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Abstract. This paper, investigates the feasibility of performing a robust numerical simu-
lation of the dynamics of vortex cavitation. An equilibrium cavitation model is employed,
which assumes local thermodynamic and mechanical equilibrium in the two-phase flow re-
gion. Furthermore, the phase transition does not depend on empirical constants in this
model. The computational method assumes a compressible flow together with appropriate
thermodynamic equations of state i.e. Tait’s equation for the liquid phase, a perfect gas
for the vapor phase, and an equilibrium model for the mixture phase. The unsteady com-
pressible Euler equations are employed using a cell-centered structured multi-block finite
volume scheme. The viscous terms are not taken into account, because the numerical is-
sues encountered are typically caused by (the discretization of) the inviscid equations. The
3D vortex cavitation simulations using a MUSCL scheme on an Arndt’s elliptic hydrofoil
are presented. The results show that the common MUSCL schemes are not well-suited
for such complex simulations. For an accurate representation of the cavitating flow, the
higher-order accurate Weighted Essentially Non-Oscillatory (WENO)schemes are consid-
ered. In order to avoid negative density and/or internal energy, the scheme must fulfill
the positivity-preserving property. The existing positivity-preserving approaches use limiter
functions to preserve the monotonicity of the solution near the discontinuities. It is well-
known that the limiter functions introduce considerable amount of artificial dissipation,
which is highly undesirable in vortex cavitation simulations. We propose a non-limiting
(no slope/flux limiters) positivity-preserving strategy for WENO schemes, which is rather
simple and computationally low-cost. Some 1D test case simulations with or without cav-
itation are presented to assess the developed positivity-preserving WENO aproach.

1 INTRODUCTION

Cavitation is an unsteady process which involves appearance and disappearance of
vapor cavities in a liquid. Vapor cavities appear in regions where the liquid pressure drops
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below the saturation pressure and afterwards disappear in regions with higher pressure.
There are many applications involving cavitating flows, some examples are in technical
applications such as pumps, turbines, ship propellers, fuel injection systems, bearings,
and in medical sciences such as lithotripsy treatment and the flow through artificial heart
valves. The appearance and disappearance of vapor regions of cavitating flows in hydraulic
systems may cause a number of problems. These include vibration and noise, surface
erosion in the case of developed cavitation, and deteriorating the performance of the
system such as lift reduction and increase in drag of a foil and loss of turbomachinary
efficiency. However, besides the harmful effects, cavitation is used in some industrial
processes to produce high pressure peaks and apply it for cleaning of surfaces, dispersion
of particles in a liquid, production of emulsions etc. Hence, to be able to control the effects
of cavitation, it is essential to understand the driving mechanisms of this phenomenon.

The aim of this paper is to investigate the performance of the different finite volume-
based discretization schemes for simulations of the dynamics of vortex cavitation. Due to
the presence of discontinuities between the different phases of the cavitating flow, a mono-
tonic reconstruction scheme is necessary in such simulations. It will be shown that the
Monotone Upstream-centered Schemes for Conservation Laws (MUSCL) 5 family of recon-
struction schemes are not well-suited for such simulations. To remedy this problem, a more
sophisicated approach based on the higher-order Weighted Essentially Non-Oscillatory
(WENO) 6, 7 reconstruction schemes are considered. Although the WENO schemes have
proven their robustness in many applications, it is observed that the WENO-based sim-
ulations for the cavitating flows fail near the large discontinuities between the different
phases. This is due to presence of very small numerical oscillations near the discontinu-
ities in WENO reconstruction schemes. These oscillations can result in negative values
of density and/or internal energy which cause the simulations to crash. To overcome this
problem, a positivity-preserving method must be used. The existing positivity-preserving
approaches 8, 9 use limiter functions in order to preserve the monotonicity of the solution
near the discontinuities. It is well-known that limiter functions introduce extra artificial
dissipation in simulations, which is highly undesirable in vortex cavitation simulations. We
develop a non-limiting (no slope/flux limiters) positivity-preserving strategy for WENO
scheme, which is rather simple and computationally low-cost. In order to assess the
method, first the Sod shock tube test case 11 is considered and the results based on the
developed positivity preserving WENO simulations are compared to the ones obtained
using the characteristic-wise WENO and MUSCL schemes. Next, the method is applied
to a 1D cavitating expanding waves test case 12, noting that the inspected non-positivity
preserving WENO schemes failed in these simulations. The results using the positivity-
preserving WENO approach are compared to the results of the MUSCL approach.

