents’ intelligence ( 2000 - 2018) 

 
2.4.1 Types of Intelligence 

The set of 137 published articles on ABMs of SES using MLs is 
reviewed differentiating between the type of intelligence implemented: 
social, spatial or combined social-spatial intelligence. Here I am interested 
in whether intelligence varies across tasks performed and between spatial 
and non-spatial ABMs (Table 2-1). 

Table 2-1: A frequency of occurrence of social, spatial and combined social-spatial intelligence 
across agents’ tasks in reviewed ABMs (in absolute numbers and in percent from total in the 
spatial or non-spatial ABMs sub-group). 

Spatial ABMs 
 

Task 
Intelligence 

Optimization Negotiation Prediction Adaptation Total 

Social 5 (7%) 2 (3%) 3 (4%) 4 (5%) 14(18%) 
Spatial  23 (30%)  14 (18%) 12 (16%) 49 (66%) 
Combined 4 (5%) 3 (4%) 5 (7%) 1 (1%) 13 (17%) 
Total 32 (42%) 5 (7%) 22 (29%) 18 (23%) 77 (100%) 

Non-Spatial ABMs 
 

Task 
Intelligence 

Optimization Negotiation Prediction Adaptation Total 

Social 15 (27%) 5 (8%) 11 (18%) 19 (32%) 50 (83%) 
Spatial  1 (2%)    1 (2%) 
Combined 4 (7%)  3 (5%) 2 (3%) 9 (15%) 
Total 20 (33%) 5 (8%) 14 (24%) 21 (35%) 60 (100%) 
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What we notice when evaluating the table is that in spatial ABMs, 
intelligence is used for social learning, spatial learning, and combined 
socio-spatial learning. This confirms our hypothesis that although models 
are spatial and agents have intelligent behaviour, this does not 
automatically mean that this behaviour is also spatially intelligent. One 
would expect that in the non-spatial group of papers, the cells for spatial 
and mixed intelligence in Table 2-1 would remain empty. However, it is 
possible that although the model is not spatial, spatial intelligence is being 
implemented such as the examples of (Ozik et al. 2018; Rekik et al. 2014; 
Salle 2015; Sukhbaatar et al. 2016). 

It also does not come as a surprise that the number of ABMs combining 
social and spatial intelligence is low. In only 16% of the cases mixed 
intelligence was used. For example, ML is used for estimating next state 
transition probabilities of the environment based on shared learning 
experience of agents  (Barrett et al., 2013); and drives agents negotiations 
in a land renting auction (Balmann and Happe, 2001). In addition, learning 
algorithms are used to negotiate over the selected locations to inhabit 
(Bone et al., 2011). 

Forty-two percent (42%) of the spatial ABMs implement ML for 
optimization. However, in non-spatial ABMs, optimization appears to be 
only 33% of reviewed articles, indicating a need for more behaviourally 
rich decisions employed in spatial ABMs beyond the optimization. Examples 
of using ML algorithms to support agents’ optimization decisions in spatial 
ABMs vary from seeking a land-use allocation that scores as the best on 
multiple social and environmental criteria (Manson, 2005); to iterative 
optimization of household travel schedules (Meister et al., 2005); to 
optimize the performance of battle agents (Lim et al., 2005); or to search 
for an optimal distribution of various branches of a clinical organization 
across a country to minimize processing time (Asadi et al., 2009).  

In non-spatial ABMs, hybrid approaches of ML algorithms are used for more 
effective and precise optimization in an electrical power market (Reddy 
and Veloso, 2011). In addition, ML used to mimic human decisions on 
performing actions relevant to define exposures stressors (Brandon et al., 
2018) and to update of agents belief in opinion dynamic model (Sobkowicz, 
2017).  

Models, in which learning algorithms are used for negotiation, represent 
the smallest group in our sample (just about 7%, see Table 2-1) and 
spatial and non-spatial models score similarly. In spatial ABMs, ML 
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algorithms drive agents negotiations in learning opponent’s preferences at 
an earlier stage in a negotiation (Pooyandeh and Marceau, 2014a) and to 
reduce prices in land markets (Shen et al., 2016). In non-spatial ABMs, ML 
algorithms are used to generate proposals with the absence of complete 
information (Gwak and Sim, 2011); to drive agents negotiations in e-
commence (Choi et al., 2001); and to define transaction prices among 
firms in a supply chain (Russ and Walz, 2009) and game theory (Kattan et 
al., 2013). 

ABMs using ML algorithms for prediction tasks constitute 29% in spatial 
models and 24% in non-spatial examples (Table 2-1). In spatial ABMs, ML 
learning used for evaluating agents predict the location of exits in an 
evacuation ABM (Hajibabai et al., 2007); dynamic response functions such 
as environmental attributes are estimated based on socio-economic 
distributions at spatial large scales (Xu et al., 2013); or forecasting the 
perceptual reasoning of land-user agents (Sun & Müller, 2013). Kaya & 
Alhajj (2005) augment their hunter agents with a hybrid of ML algorithms 
to predict actions such as next location of other hunters following the same 
prey. For non-spatial ABMs, agents use ML algorithms to forecast future 
stock prices and dividends (Rekik et al., 2014); to make predictions on the 
monetary policy of banks (Salle, 2015). In addition, ML is implemented to 
support agents’ decision such as forecasting energy demand (Costa et al., 
2008). 

Adaptation is the second most popular task modelled with ML algorithms 
among the reviewed ABM papers (23% of the spatial and 35% of the non-
spatial papers, Table 2-1). However, this is mostly due to the high use in 
non-spatial models. An example of spatial ABMs is of Alexandridis and 
Pijanowski (2006) employ ML to support land-user agents’ decisions in 
response to in- and out-migration. While Verstegen et al. (2010) have 
agents involved in spatial planning adjusted their spatial preferences based 
on the level of cooperation with other agents in the past using BN. Lei et 
al. (2005) design agents that adapt their land purchase decisions and 
socioeconomic attributes on the basis of ML outcomes as land market and 
spatial land-use patterns dynamically unfold. For non-spatial ABM ML is 
used to make adaptive decisions to classify suppliers on the basis of their 
profitability in the supply chain in order to adapt their choice to the safest 
supplier (Smeureanu et al., 2012); or agents use ML to adapt their decision 
whether to obey a social norm based on past actions and corresponding 
utilities (Nishizaki et al., 2008). 
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In general, one can conclude that optimization is the most popular task in 
spatial models and adaptation in non-spatial models. Furthermore, the 
number of models using mixed spatial and social intelligence is low. Each 
of the ABMs in this sample has at least one type of intelligent interactions 
with 48% employing ML to represent social learning, and 37% use ML to 
implement spatial learning. and 15% of the articles used ML to implement 
both social and spatial learning in their ABMs for the complete dataset. 

2.4.2 Implementation Strategies 
Social Intelligence in ABMs 

The reviewed papers exhibited a variety of ways intelligence was 
implemented in an ABM. Figure 2-5 illustrates the trends in the current 
practice of using ML algorithms to enhance either individual or group 
decisions, with or without interactions with other agents.  When individuals 
or groups have a social network or engage in interactions within their 
spatial neighbourhoods, information from peers is integrated in the 
intelligent decision making process. 

 
Figure 2-5: A frequency of occurrence of individual, group of combined intelligence among 

interactive and isolated agents in the reviewed ABMs (in absolute numbers) 

Agents, during the process of learning, may be in contact with other 
agents, i.e. be socially interactive, or not, i.e. be socially isolated. Our 
sample shows that most papers use individual agents that are interactive. 
There are few examples of isolated learning, which is expected since social 
interactions are the core of ABMs. There is not much difference between 
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spatial ABMs (61% individual – interactive) and the non-spatial models 
(55% individual - interactive). 

Interactive individual agents engage in direct interactions with others to 
perform negotiations (Pooyandeh and Marceau, 2014a; Shen et al., 2016) 
or to compete in auctions (Graubner et al., 2011; Kellermann and 
Balmann, 2006; Yuan et al., 2014). Other examples of the use of MLs for 
individual interactive intelligent agents include regulatory interactions 
between governments and citizens (Cioffi-Revilla et al., 2012) and 
diffusion of social norms and information (Sun and Müller, 2012). 
Individual agents also construct and update a mental model in markets 
(Manahov et al., 2014). 

Agents’ own learning and adaptation is based on the experience of 
interacting with others in their groups (Djennas et al., 2012). Agents also 
could be updating their beliefs and skills in isolated groups (Nishizaki et 
al., 2008). To model trust, negotiations and communication in an auction 
Quteishat et al. (2009) reinforce their agents with neural networks to make 
individual judgments. Every three agents form a team. Thus, there are 
individual as well as group level goals, and interactions occur on both 
levels. 

Table 2-2: A frequency of occurrence of interactive versus isolated learning across agents’ tasks in 
the reviewed ABMs (in absolute numbers and in percent from total in the spatial or non-spatial 
ABMs sub-group). 

Spatial ABMs 
 

Task 
Interaction 

Optimization Negotiation Prediction Adaptation Total 

Interactive 25 (33%) 5 (7%) 16 (21%) 14 (18%) 60 (79%) 
Isolated 7 (9%)  6 (8%) 4 (5%) 17 (22%) 
Total 32 (42%) 5 (7%) 22 (29%) 17 (22%) 77 (100%) 

Non-Spatial ABMs 
 

Task 
Interaction 

Optimization Negotiation Prediction Adaptation Total 

Interactive 17 (28%) 5 (8%) 10 (17%) 14 (23%) 46 (76%) 
Isolated 3 (5%) 1 (2%) 4 (7%) 6 (10%) 14 (24%) 
Total 20 (33%) 6 (10%) 14 (24%) 20 (33%) 60 (100%) 

When evaluating the tasks against the interactivity, one can see that 
spatial and non-spatial models have similar patterns (79% against 77%, 
see Table 2-2). With respect to tasks, agents in spatial ABMs rely on 
information from social interactions primarily when optimizing and 
predicting (33% and 21% Table 2-2). Non-spatial ABMs focus on using MLs 
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that rely on inputs from social interactions when agents prsue optimization 
or adaptation tasks (23% and 23%, Table 2-2). For obvious reasons, 
intelligent negotiation tasks are never done in isolation in either spatial or 
non-spatial ABMs. 

A Variety ML Algorithms in ABMs 

With respect to the choice of an ML algorithm to use for various tasks, 
there are no clear preferences in the current practice (Table 2-3). One 
exception is Genetic algorithms, that are dominant for optimization in both 
spatial and non-spatial models (21% and 13% correspondingly). 
Interestingly, non-spatial ABMs seem to have a wider variety of ML 
algorithms used compared to the spatial models, especially for adaptation 
tasks where ‘Other’ comprises 17% of the sample. Here besides the 
common ML methods such as Bayesian or Neural networks, Genetic 
algorithms and Swarm intelligence, the literature reports.  

Table 2-3: Use of ML algorithms for various agents’ tasks in the reviewed ABMs (in absolute 
numbers and in percent from total in the spatial or non-spatial ABMs sub-group). 

Spatial ABMs 
 

Task 
ML Algorithms 

Optimization Negotiation Prediction Adaptation Total 

Bayesian networks 4 (5%) 2 (3%) 6 (8%) 4 (5%) 
16 
(21%) 

Genetic algorithm 16 (21%) 2 (3%) 2 (3%) 1 (1%) 
21 
(27%) 

Neural networks 3 (4%)  6 (8%) 2 (3%) 
11 
(14%) 

Swarm intelligence 1 (1%)  2 (3%) 2 (3%) 4 (5%) 
Hybrid Algorithms 1 (1%)  2 (3%) 4 (5%) 7 (9%) 

Other 7 (9%) 1 (1%) 4 (5%) 3 (4%) 
15 
(20%) 

Total 32 (42%) 5 (7%) 22 (29%) 17 (22%) 
77 
(100%) 

Non-Spatial ABMs 
 

Task 
ML Algorithms 

Optimization Negotiation Prediction Adaptation Total 

Bayesian networks 3 (5%) 1 (2%) 1 (2%) 3 (5%) 8 (14%) 

Genetic algorithm 
8 (14%) 2 (3%) 1 (2%) 1 (2%) 12 

(20%) 

Neural networks 
3 (5%) 2 (3%) 7 (13%) 4 (7%) 16 

(28%) 
Swarm intelligence 2 (3%) 1 (2%)  1 (3%) 4 (7%) 

Hybrid Algorithms 
1 (2%)  4 (7%) 5 (8%) 10 

(17%) 
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Other 
3 (5%)  1 (2%) 6 (17%) 10 

(17%) 

Total 20 (33%) 6 (10%) 14 (24%) 20 (33%) 60 
(100%) 

 

2.4.3 Data for Training ML Algorithms 
The survey of the ABM literature confirms that the availability of data is a 
crucial criterion for implementing MLs as drivers of agents’ decisions. It 
influences whether a model developer can calibrate model parameters, 
extract and estimate missing information for agents’ decision rules, or train 
an ML algorithm. 

 
Figure 2-6: Use of supervised, unsupervised and reinforced learning (in absolute numbers) 

When supervised learning is used (69 that is 51% of our sample, see Figure 
2-6) data to train the ML algorithm often comes from the social or spatial 
environments. This is especially relevant for Bayesian networks and 
Genetic algorithms where qualitative data from interviews with experts and 
stakeholders is used to give an algorithm a direction (Pooyandeh & 
Marceau, 2014). Where possible, I have made a distinction between the 
use of empirical data for ML training in spatial ABMs and the three types 
of learning, though authors of the published articles do not always 
explicitly discuss the data sources for ML algorithms. 

When considering the type of data used for training an ML algorithm, one 
could see that spatial ABMs use more surveys compared to non-spatial 
ABMs (15% versus 0%, Table 2-4). This might be due to the limited access 
spatial scientist have to behavioural data. Simulated data also seems to be 
more common in spatial ABMs (14%) compared to 8% in non-spatial 
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ABMs. In spatial ABMs, data used for ML can refer to spatial and 
behavioural data, implying that different datasets may need to be aligned. 
Yet, behavioural data may not always be geo-referenced hindering the 
merge. In non-spatial ABMs I assume the data is used for social 
intelligence. It would have been interesting to specifically differentiate 
between the two categories of intelligence: social and spatial. Yet, the 
published papers in our sample do not always provide enough details to 
permit it. 

Table 2-4: Overview of learning tasks and data sources used to train ML algorithms supporting 
these tasks (in absolute numbers and in percent from total in the spatial or non-spatial ABMs 
sub-group). 

Spatial ABMs 
 

                         Task 
Data Types 

OPT NEG PRED ADAP Total 

Survey (hypothetical choices) 5 (8%) 0 3 (4%) 3 (4%) 11 
(15%) 

No data 11 (15%) 0 5 (7%) 6 (8%) 22 
(30%) 

Expert knowledge 1 (1%) 1 (1%) 1 (1%) 3 (4%) 6 (8%) 
Experimental data  1 (1%) 1 (1%) 4 (5%) 0 6 (8%) 

Simulation data 6 (8%) 0 3 (4%) 1 (1%) 10 
(14%) 

Empirical data (actual choices) 8 (11%) 2 (3%) 5 (7%) 3 (4%) 18 
(24%) 

Secondary data from the Literature 0 1 (1%) 1 (1%) 1 (1%) 3 (4%) 

Total 32 (42%) 5 (7%) 22 (29%) 18 (23%) 77 
(100%) 

Non-Spatial ABMs 
 

Task 
Data Types 

OPT NEG PRED ADAP Total 

Survey (hypothetical choices) 0 0 0 0 0 

No data 7 (12%) 2 (3%) 4 (7%) 7 (12) 20 
(33%) 

Expert knowledge 2 (3%) 3 (5%) 0 4 (7%) 9 
(15%) 

Experimental data  5 (8%) 0 2 0 7 
(12%) 

Simulation data 1 (2%) 0 1 (2%) 3 (5%) 5 (8%) 

Empirical data (actual choices) 4 (7%) 0 6 (10%) 6 (10%) 16 
(27%) 

Secondary data from the Literature 1 (2%) 0 1 (2%) 1 (2%) 3 (5%) 

Total 20 (33%) 5 (8%) 14 (24%) 21 (35%) 60 
(100%) 

When checking for the use of different data types against the ML algorithm 
we see that Bayesian networks have a high percentage of survey and 
expert data in the spatial ABMs and that this is not used in the non-spatial 
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models. That neural networks are used mostly with simulated data and 
that other algorithms use empirical data most. Examples can be presented 
such as Yuksel (2018) used simulation data to pre-train the hybrid ML 
algorithms (genetic algorithms and neural networks) to help agents to 
learn how to change and improve their evacuation behaviours. While Shen 
et al. (2016) used expert knowledge to identify initial parameters of their 
Bayesian networks in their land-market negotiation ABM. 

 
Figure 2-7: Training of ML algorithm. Here the inner ring represents spatial ABMs and the outer 

ring represents the non-spatial ABMs. 

The training of supervised ML algorithms might be performed before 
integrating an ML in ABMs (average of 43%) or during the integration 
(average of 58%) (Figure 2-7) based on the availability/absence of data. 

In case of data availability, an ML is trained before being integrated in an 
ABM as in (Asadi et al. 2009; Bennett and Tang 2006; Ghazi and Dugdale 
2018). However, when data is not available to train in advance, the ML is 
trained when it is integrated to the ABM – i.e. during a simulation run. 
Simulation data could be used to train the ML as in (Caudell et al. 2011; 
Junges and Klügl 2011; Laite et al. 2016; Yuksel 2018). 

Table 2-5: Practice of training ML algorithms before or during their integration in ABMs (in 
absolute numbers and in percent from total in the spatial or non-spatial ABMs sub-group 

Spatial ABMs 
 

Time of Training 
ML algorithms 

Pre-training Training during Total 

Bayesian networks 11 (15%) 5 (7%) 16 (21%) 
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Genetic algorithm 7 (9%) 14 (19%) 21 (27%) 
Neural networks 6 (8%) 5 (7%) 11 (14%) 
Swarm intelligence 1 (1%) 3 (4%) 4 (5%) 
Hybrid Algorithms 6 (8%) 1 (1%) 7 (9%) 
Other 8 (10%) 6 (8%) 14 (20%) 
Total 32 (42%) 5 (7%) 77 (100%) 

Non-Spatial ABMs 
 

Time of Training 
ML algorithms 

Pre-training Training during Total 

Bayesian networks 4 (7%) 4 (7%) 8 (14%) 
Genetic algorithm 3 (5%) 10 (17%) 13 (22%) 
Neural networks 8 (13%) 8 (13%) 16 (26%) 
Swarm intelligence 0 4 (7%) 4 (7%) 
Hybrid Algorithms 2 (3%) 4 (7%) 6 (10%) 
Other 3 (5%) 10 (17%) 13 (22%) 
Total 20 (33%) 40 (66%) 60 (100%) 

 
The process of training an algorithm also depends on other aspects in 
addition to the availability of data: the nature of the problem and the 
algorithm itself (Tables 2-4 and Figure 2-7). For example, Genetic 
algorithms, which are used for optimization, help agents to improve their 
behaviour on the basis of states of the environment and actions of others 
(H. H. Zhang et al. 2010). A fitness function might be derived before the 
simulation but optimizing the behaviour will take place during the 
simulation. This is regarded as training the algorithm during the 
simulation. 

In addition, Neural networks algorithm are data-based algorithms that 
requires large datasets to be trained, therefore when there is no data 
available the simulation may be used as a source of data to train the 
algorithm. Here, both agents and their learning algorithm learn together 
(see for example (Caudell et al. 2011)). 

2.5 Conclusions 
Despite an avalanche of ABM papers in the recent years, still only 

a small group of ABM developers apply ML algorithms to enhance agents’ 
decision-making. This number is even smaller amongst developers of 
spatial ABMs, while a lot of models focusing on the dynamics of SES are 
spatially explicit. Unfortunately, developers of ABMs often do not provide 
any explicit motivation for their choices related to the use of ML algorithms. 
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This makes it difficult for other developers to determine if the use of ML 
would be beneficial in their models. 

This chapter provides a structured review of the state-of-the-art regarding 
the use of learning algorithms in agents’ decision-making among spatial 
ABMs. I reviewed 137 articles with spatial and non-spatial ABMs. I 
approached the review by focusing on three aspects: the type of 
intelligence, the implementation strategies and the data availability. Where 
the sample of reviewed papers allowed, I identify if any patterns appear 
on the use of ML in ABMs for enhancing agents’ cognition. In spatial ABMs, 
ML is most often used for optimization tasks to support agents’ behaviour, 
primarily with Genetic algorithms. While non-spatial ABMs use ML mostly 
for adaptation and optimization tasks. Genetic algorithms and neural 
networks seem to be preferable ML methods for non-spatial ABMs. Non-
spatial models also use a wider variety of algorithms, inclining that spatial 
ABMs lag behind in experimenting with ML for agents’ intelligence.  

The number of examples where ML is used for combined social and spatial 
intelligence is still small. This might partly be due to the non-spatial 
character of behavioural data (to train the ML algorithm). When the 
behavioural data does not include spatial aspects, and is not specific to 
spatial locations, this can hinder the implementation of socio-spatial 
intelligence in spatial ABMs. Social intelligence is correlated with 
adaptation tasks of non-spatial ABMs while agents used their spatial 
intelligence for optimizations in spatial ABMs.  

With respect to the implementation strategies, it is clear that ML is most 
often implemented as individual-interactive learning. Hence, learning at 
the level of a group is less common, as is isolated learning. Spatial models 
are just as interactive as non-spatial models.  Speaking of trends in the 
use of ML techniques to enhance agents’ decisions in ABMs: the most 
popular ML algorithm is Genetic algorithms (25% of the reviewed articles) 
followed by Neural networks (21%) and Bayesian networks (17%) in the 
sample of reviewed papers. 

Initially I thought that a slow progress in the implementation of ML in ABMs 
might be the lack of social data to train the algorithms. However, most 
models in our sample used supervised learning (56% of the spatial models 
and 43% in non-spatial), indicating that this does not seem to be a 
limitation. Not all data is empirical data, though. For example, Bayesian 
networks make a lot of use of survey data and expert knowledge. 
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Simulated data is commonly used for Neural networks, which typically rely 
on large datasets.  

Despite the fact that I found many successful implementations of ML in 
ABMs this does not mean that that they outscore rule-based 
implementations. Given the large number of ABM papers in the recent 
years, it seems that only a small group of ABM developers apply AI 
techniques to enhance agents’ decision-making. This relatively low number 
can be driven by a desire of every modeller to develop simulations with 
minimum complexity. ML learning is likely employed only when its benefits 
– which are vast – prevail. For example, ML learning is very promising to 
support adaptive agents’ behaviour in ABMs as it offers an effective and 
elegant way of modelling various agents’ tasks. Since ABMs are sometimes 
criticized for making ad-hoc assumptions about micro-rules of behaviour 
and interactions, ABMs’ micro-foundations may benefit from the 
knowledge base ML offers in this respect. 

For the future, it would be interesting to see if there is a more extensive 
use of ML algorithms in spatial ABMs for processing of input data or model 
calibration. It is likely that the inclusion of empirical data plays an 
important role in both pre-processing and calibration of models. In 
addition, for various tasks and domains, more than one ML algorithm 
seems to be applicable to support a specific agent’s decision. Via a 
systematic test of several ML algorithms in the same ABM, their impact on 
the model results and performance can be measured. Moreover, the 
implementation of ML within an ABM is often insufficiently documented 
(e.g., no specifications on whether an AI method uses supervised, 
unsupervised, and reward-based learning, etc.). Transparency in research 
would require model developers to be very explicit, not only in the 
description of an ABM itself, but also in respect to an embedded learning 
algorithm. Perhaps, the ODD protocol (Grimm et al. 2010) can better 
emphasize the architecture and the implementation of specific ML 
algorithms elements when discussing agents’ learning. 

Many new developments seem to occur in the way we collect behavioural 
data. Serious gaming and Virtual Reality experiments, are promising ways 
to collect ML datasets. However, it will take a while until we see this in 
published papers. An advantage of these types of data will be that they 
are spatially explicit (can be linked to behaviour at a certain location). 

Finally, in many cases, ABM toolkits do not provide libraries that contains 
built-in ML functions that can save developers efforts and time. Therefore, 
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developers should have excellent programming skills to code and 
implement ML algorithms in ABMs. However, developers of socio-economic 
and spatial ABMs are not always computer scientists while the 
implementation of ML algorithm often requires specific computer science 
knowledge to implement them correctly. Collaboration between the two 
communities is likely to mitigate the problem. 
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Chapter 3: Intelligent Judgements over 
Health Risks in a Spatial Agent-Based 
Model1 

 

                                           
1 This chapter is based on paper (paper 1) which has the same title. 
The paper is authored by Shaheen A. Abdulkareem (the main writer 
of the paper and author of this dissertation), Dr Ellen-Wien Augustijn 
based at the University of Twente, Dr Yaseen T. Mustafa based at the 
University of Zakho and Professor Tatiana Filatova based at the 
University of Twente. The paper has been published in International 
Journal of Health Geographics, Vol 17 No. 8, March 2018, 
https://doi.org/10.1186/s12942-018-0128-x. 
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3.1 Background 
Globally, millions of individuals are regularly exposed to deadly 

infectious diseases. For example, news of the Zika virus outbreak was one 
of the main news stories of the past two years. Perceiving disease risk 
motivates people to adapt their behaviour toward a safer and more 
protective lifestyle. Indeed, risk perception (RP) is an integral part of the 
decision-making process under uncertainty and can be understood as an 
individual's evaluation of risk in a particular situation. This evaluation 
includes individual assessments of how severe and controllable a particular 
situation is. The reliability and effectiveness of any risk evaluation by an 
individual is based on the risk information available (Pablo et al., 1996). 
Accordingly, the availability of risk information impacts the perception of a 
decision problem, the evaluation of available options, and of any risk-
coping decisions (Williams and Noyes, 2007). A number of factors related 
to the design of a risk message influence risk perception: the message, 
being the source of information (other people, and/or the environment), 
and the adaptive behaviour in response to that message. These factors 
need to be considered in order to design effective risk communication 
strategies and to positively influence health-related decisions (Sitkin and 
Weingart, 1995).  

