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Abstract: The widespread use of biometrics and its increased popularity introduces
privacy risks. In order to mitigate these risks, solutions such as the helper-data system,
fuzzy vault, fuzzy extractors, and cancelable biometrics were introduced, also known
as the field of template protection. Besides these developments, fusion of multiple
sources of biometric information have shown to improve the verification performance
of the biometric system. Our work consists of analyzing feature-level fusion in the
context of the template protection framework using the helper-data system. We verify
the results using the FRGC v2 database and two feature extraction algorithms.

1 Introduction

More applications are using biometrics ranging from simple home or business applications
with a small and limited group of enrolled people (for example access control to buildings
or rooms) to large-scale systems used by an entire nation or even the entire world (for ex-
ample identity cards with biometrics or the electronic passport e-Passport). Unfortunately,
its widespread use increases the related privacy risks such as identity theft or activity mon-
itoring by cross-matching between biometric databases of different applications. However,
the field of template protection provides the technology that enables the mitigation of these
privacy risks by transforming the biometric template with a one-way operation in order to
guarantee the irreversibility property and by randomizing the biometric template that guar-
antees that multiple protected templates from the same biometric sample cannot be linked
to each other. In the literature, different types of technologies have been presented, for
example the Helper-Data Systems (HDS) [KGK+07, KSA+05, TAK+05], Fuzzy Vaults
[JS02, NJP07], Fuzzy Extractors [CR07, DRS04], and Cancelable Biometrics [RCCB07].

Besides the template protection developments, fusion of multiple sources of biometric in-
formation has shown to improve the verification performance of the biometric system. As
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described in [RNJ06], the basic principle of fusion is the reconciliation of evidence pre-
sented by multiple sources of biometric information in order to enhance the classification
performance. Furthermore, different sources of biometric information can be extracted
from the same biometric modality by: (i) capturing a sample of multiple instances (left and
right index fingerprint or iris) with the same sensor, (ii) using different types of sensors to
acquire a different biometric sample from the same instance, (iii) capturing several samples
using the same sensor and instance, and (iv) extracting dissimilar feature representations
of the same biometric sample using different algorithms. These cases are referred to as
the multi-instance, multi-sensor, multi-sample, and multi-algorithm systems, respectively.
Furthermore, the fifth type is the multi-modal system, which is the fusion of sources of
biometric information from multiple modalities, for example fingerprint, face, iris, voice,
palm or retina. To complete the summary from [RNJ06], the sixth type is referred to as the
hybrid system, which consists of a combination of the aforementioned fusion types. The
most common implementations of multi-biometric systems address fusion at the feature-
level, score-level or decision-level.

In the work of [NJ08], the Fuzzy Vault template protection system is used for applying
multi-sample, multi-instance, and multi-modal fusion. In case of multi-sample fusion,
they create a single mosaiced template from multiple fingerprint impressions from which
they construct the vault. For multi-instance fusion they take the union of the minutiae sets
of the left and right index fingers for constructing the vault. For multi-modal fusion, a fin-
gerprint and a iris sample are combined by concatenating the unordered minutiae set with
the transformed iriscode extracted from the fingerprint and iris samples, respectively. The
vault is constructed using the concatenated unordered set. The verification performance
has improved for all three cases as well as the claimed security.

Furthermore, the works of [KGK+07, KSA+05, LT03] based on the HDS template protec-
tion system inherently apply multi-sample fusion at feature-level by averaging the multiple
enrolment samples. However, no arguments are provided for applying feature-level fusion
instead of either score-level or decision-level.

Our work also consists of applying multi-sample fusion using the HDS, but we analyze
the performance improvements of fusion at feature-, score-, and decision-level fusion. We
use 3D face range images of the FRGC v2 dataset [PFS+05] and verify the performance
improvement on two recognition algorithms.

The outline of this paper is as follows. In Section 2 we briefly discuss the HDS system,
while in Section 3 we discuss the application of multi-sample fusion at feature-, score-,
and decision-level using the HDS system together with the experimental setup and results.
We finish with the conclusions in Section 4.