This paper is organized as follows. In section 2, the physical model is described includ-
ing the thermodynamic closure relations. Section 3 describes the discretization schemes,
followed by results in section 4.

2



Faraz Khatami, Edwin T. A. van der Weide and Harry W. M. Hoeijmakers

2 PHYSICAL MODELING

In order to perform numerical simulations of the flows with vortex cavitation, some
assumptions are used. To be able to capture the shock waves, the flow is considered
compressible. Based on the cavitation equilibrium model 1 which is used in this study,
the two-phase flow regime is assumed to be a homogeneous mixture of liquid and vapor.
Furthermore relative velocities between the liquid and vapor parts are neglected, and local
pressure and temperature equilibrium are assumed. In other words, the two-phase flow is
in mechanical and thermodynamic equilibrium.

Based on these assumptions, appropriate thermodynamic equations need to be intro-
duced to cover all the possible states. The equations of state must preserve the hyperbolic
nature of the resulting system of equations so that the pressure waves in the fluid can be
represented. When the viscous terms are neglected, the governing equations of motion for
the model described above are the Euler equations which in integral conservation form
are given by

∂

∂t

∫∫∫
Ω

U dΩ +

∫∫
Γ=∂Ω

~F (U) .n dΓ = 0. (1)

Here it is assumed that Ω is a bounded polygon domain in R3 with boundary ∂Ω, the
vector U denotes the vector of conservative variables, that is U = [ρ, ρu, ρv, ρw, ρE] and
~F (U) · n is the normal component of the inviscid flux vector in Cartesian coordinates

~F (U) .n =



ρû

ρûu+ pnx

ρûv + pny

ρûw + pnz

ρûH


, (2)

where û is the velocity normal to the surface Γ that is û = u · n. Furthermore H denotes
the total enthalpy

H = E +
p

ρ
= h+

1

2
u.u, (3)

where E and h are the total energy and specific static enthalpy, h = e+ p/ρ, respectively.
E is defined as

E = e+
1

2
u.u, (4)

where e denotes the specific internal energy.
The unknowns for the system of equations are {ρ, u, v, w, e, p, T}, To close the system

of equations two additional equations are needed, which are given by the thermodynamics,
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namely p = p (ρ, T ) and h = h (p, T ). These relations must be known for the liquid, vapor,
and mixture phases. In the following equations of state are given. The expressions for
liquid, vapor, and saturation densities are denoted by subscripts l, v, and sat, respectively.
An acoustic speed of sound formula is used in liquid and vapor phases as

c2 =

(
∂p

∂ρ

)
e

+
p

ρ2

(
∂p

∂e

)
ρ

. (5)

In the mixture phase, instead of the acoustic speed of sound the simplified Wallis formula
for speed of sound 13 is used as

1

ρc2
=

α

ρv,sat (T ) c2
v

+
1− α

ρl,sat (T ) c2
l

. (6)

This is to increase the stability of the numerical simulations 14.