Numerous examples of human behaviour influencing the spread of 
infectious diseases are available (Bauch et al., 2013). Namely, Manfredi 
and D’Onofrio (2013) refer to human behaviour as to the neglected layer 
of complexity in current epidemiological models (Manfredi and D’Onofrio, 
2013). In the latter, the response to risk factors is fixed, and no effect of 
previous exposure – or learning – is incorporated in most models. This 
implies that a disease model may underestimate the effectiveness of 
preventive measures. This can lead to a higher scope of contagion 
compared to a real situation, consequently leading to an overestimation of 
the prevalence of disease cases. Instead, employing learning techniques 
to capture dynamics in RP and corresponding protective behaviour can 
mimic the complex process of how human beings act upon encountering 
risk. 

Behavioural science has developed various theories to explain, measure, 
and assess RP. Protection motivation theory (PMT) is one of the dominant 
approaches in this domain, and has already been applied to the study of 
health-protective behaviour (Bassett and Ginis, 2011). Originally proposed 
by Rogers (Rogers, 1983), PMT has been actively applied in health 
research to study cognitive processes and predict health-related 
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behaviour. Behavioural aspects of decision-making under risk are active 
with ABMs (Filatova et al., 2011; Haer et al., 2017; van Duinen et al., 
2016) outside disease of research, and often without facilitating learning. 
In fact, ABMs are instrumental in exploring and implementing RP, such as 
the risk of disease diffusion. Disease ABMs have become significantly 
sophisticated by integrating rich GIS landscapes with detailed human 
activities (e.g. mobility and social networks) as well as multi-stage 
epidemiology models such as the SEIR (Susceptible – Exposed – Infected 
– Recovered) model. Moreover, ABMs are able to incorporate the social 
behaviour of individual agents as well as the dynamics of the spatial 
environment, which also plays an important role in the disease diffusion 
process. Various infectious diseases have been modelled using ABMs 
(Crooks and Hailegiorgis, 2014; Gotteland et al., 2014; Perez and 
Dragicevic, 2009). Wise (2014) provides an extensive review of disease 
and disaster ABMs (Wise, 2014). Although ABMs are technically suitable 
for incorporating agents with higher levels of intelligence, this is rarely 
implemented in disease models. For example, RP typically enters decision-
making models either as a variable affecting a decision-making process or 
as a step within a rule-based procedure (Asgari et al., 2016; Bieberstein, 
2014; Kim et al., 2008; Seidl et al., 2016). 

In rule–based implementations, behaviour is fixed, meaning that decision-
making functions and algorithms remain unchanged. While agents react to 
changes in their spatial and social environment, they neither adapt their 
rules in response nor intelligently learn from previous experiences. This is 
unrealistic, as human beings adjust their behaviour strongly when they 
perceive a serious risk, which can potentially lead to disease models 
overestimating risk. Intelligence helps agents assess risks and potentially 
adapt their behaviour – i.e. learn to reduce or avoid health risks – based 
on changes in RP. 

To test the impact of adaptive RP in human decision-making, we implement 
PMT in a spatial disease ABM. Namely, we extend the base disease model 
developed by Augustijn et al. (2016) to the behavioural aspects of 
decision-making in a risky situation using machine learning (ML) 
techniques (Augustijn et al., 2016). The spatial agent-based disease model 
– CABM – is applied to study the spread of cholera in Kumasi, Ghana. In 
this article, we use Bayesian Networks (BNs) as the learning method to 
design intelligent agents behaving according to PMT and making decisions 
on how to cope with cholera in a rich spatial environment. We 
systematically test the impact of intelligent behaviour on disease spread 
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through a series of simulation experiments: using CABM with zero-
intelligent agents, agents enhanced with ML for updating their RP, and 
agents enhanced with ML for RP and coping appraisal behaviour dynamics. 
BNs replace ad hoc rule-based schemes for uncertainty reasoning due to 
their capability for bi-directional inference combined with a strict 
probabilistic foundation (Heckerman, 1995). They are capable of sensing 
and reacting to a stochastic environment. In addition, BNs have the ability 
to constantly adjust to simulate the dynamics of agents’ beliefs. Therefore, 
BNs have been implemented in ABMs as the agents’ cognitive model for 
different purposes, including negotiation (Zhang et al., 2008), prediction 
(Kocabas and Dragicevic, 2013), and adaptation (Lei, 2005). 

3.2 Methods 
We start by briefly describing the base ABM and then focus closely 

on the describing the learning algorithms and their stepwise 
implementation to support agents’ intelligence. 

3.2.1 The base Cholera Model and Zero-Intelligence Agents 
(ZI) 

The CABM is used as a testbed for this research. The model was 
developed to test if runoff water from open dumpsites could have been the 
diffusion mechanism behind the 2005 cholera outbreak in Kumasi Ghana. 
This ABM simulates both a hyper-infectious and a low-infectious diffusion 
route of cholera. It is a spatial ABM with a rich representation of GIS data, 
including elevation, the location of residential areas, river hydrology, and 
the location of dumpsites in the study area (Figure 3-1). 
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Figure 3-1: Left hand: Study area with community boundaries. We used Thiessen polygons to 
define the boundaries of communities that were unknown or ill defined. Right hand: Spatial 

spread of cholera in a typical simulation 

The CABM contains three types of agents: households, individuals, and rain 
particles (Figure 3-2). The model contains three sub-models: a 
hydrological model, an activity model, and a disease model. The 
hydrological model moves rain particles over the area. Following heavy 
rainfall, runoff water can become infected with cholera bacteria when 
passing through dumpsites, thereby transporting cholera bacteria into the 
river. Via the activity model, household agents will determine the type of 
water they should consume (tap water, bottled water, or river water). 
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Figure 3-2: The UML diagram of CABM 
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Household agents use river water when tap water is unavailable. When a 
household agent uses river water, the model will choose the river location 
closest to agent’s home and determine if the water at this location is 
infected. Individuals can become infected by using water polluted with 
cholera and will subsequently shed hyper-infectious materials that will be 
dumped by the household to the nearest open refuse dumpsite. This 
increases the infection level of this dumpsite and the probability of rain 
particles becoming infected. Finally, the disease model will determine the 
progression of the disease in the individual and the moment of recovery. 
However, this CABM does not include cholera RP and behavioural change 
(the selection of another water source) of agents – i.e. the household 
agents have no intelligence. They follow the same behaviour and activities 
during the entire simulation period. The time step of the model is 1 hour, 
with a time horizon of 90 days. 

3.2.2 Intelligent Agents: How Do Intelligent Households Make 
Decisions? 

Protection motivation theory (PMT) 

PMT is used as the theoretical framework of this paper. PMT considers that, 
when facing a risky situation, a person goes through two steps: “threat 
appraisal” and “coping appraisal” (Figure 3-3). Threat appraisal in PMT is 
the stage at which perceptions of risk are formed. Here, a household agent 
assesses the probability and consequences of a risky event occurring – i.e. 
perceived probability and perceived severity, which in fact constitutes the 
agents RP. Therefore, in the proceeding sections of this paper we refer to 
threat appraisal as the stage at which RP is developed. The perception of 
severity enables households to judge how seriously the consequences 
could be, should they face a threat. Perceived probability measures how 
susceptible a person is to a given threat. The purpose of this stage is to 
detect whether a risk is at an acceptable level or not. 
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Figure 3-3: Cognitive Process of Protection Motivation Theory 

When RP is sufficiently high, household agents consider a number of 
protective behaviours by passing through the coping appraisal stage. The 
coping stage consists of two main parts: adaptation–efficacy and self–
efficacy. Adaptation-efficacy measures the effectiveness of protective 
behaviour against a harmful situation – i.e. the beliefs of a person that the 
recommended behaviour will protect them. Instead, self-efficacy measures 
the ability of a person to perform the recommended behaviour. In addition, 
the person must evaluate the cost of coping with the threat. Hence, at this 
stage, households consider the psychological, physical, and economic 
consequences of adapting to a particular threat. 

CABM – Intelligent Agents 

In the intelligent version, the CABM is modified to simulate the RP (threat 
appraisal) and coping appraisal (CA) processes of household agents – i.e. 
including the learning technique to create intelligent agents. For this 
purpose, one extra agent (media) is added to the model (Figure 3-2). 

The state variable of the Household agent is the type of water they 
consume, and the infection level of this water. The household agent is 
responsible for the collection of water, and all household members will use 
this water for their daily consumption. Learning takes place at the level of 
the household, as it is directly related to the water source that the 
household selects. To facilitate this learning, we added memory and 
education level to the attributes of the household agent. 
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The state variable of the Individual agent is their health status. 
Individual agents can be susceptible to, infected with, or recovered from 
cholera. 

Some studies have indicated that medical alerts do not have the impact of 
encouraging people to physically search for medical advice during 
epidemics (Frias-Martinez et al., 2012). However, information received 
from different media channels can prevent an epidemic from spreading 
(Funk et al., 2009). Therefore, Media is a new agent that has been 
introduced to broadcast information about the epidemic in this model. The 
state variable of the media agent is its activation level, which determines 
if the media agent has started to broadcast about the epidemic. 

The state variable of the Rain particles agent is the infection level. While 
flowing over the terrain, rain particles can acquire the infection (from 
infected dumpsites) and carry it to the nearest river or tributary.  

The processes included in the original model were flow of rain particles, 
household fetching water, and households dumping their waste. These 
processes remain unchanged in the version of the model used in the 
present research. However, in this version of the cholera model, we added 
the following processes: 

1- Activation of the media agent; 
2- Clearance of the dumpsites; 
3- Calculations of the visual pollution (VP) level; 
4- Risk perception 
5- Coping appraisal (CA) 

Activation of the media agent: 

The media agent is deactivated in the beginning of the simulation. It is 
activated when the number of days exceeds a threshold value (22 days). 
After activation, the media agent will broadcast news about the cholera 
epidemic once a day, which all household agents in the simulation will 
receive. Once the broadcasting has begun, it will continue throughout the 
remaining part of the simulation. Media information is used in the risk 
assessment. 

Clearance of the dumpsites: 

In the original model, dumpsites could be infected with cholera, and when 
the decay function was activated, this infection would gradually disappear 
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over time. We also introduce the fact that garbage will be removed from 
dumpsites. This has two separate effects: it will influence the infection and 
will also have an impact on the visual pollution level.  

Clearance of dumpsites will occur randomly. In Kumasi, 85% of household 
waste is collected by the municipality from the dumpsites twice per week 
(Asase et al., 2009). Therefore, in this model, a random 85% of simulated 
dumpsites are discharged twice per week. 

Calculation of the Visual Pollution level (VP):  

Household agents fetch water from the nearest water collection point on 
the river, either because they do not have access to tap water, or because 
their tap water has stopped working due to heavy rain. Open refuse 
dumpsites are located at varying distances along the river. It is common 
in Kumasi to observe waste dumps located on riverbanks or in a river’s 
path (Danquah et al., 2011). In the simulation, risk will be assessed based 
on a combination of factors, including the visual pollution (VP) level of the 
water collection points. The visual pollution level is calculated based on the 
combined link order and the number of open refuse dumpsites located 
within a specific distance from the river. VP is calculated based on the 
following equation: 

 
f(VP) =  �

x𝑖𝑖  g𝑖𝑖
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where 𝐍𝐍 is the number of dumpsites around the water collection points; 𝐱𝐱 
is the number of households who use the dumpsite; 𝐠𝐠 is the amount of 
garbage produced by each household; 𝒅𝒅 is the distance from the dumpsites 
to the water collection point; and 𝐢𝐢 represents all dumpsites in 𝐍𝐍 (either 
cleared or not). Although the number of dumpsites is fixed throughout the 
simulation, the amount of garbage remains static, and the number of 
households will also remain static over a simulation run, while the visual 
pollution level is dynamic. This dynamic nature is due to the random 
selection of dumpsites that will be cleared over a simulation run. 

Learning – Implementation of Agent’s Cognitive Model 

The PMT drives the agents’ cognitive model. The information sources and 
the two stages of PMT are illustrated in Figure 3-4. In this model, we used 
two BNs – BN1 to model the RP, and BN2 to model the CA. 
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Implementation of Risk perception (RP): 

At each time step, the household agent will perceive the risk of cholera 
infection using the BNs. The following factors are included in the RP: the 
number of infected individuals in the household, visual pollution level at 
the water collection point, communication with other agents, media 
attention, and the memory of the household agent. Together, these factors 
and the agents’ social interactions help agents to assess risk and thus 
select what decision they could make among several options. 

 
Figure 3-4: Implementation of PMT: a. Information sources; b. BN1 (RP); BN2 (CA) 

Communication with other agents (social networks) 

Household agents are assumed to have a total awareness of the cholera 
cases occurring within their neighbours’ subset. A neighbour is defined as 
a household agent, sharing the same water collection point and living in 
the same community. Interaction with neighbours enables agents to 
perceive the infection level of the water collection point they use. In 
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addition, household contacts help agents to gain information on adaptive 
decisions their neighbours took and how effective these decisions were. 

No data is available on how many daily contacts Kumasi residents have. 
However, in a recent study by Melegaro et al. (2017), they conducted a 
survey of daily contacts in Manicaland, Zimbabwe and reported 10.8 
contacts per person/day, including contact with household members 
(Melegaro et al., 2017). If we consider this rate for our study and exclude 
the number of household members (average of 3.9), then approximately 
seven contacts with neighbours per day should be applied. These seven 
neighbours are chosen randomly every day from the agent’s community. 

Memory 

Agents use their memory to record the RP they experienced during the 
previous day (the last day they fetched water) and how preventable their 
last decision was. The feedback of the last decision made is measured by 
“positive experience” if no illness was observed in the household, otherwise 
it is a “negative experience”. 

BN1: Risk Perception 

BN1 was designed to represent the RP of PMT in such a way that it answers 
the question “is there risk?” In the case of a risk being present, agents will 
proceed to the CA. 

Agents with a low- or medium- income level that do not have access to 
safe water will fetch water from the river. Therefore, they must evaluate 
the risk of becoming ill with cholera using BN1. In our case, BN1 is formed 
by the cause-and-effect concept. To design BN1, we derive five nodes from 
the information sources to evaluate RP (Figure 3-4.b). These nodes 
include: memory (Me), visual pollution (VP), household health status (HH), 
media (M) and communication with neighbour households (CNH). Media 
and communication with neighbour households are combined into 
“Epidemic Evidence” (EE). EE is a binary measure that indicates to the 
agents if there are cholera cases outside their own households. The 
evaluation of infected cases differs by agent due to variations in household 
income and size, in the health status of different households, in their 
locations within the city that define VP and their selection of neighbours 
with whom they communicate, and in the experiences stored in their 
individual memories. 
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The reasoning and uncertainty of RP is governed by rules that can be 
formalized using formula (3-2). For example, we include the states {yes, 
no} for memory (Me), {yes, no} for threat (T), then the formula of 
connecting these two variables accordingly was designed as: 

 𝐏𝐏�𝑻𝑻{𝒚𝒚𝒚𝒚𝒚𝒚,𝒏𝒏𝒏𝒏}�𝑴𝑴𝑴𝑴{𝒚𝒚𝒚𝒚𝒚𝒚,𝒏𝒏𝒏𝒏} � =  
𝐏𝐏� 𝑴𝑴𝑴𝑴{𝒚𝒚𝒚𝒚𝒚𝒚,𝒏𝒏𝒏𝒏}�𝑻𝑻{𝒚𝒚𝒚𝒚𝒚𝒚,𝒏𝒏𝒏𝒏}� 𝐏𝐏�𝑻𝑻{𝒚𝒚𝒚𝒚𝒚𝒚,𝒏𝒏𝒏𝒏}�

𝐏𝐏𝑴𝑴𝑴𝑴{𝒚𝒚𝒚𝒚𝒚𝒚,𝒏𝒏𝒏𝒏}
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in such a way that each state of Threat is examined with each state of 
memory. 

This was also applicable for computing the probability (P) of threat based 
on visual pollution (VP) and household health status (HH), as both 
variables have the states {high, low} and {yes, no}, respectively.  

We evaluated the epidemic evidence (EE) that agents record via their 
communication with neighbour households (CNH) and the media (M) 
agent.  

According to Bayesian rules, the prior probabilities of the nodes should be 
specified in order to gain the posterior probabilities. These prior 
probabilities represent the integral part of human reasoning regarding 
certainty. The prior probabilities will be updated/changed for each agent 
on the basis of information being passed by each agent to BNs. In BNs, 
this is called evidence.  

The final formula for the threat node (T) that derives the conditional 
probability table (CPT) will depend on memory (Me), visual pollution (VP), 
the health status of household (HH), and the severity evidence of epidemic 
(EE): 

Intelligent agents in the CABM learn to predict health risks with the help 
of BN1 (Eq. 3-2). In BN1, the memory node feeds the network with 
previous information on agents’ own RP. Agents learn to revise their beliefs 
by absorbing other factors from their environment that are updated during 
the simulation, e.g. currently observed visual pollution, number of illnesses 
among neighbours, etc. (Eqs. 3-2 and 3-3). Agents conclude the causal 
relationship between nodes in the BN1 by inference. The output of BN1 
would be the probability of high or low risk perception. We consider the 
agent to be at risk if the probability of RP is greater than or equal to 0.5. 

  

 𝑷𝑷(𝑻𝑻|𝑴𝑴𝑴𝑴,𝑽𝑽𝑽𝑽,𝑯𝑯𝑯𝑯,𝑬𝑬𝑬𝑬) =  
𝑷𝑷(𝑴𝑴𝑴𝑴,𝑽𝑽𝑽𝑽,𝑯𝑯𝑯𝑯,𝑬𝑬𝑬𝑬|𝑻𝑻)𝑷𝑷(𝑻𝑻)

𝑷𝑷(𝑴𝑴𝑴𝑴,𝑽𝑽𝑽𝑽,𝑯𝑯𝑯𝑯,𝑬𝑬𝑬𝑬)
 3-3 
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Coping Appraisal (CA): 

BN2 was designed to represent the coping appraisal of PMT in such a way 
that it answers the question “what to do?” In the case of perceiving risk, 
an agent may either: use the polluted water anyway, walk (find another 
location to fetch water), boil the fetched water (to increase safety), or 
purchase bottled water. To select one of these four decisions, a number of 
variables (nodes) affecting this process were identified and used. These 
variables include: the income level of the agents (medium or low); their 
education level (educated or uneducated); and the feedback of their 
previous and their neighbours’ previous action (positive or negative). 
Agents cannot learn from their own experience unless they have a 
feedback on their previous actions (Mitchell, 1997). Together, all of these 
dynamics guide the decision-making process. 

BN2: coping appraisal 

BN2 represents the structure of the CA (Figure 3-4.c). The probability of 
which decision might be chosen by the agent is computed via BN2. The 
perceived adaptation efficacy will differ per decision. Walking to another 
location to collect water has a lower efficacy compared to boiling the water, 
and this has a lower efficacy compared to buying bottled water. Also, 
perceived self-efficacy (i.e. perceived effectiveness enabling an agent to 
perform the preventive measure) is varied for each decision. In addition, 
the perceived costs of the options differ, as river water is free of cost, 
boiling water has a price tag, and so does the purchase of bottled water. 
Here, the agents’ income level determines which decision is more likely to 
be taken. 

The formula of BN2 for computing the CPT of a decision can be expressed 
as: 

 𝑷𝑷(𝑫𝑫|𝑰𝑰,𝑬𝑬,𝑶𝑶𝑶𝑶,𝑵𝑵𝑵𝑵) =  
𝑷𝑷(𝑰𝑰,𝑬𝑬,𝑶𝑶𝑶𝑶,𝑵𝑵𝑵𝑵|𝑫𝑫)𝑷𝑷(𝑫𝑫)

𝑷𝑷 (𝑰𝑰,𝑬𝑬,𝑶𝑶𝑶𝑶,𝑵𝑵𝑵𝑵)
 3-4 

where D stands for decision, which can take the form (state) of ‘use water 
from the same fetching point’ (D1), ‘walk to another fetching point’ (D2), 
‘boil water’ (D3), and ‘buy water’ (D4); I denotes an income level, what 
can be middle or low; E  is the education level (educated or not); OE is an 
agent’s own experience with cholera, which can be either positive (no 
household member is ill) or negative (at least one household member is 
ill); and NE is the neighbour’s experience with cholera (anyone ill 
(negative) or not (positive)). 
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3.2.3 Model Parametrization 
The probability values of both networks’ variables are derived from the 
existing literature and census data for Kumasi. The census data of Kumasi, 
Ghana includes income distribution. The distribution of the three levels is 
19% (low), 52% (medium), and 29% (high). However, we exclude high 
level incomes since they will not use river water. Therefore, by scaling both 
medium and low-income levels, we get 73% and 27%, respectively (which 
represents 71% of the number of simulated households). Additionally, 
14% of low and middle-income level households do not have access to tap 
water. Table 3-1 presents the additional parameters of this cholera model. 
Naturally, for real policy application, the quality of data regarding initial 
weights in BN1 (Table 3-2) and the frequency and the extent of information 
delivery, either via media or through the word-of-mouth across social 
networks, is essential. We run a sensitivity analysis of final outcomes on 
the initial weights of both BNs. The results indicate that the model is rather 
robust, with minimal impact on the final outcomes. 

Table 3-1: CABM new Parameters 
New 
Parameters 

Value Description  

Literacy rate 74.1 % (Ghana Statistical Service 2012) 
Media  Activation day 22 During the 2005 outbreak, newspapers and 

TV channels published news about the 
cholera in the region after about three 
weeks of epidemic started (visit: Ghana 
News Archive). 

Waste 
collection 

85% of dumpsites 85% of waste is collected by Kumasi 
municipality (Asase et al., 2009). The rest 
remain uncollected for a week or more. 

Amount of 
garbage  

2.925 
Kg/household/day 

derived from literature (Miezah et al., 2015) 

Number of 
contacts with 
neighbours 

7 neighbours Derived from literature (Melegaro et al., 
2017) 
 

3.3 Simulation Results 
3.3.1 Experiment Setup 

To answer the research questions, we have designed three 
experiments. We systematically vary the cognitive abilities of agents by 
gradually adding intelligence by means of the two BNs (Figure 3-5). 

https://www.modernghana.com/news/88253/1/cholera-outbreak-in-accra-.html
https://www.modernghana.com/news/88253/1/cholera-outbreak-in-accra-.html
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Figure 3-5: Implementation of PMT in CABM where Exp1, Exp2 and Exp3 refers to experiments 1, 

2, and 3 respectively 

In particular, the first experiment (Exp1) presents a benchmark case to 
study disease diffusion patterns in a spatial landscape with a population of 
zero-intelligence agents. Agents are heterogeneous in income, education, 
and household size but have no cognitive abilities to either perceive risk or 
act upon it. In the second experiment (Exp2), agents are enhanced with 
the BN that represents the first stage of decision-making in a risky context: 
the risk appraisal (BN1). As agents learn and interact with each other, the 
probabilities of specific factors influencing risk appraisal change. The 
second stage of decision-making in Exp2 is modelled in a simplistic manner 
by adopting a rule-based algorithm, which deterministically guides an 
agent to a specific action if its RP is high. Finally, the third experiment 
(Exp3) adopts intelligent decision making at both stages of decision 
making under risk: the risk appraisal (BN1) and the coping appraisal (BN2) 
both supported by BNs learning algorithms. Thus, if agents begin to 
perceive risk as an outcome of BN1, they employ BN2 to decide how to act 
upon it. As agents learn from their own experience and others’ through 
interaction, the probabilities of specific actions to be chosen through BN2 
evolve. All other settings among the three experiments remain static 
(Table 3-2). Each of the experiments is run 100 times to assure the 
robustness of the results. 

Table 3-2: Model settings varied across the three experiments. 
Model settings Exp1 Exp2 Exp3 
Threat appraisal  None BN1 BN1 
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- Initial weights2:  
Me, VP, HH, M, CNH 

- Weights during a 
simulation 

- Outcome 

 
n.a. 
n.a. 
n.a. 

 
(0.1; 0.2; 0.01; 
0.01; 0.2) 
Change as agents 
learn 
RP, (0;1) 

 
(0.1; 0.2; 0.01; 
0.01; 0.2) 
Change as agents 
learn 
RP, (0;1) 

Coping appraisal 
- Initial weights:  

I, E, OE, NE 
- Weights during a 

simulation 
- Outcome  

None 
 
n.a. 
n.a. 
D1 

Deterministic 
Rule based, 
Error! Reference 
source not 
found. 
 
Static 
D1-D4: fixed 
population share 

BN2 
(0.52; 0.74; 0,9; 
0,6) 
 
Change as agents 
learn 
D1-D4: adaptive, 
based on previous 
experience 

We report the results per experiment in terms of several macro metrics of 
interest: epidemic curve, RP curve, and decision type curve. An epidemic 
curve is a graphical description of the number of illness cases by date 
during an outbreak. It illustrates the temporal trend and periods of disease 
incubation. A RP curve is a graphical description of a number of agents 
that perceive disease threat, i.e. have their RP equal to 1 in a specific time 
step. A decision types curve counts the number of agents following a 
particular decision when deciding on how to cope with cholera risk. In 
addition, we show several maps illustrating the spatial patterns of RP 
(Decisions: D1-D4). 