2 Template Protection Scheme

In the literature, many presented template protection schemes are based on the capability of
generating a robust binary vector or key from biometric measurements of the same subject.
This also holds for the HDS system we consider and is depicted in Figure 1. For the sake of
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Figure 1: The HDS template protection scheme.

coherence we use the terminology auxiliary data (AD) and pseudo identity (PI) proposed
in [BBGK08], which is in line with standardization activities in ISO [ISO09]. Within the
Bit Extraction module, a binary vector fB ∈ {0, 1}NB is extracted from the real-valued
representation of the biometric sample, f ∈ RNF . We use a single bit quantization scheme
based on thresholding and the reliable component selection (RCS) algorithm. We select the
NB most reliable components based on the estimated z-score of each component. With use
of the multiple (Ne) enrolment samples, the z-score is estimated as the ratio between the
distance of the estimated mean with respect to the quantization threshold and the estimated
standard deviation, see [KGK+07] for a more detailed description of the z-score estimation
and the quantization scheme. The index information of the selected reliable components
is stored as auxiliary data AD1.

The binary vector f e
B could be used as a key for any encryption purposes, however it is

not considered as being practical because of the high probability that it is not exactly the
same in both the enrolment and verification phase (f e

B = fv
B), due to measurement noise

and biometric variability that lead to bit errors. The number of bit errors is also referred to
as the Hamming distance dH(f e

B, fv
B). To deal with the bit errors, we use error-correcting

codes (ECC). The combination of the ECC with a cryptographic hash function forms the
scheme also known as the Fuzzy Commitment scheme [JW99]. In the enrolment phase,
a binary secret or message vector K ∈ {0, 1}kc is randomly generated by the Random-
Number-Generator (RNG) module. A codeword C of an error-correcting code is obtained
by encoding K in the ECC-Encoder module. As the ECC we use the linear block type
code “Bose, Ray-Chaudhuri, Hocquenghem” (BCH) [BRC60], which is specified by the
codeword length (nc), secret length (kc), and the corresponding number of bits that can be
corrected (tc), in short [nc, kc, tc]. Some practical BCH settings are provided in Table 1,
where the bit error rate (BER) is the ratio tc/nc. The codeword is XOR-ed with f e

B in order
to obtain auxiliary data AD2. Hence, f e

B should have the same dimension as C, implying
NB = nc. Furthermore, the hash of K is taken in order to obtain the pseudo identity PI.
Under the assumption that the bits of fB are independent, from [TG] we can use the secret

57



size kc as a measurement of the difficulty of guessing the enrollment binary vector f e
B

from the protected template {AD1, AD2, PI}, hence safeguarding the privacy. The larger
the secret size the more difficult it is to either guess f e

B or K from PI.

In the verification phase, a new biometric sample is taken and transformed into its binary
representation within the Bit Extraction module with help of auxiliary data AD1. The new
word C∗ is computed by XOR-ing fv

B with AD2, and for a genuine case it is expected
that C∗ is close to C. The candidate secret K∗ is obtained by decoding C∗ in the ECC-
Decoder module. Subsequently, the candidate pseudo identity PI∗ is computed by hashing
K∗. The decision in the Bit-Comparator module is based on whether PI and PI∗ are
bitwise identical.

The Bit-Comparator module outputs a match as its decision d only if PI and PI∗ are iden-
tical, which occurs when the number of bit errors between the binary vectors f e

B and fv
B is

smaller or equal to the error-correcting capability tc of the ECC. Thus, there is a match
when the Hamming distance is smaller than tc, dH(f e

B, fv
B) = ||f e

B ⊕ fv
B||1 ≤ tc. Therefore,

the fuzzy commitment scheme can be considered as a Hamming distance classifier with
threshold tc. Note, that the maximum number of bits that the BCH can correct t∗c is close
to 25% of the codeword length. In the remainder of the text, we indicate this limitation as
the ECC-limitation.