2.1 Liquid phase

Following the studies which use the cavitation equilibrium model 1, 3 A modified Tait
equation of state is used which describes the liquid pressure in terms of density and
temperature

pl (ρl, Tl) = K0

[(
ρl

ρl,sat (Tl)

)N
− 1

]
+ psat (Tl) , (7)

where for water K0 = 3.3× 108 Pa and N = 7.15 are constants. An approximate caloric
equation of state, given by

el (ρl, Tl) = el (Tl) = Cvl (Tl − T0) + el0, (8)

is adopted which provides a good approximation 2. The constants in the above equation
with their corresponding values for water are defined as: Cvl = 4180 J kg−1 K−1, the
specific heat at constant volume, T0 = 273.15 K a reference temperature, and el0 =
617.0 J kg−1 a reference internal energy.

2.2 Vapor phase

The equations of state for the vapor phase are based on a calorically perfect gas model.
Therefore the corresponding equation for the pressure is

pv (ρv, Tv) = ρvRTv (9)

and the caloric equation of state can be expressed as

ev (Tv) = Cvv (Tv − T0) + Lv (T0) + el0, (10)

where the constants with their corresponding values for water vapor are defined as:
Lv (T0) = 2.3753× 106 J kg−1 the latent heat of vaporization, T0 = 273.15 K the reference
temperature, and Cvv = 1410.8 J kg−1 K−1 the specific heat at constant volume.
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2.3 Mixture phase

For the mixture phase it is assumed that the liquid and vapor phases are in mechanical
and thermodynamic equilibrium. The equation of state for pressure is considered by
taking the mixture pressure equal to the saturation pressure:

pl = pv = psat (T ) . (11)

The mixture density can be written as

ρ = αρv,sat (T ) + (1− α) ρl,sat (T ) , (12)

and the caloric equation of state for the mixture is defined by

ρe = αρv,sat (T ) ev(T ) + (1− α) ρl,satel (T ) (13)

where α is the void fraction of the vapor. The saturation parameters are functions of
temperature and are obtained via the following curve fits 15.

ln

(
psat (T )

pc

)
=

Tc
T

7∑
i=1

aiθ
âi , (14)

ρl,sat (T )

ρc
=

7∑
i=1

biθ
b̂i , (15)

ln

(
ρv,sat (T )

ρc

)
=

7∑
i=1

ciθ
ĉi , (16)

where ai, âi, bi, b̂i, ci, ĉi are constants (see 15 for the actual values). These functions are
valid for ranges of temperature Tr ≤ T ≤ Tc, where Tr, and Tc are the triple point and
critical point temperatures, respectively. The values of the constants used in the above
expressions are Tc = 647.16 K, pc = 22.12× 106 Pa, ρc = 322.0 kg m−3, Tr = 273.15 K.

Following 4, the precomputed multi-phase thermodynamic tables approach is employed
for the presented equations. Furthermore, the Phase-Oriented Interpolations in Transition
Cells (POITC) look-up procedure is used for data interpolations from these tables.

3 DISCRETIZATION METHOD

The governing equations (equation (1)) are solved using a cell-centered finite volume
approach on multiblock structured grids. Dividing the physical domain in a set of non-
overlapping non-deforming volumes Vi with boundary ∂Vi, and replacing the inter-cell
flux by a numerical flux H which is assumed to be constant over face Sij, the discretized
form of the equations for each volume at time level tn can be written as

∂Ūi

∂t
= −<i, (17)
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where

Ūi =
1

|Vi|

∫∫∫
Vi

U dΩ (18)

and <i is the spatial residual

<i =
1

|Vi|

NS,i∑
j=1

H (UL,UR,nij) |Sij| . (19)

UL and UR are the variables on left and right sides of the volume’s face and are determined
via the reconstruction technique.

In this paper both the MUSCL reconstruction schemes 5, and the Weighted Essentially
Non-Oscillatory (WENO) reconstruction schemes 6, 7 are considered (see section 3.1). For
the MUSCL scheme a MinMod limiter is used to guarantee the monotonicity property.
Additionally, the actual reconstruction variables are density, three components of velocity
and internal energy, i.e. {ρ, u, v, w, e}. This turned out to be a more stable reconstruction
than using the conservative variables {ρ, ρu, ρv, ρw, ρE}, because for the latter it cannot
be guaranteed that the internal energy is interpolated monotonically, which is crucial for
the stability of the method.