3.3.2 Disease Diffusion in a Population of ZI Agents 
The temporal patterns of a cholera epidemic given a population of 

zero-intelligent (ZI) agents neither perceiving risk nor pursuing any 
protective measures is presented in Figure 3-6.a. It is evident that, even 
if a household member becomes ill, media broadcasts cholera being 
present, and some visual pollution is observed at a water fetching point, a 
ZI agent will still continue to collect water for its daily needs at the same 

                                           
2 To elicit the factors that may play a role in the context of a water-spread disease in a 
developing country as well as their relative importance we ran a survey among students. 
We approached the participants of the Massive Open Online Course (MOOC) on 
GeoHealth run at ITC (authors host institute) in Sep, 2016. Majority of the participants of 
this course are from developing countries. Ideally, one would survey real citizens in the 
case-study area. This was not possible due to the lack of funds and access to the 
potential respondents.   
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water fetching point and will use it without precautionary measures. The 
number of infected agents reaches a maximum between day 28 and day 
40 before gradually decreasing towards the end of the epidemic. In total, 
81% of the simulation population (27,000 out of 34,000 individuals) is 
infected with cholera in Exp1. While the ZI CABM succeeds in reproducing 
the qualitative pattern of this cholera epidemic, it largely overestimates 
the number of infected individuals. A simulation with non-adaptive ZI 
agents misrepresents reality, since even middle income and educated 
people continue to consume potentially contaminated water: 28.6, 64.7, 
and 6.5% in the low, middle, and high-income categories, respectively. 

When agents have no cognitive abilities, and are not reactive, then the 
probability of becoming infected during a rainy period depends on the 
concentration of infected agents, which may dump infected waste on a 
dumpsite, leading to flow of cholera-infected rainwater into the river. 

 
a. Epidemic Curve of Exp1 (Zero-

Intelligent Population) 

 
b. Epidemic Curve of Exp2 (blue) and 

Exp3 (green) 
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c. Sensitivity analysis of the risk 

perception dynamics in a population of 
BN1 agents (Exp2) depending on the 
intensity of social interactions. 

 
d. Sensitivity analysis of the risk 

perception dynamics in a population of 
BN1 agents (Exp2) depending on the 
timing of the media activation.  

 
e. Distribution of preventive actions over 

time in the population with 
deterministic CA decision making 
(Exp2) 

 
f. Distribution of preventive actions over 

time in the population with adaptive 
BN2 CA decision making (Exp3) 

Figure 3-6: Output measures of the experiments 

3.3.3 Intelligent Risk Perception 
From a psychological perspective, to be able to act upon risk, 

people – i.e. agents in the CABM – must first be aware of a risk. Experiment 
2 presents the case when intelligence is added in the threat appraisal 
(BN1) stage. When being aware of risk while fetching water, agents in Exp2 
may change their behaviour using a deterministic rule-based algorithm 
(Table 3-3). Thus, actions that agents select in this CA stage are based on 
current information, ignoring any previous experiences. Enhancing agents 
with cognitive abilities for threat appraisal (BN1) reduces the total number 
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of infected agents by 90%. In Exp2, the total number of cholera-infected 
agents decreases (see the blue epidemic curve of Exp2 in Figure 3-6.b). 
In other words, information about a disease spreads through different 
channels – media, own observations, the experience of others, while a 
simple set of precautionary actions give rise to a steadier epidemic curve. 
Following the epidemic peak, agents are risk-aware and take a variety of 
precautionary actions based on their income class and education, ill 
individuals in their own and/or their neighbours’ households; thus, fewer 
infections occur at the later stages of epidemics. Therefore, the BN1 
epidemic curve (in Figure 3-6.b) has a lower peak and a steeper, vanishing 
tail compared to the ZI epidemic curve (Figure 3-6.a). The first heavy 
rainfall boosts the spread of cholera and can be detected in the shape of 
this curve at approximately day 23 in Exp2. Then, the effect of new disease 
exposure on the number of infected is counterbalanced by the activated 
risk awareness within the BN1 population. New exposure occurs when 
agents either lack infection experience in their social network or choose to 
ignore risks at the coping stage. The CABM enhanced with BN1 for the 
threat appraisal may be used to explore the spatial and temporal patterns 
of disease spread depending on varying risk communication strategies. To 
demonstrate this notion, we run a sensitivity analysis on the main 
communication channels. 

Table 3-3: Rule - Based algorithm (CA) for Experiment 2 where agents select a static decision to 
take based on their characteristics 
Household Characteristics 

Decision Income Educated Infection in 
household 

Infection in neighbour 
households 

Low  No No No D1 (same) 

Low No No Yes D1 
Low No Yes No D2 (walk) 
Low No Yes Yes D2 
Low Yes No No D1 
Low Yes No Yes D2 
Low Yes Yes No D2 
Low Yes Yes Yes D2 
Middle No No No D1 
Middle No No Yes D2 
Middle No Yes No D4 (buy) 
Middle  No Yes Yes D4 
Middle Yes No No D1 
Middle Yes No Yes D3 (boil) 
Middle Yes Yes No D3 
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Middle Yes Yes Yes D4 

 
Sensitivity analysis on the number of social interactions  

A diffusion of information about disease risk and the effectiveness of risk-
coping measures occur through social interactions. Their intensity impacts 
the spread of awareness about cholera risk in the study area as well as the 
number of infected individuals. Following Melegaro et al. (2017), the base 
scenario of Exp2 (and Exp3) assumes that when fetching water, agents 
exchange information daily with seven agents from their social network. 
These social links are set up randomly among households in the same 
community using the same water collection point. In addition, we run 
sensitivity analysis considering 3, 15, and 25 unique social interactions 
with individuals outside their own household per day. Figure 3-6.c and 
Table 3-3 illustrate the sensitivity of the number of individuals perceiving 
cholera risk and the resulting number of infections under various 
assumptions regarding social interaction. 

All curves in Figure 3-6.c demonstrate a steep increase in risk perception 
around day 23 of the simulations. This point indicates the first heavy 
rainfall, when the population of agents depending on river water increases, 
and the disease diffusion via the dumpsites begins. During this first period, 
all scenarios exhibit the same pattern. However, after day 40, a clear 
difference is observed between the four scenarios. As expected, the higher 
the number of daily contacts (with which intelligent BN1-agents exchange 
information), the higher the number of households who perceived risk. 
Higher levels of cholera risk awareness trigger agents to make alternative 
decisions regarding water use (D2-D4 instead of D1), following the 
deterministic rule-based algorithm, and thus leads to a reduction in the 
number of infected individuals (Table 3-4). 

Table 3-4: Sensitivity of the extent of an epidemic on the intensity of social interactions and 
information exchange among intelligent agents (Exp2) 

No. of Contacts RP Peak Day Epidemic Peak Day 

Percentage of Total 

Population Infected 

from the base 

Three 83 35 103 % 

Seven (base) 40 36 100 % 

Fifteen 71 35 75 % 

Twenty-Five 66 36 74 % 
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With fewer social interactions, BN1-agents are less likely to be aware of 
any cholera cases in their neighbourhood. Therefore, they will use the 
usual water fetching point, causing more individuals to be infected with 
cholera. As the speed of information exchange increases, agents learn from 
the experience of a larger group of individuals with respect to safety of 
alternative water fetching points and potential preventive behaviours. 
Since communication with neighbours is not the sole information source 
influencing the formation of RP in intelligent BN1-agents, the relation 
between the number of daily contacts and the resulting number of infected 
is non-linear: when interaction intensity changes from 7 to 15 people, the 
number of disease cases decreases by only 25% (Table 3-4). 

Sensitivity analysis with respect to the timing of media broadcasting  

During the 2005 cholera epidemic in Kumasi, the media began to widely 
broadcast epidemic information 21 days after the first infected case. We 
test the sensitivity of risk perception dynamics and the number of infected 
in response to the different media broadcasting timings. Thus, we ran the 
CABM with different media activation dates – 10, 30, and 40 days post-
infection – in addition to day 22 (the base case of Exp2). 

Figure 3-6.d illustrates that, generally, when the media reports on the 
cholera outbreak, the number of BN1-agents perceiving risk increases 
abruptly. This is true for the media activation scenarios on day 22, 30, and 
40; however, this does not hold true for early activation (at day 10). The 
BN learning algorithm considers several factors at the threat appraisal 
stage. Thus, although BN1-agents have been alerted about cholera by the 
media on day 10, they did not yet observe any cholera cases in their 
household or neighbourhood. In addition, depending on the rainfall 
intensity, they may still have access to safe tap water that will only stop 
working following heavy rainfall on day 23. This combination of 
observations within their household and social network triggers BN1-
agents to discard media messages and conclude BN1 simulations with low 
RP. 

Table 3-5: Sensitivity of the extent of an epidemic on the timing of Media broadcasting in the 
population of Intelligent agents (Exp2) 
Day of Media 
Activation 

Percentage of 
Total Population 
Perceived Risk 

Epidemic Peak 
Day 

Percentage of 
Total Population 
Infected from 
the base 

Tenth 83.7 % 36 89.4 % 
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Twenty Second 
(base) 

100 % 36 100 % 

Thirtieth  87.8 % 35 106.1 % 
Fortieth 75.2 % 35 108.3 % 

The timing of media messages does not affect the peak day of an epidemic, 
but impacts the resulting number of infected individuals (Table 3-5). It 
seems that early media attention (day 10) increases public awareness, 
resulting in individuals taking precautionary measures at a later stage, 
when other factors contributing to thread appraisal become evident (the 
yellow RP curve above others at the second half of the epidemics in Figure 
3-6.d). Yet, the relationship is non-linear: the later the announcement, the 
smaller the marginal impact. Namely, postponing the broadcast for 10 
additional days (e.g. day 22 vs. day 30) results in 6% more infected 
individuals, while another 10 days of delay results in only 2% more infected 
(day 30 vs. day 40). It is evident that announcing the epidemic 10 days 
earlier than the base scenario (day 22) reduces infections by over 10%. 

3.3.4 Disease Coping Strategies: Rule-Base vs. Intelligent 
Risk Perception 
According to PMT, when individuals are aware of risks, they choose 

actions based on their response efficacy and self-efficacy (positive 
influence) and the response costs (negative influence). The population of 
agents in Exp2 is intelligent in their risk appraisal, but pursue simple, rule-
based decision- making (Table 3-3) at the CA stage. 

Following the heavy rainfall (between days 23-50), BN1 agents begin to 
explore alternative options to drawing water from their normal nearest 
fetching point (D1). The latter is almost equally chosen by low and middle-
income households throughout the entire simulation (Figure 3-6.e.). As 
cholera risk awareness spreads, the proportion of agents deciding to walk 
to an alternative fetching point (D2, only low-income households) and to 
boil water (D3, only middle-income households) increases. Some middle-
income households also decide to purchase water (D4). However, since all 
three alternatives – walk, boil, and purchase – infer additional costs, 
households shift back to the default D1 option as soon as heavy rainfall 
ceases, and the number of disease cases decreases. As Figure 3-6.e. 
illustrates, a difference also exists in the distribution of preventive actions 
across income classes. However, the action choice remains deterministic: 
it depends only on the characteristics of agents at initialization such as 
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income and education. There is no feedback between the effectiveness of 
previous actions taken by BN1 households or their peers and current 
agents’ choices regarding water use. Thus, BN1 agents in Exp2 do not learn 
at the CA stage. 

Experiment 3 is run in order explore how the learning process on 
precautionary measures is reinforced based on previous experiences. 
Here, agents employ two BN learning algorithms: BN1 for the threat 
appraisal and BN2 for the CA. When facing cholera risk, agents in Exp3 
learn to perceive risk and subsequently learn to protect themselves by 
making adaptive decisions based on their own previous experience and 
their neighbours’ experience. The epidemic curves of Exp2 and Exp3 fall 
within a similar range (Figure 3-6.b), with one important difference; 
namely, BN2-agents seem to be over-confident about their disease 
prevention choices at the epidemic’s onset (approx. day 23), but quickly 
learn to alter strategies immediately after the peak (Figure 3-6.f). 

Cholera begins to spread from the first few days of the simulation in both 
Exp2 and Exp3. The total number of infected agents during the cholera 
epidemic is approximately the same: on average, 14.7% of the 
simulation’s population (5000 individuals) in both Exp2 and Exp3. 
However, a qualitative difference exists in the type and dynamics of 
preventive actions. Figure 3-6.f demonstrates that, over time, agents 
driven by growing RP learn to boil water based on the previous experience, 
which leads to a steady increase of D3 strategy use in the BN2 agent 
population. Among middle and low-income household agents enhanced 
with BN2, no agents purchase water. Instead, they switch to boiling water 
(see green D3 zone in Figure 3-6.f). Simultaneously, the number of 
middle-income households taking water from their usual, now suspicious-
looking fetching point is nearly reduced to zero over time (see the light 
blue zone in Figure 3-6.f). BN2-agents also learn that walking to another 
water collection point still may result in a negative outcome. 

The distribution of coping strategies between Exp2 and Exp3 also varies in 
space and by income class (Figure 3-7). When low-income BN2-agents 
learn to compare efficacy and costs based on past experience in Exp3, they 
realize that walking to another fetching point may not be worth the effort. 
Instead, in Exp2, low-income agents basing their CA decision on the 
deterministic rule-based process continue to walk alternate fetching points 
(compare left-hand side maps in Figure 3-7). Non-adaptive middle-income 
households in Exp2 continue to use a combination of the three strategies 
provided at initialization. Yet, intelligent BN2 individuals in Exp3 converge 
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to using boiled water in the majority of the cases (right-hand side maps of 
Figure 3-7), as it proved to be most rewarding alternative to D1. 

 
Figure 3-7: Distribution of preventive actions across space and income groups in Exp2 and Exp3 
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3.4 Discussion and Conclusions 
Risk awareness and risk prevention behaviour can have a major 

impact on the number of disease cases during an epidemic. Models 
ignoring these elements of human behaviour may overestimate the 
expected number of disease cases. While a number of comprehensive 
disease ABMs have been developed, few explore the implications of 
these behavioural aspects and learning. This article introduces an 
innovative contribution by integrating psychological aspects of 
decision-making under risk into a spatial ABM using BNs learning 
algorithms.  

We use an empirical spatial ABM of cholera diffusion (Augustijn et al., 
2016) as a baseline model to test the impact of a multi-stage intelligent 
decision-making in a risk context. Two sets of BN learning algorithms 
are designed and coded using R, and are further integrated with the 
NetLogo-based CABM. Protection motivation theory from psychology 
lays the foundation for designing BN learning in two stages: one for RP 
appraisal and another for coping appraisal. We compare the results of 
the spatial agent-based disease model without intelligence (zero-
intelligence), with an implementation of one-stage BN1 (only RP), and 
a two-stage BN2 (risk and coping behaviour) intelligence. Learning 
allows a population of heterogeneous and spatially distributed agents 
to perceive risk and acquire and share knowledge via a social network 
about the effectiveness of various disease protection actions. This 
spatial ABM enhanced with BNs allows us to explore the emergence of 
disease diffusion patterns tracing both geographic, educational, and 
income inequalities. The implementation strategy, in which we apply 
both BN1 for risk awareness and BN2 for risk appraisal, seems to 
outperform an implementation with a single BN. As agents learn about 
the effectiveness of preventive measures in addition to learning to 
recognize risks, the society as a whole makes healthier and more cost-
effective choices. The sensitivity analysis on the behavioural 
assumptions indicates that the model is rather robust, with minimal 
impact on the final outcomes. 

While this research presents a step forward in ABMs of disease diffusion 
by integrating psychology-based intelligence the context of risk, it can 
be further developed in a number of directions. Firstly, in addition to 
spatial, hydrological, and socio-economic data, this modelling effort 
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could benefit from disaggregated behavioural data. Currently, our 
BN1–RP model is updated based on information obtained via personal 
communication, media, and visual observations of the environment. 
While we use data from the survey among students from developing 
countries to parameterize initial weights for RP factors, this may not 
be fully representative of the population in Kumasi. Disaggregated data 
on socio-demographic and behavioural characteristics of a target 
population is in demand to gain better insights on the interplay of 
factors influencing human behaviour during a disease outbreak. This is 
especially true for visual perception of the environment, as a current 
lack of information exists on how this factor influences total RP. In 
addition, a survey to collect data on how media affects people would 
improve the simulation. Model runs with richer datasets is within the 
scope of our future work. 

Secondly, individual RP and coping appraisal can be implemented in 
disease ABMs using different AI algorithms. Besides BNs, genetic 
algorithms or neural networks might also prove useful. Further 
research is needed to explore the impact of various AI algorithms 
within the same base ABM. In addition, a systematic study on the 
performance of one AI algorithm across multiple ABMs for different 
types of risks in various geographic environments will provide a 
comprehensive understanding of the implications of introducing 
intelligence to agent-based modelling will have. 

The implementation of risk and coping appraisals in disease ABMs will 
ultimately aid in supporting decisions regarding the timing of media 
attention to societal risks, and on the information that must be 
communicated to the public in order to prevent as many disease cases 
as possible.  
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Chapter 4: Spatial Intelligence in a Risky 

Context: Comparing Artificial and Real 
Actors3 

 

                                           
3 This chapter is based on Geocomputation 2017 conference paper 
that has the title “Integrating Spatial Intelligence for Risk Perception 
in an Agent-Based Disease Model”. The conference paper is authored 
by Shaheen A. Abdulkareem (the main writer of the paper and author 
of this dissertation), Dr Ellen-Wien Augustijn based at the University 
of Twente, Dr Yaseen T. Mustafa based at the University of Zakho and 
Professor Tatiana Filatova based at the University of Twente. The 
2017 International Conference on GeoComputation held in 4th to 7th 
of September, 2017 in Leeds, United Kingdom. 
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4.1 Background 
Spatial intelligence is one of the elements of the multiple intelligences 

theory developed by Gardner  (2006). In ABMs, spatial intelligence is often 
applied for navigation (human or animal) or adaptation to land cover 
change (Kocabas and Dragicevic 2013). Few examples exist in which 
spatial intelligence is associated with spatial risk perception (RP) (Rufat 
and Samuel 2015). Thus, how does the spatial environment, and especially 
changes in the environment, influence individual risk perception? 

RP is often the result of a combination of signals that a person receives. It 
may result from information received via (social) media, direct 
communication or their own observations made in the spatial environment 
(change detection). The judgement of all of these signals may differ per 
individual based on four factors, including the type of risk, the context in 
which the risk is perceived, the personality of the person and the social 
context (Wachinger and Renn 2010). However, risk appraisal based on 
spatial intelligence is not easy to measure. Limited data are available about 
the way the spatial environment impacts human decision making (Rufat 
and Samuel 2015). Most sources discussing risk perception will evaluate 
how risk perception varies in space but not which role the environment 
itself plays in the process of feeling scared. Implementation of spatial 
intelligence in agent-based models is relatively straightforward. Thus, 
finding suitable behavioural data to validate the risk perception 
implemented in the ABM remains a challenge. 

Psychology approaches this subject using the Protection Motivation Theory 
(PMT), which is often applied in the health domain (Floyd et al., 2000). 
PMT assumes that a person facing a risky situation goes through a two-
stage cognitive process: risk appraisal followed by a coping appraisal. The 
former is about checking risk and evaluating if RP is high enough to take 
an action. The latter stage concerns possible options and an intention to 
take an action. Moreover, RP can greatly impact the spread of diseases 
(Kitchovitch et al. 2010). When individuals are aware of risk, they may 
change their behaviour to prevent infection. Often, the risk awareness is 
modelled at two levels: the global level and location or personal level 
(Kitchovitch et al. 2010). The global level focuses on any media or 
government attention that increases the RP of individuals, while the 
location level is concerned about the observation of illness in neighbours 
that may have less impact – i.e. it depends on the number of infectious 
neighbours. By incorporating RP in the disease model, the diffusion of 

https://en.wikipedia.org/wiki/Theory_of_multiple_intelligences
https://en.wikipedia.org/wiki/Theory_of_multiple_intelligences
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disease will decrease, which leads to a significant reduction in the number 
of infected cases. 

RP is complex and therefore, can best be implemented using ML. In the 
previous chapter, RP was integrated in the disease model of cholera using 
BNs. The integration of RP in cholera ABM (CABM) led to reducing the 
number of infected cases by 90%. The spatial and social factors of RP were 
combined using BNs, which drive the agents’ cognitive model to steer their 
behaviour. In this chapter, we focus explicitly on spatial risk perception 
and, as before, use CABM as a testbed to evaluate the spatial intelligence 
of household agents. Since little data is available on the influence of spatial 
factors on RP, we collected behavioural data using an online survey among 
students, mostly from developing countries. Therefore, the objectives of 
this chapter are twofold. Firstly, we seek to elicit the impact of spatial 
factors on people’s risk judgements by collecting behavioural data on 
spatial intelligence. Secondly, we compare the risk awareness of agents in 
CABM with the data collected on RP of MOOC, as well as Google 
participants. 

4.2 Methods 
4.2.1 Visual Pollution in Spatial ABM 

For this study, we used the cholera model for Kumasi Ghana, which 
was developed by Augustijn et al. (2016). Figure 4-1 illustrates the 
processes included in CABM that every agent passes through during 
simulation. As it is impossible to visually detect the presence of cholera 
bacteria in water, we assume that the safety of drinking water is assessed 
via the level of visual pollution at water collection points. The fact that 
individuals rely on personal observations when assessing the quality of 
drinking water is also supported by literature (Crampton and Ragusa 
2016).  
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Figure 4-1: The conceptual flow of decision making, including two cognitive stages from PMT, in 

the spatial ABM of cholera diffusion 

We model floating garbage in river water and on riverbanks and use the 
perception of pollution as an indicator for the safety of the drinking water. 
When dumpsites are located on the riverbanks, it is likely that some 
dumped materials will end up in the river. We refer to this as primary visual 
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pollution (VP1), which can also be interpreted as the rate at which garbage 
enters the river. VP1 is calculated for every water collection point, once a 
day, based on the number of open refuse dumpsites that are located within 
a distance of 200 meters from the river. Thus, the primary visual pollution 
is estimated as: 

𝐟𝐟(𝐕𝐕𝐕𝐕𝐕𝐕) =  ∑ 𝐱𝐱 𝐠𝐠
𝒅𝒅

𝐍𝐍
𝐢𝐢=𝟏𝟏                     4.1 

where N is the number of dumpsites around the river water collection 
points; x is the number of households who use the dumpsite; g is the 
amount of garbage produced by each household; and 𝑑𝑑 is the distance 
from the dumpsites to the water point (1 m ≤ 𝑑𝑑 ≤ 200 m).  

We assume that during dry days, the garbage in the river will remain 
relatively static; i.e. a limited amount of new garbage will be deposited 
into the water. However, during heavy rainfall events, the river will carry 
floating garbage to downstream areas. This process will lead to a variability 
in visual pollution levels at all water collection points over time. Although 
floating debris in river waters is a fast developing research field (Gasperi 
et al. 2014), as it is relevant for the diffusion of plastic in seas and oceans, 
generally accepted models, especially for rivers, are still lacking. 
Therefore, we make a simplification by assuming that the speed of plastic 
debris is equal to the simulated flow velocity of water. In reality, other 
factors, such as wind direction and velocity, also impact the flow. The total 
visual pollution (VP) at any water collection point (𝑤𝑤) can then be calculated 
as: 

𝑽𝑽𝑽𝑽𝒘𝒘 = 𝑽𝑽𝑽𝑽𝒊𝒊𝒊𝒊 + 𝑽𝑽𝑽𝑽𝟏𝟏 − (𝑽𝑽𝑽𝑽𝒊𝒊𝒊𝒊 + 𝑽𝑽𝑽𝑽𝟏𝟏) ∗ 𝒇𝒇     4.2 

where 𝑉𝑉𝑉𝑉𝑖𝑖𝑖𝑖 is the amount of garbage reaching the point from upstream 
water points and 𝑓𝑓 is a random variable (0-1) that represents the fraction 
of the pollution floating downstream. As such, this total VP will only be 
calculated for days with heavy rainfall. In 2005, the epidemic of cholera 
started from September to December, which is known as the rainy season 
there in Kumasi. Thus, the model has real data recorded of rain, which 
contains data of heavy rainfall. 

Further, we combine the risk awareness raised by VP via spatial cognition 
along with other factors that induce RP, including media, memory and 
personal communication. 
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4.2.2 Behavioural Data Collection 
To derive a BN from data, micro-level behavioural datasets 

describing the relation between risk perception and the model variables 
are needed, including visual pollution, media, neighbour, and memory.  

This data was collected during two surveys: a survey among international 
participants of the Massive Open Online Course (MOOC) Geohealth and an 
online survey (Google survey). The MOOC Geohealth was organised by the 
Faculty of Geo-Information Science and Earth Observation (ITC) of the 
University of Twente, in the Netherlands, during 2016 and 2017, with 194 
and 235 participants from 92 countries (54% were from Africa, including 
Ghana) completing the survey. MOOC participants were split randomly into 
four equal subgroups, and were then shown pictures of rivers with different 
levels of visual pollution (Figure 4-2). All subgroups answered the same 
set of survey questions, testing their willingness to use the river water for 
drinking and cooking purposes. In every subsequent question, additional 
information on other factors, such as memory, media attention, and 
communication with neighbours, was provided. 

Examples of the questions are shown below, and the answers to the 
questions are either yes or no: 

Q 1.A You have never used water from this source for cooking food. Would 
you use the water shown in this picture (one of the pictures from Figure 
4-2) for cooking food?  

Q 1.B You have previously used water from this source (one of the pictures 
from Figure 4-2) for a period of time in your cooking. Would you use this 
water for cooking food again?  