As a distance score s we use the number of bits that had to be corrected by the ECC
decoder. The candidate secret K∗ is encoded to its corresponding codeword Ĉ and is
XOR-ed with C∗ in order to obtain the error pattern e. The error pattern is equal to the
bit differences between the enrolment and verification binary feature vectors (f e

B ⊕ fv
B) as

follows
e = Ĉ ⊕ C∗

= Ĉ ⊕ (fv
B ⊕ AD2)

= Ĉ ⊕ (fv
B ⊕ (f e

B ⊕ C))
= (Ĉ ⊕ C) ⊕ (f e

B ⊕ fv
B)

= (f e
B ⊕ fv

B) if Ĉ = C,

(1)

where Ĉ is equal to C when there is a match, i.e. K and K∗ are equal. The distance score
s is thus the sum of the error pattern, hence equal to dH(f e

B, fv
B) and only a valid score

when there is a match, i.e. dH(f e
B, fv

B) ≤ tc. If the score is not valid we only know that
dH(f e

B, fv
B) > tc.

Table 1: Some examples of the BCH code given by the codeword (nc) and secret (kc) length, the
corresponding number of correctable bits (tc), and the bit error rate (BER) tc/nc.

nc kc tc BER = tc/nc

127 8 31 24.4%
15 27 21.3%

255 9 63 24.7%
21 55 21.6%

511 10 127 24.9%
31 109 21.3%

58



3 Experiments

In this section we present the methods for multi-sample fusion at feature-, score-, and
decision-level and empirically validate the best performance achieved at each level by
means of a biometric database and two feature extraction algorithms.

3.1 Experiment Setup

3.1.1 Biometric Databases

All the results in this work are obtained using the FRGC v2 dataset [PFS+05] containing
a total of 4007 3D shape samples from 465 subjects.

However, one of the two 3D shape recognizers we used could not successfully extract a
feature vector out of each sample, hence reducing the dataset to 3507 samples from 454
subjects. As the template protection algorithm works best at multiple enrolment samples,
the subset of subjects with at least 6 (5 as enrolment samples with at least one for the
verification) samples or more is created. This resulted into a subset of 261 subjects with
in total 2970 samples.

3.1.2 Feature Extraction Algorithms

The first algorithm is the shape-based 3D face recognizer from [GIA06] and is referred to
as Algo1. It has two main steps: 1) the alignment of faces, and 2) the extraction of surface
features from 3D facial data. In the alignment step, each face is registered to a generic
face model (GFM) and the central facial region is cropped. The GFM is computed by
averaging correctly aligned images from a training set. After the alignment step, we can
assume that all faces are transformed in such a way that they best fit the GFM, and have
the same position in the common coordinate system.

After alignment, the facial surface is divided into 174 local regions. For each region,
the maximum and minimum principal curvature direction are computed. Each of the two
directions is presented by the azimuthal and the polar angle in the spherical coordinate
system. Combining all the regions leads to a feature vector dimension NF = 174×2×2 =
696.

The second algorithm, Algo2, is a histogram-based feature extraction method. After the
pre-registration of the face data, a frontal view of the face model is obtained, where the tip
of the nose is at the origin in the Cartesian coordinate system. The distribution of depth
values of the normalized face model describes the characteristics of an individual facial
surface. In order to obtain more detailed information about the local geometry, the 3D
model is divided into several sub areas which are orthogonal to the symmetry plane of the
face. The features are extracted from the depth value distribution in each sub-area. The
feature vector dimension is NF = 476. A full description of this algorithm is provided in
[ZSBF08].
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For both feature extraction algorithms, the raw feature vectors they produce are used as
input of the template protection system as described in Section 2. Hence, no further signal
processing is performed.