Using the reconstructed variables, the fluxes are computed by an approximate Riemann
solver. The solution based on the classical Riemann solvers for cavitation becomes much
too dissipative in low-Mach number flow regimes. To remedy this problem, a hybrid
HLLC/AUSM flux scheme 1 is used. In this approach, the mass flux is calculated based on
the HLLC scheme 16, and the pressure flux is determined based on the AUSM scheme 17.
For the numerical flux scheme H in equation (19), we use the hybrid HLLC/AUSM
scheme. Finally, for the time discretization, a third order accurate three-stage TVD
Runge-Kutta method 10 is used.

3.1 Weighted Essentially Non-Oscillatory (WENO) scheme

WENO schemes perform polynomial reconstructions in an adaptive stencil manner
such that using the local smoothness indicators of the solution, the smoothest solution
is automatically chosen to achieve a high-order accurate solution with no oscillations (or
very small) near the discontinuities.

3.1.1 A positivity-preserving WENO strategy

In order to describe the developed positivity-preserving strategy, we start by writing
the 1D Euler equtions in quasi-linear form

∂q

∂t
+ Aq

∂q

∂x
= 0, (20)
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where q = (ρ, ρu, ρE) are the conservative variables, and Aq is the flux jacobian matrix
with respect to the variables q.

In order to preserve the positivity, the properties of the logarithmic mapping and inverse
exponential mappings are used. Additionally, this approach works effectively only when
a characteristic-wise reconstruction of a carefully chosen set of variables is performed.
For the reconstruction variables, we choose a set of semi-logarithmic semi-conservative
variables Q = (ln (ρ) , u, ln (ρE)). Based on the variables Q, a transformation of the
equations 20 yields

∂Q

∂t
+ AQ

∂Q

∂x
= 0, (21)

where AQ is the transformed flux jacobian based on the variables Q. In order to perform
a characteristic-wise reconstruction of the variables Q, a decoupling of the system of
equations (21) is performed based on the transformed variables w = R−1

Q Q, with RQ the
matrix of the right eigenvectors of AQ. The resulting scalar equations are

∂w

∂t
+ Λ

∂w

∂x
= 0, (22)

where Λ is the diagonal matrix of the eigenvalues. Then, the WENO scheme is used to
obtain wi+1/2 face values. Through a reverse transformation, the semi-logarithmic semi-
conservative face variables Qi+1/2 = RQwi+1/2 are computed. Eventually, the original
conservative variables on the faces are computed from the computed semi-logarithmic
semi-conservative face variables as

qi+1/2 =

 e[ln(ρ)]i+1/2

e[ln(ρ)]i+1/2ui+1/2

e[ln(ρE)]i+1/2

 , (23)

for which the density and the total internal energy components always remain positive.

4 RESULTS

4.1 Sod shock tube test case

In order to assess the developed positivity-preserving strategy for WENO, the 1D Sod
shock tube test case 11 is presented. Since the solution based on the WENO scheme is
positive for this test case, the positivity-preserving property is not important. However,
this test case is used to compare the performance of the developed positivity-preserving
approach to the other schemes. The left and right initial conditions are (ρL, uL, pL) =
(1, 0, 1), and (ρR, uR, pR) = (0.125, 0, 0.1), respectively. Here ρ is density, p is pressure,
and u is the velocity. The heat capacity ratio is γ = 1.4.

The simulations are performed using 100 uniform grid cells and with a CFL number of
0.4. At a time t0, the diaphragm is removed and at t = 0.2[s] the exact solution and the
simulation results for density are shown in Fig. 1a. The simulations are performed using

7



Faraz Khatami, Edwin T. A. van der Weide and Harry W. M. Hoeijmakers

(a) (b)

Figure 1: Density plot for Sod shock tube, with MUSCL (+), characteristic-wise WENO5
(�), and the developed positivity-preserving WENO5 (o), at a time t = 0.2[s].