Question Q 1.A is an example of a question were only VP is being assessed, 
based on the picture shown to the survey participant. Question Q 1.B 
checks the combination of visual pollution (shown in the picture) with 
another factor; in this case, memory. 
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Figure 4-2: Four different pictures of rivers with pollution of various intensity. These pictures 

differ in colour of river water and level of floating debris (only on banks – in banks and in water). 
Photos source: https://www.shutterstock.com/ 

Combinations that have been questioned are: VP and memory (1), VP and 
media (2), VP, memory and media (3), VP and contact with neighbours 
(4), and VP, memory and contact with neighbours (5). 

Information on the influence of individual risk factors on water use was 
collected during a separate survey implemented using a Google form. The 
questions were divided into two categories: risk perception based on 
individual factors and risk perception based on a combination of two 
factors. Participants were asked to indicate their risk perception for all 
combinations. The importance of factors including ‘Visual pollution’, 
‘Media’, and ‘Contact with neighbours’ was surveyed both individually and 
in combination with other factors. This survey was distributed to students 
enrolled in Master of Science courses in Geoinformatics and urban planning 
and management at the Faculty of ITC, University of Twente. In total, this 
led to 125 survey participants from 33 countries (35% of them were from 
Africa including Ghana). 

The participants were asked to indicate their risk perception for all 
combinations. The survey aimed to collect information on the degree to 
which RP related to cholera varies from person to person. There are 
different factors that influence the risk perception. In addition, the 
participants were informed that from literature three factors were selected: 
visual appearance of the water (is it visually polluted) (1), the fact that 
media is reporting on cholera cases in your area (2), and the fact that you 
hear about cholera in the neighbourhood from neighbours (3). The 
participants indicate for each individual factor how it influences their RP on 
a scaled of 1 to 10 where 1 indicates very low influence and 10 a very high 
influence. This is to test how strong each factor weights in the process of 
cholera risk perception. 

https://www.shutterstock.com/
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The combination of two factors were proposed to participant as three 
multiple-choice questions where participants check boxes that indicates all 
situations where they might perceive risk. For example, you hear from the 
media that there is illness and your water look polluted: 

 

In the MOOC survey, four levels of pollution were shown through pictures: 
no visual pollution, brown water, low visual pollution and high visual 
pollution. However, in the Google survey, participants only knew that the 
water was polluted, without any indication of the level of pollution. Thus, 
we combined the data gathered from these two surveys into one dataset 
to ensure that all possible combinations of factors were stated and RP 
responses were included.  

4.2.3 Experiments in CABM with the Spatially-Intelligent 
Agents 
To instantiate each BN, one needs to define factors affecting an 

agent’s choice and specify initial weights that will be further updated during 
the learning process. We used the factors that our respondents found 
important to parameterise the weights in a risk appraisal BN1 and a coping 
appraisal BN2. Here, we first focus our analysis on the spread of the visual 
pollution and the differences in VP at different study area locations (1). We 
then compare the visual pollution with the actual infection to determine if 
VP is a good indicator for cholera bacteria (2). Eventually we focus on the 
risk perception of agents as implemented via the BNs (3). For this last step 
we conducted two experiments, one with only VP1 (visual pollution around 
dumpsites) (Figure 4-3) and another experiment with total VP (down flow 
of plastic debris during heavy rainfall). We compare the impact of various 
factors on the dynamics of risk perception in agents’ population as well as 
on the diffusion of different water use practices over space and time. 
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4.3 Results and Discussion 
4.3.1 Data Collection 

The observed pictures had a strong influence on the risk 
judgements of the MOOC participants (Table 4-1). Only 39% (world) and 
29% (Africa) of the respondents perceived cholera risk in clear water, while 
84% and 80% perceived risk when water and river banks appeared visually 
polluted. However, when other RP factors, such as memory, neighbours, 
and media were added, this pattern changed. For clear water, RP increased 
to 78% with memory and neighbours, and 80% when adding memory and 
media (world). A similar increase (84%) was observed in the African 
subsample. 

Table 4-1: Percentage of positive responses relating VP to individual risk perception in the MOOC 
survey 

Risk Factor(s) 
Percentage of Risk 
Perception = Yes 

World (%) Africa (%) 

Clear Water 39 29 

Clear Water + Memory 30 30 

Clear Water + Memory + Media 80 84 

Clear Water + Memory + Neighbours 78 76 

Water with brown colour 53 66 

Water with brown colour + Memory 49 64 

Water with brown colour + Memory + Media 81 76 

Water with brown colour + Memory + Neighbours 82 79 

Visually low polluted Water 79 86 

Visually low polluted Water + Memory 56 55 

Visually low polluted Water + Memory + Media 82 85 

Visually low polluted Water + Neighbours 82 79 

Visually high polluted Water 84 80 

Visually high polluted Water + Memory 65 75 

Visually high polluted Water + Memory + Media 95 94 

Visually high polluted Water + Neighbours 92 92 

This trend of increasing risk awareness was also observed for water with 
lower or higher levels of pollution. However, previous experience of safely 
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using a water source (memory) decreases RP. Thus, when respondents 
were told that they previously used a water source, illustrated on the 
picture, the percentage of people perceiving risk decreased. The 
communication channels – either media or talking to neighbours – had a 
positive impact on RP, meaning that information about cholera cases 
confirms the agent’s perception of risk. Notably, media had a stronger 
effect on risk perception than contact with neighbours. This is confirmed 
by the literature, as McClusky and Swinnen found that media can have a 
substantial effect on the opinion of an audience, either positively or 
negatively, through scary stories (McCluskey and Swinnen 2011). 

4.3.2 Google Survey Results 
In the Google survey, the respondents reported that for single risk 

factors (Table 4-2), a high level of VP leads to a high RP (86% world and 
83% for Africa). Intensive media reporting particularly influences RP for 
African participants (77%). Contact with neighbours is less influential on 
perceiving cholera risk compared to VP and media (64% world and 66% 
for Africa. 

Table 4-2: The percentage of individual risk factor influencing risk perception of participants in 
Google form survey 

Risk Factor 

Influence Risk Perception 
(World) 

Influence Risk Perception 
(Africa) 

Low (%) High (%) Low (%) High (%) 

Visual Pollution 14 86 17 83 

Media 30 70 23 77 

Contact 
Neighbours 

36 64 34 66 

Results for the combination of two risk factors can be found in Table 4-3. 
For all responses, including the world and Africa, risk perception based on 
multiple sources leads to a higher perception of risk. For the Google 
survey, combinations, including visual pollution, scored higher, though the 
differences were smaller (Table 4-3). When visual pollution is supported 
by other factors, respondents increased their perception of risk. This might 
be explained by the fact that cholera bacteria cannot be detected visually 
in the water but a confirmation by media or via contacts with neighbours 
can play a role in updating people’s RP. 
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Table 4-3: Percentage of positive responses to risk perception with a combination of two risk 
factors 

Combination of two factors 
Percentage of Risk Perception = Yes 

World (%) Africa (%) 

Visual Pollution + Media 88 83 

Visual Pollution + Contact 
Neighbours 

86 86 

Media + Contact Neighbours 76 80 

 
4.3.3 Experiments 

Visual Pollution 
Visual pollution differs considerably over the study area and over time. 

Thus, visual pollution is measured from 0 (no pollution) to 1 (high level of 
pollution). As can be seen in Figure 4-3, VP is higher at downstream 
locations (south) compared to upstream locations. It is also notable from 
Figure 4-3 that the level of VP increases when there are dumpsites located 
close to the river. As such, the three circles indicate locations that show 
that dumpsites effect the VP downstream. 
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Figure 4-3 Simulated levels of visual pollution (VP) around open dumpsites. Higher levels of VP 

are observed for dumpsites closer to the river. 

When we compare the VP levels over time, we see that at the beginning of 
the simulation, the VP level was low (Figure 4-4), though it increases with 
the number of disease cases and remains high towards the end of the 
simulation. 

We can also compare VP with the actual level of infection at the water 
collection points. This makes it possible to detect if VP is a valid predictor 
for the risk of infection. We can differentiate between true positives (there 
is VP and there is infection), true negatives (no VP and no infection), false 
positives (there is VP but no infection) and false negatives (no VP but there 
is infection). 
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Figure 4-4: Spatial comparison between VP (left hand) and cholera infection per water point at 

the beginning, middle and end of the simulation 

The predictive value of VP can be measured per time step. Figure 4-5 
shows an aggregation per 10 days. In the time period between day 31 and 
day 40 (31-40), we see that in 53% of the cases, there is no VP but there 
is infection. This high percentage is probably due to the time it takes for 
VP to diffuse over the study area. Especially in the beginning of the 
epidemic, VP is not a good indicator. 

 
Figure 4-5: False vs true prediction of cholera infection through visual pollution 
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Agents learning and survey data 
When PMT is integrated into CABM and represented by two BNs, we see a 
drop in the total number of disease cases to a level of approximately 10% 
of the original numbers (see Chapter 3, Figure 3-6). This confirms the 
findings of Kitchovitch et al. (2010), who argue that incorporating RP in 
disease models greatly decrease the number of transmissions.  

Table 4-4 presents the percentage of agents in the CABM who perceive 
risk, and compares it to the percentage of survey participants. Table 4-4 
includes individual RP factors, as well as combinations of them (two or 
three) and follows the setup of both surveys (MOOC and Google). 

Table 4-4: Comparison of agent risk perception per risk factor with the original survey data 
Risk Perception Factors Survey CABM 

VP 49.1 46.2 

Memory 42.7 15.9 

Media 63.8 59.2 

Neighbours 61.3 56.7 

VP + Memory 53.9 58.9 

VP + Media 90.1 72.8 

VP + Neighbours 86.3 68.7 

Memory + Media 81.1 63.6 

Memory + Neighbours 80.0 65.1 

Media + Neighbours 75.8 72.5 

VP + Memory + Media 87.1 79.2 

VP + Memory + Neighbours 83.7 73.7 

VP + Media + Neighbours 78.9 78.2 

All factors NA 52.1 

When agents in CABM base their risk perception only on VP (no media, 
memory, nor neighbour information is included), which is the case in 46% 
of household agents, their risk perception is in line with real values (49%). 
For memory, the opposite result was evident. In the survey, 42% of the 
participants perceived risk based only on memory. When participants had 
been informed that they used this water before, 7% changed their mind 
and indicated that they would use this water again. The same is true for 
agents in CABM; although they may know there is a risk, they do not have 
any other choice and will still have to use the water. A value of 16 % for 
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CABM indicates that agents who had been using river water before the 
cholera outbreak will continue doing so during the cholera outbreak 
because they trust the source. Therefore, we found that memory has a 
negative impact on the risk perception process. Whenever memory exists, 
either alone or in combination with other factor(s), it will lower the RP, 
reflecting the trust of people on the source of a water that might be 
polluted with cholera. 

The effect of neighbours communicating experiences of illness leads to 
57% of the agents having RP in the ABM, which is close to the 62% in the 
survey. This is similar for the media’s impact on agents’ RP in the cholera 
model, which accounts for 59% of agents compared to 64% in the 
combined surveys dataset. 

The results of the survey also confirm that the level of trust in boiled water 
is much higher compared to un-boiled water, as agents also change their 
behaviour to boil water in the model (Table 4-5). 

Table 4-5: Percentage of individuals decision type in both survey and CABM 
Decision type MOOC (all 

participants) 
MOOC (Participants 
from Africa) 

CABM  

No Risk - Use this water 42 % 56 % 42 % 
RP - Walk to another 
water point (source) 

84 % 77 % 30 % 

RP - Boil water 72 % 75 % 57 % 

 

4.4 Conclusions 
There are clear indications that the spatial environment plays a role 

in the risk perception of people. However, risk appraisal based on spatial 
intelligence is not easy to measure. Limited data are available about the 
way the spatial environment impacts human decision making. Most 
sources discussing RP will evaluate how risk perception varies in space 
(Rufat and Samuel 2015) but not which role the environment itself plays 
in the process of feeling scared. By implementing spatial and social 
cognition for risk appraisal and coping appraisal, we attempted to mimic 
this behaviour and evaluate its impact on disease diffusion. 

The data collected in the surveys showed that visual observations of the 
spatial environment impact the perceptions and decisions of people. In the 
MOOC survey, different results were found for pictures showing different 
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levels of visual pollution. This confirms the fact that people judge by 
appearance.  

When the observation of visual pollution was supported by other elements, 
such as communication with other people or hearing news from the media, 
people become more aware of health risks. The results of our surveys also 
show that every combination of risk factors have their own RP values. 
Adding one extra factor may change the risk perception, either increasing 
or decreasing it. This underlines the fact that combining different factors 
into one total risk perception is a very difficult task. As such, a data driven 
approach using ML can be very helpful in this respect. 

Our results show that risk perception via VP modelling does not always 
match cholera infection levels. This is not a problem except when we are 
dealing with false negatives (no pollution and infection). The model 
revealed that many false negatives occurred in the most crucial phase of 
the simulation (peak period). In this case, the absence of pollution is taken 
as a signal that the water is safe to use. The same result was also found 
in the surveys. In the MOOC, the pictures showing clean water tricked 
people into trusting that the water was clean. This is important information 
that can be used by managers to take intervention actions. Making the 
public aware of the fact that they should not judge the water by its 
appearance (at least, not to trust clean water), can help to prevent disease 
cases. 

Our model of VP was rather simple and further research is needed to 
improve this model. This will also require the validation of VP, which was 
not possible in this study, as we did not have data of the location of 
garbage during the 2005 epidemic. Running experiments that could give 
measurements on the way and amount of floating garbage in the river can 
help for validation. Flying drones along the river in Kumasi during the rainy 
season and capturing video and photos can also help to validate the VP 
sub-model of CABM. In addition, other factors, like wind direction and 
velocity, also impact the flow, but they are not included in the model. These 
factors also need to be considered in the process of improving the visual 
pollution model. This improvement is necessary because it is relevant for 
the diffusion of plastic in seas and oceans, as well as for rivers. 

Research on risk perception during epidemics is often conducted too late 
when the peak is over, or in distant geographic locations outside of the 
epidemic area. Hence, it provides little empirical evidence on the dynamics 
of people’s behaviour and risk perceptions. More research on risk 
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perception during epidemics, including other related variables, such as 
disaggregated data on socio-demographic and behavioural characteristics 
of a target population, is in demand. This will help to gain better insights 
into the interplay of factors influencing human behaviour during a disease 
outbreak, which is especially true for a visual perception of the 
environment. 

Notably, the survey participants employed in this study were well-educated 
individuals from a variety of nations. This imposes limitations to make 
policy-relevant conclusions, though it allows us to test the fitness of ML 
algorithms implemented within a spatial ABM. Still, we recognise that in 
communities with low income and marginal education, the response of 
individuals might be different. In addition, the response of people might 
also differ whether or not they have an alternative water source to use. 
Therefore, they might know there is a risk but since they do not have 
another choice, they still may use the water. This could be a point to 
emphasize the spatial ABM part too, where different agents in different 
locations have access to certain water sources. 
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Chapter 5: A Workflow on Using Limited 
Survey Data for Training Bayesian 
Networks for Spatial Learning4 

 
 

                                           
4 This chapter is based on journal paper (paper 2) that has the title 
“Bayesian Networks for spatial learning: a workflow on using limited 
survey data for intelligent learning in spatial agent-based models”. 
The paper is authored by Shaheen A. Abdulkareem (the main writer 
of the paper and author of this dissertation), Dr Yaseen T. Mustafa 
based at the University of Zakho, Dr Ellen-Wien Augustijn based at 
the University of Twente, and Professor Tatiana Filatova based at the 
University of Twente. The paper has been submitted to the special 
issue of an International Journal on Advances of Computer Science 
for Geographic Information Systems (Geoinformatica) under the 
theme “Spatial Agent-Based Models: Current Practices and Future 
Trends”. DOI: 10.1007/s10707-019-00347-0 
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5.1 Introduction 
The proliferation of agent-based models (ABMs) as a research 

method calls for advancements in how agents learn and adapt. In ABMs, 
agents can possess their own cognitive model that can be trained using 
real data. Machine learning (ML) algorithms are used increasingly to 
enhance agent learning abilities and implement autonomous smart 
behaviour. Notably, ABMs with intelligent agents are argued to capture 
complex real-world phenomena more realistically (Asadi et al., 2009). 
Therefore, the behavioural rules guiding an individual agent’s decisions, 
and the interactions between agents and environments, significantly 
affects the macro-patterns emerging from a model (Alonso et al., 2001). 

In ABMs, ML algorithms are applied in one of the following phases: (1) 
prior running the ABM, (2) during the run of the ABM, or (3) after running 
the ABM to analyse model output. Before running an ABM, ML algorithms 
can be used to derive parameter values based on empirical data or to 
prepare input data (Besaw et al., 2010). During the simulation, they are 
used to capture ABM outputs to train a learning algorithm during the 
simulation (Kocabas and Dragicevic, 2013). After running the simulation, 
ML algorithms are applied for calibrating and validating ABM output 
(Heppenstall et al., 2007). The algorithms used for these three types of 
application vary from neural networks, to Bayesian networks (BNs), to 
genetic algorithms, and other ML algorithms.  

ML algorithms, used during the run of the ABM, are often implemented to 
steer agent behaviour. Complex emerging behaviour can be the result of 
combinations of previous experiences of an agent (feedback), of social 
interactions with other agents, but also of changes in the agent’s 
environment. ML algorithms can play an important role in combining a 
large number of different variables (spatial and non-spatial variables) and 
obtaining the social- and spatial intelligence level required. Learning is 
achieved when agents can use their observations to solve complex 
problems or derive smart solutions. Examples of ML implemented in spatial 
ABMs are the implementation of ML for spatial optimization of land-use 
allocation (Vallejo et al., 2013), searching for the best location and pricing 
strategies in a competitive business environment (He et al., 2014), and 
optimizing migration patterns (Heppenstall et al., 2007). Other 
researchers use spatial learning to spread spatial externalities and use 
spatial neighbourhood to diffuse information or strategies (Verstegen et 
al., 2010; Heinonen et al., 2012), in other words for the explicit modelling 
of spatially-correlated phenomena. Spatial learning can be achieved using 
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rule-based modelling, but via ML it is easier to include spatial factors in an 
agent’s decision-making (Pooyandeh and Marceau, 2014b). In addition, ML 
is used to obtain spatial knowledge of a resource and a quality of the 
environment (Kocabas and Dragicevic, 2013); or a threat/obstacle 
(Sharma et al., 2012) in a specific location. 

One limitation in the use of intelligence in ABMs in general, and spatial 
ABMs specifically, is that most learning algorithms require extensive 
training data (Van Der Ploeg et al., 2014). Although massive geo-data is 
becoming increasingly available, data on human choices and rules that 
guide behaviour remain scarce. Moreover, the reduced availability of large 
sets of micro-level data on human behaviour influences the use of learning 
algorithms (Bratko, 1994). The performance of learning algorithms 
improves with the increasing quantity and quality of training data (Walczak 
and Walczak, 2001). However, in many domains, the problem of obtaining 
such qualitative large sets of empirical data remains (Karr, 2014).  

It is important to note that ML and big data are not synonymous. The 
amount of data necessary to train and test the algorithm relates to the 
complexity of the problem at hand and the nature of the learning 
algorithm. A good addition to any dataset is domain expertise. BNs are not 
data intensive and represent a viable alternative for small training 
datasets; also, they tend to exhibit good prediction accuracy – even with 
small sample sizes (Kontkanen et al., 1997; Uusitalo 2007). BNs are 
particularly useful for the simulation of processes such as decisions under 
risk, which are characterized by multiple related (and uncertain) variables 
(Constantinou et al., 2016). This is primarily due to BNs being suitable for 
the reduction of complex domains into computationally manageable 
models (Weber et al., 2012). Another advantageous feature of BNs for 
such applications includes their capability in managing incomplete data and 
uncertain information. 

Learning in BNs consists of two different tasks: design of a network 
structure with network probability values (1) and defining the conditional 
probability tables (CPTs)(2) (Bidyuk et al., 2005). The design of the BN 
determines the variables (nodes) used and the way these variables are 
combined (linked) to derive a decision. A design can be based on expert 
knowledge or derived from data. The role of the expert is to resort to 
subjective assessment of the network design and probabilities and make 
use of their experience and literature published in the field (Diez, 2003). 
The next step is the construction and adjustment of conditional probability 
distributions. Quantitative information for the BN must be obtained in the 
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form of conditional probabilities (i.e. CPTs). In case of data availability, the 
CPT values are driven directly from the dataset during the process of 
constructing the network structure. When no data is available, the expert 
defines the CPT using marginal likelihood for parameter learning to cover 
the uncertainty in the values of the parameters. This training will be done 
during the simulation. 

The challenge in constructing BNs from data relates to finding a network 
that best fits the available data (Campos, 2006). Expert-driven BNs are 
entirely reliant on experts with full knowledge about the domain (Julia 
Flores et al., 2011). However, it remains unclear how the outcomes of a 
model are impacted by variations in constructed BNs or the way in which 
they are implemented in the ABM (e.g., (Pooyandeh and Marceau, 2014b; 
Shen et al., 2011)). 

Several studies have combined BNs with ABMs; for example, Kocabase and 
Dragicevic derived BN structures for different agent types and obtained 
their CPT values from census data before using the BN in a land-use change 
model (Kocabas and Dragicevic, 2013). In another example, both Ren and 
Anumba and Ma et al. used a simple BN structure, utilised experts to derive 
their CPT values, and trained during the simulation (Ma et al., 2004; Ren 
and Anumba, 2002). While Matsumoto et al. constructed a data-driven BN 
using a survey, they simultaneously trained their network to estimate 
internal parameters (Matsumoto et al., 2017). Furthermore, Pope & 
Gimblett used stakeholders to design their BN and CPT values (Pope and 
Gimblett, 2015). 

The present study contributes to this literature by exploring: (1) the 
possibility of implementing learning in spatial ABMs with a small 
behavioural dataset, (2) the extent to which supervised learning of ML 
algorithms should depend exclusively on data, and (3) the level of 
intelligence necessary for agents to simulate realistic risk perception. To 
address this aim, we test alternative methods of designing a BN from a 
small sample of micro-level behavioural data.  

The next section (5.2) describes how alternative, empirically-driven BNs 
are integrated in the spatial ABM. Section 5.3 discusses the results of the 
simulation experiments, and Section 5.4 concludes by discussing the main 
findings, advantages, and limitations of our approach, as well as possible 
directions for future work. 
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5.2 Methodology 
5.2.1 Integration of Empirically – Driven BNs in the 

Spatial ABM 
All BNs consist of a number of nodes connected by links in the form of 

a directed acyclic graph (DAG) (Heckerman, 1995). When integrated into 
a spatial ABM to enhance agent intelligence, each node represents a 
variable in the agent decision-making process simulated in that model. In 
the present study, these variables include: the observation of visual 
pollution at water collection points (VP), the reporting of media on cholera 
cases (Media), communication with neighbours that may or may not have 
cholera in their household (Neighbours), and updating and retrieving 
memory representing a household’s previous use of the current water 
source (Memory). The BN supports agent decisions on assessing water 
infection level (i.e. Risk node) based on VP, Media, Neighbours, and 
Memory. The latter nodes (except VP) have a Boolean value (true or false) 
indicating the presence or absence of their relationship to risk. The VP node 
has three states: no, low, and high. These states indicate the level of visual 
pollution at water collection points. In the survey there were four different 
states, which were mapped as follows: clean water (no risk), brown water 
or a small amount of garbage around water collection points (low risk), 
and garbage on the river banks and in the river (high risk). In this paper, 
we explore four combinations for the specification of either BNs network 
structure or CPT. Namely, we run our spatial ABM with BNs designed (i): 
based on data only (both structure design and CPT is derived from data); 
(ii) based on data complemented with expert knowledge (structure is data-
driven but CPT is expert-driven; (iii) on structure that is expert-driven but 
CPT is data-driven; (iv) based on expert knowledge only (structure and 
CPT is derived by the expert knowledge). 

Any node can be updated upon new evidence, even when they are related 
to multiple variables. The evidence acquired about a state variable should 
propagate to update states in the rest of the network, and this process 
requires network training (learning). The training of BNs can be either by 
using data or by eliciting expert knowledge (Flores et al., 2011). BN 
training is performed via a flow of information through the network, and it 
can take place prior to using the network (i.e., before implementation 
within the ABM) with the availability of data or continue during the 
simulation runs (when it is an expert-driven network). In the first example, 
the training process of BNs ends with final probabilities (posterior 
probabilities) that the network will continue to produce every time it is 
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consulted by the ABM. In the second case, the BN model needs 
improvement since it is not fully trained at the start of the simulation, 
though will be trained using data (agent decisions) generated during the 
simulation. This process is called sequential learning. Usually when no data 
are available to construct BNs, the adjustment of parameters (nodes) 
takes place when the network performs identification based on new 
evidences. 

We compare four different BNs (DDBN, DEBN, EDBN, and EEBN). The first 
letter in the BN acronyms refers to the information source – data-driven 
(D) or expert-driven (E) – for their derived structure, while the second 
letter refers to the estimation of probabilistic parameters. When a BN is 
expert-driven, we either designed the structure and/or retrieved 
parameters based on census data of the case study area or literature 
dealing with risk perception of waterborne diseases such (e.g., (Doria, 
2010; Driedger, 2007; Hedman and Lindberg, n.d.)). An overview of the 
networks is provided below. 

DDBN 
In DDBN, both the BN structure and its parameter values were driven by 
survey data. The scored-based algorithm “Tabu search” is used to 
construct the BN (Beretta et al., 2017). This algorithm makes use of a 
goodness-of-fit score function for evaluating graphical structures with 
regard to a dataset. Tabu search is a metaheuristic algorithm using short-
term memory to ensure that the search explores new areas without 
remaining in a local optimum. In this algorithm, the fitting function is used 
to score a network/DAG with respect to the training data, and a search 
method is used to determine the highest-scoring network structure. This 
algorithm continually improves scores until converging at optimal results. 
DDBN was trained prior to the simulation. 