3.1.3 Testing Protocols

The performance testing protocol consists of randomly selecting 50% (130) subjects as the
training set and the other subjects as the test set, this is referred to as the training-test-set
split. The template protection system parameters such as the quantization thresholds, used
within the Bit Extraction module, are estimated on this training set. Hereafter, the test set
is randomly split into an equally sized fusion-training and evaluation set containing around
65 subjects each. All the training needed for fusion is thus performed on the fusion-training
set and the reported performance is obtained from the evaluation set. From the evaluation
set, 5 samples of each subject are randomly selected as the enrolment samples while the
remaining samples are considered as the verification samples. This split is referred to as the
enrolment-verification split. The protected template is generated using all the enrolment
samples and compared with each verification sample.

The training-test-set split is performed five times, while for each split the enrolment-
verification split is performed five times. From each enrollment-verification split we mea-
sure the βtar (the false non-match rate (FNMR, β) at the targeted false match rate (FMR,
α) of αtar = 0.25%) and the equal-error rate (EER), which is the error rate achieved at the
operating point where both FNMR and FMR are equal. With use of the 25 measurements
we estimate the 95% confidence interval (ci) defined as ci = 1.96σEER/ (25) for the
EER case while using σβtar

for the βtar case, respectively. Note, that the splits are per-
formed randomly, however the seed at the start of the protocol is always the same, hence all
the splits are equal for the performance tests at feature-, score-, and decision-level fusion.
Hence, the splitting process does not contribute to any performance differences.

3.2 Experiment Results

3.2.1 Feature-level Fusion

Similar to the works [KGK+07, KSA+05, LT03], we average the Ne = 5 enrolment
samples before entering the template protection scheme. By averaging the samples the
measurement noise and the biometric variability are suppressed. Hence there will be less
bit-errors and the binary representation will be more robust.

The achieved performances for different nc settings are portrayed by the ROC curves in
Figure 2(a) and (b) for algorithms Algo1 and Algo2, respectively. Furthermore, the EER
and βtar details are given in Table 2. The table provides the ci for both EER and βtar and
their operating point provided as the relative Hamming distance (RHD). The right column
of the table provides the effective secret size |Kf | of the template protection system at
the specific fusion level. Because a single protected template is created at feature-level
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Figure 2: ROC curves at feature-level fusion for different nc settings for the (a) Algo1 and (b)
Algo2 algorithm.

fusion, |Kf | is equal to kc of the ECC. On the other hand, kc is determined by the tc
setting that leads to a α close to the target αtar, but smaller. This is exactly the ECC
setting with a BER just larger than the operating point in RHD corresponding to βtar.
Entries in the table indicated with quotes cannot be reached in practice because of the
ECC-limitation, however we are able to estimate them because of the Hamming distance
classifier assumption as discussed in Section 2. Entries with “x” can neither be reached
nor estimated.

Note that the ROC curves are limited because of the ECC-limitation. In order to reach
larger α and smaller β values it is required to tolerate and thus correct more bit er-
rors. However, the error correcting capability of an ECC is limited. From the results
we can conclude that both algorithms perform optimally at a codeword size of nc = 255.
These settings are used in the score- and decision-level fusion analysis. Compared to the
Algo2 algorithm, Algo1 has a better performance but a smaller secret size (see Table 2,
right column).

Table 2: The EER and βtar , and their ci and operating point for the individual algorithms Algo1 and
Algo2 at different settings of nc. The last column is the effective secret size |Kf | which is equal to
the secret size kc of the ECC at the operating point tc for achieving αtar .

nc EER RHD βtar RHD |Kf |
[%] [%] [%] [%] [bits]

Algo1
696 “3.76 ± 0.25” “38.8” “16.13 ± 1.93” “33.62” x
511 “3.69 ± 0.30” “35.2” “15.19 ± 1.79” “28.77” x
255 “4.02 ± 0.41” “27.5” 15.84 ± 2.10 19.61 21
127 4.88 ± 0.47 23.6 18.95 ± 2.01 14.96 29
Algo2
476 5.44 ± 0.35 22.1 37.69 ± 3.14 11.76 x
255 5.06 ± 0.30 10.2 30.25 ± 2.88 1.96 215
127 8.92 ± 0.33 3.9 89.57 ± 1.20 0.00 120
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3.2.2 Score-Level Fusion