Figure 2: A schematic of the cavitating expanding waves tube.

the characteristic-wise MUSCL, characteristic-wise WENO, and the developed positivity-
preserving WENO schemes. Moreover, a 5th-order accurate stencil is used for the WENO
scheme which we refer to by WENO5. From Fig. 1b, it is observed that the WENO plots
are sharper near the discontinuities compared to the MUSCL plots. Additionally, the
positivity-preserving WENO plot has less undershoot compared to the characteristic-wise
WENO scheme.

4.2 1D cavitating expanding waves test case

The physical model in combination with the thermodynamic models and the spatial
discretization described in previous sections is tested for the 1D cavitating expanding
waves 12. However, the original conditions 12 are modified to suit for the current study
purposes. Initially, there is water at rest in a tube with a length of 6[m] (see Fig. 2),
and with initial conditions presented in table 1. A diaphragm in the middle of the tube
separates the fluids at both sides. At time t0, the diaphragm is removed and at the same
time the fluids on the left and right sides are pulled apart with the speeds of −50[ms−1]
and 50[ms−1], respectively. Consequently, cavitation is triggered in the middle of the tube.

The simulations are carried out using 600 uniform grid cells, and for a number of 800
time steps with a time step of ∆t = 2 × 10−6[s]. The employed discretization schemes
are MUSCL, a component/characteristic-wise WENO without the positivity-preserving
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p∞ T∞ ρ∞ c∞
[105Pa] [K] [kg m−3] [m s−1]

12.5 303.15 996.13 1539.6

Table 1: Initial conditions for the 1D cavitating expanding waves.

property, and the developed positivity-preserving method for WENO (a 5th order accurate
stencil is used for WENO). Due to negative density and/or internal energy problem in
characteristic/component-wise WENO scheme, the simulations using these schemes failed.
However, using the developed positivity-preserving approach, the simulations were carried
out successfully. The results based on the developed positivity-preserving WENO and the
MUSCL scheme are shown in Fig. 3.

(a) density (b) vapor void fraction

(c) pressure (d) velocity

Figure 3: (continued in the next page)
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(e) speed of sound

Figure 3: Plots for 1D cavitating expanding waves test case, with developed 5th order
accurate positivity-preserving WENO5 (o), and the MUSCL scheme (+).

The solution to this test case corresponds to two rarefaction waves running in opposite
directions. In the rarefaction wave, the pressure decreases rapidly to saturation pressure.
However, the vapor void fraction only changes in the zones where there is a velocity
gradient, and in the rest of the domain it remains equal to zero. This is because that
in the regions with zero velocity gradient, despite being in saturation state, there is
no mechanism available to provide the latent heat of evaporation in the mixture phase.
Here, such mechanism is only available by the kinetic energy reduction in the regions with
velocity gradients.

From these figures, it is visible that there are some differences in WENO results com-
pared to the MUSCL results. Fig. 3a and Fig. 3b show that the amount of cavitation in
MUSCL results is underestimated compared to the WENO results. A grid dependency
study (not included here) showed that the MUSCL results on finer grids converge to the
current WENO results. Moreover, Fig. 3c, shows that the WENO solution for pressure
is sharper near discontinuities compared to the one obtained using the MUSCL scheme.
Finally, Fig. 3e shows a more accurate representation of the speed of sound for WENO
results compared to the MUSCL results.