EDBN 
The structure of this BN follows the same approach as in the MOOC 
surveys. In the survey, we first showed participants a picture of water with 
a specific level of visual pollution, followed by questions related to the other 
factor(s). In this approach, VP is assumed to be the parent of the other 
factors. Then, we derive the probabilities of nodes states and CPT from the 
survey data and train it prior to simulation. 
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DEBN 
The structure of DEBN is identical to that of DDBN. However, an expert 
assigned probabilities to node states and the related CPTs to formulate 
logical scenarios. These values were driven from the literature and used in 
the BNs. 

EEBN  
This is a fully expert-driven network adopted from Abdulkareem et al., 
(2018). The probability values of these network variables were derived 
from the available literature and census data for Kumasi, Ghana. Here, 
EEBN settings reproduce the original setup and serve as a benchmark to 
compare the three alternative combinations between survey and expert 
data for BNs. 

Goodness of fit of BNs and model output:  
BN validation was conducted using two steps: validation of the network 
structure using scored functions and validation of the learning parameters 
(CPT) (Figure 5-1). We also compared the outcome of integrating the four 
BNs into the CABM with the survey data to validate the realism of agent 
risk perception. 

  
Figure 5-1: BN models’ validation 
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There are two approaches that are commonly used to measure the 
goodness of fit of BN models (Needham et al., 2007). The first is to test if 
the conditional independence assertions involved by the structure of the 
BN model are satisfied by the training dataset. The second method is to 
evaluate the degree to which the resulted structure describes the data. To 
achieve this, we use scoring functions. Many scoring functions exist, and 
the most popular are AIC (Akaike information criterion), BIC (Bayesian 
information criterion), and Bayesian Dirichlet with likelihood equivalence 
(BDe) (Liu et al., 2012). The primary issue with scoring functions is the 
absence of an objective method to determine which function is optimal (Liu 
et al., 2012). AIC provides a relative measure of the information lost when 
a given BN model is used to represent reality, while BIC is an example of 
penalised likelihood and it selects the true model that fits the data. 
Moreover, BDe calculates the joint probability of a BN model for a given 
dataset. Overall, the optimal model from the set of BN models is the one 
with the higher absolute AIC, BIC, and BDe values (Carvalho, 2009). 

 
Figure 5-2: Methodological workflow used in this article 

To address the main research questions, we follow a number of steps 
(Figure 5-2). The primary elements of this workflow are explained in the 
following sections. We conduct a total of four experiments, in which we run 
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the CABM with all four BNs for 100 random seed runs, creating a new 
synthetic population every 5 runs5. We provide the mean values across 
100 sets of runs for all output metrics. In the first set of experiments, we 
run the CABM with DDBN and EDBN, training them prior to the simulations. 
Then we run the CABM with DEBN and EEBN, training them during the 
simulations to adjust the initial values of CPT of both networks proposed 
by the expert knowledge. Since DDBN and EDBN are trained prior to 
implementation of the simulation, testing data for the goodness of fit of 
these two BNs arises from the ABM. Additionally, since DEBN and EEBN 
are trained while running the simulation, the survey data serves as the 
goodness of fit data. The sample size of all validation dataset is equal (i.e., 
the size of the empirical data) to balance the scores. 

To compare model outcomes with the survey results, we calculated the 
average number of agents that perceived risk during the simulation. These 
percentages were computed for each risk factor and combinations of 
factors. In addition, mean epidemic curves and risk perception curves were 
obtained and compared. 

BN models and resulting spatial patterns: 

The implementation of different BN models may impact the behaviour of 
agents based on their location in space. To evaluate this impact, we 
present a set of maps that show the spatial distribution of risk perception 
variables. Risk perception factors: VP alone, VP with media, VP with 
contact with neighbours, VP combined with media and contact with 
neighbours, and combination of media and contact with neighbours are 
displayed per community with the implementation with each BN model. 
Risk perception based on media or contact with neighbours only does not 
occur. 

                                           
5 The agents in the model are created using a synthetic population in which household 
agents and individuals are distributed spatially over communities on the basis of the data 
from Osei (2010). For five runs, we have a fixed synthetic population, in which agents’ 
initialization attributes such as the number of individuals per household, house location, 
river fetching water points, and accessibility to tap water remain constant. After five runs 
new attribute values are created. Stochastic events that influence agents’ behaviour during 
the simulation include rain time, time to fetch water, spatio-temporal location of VP and 
cholera bacteria, and selection of dumpsites to be cleaned by the municipality. 
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5.3 Results and Discussion 
5.3.1 BNs Structures and Parameters Validation 

To select the best-fit network among our four BNs, we tested their 
structure and parameter values. The graphical structures (DAGs) of these 
BNs are illustrated in Figure 5-3. 

 
Figure 5-3: Graphical structures (DAGs) of Bayesian Networks 

We validate DDBN and EDBN using the outcome of CABM, while DEBN and 
EEBN were validated using the survey data. The validation results are 
provided in Table 5-1. The numbers between brackets represent the 
relative metric of each BN models with (1) corresponding to the best value 
and (4) to the worst one. 

Table 5-1: Scores of the four BN models. The number in brackets indicates how well each BN 
model does relative to the others on each scoring function, with (1) corresponding to the best 
value and (4) to the worst one. 

BN 
Type 

Entire survey sample 
Survey subset with African 

participants only 

AIC BIC BDe AIC BIC BDe 

DDBN -13110 (3) -13235 (3) -13158 (4) 
-2589 
(1) 

-3173 
(1) 

-2663 
(1) 

EDBN 
-13541 
(1) 

-13681 
(1) 

-13599 
(1) 

-2488 
(3) 

-3140 
(2) 

-2598 
(3) 

DEBN -13046 (4) -13186 (4) -13195 (3) 
-2468 
(4) 

-2925 
(4) 

-2576 
(4) 

EEBN -13213 (2) -13358 (2) -13249 (2) 
-2566 
(2) 

-2976 
(3) 

-2638 
(2) 
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As illustrated in the first half of Table 5-1 (Entire survey sample), the best-
fit network is EDBN, since it exhibits the highest absolute scores for AIC, 
BIC, and BDe. The AIC score of its absolute value is higher than the other 
three scores. It also scores best in the BIC and BDe values. EEBN (the 
original expert network (Weber et al., 2012)) has the second-best scores, 
confirming that the involvement of experts leads to a better fit than using 
data only. This holds true for both the structure of the BN and estimation 
of probabilistic parameters and CPTs for the network, as indicated by the 
scores for EEBN. 

The second half of Table 5-1 (subset African Participants) presents fitness 
scores for the four BNs with respect to responses of African participants. 
With the change in the sample from the full sample set to African 
respondents only, measured values of the goodness of fit of BNs change. 
For the subsample, DDBN exhibits the best fit. African participants seem 
to be more sensitive to media reporting and less sensitive to visual 
pollution. EEBN remains the second-best fit BN model. This again supports 
the usefulness of expert knowledge in implementing ML. in addition, this 
demonstrates the sensitivity of the metrics (AIC, BIC, and BDe) to the 
survey sample used. 

5.3.2 Implementation of BN models in CABM 
After testing the performance of the four BNs, we integrated them for 

agent decision making in the ABM. The DDBN and EDBN are trained then 
linked with the CABM. The DEBN and EEBN are trained during the 
simulation. We report average results across 100 runs for each BN model 
for several macro metrics of interest, including: epidemic curve6, risk 
perception curve7, and percentage of agents that perceived risk. 

Epidemic Curve and Risk Perception 

It is evident that agents with intelligence are less susceptible to cholera 
compared to those agents who are not using BN for their coping appraisal 
(Abdulkareem et al., 2018). Since BNs steer their interactions during 

                                           
6 Epidemic curves count the number of disease cases in each particular time step. 

7 Risk perception curves plot the number of individuals who perceived cholera disease risk – i.e. the outcome 

of their risk appraisal, BN1, represented here either as DDBN, EDBN, DEBN, or EEBN becomes 1 – over 
time.  
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simulations, they learn how to protect themselves. This can be observed 
in the epidemic curve (Figure 5-4 – left) and risk perception over time 
(Figure 5-4 – right). 

Epidemic curves resulting from DDBN and EDBN (Figure 5-4.a) are 
approximately the same, and both provide lower peaks compared to the 
two alternatives (average peak value of 200 disease cases). The risk 
perception curves (Figure 5-4.b) of both BNs develop in a similar manner 
Agents are intelligent enough to perceive cholera risk from the start of the 
simulation, though EDBN exhibits a higher peak in the period between days 
25 and 58. The risk perception curves continue to increase until the end of 
the simulation because this BN is pre-trained and does not change during 
the simulation. As such, agents do not realise that the epidemic is over 
and risk is decreasing. 

 
a. Epidemic curves    b.    Risk perception curves 

Figure 5-4: Results for the four BNs models of running CABM 100 times per BN 
integration 

Running the CABM with DEBN and EEBN produces average epidemic curves 
with higher peaks of 230 disease cases for EEBN and 300 cases for DEBN 
(Figure 5-4.a). The risk perception curve for EEBN (Figure 5-4.b) exhibits 
a very steep increase in risk perception at approximately day 21, when 
media begins reporting. The same increase is observed for DEBN, though 
later in the simulation (day 25), and with a less dramatic increase in the 
number of individuals perceiving risk. It should be noted that the BN 
models are trained endogenously during the simulation, and agents learn 
to perceive risk and cope with cholera diffusion. This implies that they also 
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learn (especially for EEBN) that the epidemic is over and risk levels are 
declining. This is evident in the decrease in risk perception after day 45. 

Agents learning and Survey data 

After running the experiments, we evaluated the outcomes of the CABM 
by dividing agents into groups according to their level of risk perception.  

Table 5-2 presents the percentage of agents in the CABM who perceive 
risk, and compares it to the percentage of survey participants who reported 
perceived risk in a similar situation. Both DDBN (85%) and EDBN (95%) 
overestimated the risk perception for VP only, which was 49% in the 
survey. This disjunction between the actual percentage and simulated 
percentage is likely due to the BNs being trained prior to the start of the 
simulation. Based on the training data, agents learned that when visual 
pollution exists, the RP should be positive. The values of EEBN (46%) and 
DEBN (53%) for only VP are more in line with the real values (49%). 

Table 5-2: Comparison of agent risk perception per risk factor with the original survey data 

Risk Factors 

 
Survey 

 
 

 
% RP 

% Risk Perception  
 

% Risk Perception 

DDBN EDBN EEBN DEBN 

VP 49,1 85,3 95,3 46,2 53,3 

Memory 42,7 0 0 15,9 0 

Media 63,8 60,2 62,5 59,2 44,5 

Neighbours 61,3 100,0 100,0 56,7 78,3 

VP + Memory 53,9 17,1 25,2 58,9 14,6 

VP + Media 90,1 89,6 82,3 72,8 37,5 

VP + Neighbours 86,3 66,7 71,9 68,7 66,5 

Memory + Media 81,1 76,0 60,9 63,6 64,7 

Memory + Neighbours 80,0 98,0 100,0 65,1 68,5 

Media + Neighbours 75,8 100,0 100,0 72,5 100,0 

VP + Memory + Media 87,1 73,5 77,7 79,2 54,7 

VP + Memory + Neighbours 83,7 94,3 90,0 73,7 70,0 

VP + Media + Neighbours 78,9 73,8 73,5 78,2 100,0 

All factors NA 92,3 69,7 52,1 66,7 

For Memory, the opposite result was evident. In the survey, 42% of 
participants perceived risk; however, no risk was observed due to these 
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BNs. In this case, a value of zero percent indicates that when agents have 
been using river water before the cholera outbreak, they will continue 
doing so during the cholera outbreak because they trust the source (no 
perceived risk). 

The effect of neighbours communicating experiences of illness in the BNs 
leads to 100% risk perception in the ABM, while risk perception was only 
62% in the survey. For the two BNs – DDBN and EDBN – illness in 
neighbouring households was a strong indication of possible risk, which 
explains the high score. The scores for neighbours for EEBN (57%) was 
much closer to the actual scores of 61%. The scores for VP combined with 
Memory of DDBN and EDBN are much lower than the survey scores. This 
is explained in the same way as the score for Memory only. When people 
have been using the river water, they trust the water and continue using 
it. Again, EDBN and EEBN score much better. 

It is evident that memory (remembering the prior use of a water collection 
point) has a negative impact on the risk perception. Agents perceive risk 
during their communication with neighbours and via reporting of media, 
though they might change their mind via their memory, and continue to 
use water from a particular location. In addition, during the simulation 
runs, communication with neighbours had a strong impact on risk 
perception, although media had a stronger effect in the survey. 

For media, the results for DDBN and EDBN are good. Media scores were 
less robust for DEBN (44% versus 64% in the survey), but were good for 
EEBN.  

Overall, the results obtained from the implementation of EEBN were closer 
to the data from the surveys than the results of DEBN. This can be 
explained because the values of CPT in EEBN have been driven by the 
literature and census data for Kumasi, Ghana. Additionally, the network 
structure is driven logically from expert knowledge. Again, in both 
implementations, Memory has a negative impact on the risk perception 
process. Whenever Memory exists, either alone or in combination with 
other factor(s), it will lower the RP. Furthermore, VP may also play a 
negative role in DEBN implementation. This confirms that survey data 
helps in training BNs, though the agent learning process can be better 
controlled with the support of expert knowledge. 

An implementation using different training datasets per community or 
water collection point may reveal divergent learning patterns and risk 
perception throughout the area. Furthermore, in the CABM, each agent 
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calculates their risk level and compares it to a threshold value of 0.5, which 
determines if risk is perceived or not. In reality, the threshold level will 
vary by individual, as some are more sensitive to risk than others. 
Introducing greater heterogeneity among agents by varying the risk 
threshold value per household may influence the results of the simulation. 
Such combinations of agents pursuing intelligent decisions in spatial ABMs 
based on ML algorithms opens opportunities for overlaying spatial, socio-
economic, and cognitive heterogeneity in a range of applications. 

Spatial Patterns 

To assess the influence of running CABM with different BN models, the 
outcome of the spatial patterns of each simulation is presented. 

Figure 5-5 shows the risk perception per community (size of the circles) 
and the variables the risk perception is based on (colours). The river shows 
the average VP value scaled from low (green) to high (red). The total risk 
perception is highest in the EEBN model, however, risk perception in the 
northern communities in this model is low. This might be due to the fact 
that most of the household agents that live there are of high-income and 
can buy bottled-water during the epidemic, or to the fact that the VP level 
is low.  

There is considerable variation in risk perception between the different 
communities. Risk perception is not always related to the income levels. 
For example, in the DEBN model, the northern community (18) has a 
relatively high risk perception but is completely located in a high income 
and low VP zone. Communities score differently in different models. For 
community 17, we see low risk perception in DEBN and EDBN but higher 
risk perception in DDBN and EEBN. In this case, this is not steered by data-
driven versus expert-driven models. Community 5 scores a very high risk 
perception in the EEBN model, has a high score in the DEBN model, but 
scores lower in risk perception in the DDBN and EDBN. In general, a fully 
expert based model (EEBN) leads to the highest risk perception followed 
by the model that is based on expert probabilities for node states. From 
this we can derive that the design of the model has less impact on the total 
risk perception compared to the node state probabilities. 

The second aspect are the sources the risk perception is based on. This is 
indicated as colours in the pie-charts of Figure 5-5. Household agents in 
the DDBN model pay more attention to the combination of media and 
contacts with neighbours (green colour). This also applies to the two 
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communities in the north (16 and 18) and the community in the south-
east (13). This can be explained by the fact that in these upstream 
locations, the VP is low.  CABM combined with an EEBN model consider VP 
(alone or combined) to be more effective as a household agents risk 
indicator. In addition, risk perception with EEBN represents a more 
balanced risk perception between all factors (Figure 5-5). 

Household agents who live in communities 7 and 9 which are located 
downstream perceive more risk based on VP (red colour of the river 
represents high VP). This is because more waste accumulates in the river 
and on the river banks. This also applies to communities 5 and 11 in the 
EEBN model. 

 
Figure 5-5: Spatial distribution of risk perception based on different variables 



Chapter 5 

 107 

5.4 Conclusions 
Although several studies have combined ABMs and BNs, no 

comprehensive overview exists on the advantages and disadvantages of 
different integration approaches and their impact on the output of the 
models. To explore how learning in spatial ABMs could be realized in the 
absence of large behavioural datasets, we tested four different ways to 
design and train BNs to enhance agent cognitive abilities in a spatial ABM. 
We constructed BN fully data driven, fully expert-knowledge driven and as 
a mix of data and expert-knowledge, trained prior to running BNs in the 
ABM or during a simulation run. For models that are data-driven (DDBN 
and EDBN), the results of both prior trained models show similar 
percentage of risk perception. Expert-driven models (DEBN and EEBN) 
outperformed the data-driven ones. It indicates, that supervised learning, 
which aids training of a BN algorithm with the support of expert knowledge, 
provides more control over the learning process and offers a logical 
framework. Expert-knowledge method helps to avoid intense overfitting 
and enables direct model comparison since it computes a full posterior 
distribution of the BN. A development of an efficient BN requires a 
combination of data and expert knowledge (Fenton and Neil, 2012), as has 
been also illustrated in other applications in ecology (De Waal et al., 2016), 
sports (Constantinou et al., 2012), robotics (Park and Cho, 2012) and 
medicine (Yet et al., 2013). Hence, instead of deriving BNs directly from 
data, we advise an expert interpretation and construction of BNs based on 
expert logic.  

We measured the goodness of fit for the four BNs using survey results and 
the output of CABM as test data. However, goodness of fit scores for these 
BNs did not differ greatly.  

The highest-scoring BN according to goodness of fit is not necessarily the 
same as the highest-scoring based on e.g. the risk perception curve. We 
also had two networks with the same structure (DDBN and DEBN), yet 
leading to different results when combined with our ABM. This confirms 
that the structure of the BN is the factor that least impacts the final 
outcomes. Parameterisation and the way the network is trained (prior or 
during simulation) play a more important role and have more impact on 
the final model outcomes. We also observe that training prior to a 
simulation run leads to “overly intelligent agents”, with high risk perception 
at initialization that does not decline even in the absence of cholera 
reports. The choice between prior training and training during simulation 
runs is individual for each application. In our case, although Kumasi 
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citizens had previous experience with cholera before 2005, hence they 
were not prepared. For other applications, a certain level of risk awareness 
may be essential at the start of the simulation, demanding prior training 
of BNs. 

As conditions differ per community, it is logical that risk perception differs 
spatially. This applies to the level of risk perception, but also to the factors 
contributing to this risk perception. The expert driven model, DEBN and 
EEBN, provided the most balanced risk perception (based on all risk 
factors). Risk perception and the process of making a decision are complex 
processes combining spatial and social factors. However, less 
implementations are available integrating ML for assessing risky situation 
engaging agents’ risk perception due to the lack of gather data on people’s 
risk perception and little is known about spatial risk detection especially in 
developing countries. Furthermore, risk perception based on spatial 
learning is not easy to measure. Limited datasets are available about the 
way the spatial environment influences the human decision making. Most 
researches that discuss risk perception will evaluate how risk perception 
varies in space but not which role the environment itself plays in the 
process of feeling scared. 

Our research uses BNs as the ML algorithm because this method can 
combine expert knowledge and use small behavioural datasets. However, 
there are other ML methods with the same characteristics. The workflow 
presented in this paper can also be used for example using, Genetic 
Algorithms, Decision Trees, linear SVM, and Naive Bayes. 
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Chapter 6: Risk perception and behavioural 
change during epidemics: comparing 
models of individual and collective 
learning8 

                                           
8 This chapter is based on an under-review paper (paper 3) under the 
same title. The paper is authored by Shaheen A. Abdulkareem (the 
main writer of the paper and author of this dissertation), Dr Ellen-
Wien Augustijn based at the University of Twente, Professor Tatiana 
Filatova based at the University of Twente, Katarzyna Musial at the 
University of Technology Sydney, and Dr Yaseen T. Mustafa based at 
the University of Zakho. The paper has been submitted to PLOS ONE 
journal 
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6.1 Introduction 
Epidemics have always been a source of concern worldwide, especially 

in developing countries. Therefore, good responsive and preventive 
strategies both at the individual and government level are vital to saving 
lives. Most of these strategies depend on the behavioural aspects of choice 
and complex interactions among people (Ruland et al., 2015). Perceiving 
the risk of infectious diseases may lead people to change their behaviour 
spontaneously, as shown during the epidemic of SARS in 2003 (Tan et al., 
2004). People change behaviour and adapt to protect themselves based 
on the information they receive about the disease (Zhao et al., 2015). 
Gathering information and experience through multiple sources is essential 
for increasing disease risk awareness and taking protective measures 
(Williams et al., 2010). To fight epidemics effectively, we need advanced 
tools that enable us to understand the factors that are contributing to the 
spread of information about life-threatening diseases and influencing 
changes in individual behaviour that curbs a disease’s diffusion. 

Simulation tools are commonly used in assessing policy impacts in the 
health domain. Different types of models are used, varying from 
mathematical models (Kerkhove and Ferguson, 2012) to spatial games 
(Zhao et al., 2015). Boulanger and Bréchet in their evaluation of six 
paradigm models for policy-making recommended agent-based modelling 
(ABM) as the most promising modelling approach (Boulanger and Bréchet, 
2005). ABM is widely used to understand the dynamics of epidemics 
(Pizzitutti et al., 2018; Venkatramanan et al., 2018; Tang et al., 2017). 
ABMs can be used to study the dynamics of complex systems, where many 
heterogeneous individuals learn from their experience and their 
environments, interact with each other and make decisions. Being a 
primary bottom-up method, ABM can represent micro/macro relationships, 
accommodate agents’ heterogeneity and their adaptive behaviour. As 
such, ABMs assure explicit feedbacks between the spatial environment and 
cumulative agents’ behaviour and can integrate a variety of data inputs 
including aggregated, disaggregated and qualitative information and data 
(An, 2012; de Marchi and Page, 2014; Filatova et al., 2013; Fonoberova 
et al., 2013). 

In disease modelling, two elements are essential in representing agents’ 
health behaviour: (i) evolution of risk perception, and (ii) selection of a 
response strategy. Hence, the core of a disease ABMs is in defining a 
learning method that is used to steer the risk perception and risk coping 
behaviour of agents. In both, the sensing of information (global, from the 
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environment and from other agents), exchange of information (between 
agents) and processing of information (decision making) are central. 
Machine learning (ML) techniques are good in all three, and offer a more 
realistic way of adjusting agents’ behaviours in ABMs (Abdulkareem et al., 
2018). As more data becomes available in the area of disease spread 
analysis, a new research direction has emerged – supporting ABMs with 
data-driven approaches. ML has a potential to enhance the performance of 
ABMs, especially when the number of agents is large (e.g., pandemics) 
and the decision making of the agents is complex (e.g. depending on past 
experiences and new information from the environment and peers). 

The purpose of using ML approaches in the context of ABM is to provide 
agents with the ability to learn by enabling them to adapt the decision-
making process according to the available information.  Human beings 
make decisions both individually and as part of a collective, where the 
individual copies the decision taken from a group or group leader (Carlson 
et al., 2014). 

Further, information about social networks formed by people is becoming 
more readily available, e.g. by extracting social connections based on 
social media, and reveals collective behaviour in many application 
domains, including health (Tang and Liu, 2009). For example, concerning 
vaccinations, people are not entirely rational but imitate others, leading to 
group behaviour (Mbah et al., 2012). Many ABM models rely solely on 
individual behaviour, yet group emotions and group behaviour also need 
to be captured (Li et al., 2014). Bosse et al. presented an ABM that models 
collective decision making in crowds and groups, in which they integrated 
interacting emotions, beliefs and intension and social contagion (Bosse et 
al., 2013). The purpose of their simulation was to discover the impact of 
mirroring emotions, beliefs and intention on individuals’ behaviour. Agents 
may learn in isolation or through interactions e.g. with neighbours (Sen 
and Weiss, 1999). In isolated learning, the agent learns independently 
without requiring any interaction with other agents. In interactive learning, 
several agents are engaged in the same process of learning, and they need 
to communicate and cooperate to learn effectively. Interactive learning can 
be conducted in multiple ways (based on different social learning 
strategies) (Eberlen et al., 2017). Agents might be represented as 
members of local groups (small social networks), learning together and 
copying behaviour from other group members (Collins et al., 2014). The 
impact of different types of group learning compared to individual learning 
is an underexplored domain in the development of ABMs. Most developers 
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are not aware of the impact of their choices on the model’s results, at times 
assuming that group learning is computationally attractive. 

This article evaluates the influence of individual vs. collective learning on 
an epidemic’s dynamics within a disease ABM.  We will pursue a 
quantitative test on the influence of agents’ ability to learn - individually 
or in a group - on the dynamics of a disease. 

The main goals of this article are to (1) simulate the learning processes in 
agent groups that reflect a gradient of learning (from individual to 
collective), and (2) understand how these learning processes can help in 
obtaining more insights into the dynamics of social interactions and their 
emergent features during an epidemic. To address these objectives, the 
article aims to answer a number of research questions: (1) What is the 
impact of social interactions on individuals’ decisions and behaviour? (2) 
How do individuals learn when they are in groups? (3) How do different 
forms of implementing ML in groups affect the group’s learning processes? 
(4) Is there an impact of implementing group learning for risk evaluation 
only or for also coping and self-protection during epidemics? And (5) do 
individuals perform better at coping and self-protection during epidemics 
compared to groups? 