A general implementation of the template protection system at score- or decision-level
fusion is depicted in Figure 3. A protected template is created for each of the Ne enrolment
samples. Note that the RCS quantization scheme as discussed in Section 2 uses multiple
enrolment samples in order to estimate the necessary statistics, hence we use all the Ne

enrolment samples to determine the NB most reliable components and is used as such in
each Ne template protection systems portrayed in Figure 3. Within the Score- or Decision-
level Fusion module the scores {s1, s2, . . . , sNe} are combined into a single fused score
sf from which the decision df is taken based on a score threshold. Note that a score is
valid only when there is a match from the corresponding template protection system and
occurs when si ≤ tc. Therefore we set the error-correcting capacity tc to its maximum
(t∗c ) in order to obtain a valid score for the largest range possible. Consequently, the secret
size used for each of the Ne protected templates is equal to nine bits and does not depend
on the score threshold. Hence, at score-level fusion the score threshold determines the
operating point of the ROC curve and not the ECC setting. Combination methods such
as the minimum (MIN), the maximum (MAX), and the mean (MEAN) of the scores are
used in order to obtain sf . For the MEAN method we take the mean of the valid scores
only, while the MIN and MAX methods are based on all the scores. We take the maximum
based on all the scores because if there is a single invalid score it should lead to a non-
match. Furthermore, for each method, if all the scores are not valid it will automatically
lead to a non-match.

The ROC curves at the optimal setting of nc = 255 are depicted in Figure 4 with the
details in Table 3. As a comparison, we included the ROC curve obtained at feature-level
fusion indicated as “FTR”. Because it suffices to guess a single f e

B from one of the Ne

protected templates to breach your privacy, the effective secret size |Kf | of the template
protection system at score-level fusion for each method is also nine bits. Consequently we
have omitted them from the table. The results indicate that taking the MIN method leads
to the best performance, however the difference is not significant when considering the
ci. Furthermore, the MIN method ROC curve is very close to the ROC from feature-level
fusion (FTR). Note that for the Algo1 algorithm it is not possible to estimate the EER for
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Figure 4: ROC curves at score-level fusion compared to the feature-level (FTR) curves for the (a)
Algo1 and (b) Algo2 algorithm.

Table 3: The EER and βtar , and their ci and operating point for the score-level fusion experiments
with nc = 255.

Method EER RHD βtar RHD
[%] [%] [%] [%]

Algo1, nc = 255

MEAN x x 16.45 ± 2.08 20.00
MIN x x 15.74 ± 2.09 19.61
MAX x x 19.48 ± 2.08 20.39

Algo2, nc = 255

MEAN 4.96 ± 0.28 10.6 31.46 ± 3.23 2.35
MIN 4.87 ± 0.30 10.2 29.90 ± 3.29 2.35
MAX 5.49 ± 0.29 11.4 33.49 ± 3.08 2.35

all the methods, because the EER is at an operating point greater than t∗c , hence there are
no valid scores.

We also observed that the ROC curves, especially for Algo2, are very similar. At further
analysis we discovered that the ROC curves converge to a single one when decreasing
nc. This can be explained as follows. When selecting the most reliable components many
enrolment samples from the same subject have an identical binary representation fB. For
example, for the nc = 255 case 75% of the enrolled subjects have no differences between
the binary representation fB of its Ne enrolled samples for the Algo1 algorithm and 92%
for the Algo2 algorithm, respectively. For the nc = 127 case, the likelihood increases to
99% and 100%, respectively.

3.2.3 Multi-Sample Fusion at Decision Level

Similar to the score-level fusion case a protected template is created for each Ne samples
and compared with the single verification sample. However, the Score- or Decision-level
Fusion module combines the decision {d1, d2, . . . , dNe} into a single fused decision df .
Methods such as the OR-rule, AND-rule, and majority voting (MV) are used in order to
obtain df . For the AND-rule method, all the decisions have to be a match in order for the
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Figure 5: ROC curves at decision-level fusion compared to the feature-level (FTR) curves for the (a)
Algo1 and (b) Algo2 algorithm.