4.3 3D tip vortex cavitation on Arndt’s elliptic hydrofoil using the MUSCL
scheme

A test case for the unsteady 3D cavitating flow is the flow around an elliptic Arndt’s
hydrofoil 19, 20 at 7 deg AOA. Since the positivity-preserving WENO scheme has not
been extended to multiple dimensions yet, a MUSCL reconstruction scheme is employed.
An O-type grid, shown in Fig. 4a, is used consisting of approximately 1860000 cells.
Furthermore, a farfield boundary condition is used. The flow is from left to right, and
the free-stream conditions are shown in table 2. A cavitation number of σ = 1 is used in
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simulations. The free-stream velocity and pressure are taken with values higher than the
standard conditions (keeping the cavitation number constant), to accelerate the cavitation
cycles 2. Moreover, the simulations are carried out using a time step of ∆t = 1× 10−10[s].
The small time step is chosen for stability and in order to be able to capture all the
physical phenomenon. Additionally, an AUSM+-up for all speeds flux scheme 18 is used
in these simulations.

The initial solution for the unsteady cavitating flow is the steady, fully converged

(a) Computational grid (b) Vapor void fraction isosurface for α = 0.2

(c) Plane cut of pressure contours (side view) (d) Plane cuts of vorticity magnitude contours

Figure 4: Tip vortex cavitation simulations on Arndt’s elliptic hydrofoil for σ = 1, using
a computational grid of 1860000 cells, and a MUSCL reconstruction scheme.
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U∞ p∞ T∞ ρ∞ c∞ σ
[m s−1] [105Pa] [K] [kg m−3] [m s−1] [−]

50 12.5 293 998.7 1540.0 1.0

Table 2: Conditions for the cavitating flow around the Arndt’s hydrofoil at 7 deg AOA.

fully wetted flow solution obtained using the modified Tait equation, see section 2. The
simulation results are not discussed in detail. Only some specifically chosen plots from
different time instances are shown in Fig. 4, which are indicative of the performance of the
MUSCL scheme for vortex cavitation simulations. Fig. 4b, depicts the vapor void fraction
isosurface for α = 0.2. The figure clearly shows the cavotatopm in the tip vortex. In
the presented simulations, the cavitating vortex disappears very rapidly, whereas similar
experimental studies 20 show that the cavitating vortex should exist until the farfield of
the domain. This difference can be explained from the plots in Fig. 4d. This figure is a
plot of the vorticity magnitude contours at the tip of the hydrofoil. It is observed that
in a short distance downstream of the foil, the vorticity magnitude is decreased with a
rather high rate. These plots are indicative of the presence of high artificial dissipation in
the simulation results. One solution for this problem is to use a finer grid or to perform
adaptive grid refinements. However, this leads to an impractically large number of grid
cells. Moreover, the very small time steps (less than nano seconds) in such simulations,
would require extremely long computational times.

5 CONCLUSIONS AND FUTURE WORK

- The cavitation equilibrium thermodynamic model 1 following the thermodynamic
approach in previous work 4 is employed to model the cavitation.

- The 3D vortex cavitation simulations were performed on the elliptic Arndt’s hy-
drofoil, using the MUSCL reconstruction scheme. The results showed that MUSCL
reconstruction schemes are not well-suited for flows involving vortex cavitation.

- A more sophisticated approach based on the Weighted Essentially Non-Oscillatory
(WENO) schemes has been considered instead. However, to avoid the problems
with negative density or internal energy, the scheme must be positivity-preserving.

- A rather simple non-limiting positivity-preserving strategy for WENO scheme has
been developed. Since this scheme does not use any flux/slope limiter functions, it
does not introduce any excessive numerical dissipation.

- To assess the method, the Sod shock tube problem 11 and the 1D cavitating ex-
panding waves test case 12 were presented.

- The results showed the robustness of WENO schemes compared to the MUSCL
schemes.
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- For the cavitating test case simulations using the WENO scheme, the non-positivity-
preserving WENO schemes failed. However, the simulations were carried out suc-
cessfully using the developed positivity-preserving WENO scheme.

- Future work to be carried out is the extension of the developed positivity-preserving
scheme to multiple dimensions. Furthermore, the method will be extended to viscous
flows using the LES approach for modeling effects of turbulence and apply the
method to vortex cavitation.
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