In this research, we employ a spatially-explicit ABM of cholera diffusion 
(Augustijn et al., 2016) as our case study to show the implications of our 
research. We use BNs to steer the behaviour of agents by representing risk 
perception and coping appraisal using a cholera model for Kumasi, a large 
city in Ghana (Abdulkareem et al., 2018) . We extend previous work by 
conducting eight scenarios, in which we run eight models to test individual 
versus group learning in combination with different information sources 
(including contact with other agents) as factors in the BN. We investigate 
how the epidemic spread depends on different learning approaches used 
for risk perception and coping decisions in the face of outbreaks. 

6.2 Methods 
This chapter aims to compare the models of individual and collective 

learning during the processes of risk perception and making decisions 
about how to cope with the situation during an outbreak. The next 
subsections present the principles of individual and collective intelligence 
used here. In addition, the description of the CABM and models’ setup and 
measures used to evaluate the outcomes are presented. 
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6.2.1 From Individual to Collective Intelligence: Defining 
the Gradient of Learning Strategies 

A feeling of risk in people is triggered by the amount of information 
communicated, its type and the attention to specific information (fear) that 
stimulate to produce the learning of new responses (Rogers, 1983). 
Communication with information sources helps individuals to estimate the 
severity of the emerging event, the probability of being exposed to 
infection, as well as evaluating the efficiency of their coping responses. 

 
Figure 6-1: Agents’ learning types in agent-based models. Blue ties, wherever exist, refer to 
communication with other agents who might be either in the same or in another community; 
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leaders in centralized groups are marked in green, and red/ blue colour denote different learning 
outcomes (i.e. Risk/no Risk in Risk Perception stage, and any of the Coping Appraisal stage 
decisions) 

When agents learn individually (Figure 6-1.a and b), their learning 
depends on their prior knowledge (memory, experience, and/or the 
perceived risk awareness of the environment, such as visual pollution). 
The learning, in this case, is the process of gaining skills or knowledge, 
which an agent pursues individually to support its individual task (Russell 
and Norvig, 2010). Group learning is the process of acquiring new skills 
or knowledge that is undertaken collectively in a group of several individual 
agents and driven by a common goal (Sen and Weiss, 1999). Group 
learning can be realised by making all group members use their own ML 
algorithms to gather information to perform a specific sub-task 
(decentralised, Figure 6-1.c and d), and then pool their opinions 
collectively by making one decision for the entire group. Here, we adopt a 
‘majority vote’ as the resolution mechanism in decentralized group 
decision-making. Alternatively, group learning can also be realised by 
introducing one agent (leader) who uses ML to learn for the whole group 
to help it accomplish its group task (centralised, Figure 6-1.e and f). In 
centralized group learning, agents in the group copy the decisions of their 
leader. In both cases, all agents that belong to a group will share the same 
decision, but the information this decision is based on varies considerably. 

Both individuals and groups may learn by either taking information from 
their social networks - i.e. have it as an additional source of information in 
their ML algorithms - or not. When individual agents are isolated learners 
(Figure 6-1.a) they do not have a social network but use only their own 
information to make a decision. When individuals learn in an interactive 
way (Figure 6-1.b), they acquire new skills or knowledge by perceiving 
information, experience, and the performance of other agents via their 
social network. Like individual agents, groups can also learn in isolation or 
interactively. In isolated learning, a group of agents learns 
independently without exchanging any information with others (Figure 6-
1.c and 6-1.e). In interactive learning, groups of agents communicate 
with their neighbours to learn effectively. Here, the group members 
interact together and with agents outside of their groups and share their 
experiences to improve their common group skills (Figure 6-1.d and 6-1.f). 
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6.2.2 Simulation Scenarios: Individual vs Group Learning 
We designed eight simulation scenarios to answer the research 

questions: explore the influence of individual vs. group (1), centralized vs. 
decentralized (2) and isolated vs. interactive (3) learning in processes – 
during both the risk perception (RP, BN1) and coping appraisal (CA, BN2) 
stages (4 and 5) - on the epidemic’s dynamics and the model’s 
performance (Table 6-1). Given the importance of communication with 
neighbours on the geographic basis in cholera diffusion, the groups here 
are spatial: household agents living in the same community, with the same 
education and income levels, belonging to the same group. We 
systematically vary the ABM settings following the steps in Figure 6-2 to 
change the gradient of intelligent learning (Steps 2 and 3) in different 
cognitive stages corresponding to our decisions of interest: risk and coping 
appraisal (Step 1). 

 
Figure 6-2: From individual to collective intelligence in ML-based ABMs 

Table 6-1 shows the setup of the eight scenarios that reflects the three 
stages shown in Fig 6-2.   

Table 6-1: Simulation scenarios 

Scenario Decision 
that 
relies 
on ML 

Agent that 
employs ML 

Influence 
of others 
on ML 
input 
information 

Commentary 

M1: 
RP&CA 
(In-I) 

RP and 
CA (BN1 
& BN2) 

Individual (In)  Isolated (I) An individual uses 
ML to update her 
risk perception and 
to take protective 
actions only based 
on his individual 
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experience 
neglecting any 
communication 
with others (Fig 
1.a) 

M2: 
RP&CA 
(In-N) 
 

RP and 
CA (BN1 
& BN2) 

Individual (In) Interactive 
with 
neighbours 
(N) 

An individual uses 
ML to update her 
risk perception and 
to take protective 
actions based on 
his individual 
experience as well 
as based on past 
disease 
experiences of 
peers (Fig 1.b). 

M3: 
RP&CA 
(D-I) 

RP and 
CA (BN1 
& BN2) 

Majority vote 
(M) 
(decentralized 
group)  

Isolated (I) All agents in a 
group use MLs to 
make decisions 
without taking 
experience of 
others into 
account. The final 
decision on RP and 
CA is defined 
through the 
majority vote (Fig 
1.c). 

M4: 
RP&CA 
(D-N) 

RP and 
CA (BN1 
& BN2) 

Majority vote 
(decentralized) 
(M) 

Interactive 
with 
neighbours 
(N) 

All agents in a 
group use MLs to 
make decisions 
taking experience 
of others into 
account. The final 
decision on RP and 
CA is defined 
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through the 
majority vote (Fig 
1.d) 

M5: 
RP&CA 
(L-I) 

RP and 
CA (BN1 
& BN2) 

Leader (L) 
(centralized 
group)  

Isolated (I) Each agent group 
randomly chooses 
a leader who uses 
ML to make a 
decision. The 
leader decides in 
isolation without 
communicating 
with others; all 
group members 
mimic his decisions 
(Fig 1.e) 

M6: 
RP&CA 
(L-N)  

RP and 
CA (BN1 
& BN2) 

Leader (L) 
(centralized 
group) 

Interactive 
with 
neighbours 
(N) 

Each agent group 
randomly chooses 
a leader who uses 
ML to make a 
decision. The 
leader considers 
disease experience 
of others in his 
group and outside; 
all group members 
mimic leader’s 
decisions (Fig 1.f). 
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M7: 
RP(D-N), 
CA (In-
N) 

RP (BN1) 
as in M6 
  
  
 
CA (BN2) 
as in M2 

RP: Majority 
vote (M) 
(decentralized 
group)  
  
CA: Individual 
(In) 

For both RP 
and CA: 
Interactive 
with 
neighbours 
(N) 

Taking past 
experience of 
others into 
account, all agents 
in a group use own 
BN1 to decide if 
disease risks are 
real. The group 
members vote to 
evaluate the final 
risk perception for 
all group members 
(RP as in Fig 1.d). 
Everyone 
individually 
assesses own self-
efficacy regarding 
disease prevention 
actions (CA). They 
run individual BN2 
while considering 
past experience of 
others (CA as in Fig 
1.b). 

M8: 
RP(L-N), 
CA (In-
N) 

RP (BN1) 
as in M4 
  
 
CA (BN2) 
as in M2 

RP: Leader (L) 
(centralized 
group) 
  
CA: Individual 
(In) 

For both RP 
and CA: 
Interactive 
with 
neighbours 
(N) 

Each agent group 
randomly chooses 
a leader who uses 
ML to decide 
whether the 
disease risk is real 
(RP). The leader 
considers disease 
experience of 
others in his group 
and outside; all 
group members 
mimic the leader’s 
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RP decision (RP as 
in Fig 1.f). 
Everyone 
individually 
assesses own self-
efficacy regarding 
disease prevention 
actions (CA). They 
run individual BN2 
while considering 
past experience of 
others (CA as in Fig 
1.b). 

M7 and M8 are suggested here to evaluate the impact of group learning 
for coping decisions and whether there are any consequences or 
advantages on risk perception. 

6.2.3 Output Measures of the CABM Enhanced with 
Bayesian Networks 

To evaluate the impact of different types of individual and social 
intelligence on agents’ learning processes regarding risk perception and 
coping appraisal and the resulting disease spread patterns, we use four 
measurements: disease diffusion, risk perception, spatial patterns, and 
model performance. All will be discussed below. 

Disease Diffusion 

The epidemic curves, duration of infection, total cases, and peak days are 
the most common measures of disease diffusion. 

Epidemic curve is a graph representation of the distribution of infected 
cases over an epidemic period (Wilson and Burke, 1943). It is a useful way 
to assign the type of epidemic, calculate the difference between the 
minimum and maximum incubation period and determine the possible time 
of exposure. 

Having the real data, one can validate the simulations. The real dataset 
available for this study belongs to the outbreak of cholera in 2005. The 
cholera epidemic started in September 2005 and lasted three months. The 
period from September to December is the rainy season in Kumasi. We 
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don't know exactly on what day cholera emergent and ended but the first 
recorded date was 26.09.2005 and the last recorded cases were on 
12.12.2005. In addition, data were recorded in discrete time steps during 
that period, and contains cases of those whom visited the hospital and 
health centres in the region. However, if we compare the date of recorded 
cases in reality to the date in the simulated models, we will find that earlier 
dates are recorded in the simulation, since the model immediately registers 
the ill agents at the moment they caught the disease. Nonetheless, in 
reality, in most countries, the reporting systems of infectious diseases are 
deficient in their infrastructure, as well as time accuracy that requires 
attention and efficient care to improve them (Janati et al., 2015). 
Moreover, the delay in recording infected cases might be due to the ill 
people themselves, who are not going to hospitals or to physicians who 
are not aware of the importance of reporting cases accurately and rapidly 
(Reijn et al., 2011). This can also be the explanation for the rest of the 
values regarding the duration of infections and total cases. 

Risk Perception 

There is less known about the risk perception of infectious disease 
compared to other research fields, such as environmental risks (De Zwart 
et al., 2009). Data on risk perception is rarely collected in early stages of 
epidemics, especially in developing countries (Liao et al., 2017). Literature 
often reports the percentage of people who perceive risk after an epidemic 
is over (Yang and Cho, 2017). Some literature focused on other infectious 
diseases (Fritzell et al., 2018) and/or pays more attention to other factors 
of risk perception (Kim and Kim, 2018), while others are using online 
games to test the responses of people during epidemics (Chen et al., 
2013). Here, using the simulated data, we measure risk perception as the 
percentage of agents who perceived risk on a given day and plot this as a 
risk perception curve. We propose an assumption that the risk perception 
peak and epidemic peak should be correlated, which has been proven by 
literature even if the epidemic occurs outside the country (De Zwart et al., 
2009; Rübsamen et al., 2015; Zhao et al., 2018; Sridhar et al., 2016).  

Spatial Patterns 

We assess the accuracy of our eight models using 𝑅𝑅2,  which calculates the 
spatial distribution of infected cases in both real dataset and the outcomes 
of the simulations (Augustijn et al., 2016) to understand how well each 
model (with each type of learning) complies with the real number of 
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cholera cases per community. These were confirmed by bacteriological 
tests and were registered by the Disease Control Unit (DCU) in Kumasi 
Ghana during the epidemic of 2005. A simulation with 𝑅𝑅2= 1 indicates a 
perfect reproduction of the actual epidemic9. 𝑅𝑅2 is calculated by: 

 
𝑹𝑹𝟐𝟐 =  

∑ (�𝑮𝑮𝑮𝑮𝒔𝒔,𝒊𝒊 −  𝑮𝑮𝑮𝑮𝒔𝒔��𝑮𝑮𝑮𝑮𝒅𝒅,𝒊𝒊 −  𝑮𝑮𝑮𝑮𝒅𝒅�)𝒏𝒏
𝒊𝒊=𝟎𝟎

�∑ (𝑮𝑮𝑮𝑮𝒔𝒔,𝒊𝒊 − 𝑮𝑮𝑮𝑮𝒔𝒔)𝟐𝟐 ∑ (𝑮𝑮𝑮𝑮𝒅𝒅,𝒊𝒊 −  𝑮𝑮𝑮𝑮𝒅𝒅)𝟐𝟐𝒏𝒏
𝒊𝒊=𝟏𝟏

𝒏𝒏
𝒊𝒊=𝟏𝟏

 6-1 

Where 𝐺𝐺𝐺𝐺 is the relative percentage of diagnosed diseases per community, 
𝑠𝑠 refers to the simulation scenario and 𝑑𝑑 to the real cases of 2005. The 
index 𝑖𝑖 refers to community 𝑖𝑖 and 𝑛𝑛 is the total value of communities. The 
𝐺𝐺𝐺𝐺 is calculated by:    

 
𝑮𝑮𝑮𝑮 =  

𝑵𝑵𝑵𝑵𝑵𝑵𝑵𝑵𝑵𝑵𝑵𝑵 𝒐𝒐𝒐𝒐 𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄 𝒊𝒊𝒊𝒊 𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄
𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻 𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏 𝒐𝒐𝒐𝒐 𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄

 ×  𝟏𝟏𝟏𝟏𝟏𝟏 6-2 

The study area in our CABM consists of 21 communities. Eleven 
communities are completely inside the study area and the other ten are 
partially included. 

In addition, we will show maps, in which we present the spatial distribution 
of coping appraisal decisions type per community per model. This is to 
show the impact of input information and learning type on the decision 
that household agents take during the process of coping appraisal. 

Model Performance 

The CABM is implemented in Netlogo (version 5.2.0), BN1 and BN2 are 
coded using R statistical language. During each model run, household 
agents in Netlogo collect their BNs’ inputs (e.g. estimate pollution levels, 
retrieve own memory, check own health status, etc.), and call their BNs 
via the R extension of Netlogo. After processing the BNs, R returns the 
information on risk perception and disease coping strategies back to the 
agents in Netlogo. Here, we measure the time required for each model run 
to be completed as a measure of its performance. 

                                           
9 While we do have real data on recorded cholera cases in Kumasi’s 2005 epidemics, 
the data quality is far from perfect. It is likely to under-represent the extent of the 
epidemic. Still, this is the best of what exists in the context of a developing country.   
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6.3 Results and Discussion 
Given the stochastic nature of ABMs, we ran each of the eight models 100 
times, and for every 10 runs, a new synthetic population was generated. 
We report the average and standard deviation of the results across 100 
runs for each model for our metrics (Section 6.2.3) in Table 6-2. 

Models M5, M6, M7 and M8 record a longer duration of active infection 
during the epidemic (75-79 days), which is closer to the real duration of 
the epidemic in 2005 (75 days). M5, M6 and M8 apply centralized learning, 
while M7 applies decentralized learning, but only for risk perception. M2, 
which is individual learning with social interactions, also records a long 
duration when compared to the real data of 2005 (68 days in M2). 
However, isolated learning and decentralized learning for both risk 
perception and coping appraisal records lower values for duration of the 
epidemic, with an average difference of -25% of the real duration. 

All eight scenarios give more infected cases than the empirical data. This 
is because infection with cholera bacteria leads to a clinical spectrum that 
ranges from asymptomatic cases to symptomatic cholera cases. 
Asymptomatic cases are not reported but represent roughly half of all 
cases (Harris et al., 2008). In our simulations, we are not differentiating 
between symptomatic and asymptomatic, all infected cases are considered 
to be symptomatic cases. Therefore, for validation purposes, in Table 6-2, 
we reported that 57% of the total infected cases occurred in running the 
eight models, as has been assumed in (Harris et al., 2008). 

Table 6-2: Validation measures of the eight scenarios 

                  

M
easure 

   Scenarios 

 Duration 

(days) 

Total of 

infected 

 

Peak day - 

Epidem
ic 

Peak value - 

Epidem
ic 

Peak day - 

Risk 

 

Peak value - 

Risk 

 

Run tim
e 

(m
inutes) 

R2 

Real data (2005) 75 1621 42 181 N/A N/A 
90 

days 
1 

M1: RP&CA 

(In-I) 
value 55 2457* 35 232 88 501 85 0.65 

SD 2 195 1.3 30.12 1.9 103 3.1 

M2: RP&CA 

(In-N) 
value 68 2279* 35 209 38 481 95 

0.66 SD 0.6 113 0.96 18.4 2.3 98 1.1 

M3: RP&CA 

(D-I) 
value 58 3355* 37 345 90 501 90 

0.62 SD 3 402 2.5 83.2 0.4 233 2.7 

value 55 3149* 36 320 85 708 125 0.61 
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M4: RP&CA 

(D-N) SD 
1.8 268 0.97 60.4 1.7 265 4.2 

M5: RP&CA 

(C-I) 
value 79 2851* 37 215 44 676 26 

0.7 
SD 2.13 243 1.5 26.8 1.2 114 0.15 

M6: RP&CA 

(C-N) 

value 79 3071* 38 210 44 456 35 
0.64 

SD 3.8 105 2.4 41.7 0.96 198 2.1 

M7: RP(D-

N), CA (In-N) 

value 77 2911* 37 307 89 610 72 
0.61 

SD 1.65 78 1.62 14.5 0.92 122 3.2 

M8: RP(C-N), 

CA (In-N) 

value 75 2107* 37 136 44 462 45 
0.75 

SD 0.64 129 1.6 22 1.2 221 1.7 

(*) representing 57% of total infected cases 

M8, which uses centralized learning for risk perception and individual 
interactive learning for coping appraisal, reports the least number of 
infected cases (1840 against 1621 in reality), followed by M2 (individual 
social learning) with 2000 cases and individual isolated learning (M1) with 
2156 occurrences. These three values reflected the fact that when 
household agents learn to cope and make decisions individually, this is 
more efficient than being in groups. Moreover, when these decisions are 
combined with social interactions, they lead to better protection (M2 and 
M8). In general, group behaviour has a negative effect, although 
centralized groups have a less negative impact compared to decentralised 
ones. Finally, in M7, where household agents learn in decentralized groups 
for risk perception and individually, learn to cope, 2554 infected cases are 
recorded (Table 6-2). This is because their engagement in decentralized 
groups for risk perception guides them to less risk perception, which does 
not motivate them to change their behaviour to more protective 
alternatives. 

The R2 of M8 reports the closest spatial distribution of the infected cases 
over the communities (0.75) compared to the real data, followed by M5, 
with 0,7. 

The correlation between the peak of the epidemic and the peak of risk 
perception reflects on the responsiveness of the household agents’ risk 
perception to the epidemic. Scenarios M2, M5, M6, and M8 are more 
responsive. The peak of RP in M2 comes after three days of its epidemic 
peak, and the peaks in M5, M6, and M8 come after seven days of their 
epidemic peaks (Table 6-2). M1, M3, M4 and M7 show their peaks for risk 
perception approximately at the end of the simulation time. Individuals in 
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M1 are isolated, along with individuals in M3; therefore, they keep 
following their normal behaviour of fetching water and use it as it is. In M4 
and M7, household agents depend on majority votes in their groups to 
make their decision on risk and changing behaviour. More explanations can 
be found visually in next sections. 

In general, models with centralized learning require the shortest 
computation times. M5 records the shortest runtime (best model 
performance). This is because only the leaders in the centralised learning 
consult their BNs and they are isolated, which reduces the time required 
for calculations. On the other hand, M4 records the highest computational 
time due to intensive computations needed in two layers: individual 
agents’ layer and the decentralized group layer. 

6.3.1 Making Decisions Individually does not pay off 
In the M1 scenario, individual household agents evaluate the risk of 

getting cholera and make a decision relying only on their own experience 
(i.e. each has individual BN1 and BN2 and does not communicate with 
neighbours). Scenario M2 extends this stylized isolated benchmark case 
by assuming that while agents continue to make decisions individually, 
they do share information with neighbours about the perception of risk and 
protective behaviour (both BN1 and BN2 take the experience of neighbours 
as one of the information input nodes). Figure 6-3 shows the epidemic 
curves and the dynamics of risk perception in both scenarios. 

 
Figure 6-3: Epidemic curves (in red) and Risk perception curves (in green) for scenarios M1 and M2 

In the absence of social interactions, more agents became infected with 
cholera. The peak of the epidemic curve in M1 (In-I) is higher than that of 
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M2 (In-N), leading to 11% more disease cases (Figure 6-3 and Table 6-2). 
Overlaying risk perception and epidemic curves suggest that when agents 
make decisions in isolation (M1: In-I), the dynamics of risk perception is 
hardly realistic (Figure 6-3.a). Namely, when the epidemic is at its peak, 
household agents in M1 respond very slowly, with BN1 delivering a wrong 
evaluation of risk perception (Figure 6-3.a). However, they start to be 
aware of the risks very late: when the epidemic vanishes, the number of 
agents with risk perception = 1 keeps increasing. In the absence of 
communication and experience sharing among peers (In-I), information 
about disease spreads slowly and there is a significant time-lag between 
the occurrence of the disease and people’s awareness. The small stepwise 
increase, around day 21, is due to the fact that the media starts to 
broadcast information about the epidemic and that day. 

In M2, household agents behave according to the expected pattern, when 
RP first becomes amplified by the media and social interactions and then 
vanishes as disease cases become rare (Figure 6-3.b). Only those who 
experience cholera infection in their households remain alert. Household 
agents in M2 after day 21 have more responses to the media’s news 
compared to isolated agents. Media support their social interactions with 
their neighbours, which leads to more agents perceiving risk, especially 
when the number of infected cases increases and reaches its peak (Figure 
6-3.b). Still, even in M2, the limitations of making decisions about risk 
perceptions individually remain: RP falls too quickly, implying that people 
stop worrying about the epidemics despite the fact that it continues. 

Since household agents in M1 do not have interactions with other agents, 
running the model requires less time to complete compared to M2 (10% 
increase in performance, Table 6-2). The interaction between household 
agents requires time to process the information exchange between agents. 

In addition, both (In-I) and (In-N) are approximately the same in terms of 
realistic spatial distribution of infected cases over the communities, with 
values of 0,65 and 0,66, respectively (Table 6-2).  

In Figure 6-4, we presented the spatial distribution of decision types over 
the study area in both M1 (In-I) and M2 (In-N). The household agents in 
isolated learning are not aware of the cholera-infected cases in their 
neighbours’ household. Household agents in M1 are taking an unsecured 
decision and trust more on using the water fetched from the river as it is 
(D1 in Figure 6-4.a). Household agents in M2 are more rational and mostly 
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go for boiling the water that they fetched from the river before using it (D3 
in Figure 6-4.b). 

 
Figure 6-4: Spatial distribution of different coping appraisal decisions of scenarios M1 and M2; the 
size of the pie represents the size of household agents with RP = 1 over the community population 

6.3.2 Majority Votes is Imperfect 
In decentralized learning, groups of household agents vote for risk 

perception and coping appraisal. The final decision of the group is the 
output of the majority votes. Thus, all group members follow the final 
decision of the group. These groups represent the democratic system, 
which depends very much on the composition of the group. The 
decentralised groups with majority vote can lead to negative risk 
perception. Besides, the coping appraisal that depends on a majority vote 
leads to inappropriate decisions regarding protection from cholera. When 
individuals are engaged in social groups, their behaviours were not 
independent anymore (Zacharias et al., 2008). This leads to an increase 
in the randomization of decentralized learning models (M3 and M4), which 
can be seen in Table 6-2, with a higher standard deviation of these two 
models in all measures. 

The qualitative patterns of the three scenarios (M3, M4, and M7) is the 
same irrespectively of the social interactions that add new information to 
ML (Figure 6-5). For the development of the disease, the voting 
mechanisms seem to overwrite individual judgments. The M3 scenario 
assumed that household agents are isolated during the processes of risk 
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perception and coping appraisal. While both M4 and M7 are assuming that 
household agents communicate with neighbours during the process of risk 
perception and before making a decision, M4 and M7 provide higher risk 
perception compared to M3, as shown in Figure 6-5.b. This reflects that 
the social interactions still amplify the processes. 

 
Figure 6-5: Epidemic curves (in red) and Risk perception curves (in green) for scenarios M3, M4 and 
M7 

The epidemic curves in the three scenarios report more infected cases with 
approximately the same peak heights. However, M7 reports less infected 
cases, since household agents in their coping appraisal depend on 
themselves rather than their decentralised groups. Overall, all three 
models (M3, M4, and M7) during the process of evaluating the disease risk 
seem to get it wrong: risk perception slowly grows in the days when the 
epidemic is peaking (Figure 6-5.a, b, and c). It seems they are not reacting 
to the peak in any way, which looks unrealistic. Moreover, RP in the three 
models is continuously growing after the epidemics are almost over. The 
risk perception peaks when there is no longer a risk (last days as shown in 
Table 6-2). This is due to the impact of group members of household 
agents who experienced cholera in their household. Thus, their number 
increases over time, and they keep on voting for risk perception even when 
the epidemic is over. 

In M3, the small stepwise increase in risk perception represents the 
response to media, and it is similar in its developing to M1 (In-I) (Figure 
6-5.a). The household agents in their decentralized groups do not have 
contact with neighbours, and therefore, no cases are reported to them 
from their neighbourhoods. As such, they are disconnected from what is 
happening around them. 