Table 4: The EER and βtar , and their ci and operating point, and the effective secret size |Kf | for
the decision-level fusion experiments with nc = 255.

Method EER RHD βtar RHD |Kf |
[%] [%] [%] [%] [bits]

Algo1, nc = 255

AND “4.76 ± 0.40” “29.0” 19.48 ± 2.08 20.39 21
OR “3.95 ± 0.39” “27.1” 15.74 ± 2.09 19.61 21
MV “4.11 ± 0.44” “27.8” 16.62 ± 2.05 20.00 21

Algo2, nc = 255

AND 5.49 ± 0.29 11.4 33.49 ± 3.08 2.35 207
OR 4.87 ± 0.30 10.2 29.90 ± 3.29 2.35 207
MV 4.89 ± 0.28 10.2 30.78 ± 3.27 2.35 207

final one to be a match too, while for the OR-rule case only a single match leads to a final
match. For the MV method more than half of the decisions should be a match in order to
have a final match.

Again, it suffices to break a single protected template for the adversary to know f e
B, hence

the effective secret size |Kf | is equal to the secret kc corresponding to the ECC setting.

The experimental results are portrayed in Figure 5 with the performance details in Table 4.
As a comparison, we included the ROC curve obtained at feature-level fusion indicated as
“FTR”. From these results we can conclude that the OR-rule fusion method consistently
leads to a better performance, followed by the MV method, and the worst performance
is with the AND-rue method. However, the difference is not significant. Compared to
feature-level fusion results, the OR-rule methods leads to a similar ROC curve. The ROC
curves, especially for the Algo2 algorithm, are very similar due to the same reason as as
discussed in the previous section where it was noticed that the reliable binary representa-
tion fB is very similar for every Ne samples.
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3.2.4 Summary and Discussions

We have compared performances of multi-sample fusion at feature-, score-, and decision-
level. At the optimal setting of nc = 255 we do not observe a significant performance
differences between either feature-, score-, and decision-level fusion method. The effec-
tive secret size |Kf | is the same at feature- and decision-level fusion, and at its smallest at
score-level fusion. Taking into account that at score and decision level fusion a protected
template has to be made and stored for each Ne enrolment sample but only a single one
at feature level, we can conclude that the best multi-sample fusion method is at feature
level. For security and privacy reasons it is also not desired to store multiple protected
templates, which could facilitate the attacker with hacking the protected template and ei-
ther obtain the secret or the biometric data itself. Furthermore, a single protected template
has a smaller storage capacity requirement.

When carefully analyzing the score- and decision-level fusion results, we can also con-
clude that the MIN-score and OR-decision methods have precisely the same performance,
similarly for the MAX-score and AND-decision methods. The explanation for the MAX-
score and AND-decision case is that if the maximum score is a match it would imply that
all the other Ne − 1 scores are also a match, which is also the requirement for the AND-
decision fusion method. The MIN-score and OR-decision performance similarity can be
explained by the fact that both methods require at least a single individual comparison to
be a match in order for the final decision to be a match.

4 Conclusions

With this work we have shown that it is possible to apply multi-sample fusion with the
HDS system at feature-, score-, and decision-level. Because the HDS system inherently
has only a decision as the output, we adapted the system accordingly in order to have
a score as output for the score-level fusion. As a distance score we took the number of
bits the ECC had to correct. Furthermore, applying fusion with template protection at
feature- or decision-level is straightforward and conventional. However, fusion at score-
level is different due to the use of an ECC, which has a limited error-correcting capability.
Consequently, for each template protection system there is only a valid score when there
is a match.

Given the biometric database and feature extraction algorithms, our experimental results
showed that at the optimal setting of nc = 255 there are no significant differences be-
tween the best performance (ROC curves) obtained at feature-, score-, and decision-level.
Because at feature-level fusion only a single protected template is created, which is better
in terms privacy and security protection and storage, we can conclude that the optimal
multi-sample fusion is at feature-level.
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