In M4 and M7, where social interactions are included, the developing of 
risk perception seems more responsive, especially after day 21 and the 
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activation of media, although their response time is still slow (Figure 6-5.b 
and c). Here, in these models, the group decisions are very much 
dependent on the composition of the group member’s opinions, which vary 
from one another and have different information sources to connect for 
one final decision regarding risk perception (in both M4 and M7) and coping 
appraisal (M4). 

Therefore, the majority vote leads to unsecured decisions. Groups in these 
models are heterogeneous in terms of household agents having different 
opinions from the group members they vote with. Decentralized groups 
with isolated input information (M3) lead household agents to vote to use 
the water fetched from the river (D1) most of the time (Figure 6-6 map 
a). Because of their lack of communication with neighbours, household 
agents miss the opportunity of getting information about the infection in 
their neighbourhoods. This explains the high number of infected cases of 
these models compared to others. 

Social interactions in both M4 and M7 helped agents to make better 
decisions, although following the majority still impacts their choices. For 
instance, in high-income communities (upper communities in Maps b and 
c in Figure 6-6), household agents mostly use the water as it is even 
though they are rich enough to boil water before using it (D3) or buy 
bottled water (D4). Besides, the opposite also occurs when household 
agents with low incomes buy bottled water, which is an expensive decision 
for them. 

Thus, the process of coping appraisal in M4 may lead to the inconvenience 
of individual members. As such, all members should follow the final 
decision of their groups even though these decisions might not be good 
enough to protect them. The household agents need to find a balance 
between preventive behaviour and their capability to implement it. 
Moreover, there is always a possibility of routinely changing one’s mind 
based on daily updates of information regarding the epidemic and the 
status of the surrounding people. However, when following the majority in 
the groups, this possibility becomes less. 
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Figure 6-6 Spatial distribution of different coping appraisal decisions of scenarios M3, M4 and M7; 
the size of the pie represents the size of household agents with RP = 1 

In M7, the household agents depend on risk perception for their 
decentralized groups, which often leads to no risk perception (Figure 6-
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5.c). When they go for coping appraisal individually, more agents make a 
decision D1 (Figure 6-6.c). When they start to perceive risk during the last 
days of the epidemic, household agents make decisions D3 and D4 in the 
middle-income level and D2 for the low-income level, as can be seen in 
Figure 6-6.c. 

6.3.3 Impact of the Leaders 
The centralised groups represent the top-down scenario. In centralized 
groups, one household agent is randomly selected to be the group leader. 
The leader is responsible for risk perception and the coping appraisal of 
the group. The groups’ members copy the risk perception and decisions of 
the coping appraisal of the leaders. The groups’ leaders can help their 
groups to improve their performance if they model the appropriate 
responses to the situation their group faces (Zhao et al. 2018). In this 
article, we simulated the leader in two ways: as a dictator guiding the 
group (M5 and M6), and as an opinion leader who evaluates the risk of 
cholera and gives freedom to group members to select their own coping 
appraisal (M8). The three models have the same qualitative trends and the 
trends coincide with what is expected: peak due to amplification and 
gradual decrease (plateau) (Figure 6-7). The centralized group learning 
seems to represent the processes well, as the leader guides the group 
members and might help them to increase their effectiveness. Further, the 
leader brings them together to behave protectively. However, since no real 
data existed for risk perception and the correct behaviour of people during 
the epidemic, we cannot judge which model (M5, M6, and M8) is the best. 
In the following subsections, we will evaluate the three models if the leader 
is a dictator (M5, and M6) and if s/he is an opinion leader (M8). 

 
Figure 6-7: Epidemic curves and Risk perception curves for scenarios M5, M6 and M8 
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a. As a Dictator (M5 and M6) 
When the leader is a dictator, s/he gives the group members her/his risk 
perception value and tells them what to do for coping appraisal. The leader 
learns either isolated (M5) or interacting with her/his neighbour’s 
household agents (M6). The leaders in M5 are overestimating the risk 
perception (Figure 6-7.a). This is perhaps because the leader might have 
a bad experience with cholera, so s/he keeps warning the group. In either 
case, in the presence of social interactions (interactive with neighbours in 
M6), the uncertainty in the process of RP update is lower, i.e. around the 
epidemic peak compared to M5 (Figure 6-7.b). However, it is still 
responsive to the development of the number of infected cases. 

By examining Figure 6-8, we see the impact of dictator leaders concerning 
coping appraisal. Isolated leaders guide their groups to different types of 
decisions (Figure 6-8.a), and sometimes, to less secure decisions (D1). 
With interactive leaders, leaders seem to have more trust in their 
neighbours and to make the decision of walking to a cleaner water point 
over the river (D2) more often. Besides, dictator leaders also guide their 
groups to use the river water as it is (D1). Very few leaders direct their 
groups to boiling the fetched water (D3) and buying bottled water (D4) 
(Figure 6-8.b). 

b. As an Opinion Leader (M8) 
In M8, the leader in the centralised groups is responsible for evaluating 
the risk perception of their groups. The leaders contact their neighbours 
during the process of risk perception. For the coping appraisal, the group 
members make their own decisions, including input information from their 
social interactions. With this model, the least number of infections occur. 
The shape of the epidemic curve (except for its height) is very close to the 
real data of 2005 (Figure 6-7.c.). As in M6, in M8, the uncertainty in the 
process of RP is lower (Figure 6-7.c). The risk perception curve develops 
around the epidemic peak (Figure 6-7.c). 

When giving group members the opportunity to make their own decision 
for their coping appraisal, this leads to better performance and more 
preventive decisions. Figure 6-8.c shows the spatial distribution of different 
types of decisions during the simulation. More household agents go for D3 
and D4, which are considered to be the most protective decisions. In 
addition, communities have at least three types of decisions that reflect 
their heterogeneity. 
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Figure 6-8: Spatial distribution of different coping appraisal decisions of scenarios M5, M6 and M8; 
the size of the pie represents the size of household agents with RP = 1 
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6.4 Conclusions 
The decision to integrate learning in an ABM is often obvious. Yet, the 

way this learning is implemented receives less consideration. This paper 
illustrates that different implementations of individual and collective 
intelligence in agents’ behaviour lead to different model outcomes. 
Interactive learning, which assumes that agents share information about 
risks and potential protective actions, outperformed isolated learning for 
both individuals and in groups. This underlines the fact that the integration 
of social learning is very important in ABMs. 

We also saw that decentralised groups with majority votes were less 
successful compared to groups with leaders. When deciding about current 
risk perceptions, majority votes may not be the best mechanism of group 
decisions. Perceiving risk is a very personal decision making process 
(Brown, 2014). Therefore, when group members vote on their personal 
evaluation of risk, the majority arrives at a wrong decision. In contrast, 
when leaders give their opinions on risk perception, such groups perform 
better in terms of risk appraisal. Moreover, opinion leaders are even more 
effective and help their group members to make better coping decisions 
by giving them the freedom of making appropriate decisions compared to 
leaders-dictators or majority votes who impose a decision that all group 
members should follow. 

In our experiments, the structure of the groups is simple and is formed on 
the basis of spatial and socio-demographic characteristics of agents. Future 
research may focus on constructing groups based on different variables 
(family ties, religion, tribes). In our ABM the leaders have no particular 
knowledge but are randomly selected and assigned to the groups. In 
reality, this may not be the case, e.g. leaders may have access to better 
information or have already earned group’s trust and respect. In addition, 
decentralized groups can be improved by giving more weights to more 
trustable partners who make wiser decisions. 

We conducted experiments using ML for both risk perception and coping 
appraisal (M1 – M6) and for risk perception only (M7 and M8). The two-
tier social learning leads to very different results compared to the latter, 
indicating that the way learning is implemented is crucial. The 
implementation of BNs with interactive mode (social learning) improved 
the results in terms of total infected cases, type of coping decision, and 
the response to the development of the epidemic. This seems to be the 
most realistic strategy as decisions, in reality, are often made at interactive 
individual level (in this model – household agent). 
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The model’s performance can be a strong argument when the number of 
agents is massive, e.g. when simulating a pandemic and a very large 
population is needed to detect a worldwide diffusion mechanism. In this 
case, social group learning, as described in model M5, is a very good 
alternative to individual interactive behaviour. Further, it shortens the 
computation time by 73 %, while maintaining a good quality model output. 

The ultimate decision on which type of social behaviour to use can be 
steered by different considerations. In addition to the technical model 
performance metrics discussed here, the choice of a particular type of 
social behaviour can also be based on the type of society that is being 
modelled. Different political systems, the presence of tribes, different 
ethnic groups or religious leaders can be reasons to carefully consider the 
social interactions in a model. One should make sure that the actual 
situation regarding social learning is represented in line with existing 
cultural and social norms of the society being modelled. 

Within the scope of this article, it was not possible to define, which 
implementation (M1-M8) represents the situation in Kumasi most closely. 
To validate the risk perception-behaviour, one would need risk perception 
data for this area for the time of the epidemic. During this study, we 
discovered that this type of data is very scattered, not only for Kumasi but 
in general. As we illustrated in this study, technically, many different 
implementations of social behaviour using ML are possible, but data is 
needed to validate alternative implementations.  One of the major 
limitations of this research is the lack of empirical data on risk perception. 
We assumed that risk perception will grow during a disease outbreak. For 
this reason, we assume that the risk perception peak should proceed the 
fading out of the disease cases.  Research on risk perception during 
epidemics is often conducted too late (when the peak is over) or at distant 
geographic locations (not in the area where the disease spreads). Hence, 
it provides little empirical proofs on people’s behaviour and risk perception. 
More research on risk perception during epidemics, including other related 
variables, such as cultural aspects and group behaviour, can be very 
helpful in generating a model that represent a specific society realistically. 

Moreover, agent-based modelling software does not always include ML 
toolkits and libraries. This complicates the implementation of different 
types of social intelligence. Hence, a better integration of the domains of 
ABM and ML in one software package or linkable libraries can eliminate this 
problem in the future. 
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Finally, another important direction of future research is to implement 
other ML techniques besides BNs, such as decision trees or genetic 
algorithms. In addition, implementing groups with different ML algorithms 
may lead to different results since groups will be heterogenous in terms of 
members’ learning algorithms. Moreover, several developments in health 
research draw our attention to the implementation of learning in disease 
models. One is the fact that fake news and the impact it has on the 
behaviour of people. The other is the fact that human behaviour towards 
vaccination can change radically based on (fake) news items. Therefore, 
including these factors and testing the impact of them on behaviour of 
agents may help to draw more conclusion policy makers may consider to 
control epidemics. 
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Chapter 7: Synthesis, Conclusions and 
Future work 
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7.1 Synthesis and Conclusions 
Despite all the progress, modern societies are still vulnerable to a 

variety of threats: natural hazards, diseases turning into epidemics and 
technological disasters to name a few. Effective decisions have to be made 
under the conditions of uncertainty, with partial availability of information, 
and valuable resources or even lives at stake. Risk-related problems are 
complex and involve different actors who participate, interact, learn and 
need to adapt to constantly changing environments. While simulation 
models are often used to support policy decisions in risky contexts, many 
have a simplistic representation of behaviour and learning. This thesis 
focuses on agent-based models of socio-environmental systems and aims 
to explore the implications of a machine learning integration to represent 
adaptive behaviour on an agent level. Two sub-objectives serve as 
stepping stones to achieve this main research goal. Specifically, I seek (1) 
to provide insights into how ML algorithms can be integrated into ABMs 
developed to study SES dynamics, and (2) to explore the implications of 
learning, including social and spatial intelligence on the behaviour of 
agents facing risky choices. To address these sub-objectives, I performed 
a thorough literature review on the state-of-the-art practices of using ML 
algorithms in ABMs and systematically tested different implementations of 
BNs in a spatial ABM taking a cholera disease diffusion ABM as an example. 

Globally, millions of individuals are regularly exposed to deadly infectious 
diseases, which at times cause epidemics. Governments and international 
organizations do everything they can to curb epidemics, but they also rely 
on individuals for protective actions. Perceiving disease risk motivates 
people to adapt their behaviour towards a safer and more protective 
lifestyle. Indeed, risk perception is an integral part of the decision-making 
process under uncertainty and can be understood as an individual's 
evaluation of risk in a particular situation. In this thesis, I use a 
geographically explicit simulation model—the CABM (CABM)—which was 
developed initially with zero-intelligent agents (Augustijn et al. 2016). I 
systematically adjust the model to enhance it with ML and enable agents 
to learn about the disease risks and effectiveness of protective actions. 
Specifically, agents deal with uncertainty by assessing the risk of being 
infected with cholera using both spatial and social information and change 
their behaviour accordingly. Agents’ risk perception and coping appraisal 
are updated using ML algorithms, which continuously adjust the dynamics 
of agents’ beliefs and actions during a simulation. Given the type of 
decisions, availability of data and a variety of sources of information that 
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agents use to learn about risks, I chose BNs to advance the agents’ 
cognitive model in the CABM. I outline the main findings in line with the 
research questions posted earlier in this thesis. 

7.2 Answers to Research Questions 
Research Question 1: What is the state-of-the-art in employing 
intelligent agent learning in ABMs of SES?  

In Chapter 2, I reviewed 137 published articles presenting ABMs that used 
ML algorithms to enhance agents’ cognition. As many authors do not 
explicitly state the reason or added value of using ML algorithms, I wanted 
to reveal if this choice was perhaps driven by the type of intelligence they 
were seeking, the tasks agents had to perform or the fact that empirical 
data were available to be used in supervised learning. I differentiated 
among various tasks for which ML algorithms could be used: optimization, 
adaptation, negotiation and prediction. Learning related to risk perception 
and coping appraisal of protective actions falls under prediction and 
adaptation in this classification. Although spatial models had a small bias 
towards optimization and non-spatial models to adaptation, ML algorithms 
seem to be useful for a wide range of learning activities. The same 
conclusions could be drawn for the algorithms themselves. Different ML 
algorithms were used for the same type of tasks while the same algorithm 
was employed to support an intelligent judgement for different tasks. An 
object of learning in the reviewed ABM literature was mostly an individual 
agent rather than a collective one: examples of group learning were 
scarce. While I anticipated that data could be a limitation for the 
implementation of ML in ABMs, this seemed less problematic than 
expected. Modellers employing ML algorithms use a wide range of data 
sources, including survey data on stated preferences (a hypothetical 
choice), simulation data or expert knowledge. Interestingly, there were 
very few examples of mixed social and spatial intelligence when 
implementing learning at the agent level in ABMs of SES. 

Research Question 2: How can spatial and social intelligence driving risk 
choices be implemented in an ABM? 

To address this research question, I integrated psychological aspects of 
decision-making under risk into a spatial ABM using ML, as demonstrated 
in Chapter 3. The spatial CABM (Augustijn et al., 2016) used as a case 
study in this thesis initially had household agents that were not learning at 
all. First, I introduced simple rule-based learning, creating a benchmark 
spatial ABM that did not use machine learning. Second, I implemented BNs 
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algorithms for both risk perception and coping appraisal decisions of 
household agents to steer their adaptive behaviour. The BNs have replaced 
ad hoc rule-based schemes for individual reasoning under uncertainty. 
Hence, the intelligent agents became capable of sensing and reacting to 
the stochastic spatial and social environment. In addition, BNs constantly 
adjusted to the dynamics of agents’ own beliefs. 

CABM enhanced with BN1 for the threat appraisal was used to explore the 
spatial and temporal patterns of disease spread depending on varying risk-
communication strategies. What individual agents saw in their 
environment impacted their willingness to perceive risks and adapt to it. 
Because it is impossible to detect the presence of cholera bacteria in water 
visually, we assume that the safety of drinking water is assessed via the 
level of visual pollution at water collection points. The process of evaluating 
the visual pollution of the river water represented the spatial intelligence 
of household agents in CABM. Social intelligence was activated when 
combining information from various information sources, such as media or 
neighbours. Information about emerging disease risks (regarding the 
density of infected cases) and the effectiveness of risk-coping measures 
(how effective is the decision of treating river water) is transferred via 
social interactions. Their intensity impacts the awareness of cholera risk in 
the study area as well as the number of infected individuals. This was 
shown by running a sensitivity analysis on the number of contacts an agent 
has. With fewer social interactions, agents with intelligent risk perception 
are less likely to be aware of any cholera cases in their neighbourhood. 

The structure and the data used for the BN1 came from expert knowledge 
and a small survey to parameterize initial weights of the risk perception 
factors. Risk perception and the process of making a decision are complex 
processes combining spatial and social factors. However, because of the 
lack of data on individual risk perception of disease, few implementations 
are available that integrate ML for agents’ risk perception in ABMs. Little is 
known about spatial health risk detection and corresponding data records, 
especially in developing countries. This limitation is addressed by 
answering the next research question. 

 

Research Question 3: How can supervised learning of ML algorithms be 
implemented in ABM, given scattered micro-level data? 

In my thesis, the factors that influence individual risk perception were 
assumed to include: visual pollution of river water, memory on using a 
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particular water source before, media broadcasting of cholera news, and 
communication with neighbours living in the same community and fetching 
water from the same water point. These factors were represented as input 
nodes of BN1. I collected behavioural data on cholera risk perception to 
parameterize these factors in BNs in two ways: using a Massive Open 
Online Course (MOOC) and an online Google survey. In the MOOC, survey 
participants chose to use or not to use river water for drinking through 
judging its quality by the visual appearance (pictures). The Google survey 
collected information on the influence of individual risk factors on the 
willingness to use the river water without visuals using only a textual 
description of the water quality situation. The dataset coming from the 
surveys was presented in two chapters. In Chapter 4, the data were used 
to validate the outcome of BN1; and in Chapter 5 the data were used to 
construct and train BN1. 

The results of the model with BNs designed based on expert information 
resemble the data gathered from the surveys. This applies to agents who 
predicted risk through individual risk factors (e.g. only media attention, or 
only visual pollution) and also for agents that predict risk based on a 
combination of two or more factors (e.g. media attention and neighbour 
communication). In particular, communication, either with neighbours or 
media, leads to increased awareness for the survey participants as well as 
for the CABM agents. The similarity in trends indicates that ABM with the 
BNs, which are designed based on the expert knowledge and 
parameterized with data from the literature and the census data for 
Kumasi, is in line with the patterns observed in the survey. 

In Chapter 5, I demonstrated that the structure of a BN is the factor that 
least impacts the final outcomes. Parameterisation and the way the 
network was trained (before or during a simulation) played a more 
important role and had more impact on the final model outcomes. I also 
observed that training a BN prior to an ABM simulation run led to ‘overly 
intelligent agents’, with high risk perception at initialization that did not 
decline even in the absence of cholera reports. The choice between prior 
training and training during simulation runs is specific to the application. 
In my case, as the citizens of the study area had no previous experience 
with cholera, they were not prepared. For other applications, a certain level 
of risk awareness may be essential at the start of the simulation, 
demanding prior training of the BNs. Moreover, I found that risk perception 
differs spatially within the simulated city. This applies to the level of risk 
perception but also to the factors affecting it. This stresses the importance 
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of treating risk perception as a spatially heterogeneous factor. Agents with 
the expert-driven BN model guiding their beliefs (including risk perception 
and coping appraisal) provided the most balanced risk perception. The use 
of expert knowledge in the design and parameterization of the BN helps to 
avoid overfitting to a specific training dataset. It also enables direct model 
comparison because it computes a full posterior distribution of the BN of 
all risk factors (nodes). 

 

Research Question 4: How comparable are the results of an ABM with 
intelligent decision-makers to the one with zero-intelligent agents (i.e. 
rule-based learning)? 

To evaluate the difference in the integration of BNs in the CABM, I 
compared the outcome of the intelligent ABM with the result of the rule-
based cholera model (Chapter 3). I increased the level of intelligence 
gradually, moving from zero-intelligence agents to the intelligent 
judgements about risks (i.e. BN1 for risk perception only), and eventually 
to the intelligent judgements on both risk perception and coping appraisal 
(BN1 and BN2). When agents had no cognitive abilities and were not 
reactive, then the probability of becoming infected during a rainy period 
depended on the density of infected agents. However, enhancing agents 
with cognitive abilities for risk appraisal (BN1) reduced the total number 
of infected agents considerably. Agents were risk-aware and took a variety 
of precautionary actions based on their income class and education, ill 
individuals in their own and/or their neighbours’ households. Hence, fewer 
cases of infection occurred at the later stages of epidemics. The CABM 
enhanced with BN1 for the threat appraisal could be used to explore the 
spatial and temporal patterns of disease spread depending on different 
risk-communication strategies. 

The two-tier learning on both risk perception and coping appraisal (BN1 
and BN2) in CABM enabled agents to perceive risk, to acquire and to share 
knowledge via a social network about the effectiveness of various disease 
protection actions. In addition, it allows exploring the emergence of 
disease diffusion patterns tracing geographic, educational and income 
inequalities. Agents with two-tier BNs performed better than agents with 
one BN. Agents learn about the effectiveness of preventive measures and 
learn to recognize risks. The society as a whole makes healthier and more 
cost-effective choices. The total number of disease cases dropped by 90% 
of the original number of cases. The implementation strategy, in which we 
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apply both BN1 for risk awareness and BN2 for risk appraisal, 
outperformed the implementation with a single BN. 

Research Question 5: Given the reliance of ABMs on social interactions, 
what difference does the level of collective intelligence make when 
implementing ML algorithms in an ABM? 

 

In Chapter 6, I tested the influence of social learning on agents’ behaviour. 
Adaptive behaviour of agents was contingent on how well they learn about 
changes in disease risks and coping options, individually or in interactions 
with others. ML techniques could be instrumental for modelling risk and 
coping appraisal processes either as an individual or collective intelligence. 
The impact of different types of group learning compared with individual 
learning is an underexplored domain in disease modelling, and in ABMs of 
SES in general. 

By achieving this objective, Chapter 6 illustrated that different 
implementations of individual and collective intelligence in agents’ 
behaviour led to different model outcomes. Interactive learning, which 
assumed that agents share information about risks and protective actions, 
outperformed isolated learning for both individuals and groups. This 
underlined the fact that the integration of social learning is essential in 
ABMs. 

In addition, Chapter 6 showed that agents might be represented as 
members of local groups (small social networks), learning together and 
copying behaviour from other group members. Group learning can be 
realised by making all group members use their own ML algorithms to 
gather information to perform a specific task (decentralised), and then pool 
their opinions collectively by making one decision adopted by the entire 
group. Here, I used a ‘majority vote’ as the resolution mechanism in 
decentralised group decision-making. Alternatively, group learning could 
be realised by introducing one agent (an opinion leader or a dictator) who 
uses ML to learn for the whole group to help it accomplish its group task 
(centralised). Hence, I implemented the centralised group learning in 
CABM where agents in the group copied the decisions of their leader. In 
both cases, all agents that belonged to a group shared the same decision, 
but the information this decision was based on varied considerably. 

The decentralised groups with majority votes were less successful 
compared with groups with leaders. When deciding about risk perceptions, 
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which could vary a lot across heterogeneous households, the majority vote 
seemed to average potentially polarized opinions and arrived at a wrong 
decision. In addition, two types of leaders were presented: dictator leaders 
and opinion leaders. In groups with dictator leaders, the leader is 
responsible for risk perception and the coping appraisal of the group. The 
groups’ members copy the risk perception and decisions of the coping 
appraisal of the leaders. The leader guides the group members and might 
help them to increase their effectiveness and brings them to behave 
protectively. When opinion leaders share their assessments of risk 
perception with a group, such groups performed better regarding risk 
appraisal. Moreover, opinion leaders were even more effective than 
dictator leader groups in the coping appraisal. They helped their group 
members to make better coping-decisions by giving them the freedom to 
make appropriate decisions. Hence, collective intelligence implemented as 
a group with an opinion leader performed better than individual 
intelligence, leader-dictators or majority votes that imposed a decision that 
all group members should follow. We highlight that the implementation of 
collective intelligence should be aligned with the cultural norms and a 
possible hierarchy in a society that is being modelled. 

7.3 Innovative Contributions to Science 
This thesis contributes to the scientific efforts to integrate an ML 

algorithm into ABMs designed to study SES dynamics. The presented 
models, data and insights make a number of innovative contributions to 
science: 

Methodologically, this thesis for the first time provides a systematic test 
on the implications of alternative implementations of agents’ intelligence 
in ABMs of SES. First, I developed BNs that drive intelligent decisions of 
household agents regarding risk appraisal and behavioural change in 
coping strategies in a spatial ABM of cholera diffusion. Second, I presented 
the possibility of implementing learning in spatial ABMs with a small 
behavioural dataset via an innovative combination of implementing a 
double BN (one for risk assessment and one for coping appraisal) instead 
of a single BN driving the complete decision-making process. This allowed 
us to assess individually the factors included in the risk perception, and 
the decision agents made. In addition, this double implementation also has 
other advantages. It will allow the developer to replace one of the BNs with 
another ML algorithm, for example when either of the two steps is 
computationally more demanding or when a dataset is available for either 
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of the two steps. In our example, this would most likely be the coping 
appraisal step in the process. If empirical data are found of the preferences 
of individuals for certain water sources, it can feed an alternative coping 
appraisal. In addition, I showed the extent to which supervised learning of 
ML algorithms should depend exclusively on data, and the level of 
intelligence necessary for agents to mimic realistic risk perceptions. Third, 
I explored the impact of different types of group learning compared with 
individual learning on  SES-ABM dynamics. Rarely are the effects of 
alternative implementations of collective intelligence in ABMs on modelling 
results assessed, usually assuming that the group learning is 
computationally attractive. I evaluated the influence of individual vs. 
collective learning on an epidemic’s dynamics within a disease ABM by 
pursuing a quantitative test on the influence of agents’ ability to learn, 
individually or in a group. 

With respect to the application domain, the thesis went beyond the 
traditional representation of fixed behaviour responses in the risky context 
common for disease ABMs by explicitly modelling learning. In particular, I 
included dynamic risk perception in the CABM benefiting from the 
protection motivation theory from psychology that has been actively 
applied in health research to study cognitive processes and to predict 
health-related behaviour. Employing learning techniques to capture 
dynamics in risk perception and corresponding protective behaviour mimic 
the complex process of how humans act upon encountering risk. I 
illustrated that our spatial ABM with static behaviour and zero-intelligent 
agents led to a higher scope of contagion compared with the real situation, 
consequently leading to an overestimation of the prevalence of disease 
cases. Omitting the dynamics of cognitive processes on the agents’ side 
may lead to misguiding conclusions on the effectiveness of preventive 
measures. 

Bridging interdisciplinary gaps in understanding the learning 
processes—including both social and spatial intelligence—offers better 
modelling tools that could support policy decisions with a mix of response 
strategies that account for adaptive behaviour. The learning method 
developed within this thesis steers risk perceptions and risk-coping 
behaviour of household agents relying on a range of information sources 
and social interactions. In both, the sensing of information (global, from 
the spatial environment and from other agents), exchange of information 
(between agents), and processing of information (intelligent decision-
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making) are central. As the speed of information exchange increases, 
agents use social intelligence to learn from the experience of a larger group 
of individuals with respect to the safety of alternative water fetching points 
and potential preventive behaviours. Besides communication between 
agents, the timing of the media reports impacts public awareness and 
individuals’ precautionary measures. In addition, the thesis advances the 
implementation of spatial intelligence. Namely, it analyses the role of 
visual pollution in a particular location, which agents process using BN and 
which is supported by the original survey data. The spatial character of the 
judgement processes was also important when considering risk-coping 
alternatives because agents in different locations had access to certain 
water sources. 

7.4 Implications for Policy and Society 
This thesis focused on resolving methodological issues when 

integrating ABMs and ML algorithms. Even so, there are a number of 
implications of practical value that can be drawn from its conclusions. First, 
the experiments conducted with the CABM with intelligent agents test the 
impact of the timing of media attention (controllable by decision-makers) 
on the spread of risk awareness and epidemics dynamics. Because news 
media are among factors affecting risk perception and protective actions, 
the model could be further used to explore alternative communication 
strategies. This centralised communication strategy could be tested in the 
presence or absence of partial information–or even fake news–often 
spread via social networks. Other intervention methods, like garbage 
collection strategies, handing out bottled water etc., could also be 
considered. Ideally, the development of policy-oriented ABMs should go in 
participatory settings where policymakers could co-design assumptions 
and develop realistic intervention scenarios. 

Second, this thesis illustrated that alternative implementations of social 
intelligence would influence the validity of the disease ABM enhanced with 
ML. Specifically, majority vote and a leader-dictator CABM underperform 
compared with the opinion-leader implementation. This calls for the critical 
assessment on a model developer side when selecting an implementation 
for a particular context. Social and cultural norms prevailing in the society 
under study are crucial. Understanding this ‘soft’ aspect of society is 
necessary to select the correct individual or group implementation. 
Different political systems, the presence of tribes, different ethnic groups 
or religious leaders can be reasons to consider a particular type of social 
learning when formalizing it in a model. One should make sure that the 
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actual situation regarding social learning is represented in line with existing 
cultural and social norms of the society being modelled. 

7.5 Limitations and Future Work 
With all efforts spent on any project, there is always space to 

develop it further. The research questions of this PhD project have been 
answered by integrating BNs in the spatial ABM of disease diffusion. At the 
beginning of this project, there was little empirical data available on risk 
perception during cholera epidemics and corresponding behaviour. Given 
the nature of the learning tasks that agents pursued and the data, BNs 
were the best candidate for the implementation of risk perception and 
coping appraisal in the CABM. BNs can continuously adjust to the dynamics 
of agents’ beliefs. During this PhD research, I tested several different ways 
of implementing the BNs, including the impact of spatial learning and the 
impact of social learning via individual or collective intelligence. In addition 
to spatial, hydrological and socio-economic data used in our case study, 
this modelling effort could benefit further from disaggregated behavioural 
data. Currently, the BNs implemented in the CABM were updated based on 
information obtained via personal communication, media and visual 
observations of the environment. While we use data from the survey 
among students from developing countries to parameterize initial weights 
of BN nodes, this may not be fully representative of the population in the 
case-study area where the ABM was applied. Notably, the survey 
participants employed in this study were well-educated individuals from a 
variety of nations. This imposes limitations on making policy-relevant 
conclusions, although it allows us to test the fitness of ML algorithms 
implemented within a spatial ABM. 

Another interesting extension could be to test the learning behaviour of 
agents using another ML algorithm. ML algorithms that do not require 
extensive data for training and testing could replace BNs; for example, 
genetic algorithms, decision trees and Random Forest. Algorithms can 
differ in terms of intensity of training data, mathematical nature and the 
time required to learn and reach a stable state. Integrating different 
algorithms will help to evaluate which of the algorithms performs better 
within the same model. 

In all experiments, agents were heterogeneous in location and socio-
economic characteristics, which influenced inputs to the agents’ cognitive 
models. However, the cognitive model itself was homogeneous. In reality, 
some individuals are more risk averse than others, or more reluctant to 
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change their behaviour. This can be represented by different behavioural 
models. It would be very interesting to test different risk threshold levels 
and evaluate the impact on the risk perception curves. Currently, it is 
unclear if agents with a lower risk perception threshold learn faster and 
are more efficient in their coping appraisal. 

Moreover, in our experiments, we considered the media to be a 
trustworthy source of information. This might not be realistic. Fake news 
also has an impact on human behaviour. Human attitudes towards 
vaccination, for example, can change radically based on (fake) news items. 
Media can have a substantial effect on the opinion of an audience, either 
positively or negatively through scary stories (McCluskey and Swinnen, 
2011). People can easily be influenced by what is broadcast from media. 
Therefore, research on how media affects people is important to improve 
ABMs further. Including these factors and testing their impact on the 
behaviour of agents may help policymakers in their efforts to control 
epidemics and other disasters. 

Finally, ABM software does not always include ML toolkits and libraries. 
This complicates the implementation of different types of ML algorithms 
for agents’ intelligence. Better integration of the domains of ABM and ML 
in one software package or linkable libraries can eliminate this problem in 
the future. 
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Summary 
Complexity in human behaviour can play a crucial role in socio-
environmental processes like disease diffusion. An example of such 
complex behaviour is risk perception, and behavioural change due to 
perceived risk. Computational models, and in particular Agent-based 
models (ABMs), have evolved as tools for simulating complex real-world 
processes.  

ABMs for describing and simulating a system composed of behavioural 
entities, ABMs provide the most natural environment. ABMs often use 
naive deterministic algorithms, which are rule-based, to simulate 
behavioural change in agents. While agents in ABMs are sometimes 
endowed with memory, the actual learning in machine learning style is 
rarely implemented. The endogenous switching of expectations formation 
strategies using learning algorithm is underdeveloped in ABMs. 

The goal of my PhD research is to systematically test the effects of 
implementing social and environmental intelligence on the dynamics and 
emergent outcomes of spatial ABM. Spatial ABMs often use spatial data 
(GIS data) to construct real geographic environments in which agents are 
situated. Agents need to take changes in the spatial environment into 
account and adjust their behaviour accordingly. In this PhD research, 
intelligence, rational, and risk perception are playing an important role in 
the decision making of agents. Understanding the learning processes of 
agents in the spatial ABM can assist developing better strategies in 
problem-solving and coordination mechanisms. 

Learning algorithms allow for a richer agents’ architecture for 
operationalization of more realistic learning decisions beyond a simplistic 
treatment of agents’ cognitive and sensory capacities. Chapter two reviews 
recent spatial ABMs that employ different learning algorithms to create 
intelligent agents and steer their behaviour. We provide a systematic 
structured analysis of 1) the growth rate of integrating learning algorithms 
with spatial ABMs, 2) the reasons that motivate researchers to use learning 
algorithms in their models, and 3) the specific operationalization of agent’s 
decision-making for various tasks, and treatment of spatial environment 
in the design of learning algorithms. This chapter highlights the trends in 
the current practice of learning algorithms used to enhance ABMs, which 
social simulation modellers may rely on when designing their spatial ABM 
simulations. 
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Chapter three presents an innovative approach to extend agent-based 
disease models by capturing behavioural aspects of decision-making in a 
risky context using machine learning techniques. We illustrate it with a 
case of cholera in Kumasi, Ghana, accounting for spatial and social risk 
factors that affect intelligent behaviour and corresponding disease 
incidents. The results of computational experiments comparing intelligent 
with zero-intelligent representations of agents in a spatial disease agent-
based model are discussed. We present a spatial disease ABM with agents’ 
behavior grounded in Protection Motivation Theory (PMT). Spatial and 
temporal patterns of disease diffusion among zero-intelligent agents are 
compared to those produced by a population of intelligent agents. Two 
Bayesian Networks (BNs) designed and coded using R and are further 
integrated with the NetLogo-based CABM. The first is a one-tier BN1 (only 
risk perception), the second is a two-tier BN2 (risk and coping behavior). 
Our results emphasize the importance of integrating behavioural aspects 
of decision making under risk into spatial disease ABMs using machine 
learning algorithms. This is especially relevant when studying cumulative 
impacts of behavioural changes and possible intervention strategies. 

There is a difference between ABMs with pure social intelligence based on 
information exchange among agents and ABMs with integrated spatial 
intelligence. Spatial intelligence refers to the fact that agents sense their 
environment, perform a judgement on the condition of this environment, 
and change their behaviour based on this judgement. When spatial 
intelligence is used in ABMs, it often facilitates navigation (human or 
animal) or adaptation to land cover change. Less implementations are 
available for assessing risky situation engaging agents’ risk perception. In 
chapter three, agents evaluate changes in floating plastic debris in a river 
combined with personal information and media attention on cholera to 
decide which water source to use. In chapter four, data to validate the 
spatial intelligence was collected via two online surveys were run to gather 
data on people’s risk perception for cholera: MOOC survey (Geohealth 
online course) and Google survey (an online survey). While most of the 
questions were identical in the two surveys, there was one difference. In 
the MOOC survey participants chose to use or not to use river water for 
drinking through judging about its quality by the visual appearance 
(pictures shown). The Google survey collected information on the influence 
of individual risk factors on the willingness to use the river water without 
visuals using only textual description of the water quality situation. The 
risk perception of participants is questioned based on one factor and a 
combination of factors. Results from the survey confirm the fact that 
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people judge quality of water visually, but also show the strong influence 
of media on risk perception. 

Learning algorithms steer agent decisions in ABMs, serving as a vehicle for 
implementing behaviour changes during simulation runs. However, when 
training an ML algorithm, obtaining large sets of micro-level human 
behaviour data is often problematic. Information on human behaviour is 
often collected via surveys of relatively small sample sizes. Chapter five 
presents a methodology for training a learning algorithm to guide agent 
behaviour in CABM using a limited survey data sample. We apply different 
implementation strategies using survey data and BNs. By being grounded 
in probabilistic directed graphical models, BNs stand out among other 
learning algorithms in that they can be based on expert knowledge and/or 
known datasets. This chapter presents four alternative implementations of 
data-driven BNs to support agent decisions in CABM. We differentiate 
between training BNs prior to, or during the simulation runs, using only 
survey data or a combination of survey data and expert knowledge. The 
four different implementations are then illustrated using the CABM. The 
results indicate that a balance between expert knowledge and survey data 
provides the best control over the learning process of the agents and 
produces the most realistic agent behaviour. 

Adaptive behaviour of agents is contingent on how well they learn about 
changes in disease risks and about coping options, individually or in 
interactions with others. The impact of different types of group learning 
compared to individual learning is an underexplored domain in disease 
modelling, and in agent-based models of socio-environmental systems in 
general. Chapter six pursues a quantitative test on the influence of agents’ 
ability to learn – individually or in a group – on the disease dynamics. Our 
experiments illustrate that individual intelligent judgements about disease 
risks and the selection of disease coping actions are outperformed by social 
intelligence (individually or leader-based). While the majority vote 
performs poorly here. Importantly, the choice of a particular type of 
individual or group learning in agents-based models should account for the 
nature and cultural norms of the society, for which epidemics prevention 
strategies are being tested. 
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Samenvatting 
Complexiteit in menselijk gedrag kan een cruciale rol spelen in 
sociaalecologische processen zoals ziekteverspreiding. Een voorbeeld van 
een dergelijk complex gedrag is risicoperceptie, en gedragsverandering als 
gevolg van dit waargenomen risico. Computationele modellen, en met 
name op agenten gebaseerde modellen (ABM's), zijn geëvolueerd als 
hulpmiddelen voor het simuleren van complexe, realistische processen. 

ABM's gebruiken vaak naïeve deterministische algoritmen, om 
gedragsverandering te simuleren. Hoewel agenten in ABM's soms over 
geheugen beschikken, wordt het feitelijke leren in de vorm van zelflerende 
systemen zelden geïmplementeerd. Het endogene omschakelen van 
strategieën voor het formuleren van verwachtingen met behulp van 
leeralgoritmen is onderontwikkeld in ABM's. 

Het doel van mijn promotieonderzoek is om de effecten van het 
implementeren van sociale en ruimtelijke-informatie op de dynamiek en 
de emergente uitkomsten van ABMs systematisch te testen. Ruimtelijke 
ABM's gebruiken vaak omgevingsinformatie (GIS-gegevens) om reële 
geografische omgevingen te bouwen waarin agenten zich bevinden. 
Agenten moeten rekening houden met veranderingen in de ruimtelijke 
omgeving en hun gedrag dienovereenkomstig aanpassen. In dit 
doctoraatsonderzoek spelen intelligentie, ratio en risicoperceptie een 
belangrijke rol bij de besluitvorming van agenten. Het begrijpen van de 
leerprocessen van agenten in een ruimtelijke ABM kan helpen bij het 
ontwikkelen van betere strategieën in probleemoplossende en 
coördinatiemechanismen. 

Leeralgoritmen maken een rijkere agentenarchitectuur mogelijk voor het 
operationaliseren van meer realistische beslissingen dan een simplistische 
behandeling van de cognitieve en zintuiglijke capaciteiten van agenten. 
Hoofdstuk twee geeft een overzicht van recente ruimtelijke ABM's die 
gebruikmaken van verschillende leeralgoritmen om intelligente agenten te 
creëren en hun gedrag te sturen. We bieden een systematische 
gestructureerde analyse van 1) trends in het integreren van leeralgoritmen 
in ruimtelijke ABM's, 2) motiveren om leeralgoritmen in modellen te 
gebruiken, en 3) de specifieke operationalisering van de besluitvorming 
door agenten voor verschillende taken, en behandeling van ruimtelijke 
omgeving bij het ontwerp van leeralgoritmen. Dit hoofdstuk belicht hoe 
leeralgoritmen worden gebruikt om ABM's te verbeteren, en geeft een 
overzicht van de technieken die ontwikkelaar van sociale 
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simulatiemodellen kunnen gebruiken bij het ontwerpen van hun ruimtelijke 
ABM-simulaties. 

Hoofdstuk drie presenteert een innovatieve benadering om agent-
gebaseerde ziektemodellen uit te breiden door gedragsaspecten van 
besluitvorming vast te leggen in een risicovolle context met behulp van 
machinale leertechnieken. We illustreren dit aan de hand van een model 
voor het simuleren van cholera in Kumasi, Ghana. Dit model houdt 
rekening met ruimtelijke en sociale risicofactoren die van invloed zijn op 
intelligent gedrag en overeenkomstige ziekte-incidenten. De resultaten 
van computationele experimenten waarin een intelligent model wordt 
vergeleken met een model zonder leeralgoritmen worden besproken. We 
presenteren een ruimtelijke ziekte-ABM met agentengedrag, gefundeerd 
in Protection Motivation Theory (PMT). Ruimtelijke en temporele patronen 
van ziekteverspreiding onder nul-intelligente agentia worden vergeleken 
met die van een populatie van intelligente agenten. Twee Bayesiaanse 
netwerken (BN's), ontworpen en gecodeerd met R, werden verder 
geïntegreerd met het op NetLogo gebaseerde CABM model. Het eerste BN 
is een one-tier netwerk (BN1 - risicoperceptie), de tweede is een two-tier 
Bayesiaans netwerk (BN2 risico- en coping-gedrag). Onze resultaten 
benadrukken het belang van het integreren van gedragsaspecten van 
besluitvorming onder risico in ruimtelijke ziekte-ABM's met behulp van 
machine learning-algoritmen. Dit is vooral relevant bij het bestuderen van 
cumulatieve effecten van gedragsveranderingen en mogelijke 
interventiestrategieën. 

Er is een verschil tussen ABM's met pure sociale intelligentie op basis van 
informatie-uitwisseling tussen agenten en ABM's met geïntegreerde 
ruimtelijke intelligentie. Ruimtelijke intelligentie verwijst naar het feit dat 
agenten hun omgeving waarnemen, een oordeel vellen over de toestand 
van deze omgeving en hun gedrag veranderen op basis van dit oordeel. 
Wanneer ruimtelijke intelligentie wordt gebruikt in ABM's, vergemakkelijkt 
het vaak de navigatie (mens of dier) of aanpassing aan de verandering van 
landbedekking. Er zijn minder implementaties beschikbaar om de 
risicoperceptie van risicovolle situaties te beoordelen. In hoofdstuk drie 
evalueren agenten veranderingen in drijvend plastic afval in een rivier in 
combinatie met persoonlijke informatie en media-aandacht voor cholera 
om te bepalen welke waterbron te gebruiken. In hoofdstuk vier wordt 
ruimtelijke intelligentie gevalideerd door informatie te verzamelen via twee 
online enquêtes over cholera risicoperceptie : MOOC survey (Geohealth 
online course) en Google survey (een online survey). Hoewel de meeste 
vragen in de twee enquêtes identiek waren, was er één verschil. In de 
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MOOC-enquête kozen de deelnemers om rivierwater al dan niet te 
gebruiken door de kwaliteit van water te oordelen op basis van getoonde 
foto's. De Google-enquête verzamelde informatie over de invloed van 
individuele risicofactoren op de bereidheid om het rivierwater te gebruiken 
zonder beelden, waarbij alleen de tekstuele beschrijving van de 
waterkwaliteitssituatie werd gebruikt. De risicoperceptie van deelnemers 
wordt getoetst op basis van één factor en een combinatie van factoren. 
Resultaten van de enquête bevestigen dat mensen de kwaliteit van het 
water visueel beoordelen, maar laten ook de sterke invloed van media op 
risicoperceptie zien. 

Leeralgoritmen sturen agentbeslissingen in ABM's, en dienen als een 
hulpmiddel voor het implementeren van gedragsveranderingen tijdens 
simulatieruns. Bij het trainen van een ML-algoritme is het verkrijgen van 
grote sets gegevens over menselijk gedrag op microniveau echter vaak 
een probleem. Informatie over menselijk gedrag wordt vaak verzameld via 
enquêtes van relatief kleine steekproefgroottes. Hoofdstuk vijf presenteert 
een methodologie voor het trainen van een leeralgoritme voor het gedrag 
van agenten met behulp van een steekproef met beperkte 
enquêtegegevens. We passen verschillende implementatiestrategieën toe 
met behulp van enquêtegegevens en BN's. Door gegrond te zijn in 
probabilistisch gestuurde grafische modellen vallen BN's op tussen andere 
leeralgoritmen omdat ze gebaseerd kunnen zijn op expertkennis en / of 
bekende datasets. Dit hoofdstuk presenteert vier alternatieve 
implementaties van data-gebaseerde BN's ter ondersteuning van 
agentbeslissingen in CABM. We maken onderscheid tussen training van de 
BN's voorafgaand aan, of tijdens de simulatieruns, met alleen 
enquêtegegevens of een combinatie van onderzoeksgegevens en 
expertkennis. De vier verschillende implementaties worden vervolgens 
geïllustreerd met behulp van CABM. De resultaten geven aan dat een 
balans tussen expertkennis en onderzoeksgegevens de beste controle 
biedt over het leerproces van de agenten en het meest realistische gedrag 
van de agent oplevert. 

Adaptief gedrag van agenten hangt af van hoe goed ze leren over 
veranderingen in ziekterisico's en over coping-opties, individueel of in 
interacties met anderen. De impact van verschillende soorten groepsleren 
in vergelijking met individueel leren is een onderbelicht domein in 
ziektemodellering en in agent-gebaseerde modellen van sociaal-
ecologische systemen in het algemeen. Hoofdstuk zes voert een 
kwantitatieve test uit op de invloed van het vermogen van agenten om 
individueel of in groep te leren over de ziektedynamiek. Onze 
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experimenten illustreren dat individuele intelligente oordelen over 
ziekterisico's en de selectie van handelingsacties ter voorkoming van de 
ziekte worden overtroffen door sociale intelligentie (individueel of op 
leiding gebaseerd). Terwijl risico evaluatie en de keuze voor 
handelingsacties op basis van meerderheid van stemmen hier slecht 
presteert. Belangrijk is dat de keuze voor een bepaald type individu of 
groepsleren in agents-gebaseerde modellen rekening moet houden met de 
aard en culturele normen van de samenleving, waarvoor epidemiologische 
preventiestrategieën worden getest. 
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 ب كوردی و ب كورتی

می���دیا رێن و ب رێك���ا مالپ���ھ ینی مۆب���ایێلێن خ���و دك���ھماش���ھین تھدك���ھچ���اڤێن خ���و ڤھ روژان���ھ

ری جیھ�����انێ رانس�����ھس�����اتێن ج�����ودا ج�����ودا لسھر كارهن�����گ و باس�����ێن س�����ھھ�����ان دهجڤ�����اكی ده

و ژی نجام دچ���ن ئ���ھئ���ھمی ب���ۆ ئێ���ك ل���ێ ھ���ھ اتا ژێ���ك جودان���ھس���رێن ڤ���ان كارهگ���ھھدخ���وینین. ئ

زنن ی���ێن م���ھ رهس���اتێن ھ���ھكاره�ڤ ئێ���ك ژ وان خوش���یێن زویب���ھگی���انی وئ���ابوری. نھزی���انێن 

خوش����یان چ ج����وداھیێ �ڤ بون����ا نھل و�ت����ێن جیھ����انێ. ب����ھ دان دكۆژیی����ت رۆژان����ھب س����ھ

�ڤ نگ درێك��ا ب��ھئاس��تھ كی ئ��اكنجی ب��ن. یێ��ت بیت��ھر جھ��ھرا مرۆڤ��ان ل ھ��ھن��اڤ ب��ھ تناك��ھ

ك����و دام و  و ئیجرائ����اتێن پاراس����تنێ ن����ھئ����ھ خۆش����یا دگری����تر ڤ����ان نھێ لب����ھرێك���� ب����ونێ دا

�ڤ ب����وونێ و قورت����ال كرن����ا ژب����و ك����ونترول كرن����ا ب����ھھێن حك����ومی پ����ێ رادبی����ت زگ����ھده

ت بش����ێن رێنم����ا و یاس����ایێن ، و ژب���و حكوم����ھورال����ھ مران.ت بچی����ك و دان ع����ھلكی تایب����ھخ���ھ

 دابین كرن.  بھێنھ كنیكی پێتڤیھدروست دارێژیت، سۆفتوێر و مودێلێن زانستی و تھ

كرن����ا  ھش����تن و ش����روڤھن ژب����و تێگھرپرس دك����ھھاریكاری����ا جھ����ێن ب����ھ ھ����ھ ڤ م����ودێلێنئ����ھ

بجھئینان���ا س���یناریویێن ب���ۆ رب�ڤ، و خوش���یێن ب���ھنھ�ڤ بوون���ا نیا ب���ھواروی���دانێن ب���وری، چ���ھ

 كا داھاتی.ر رویدانھھھ

رێ ل رای خان���دنا م���ن ب���و ماس���تھرهری س���ھكالوریوس���ا زانس���تێن كۆمپیوت���ھخان���دنا م���ن ب���و بھ

تێن رهھش���تن و بن����ھژب����و دابی���ین كرن����ا تێگھ ردی ھاریكاری���ا م����ن كری���ھب���وارێ پێ���زانیێن ئ����ھ

ك یش����نا وهسێمیولھ ن ج����ورهو گرن����گ ی����ێن پێتڤ����ی ب����و چێك����رن و پێشئخس����تن ڤ����ا كیرهس����ھ

، چێك�������رن و ریكا زم�������انێن كۆمپیوت�������ھپرۆگرامك�������رن ب كوم�������ھ، كلگۆرتمێن زی�������رهئ�������ھ

ھاریكاری����ا م����ن  ل تێكنیك����ێن دن ی����ێن پێتڤ����ی. ڤ����ان ش����یانێن ھ����ھیس����ان، دگ����ھریا داتابھب����ھرێڤھ

ا. فریقیكێ ۆ�ت����ێ غان����ا ل ئ����ھكێ نس����اخیا ك����ۆلێرا ل ب����اژێرهمودێل����ھ برناژب����و پێش����ڤھ كرین����ھ

 لكێ وی ب�����اژێری ھاتی�����ھكێ ك�����ۆ خ�����ھب رێك�����ھپ�����ێش ئێخس�����تن  ھاتی�����ھ ڤ م�����ودێلێ ھ�����ھئ�����ھ

و  نبب����ھ ك مرۆڤ����ان ل واقع����ی ژیان����ا خ����و برێڤ����ھین وهلكی ش����یانێن ھ����ھركرن ڤ����ی خ����ھنوین����ھ

 ببیت. �ڤھنساخی بھ
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