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Abstract. In this paper, scientific species names from images of hand-
written species observations are automatically recognised and annotated
with semantic concepts, so that they can be used for document retrieval
and faceted search. Until now, automated semantic annotation of such
named entities was only applied to printed or digital text. We employ
a two-step approach. First, word images are classified, identifying ele-
ments of scientific species names; Genus, species, author, using (i)
visual structural features, (ii) position, and (iii) context. Second, the
identified species names are semantically annotated according to the
NHC-Ontology, an ontology that describes species observations. Inter-
nationalised Resource Identifiers (IRIs) are assigned to the elements so
that they can be linked and disambiguated at a later stage by individual
researchers. For the identification of scientific species names, we achieve
an average F1 score of 0.86. Moreover, we discuss how our method will
function in a semi-automated annotation process, with a fruitful dialogue
between system and user as the main objective.

Keywords: Deep learning · Ontologies · Taxonomy ·
Scientific names · Semantic annotation · Historical biodiversity research

1 Introduction

Handwritten material brought back from biodiversity expeditions is an impor-
tant source of information for naturalists and historians. An abundance of these
records is available for research [21]. Much of these data, however, remain com-
putationally inaccessible and difficult to explore [4]. This presents an interesting
challenge to both the field of information extraction and document retrieval. Sci-
entific descriptions or depictions of species observations carefully employ the sys-
tematic organisation of species variations. Thus, despite the often difficult nature
of the data - hard-to-read, multi-lingual, historical texts - document retrieval can
exploit the systematic organisation of the document content.
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Since the onset of field work in biodiversity expeditions, species observation
data have been manually recorded by researchers. Records are fittingly named
field books [15]. Starting from the first part of the 18th century, Linnaean tax-
onomy and binomial nomenclature was generally used for the classification and
naming of species [18]. Therefore, most historical field books found today in
musea and other institutions adhere to Linnaeus’s Systema Naturae [19]. Due
to a common system for the classification of organisms, historical species names
can potentially be referenced and compared to current ones, allowing researchers
to study the changes in biodiversity over time. However, transforming raw his-
torical biodiversity data to usable structured knowledge is still one of the main
challenges of historical taxonomy research [7,22].

In this work we use state-of-the-art techniques from computer vision and
semantic web technologies to (i) identify the elements of scientific species names
in handwritten document images, and (ii) link and structure the elements, using
an ontology for species observations. We use the MONK handwriting recognition
system [23] to segment the document images into single word images. Our main
contribution is the identification and semantic annotation of scientific species
names from word images containing handwritten text. We build on previous
work [27], where an ontology and software for semantic annotation of species
observation records was constructed and tested with domain experts. Here, we
advance these methods by automating the process of semantic annotation. Bio-
logical taxonomies, once extracted from field books, can be used by algorithms
aiming to exploit query expansion techniques, while it allows users to semanti-
cally query, or browse through, field book collections. As the species names are
structured via a controlled vocabulary that is well-used in the domain, extracted
species names can also be federated across collections.

2 Species Classification and Nomenclature

In the binomial nomenclature, scientific names consist of minimally two and
maximally four types of elements. The first type identifies the genus to which
the organism belongs. The second type is called the specific epithet, the specific
species within that genus. Commonly, the binomial is followed by the author
name, and the date when the name was published in literature. It is also common
for a name to have more than one author. Below in Fig. 1, an example of a
scientific species name from a field note is given; it dates back to 1821.

Species names are ambiguous due to evolving taxonomical systems, nomen-
clature and opposing views within the science of classification [12,18]. Therefore,
scientific names become valuable for scientific research when they are compared
to synonyms or homonyms from alternative classifications and their respective
meta-data. In the rest of this paper, we will use the term scientific name to refer
to, minimally, a genus and species tuple or genus, species and author triple.
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(a) (b) (c)

Fig. 1. A scientific name in binomial nomenclature: (a) Rhinolophus (genus) (b) javan-
icus (species) (c) Hasselt (author of the name: Johan Coenraad van Hasselt)

3 Related Work

Organisations and researchers that dedicate themselves to the preservation of
natural history collections, such as IdigBio1 or the Biodiversity Heritage Library
[9], continuously develop new methods to digitise specimen collections in a cost-
effective and sustainable way, in order to facilitate ongoing species research. The
automatic extraction of scientific names from text is essential for the manage-
ment of archival resources. Therefore, there are several examples of methods for
extracting and disambiguating species names from printed texts, but extract-
ing the same information from handwritten texts is much more of a challenge.
Taxongrab [13], for example, automatically extracts species names from printed
biological texts. The Biodiversity Heritage Library, that aggregates scans of bio-
diversity publications and field notes, indexes scientific names extracted from
the publications - printed text - in their collection, to improve accessibility for
taxonomists. They match the text, extracted via Optical Character Recogni-
tion (OCR), with the Taxonomic Name Server (TNS) to identify likely scientific
names [9]. They are not the only ones exploiting the power of automatic text
processing for the digitisation of natural history collections. Software has been
developed to parse OCR output of printed text to formalised Darwin Core2

entries for archival and retrieval purposes [10]. Drinkwater and others [8] inves-
tigate the aid of OCR in the digitisations of herbarium specimen labels, finding
significant increase in time effectiveness using OCR output to sort specimens
prior to database submission, and to add data to minimal database records.
They explicitly note that OCR is currently only possible for typed and printed
labels and not for handwritten text.

Handwritten Text Recognition (HTR) is one of the more challenging tasks
within the field of Document Image Analysis and Recognition (DIAR), mainly
due to the huge variety in writing styles and languages, paper degradation, over-
lapping words and historical handwriting. The recognition of named entities -
real word objects, such as: locations, persons, organisations - in handwritten text
can help document understanding and searchability of the text, and can poten-
tially aid handwriting recognition [5]. Formerly, Named Entity Recognition and
Classification (NERC) was a task solely used on digital text [17], but it has just
recently also been applied directly to handwritten text [1,5,25,28]. Especially
when few instances of words exist and a collection consists of many different

1 https://www.idigbio.org/.
2 http://rs.tdwg.org/dwc/.

https://www.idigbio.org/
http://rs.tdwg.org/dwc/
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handwritings and connected words, making it difficult to create character-based
representations, the identification of key words can help make the text search-
able, and potentially aid HTR. Moreover, in many cases, full-text transcriptions
of entire pages of field books are not required in order to make them digitally
accessible.

In this contribution, we develop a novel approach to identify domain specific
named entities, elements of scientific species names, in historical handwritten
document images. Rather than first transcribing the text and performing NERC
afterwards on the digital text, we exploit characteristics of the document images
to identify the named entities, using terms from the NHC-Ontology3 to clas-
sify and organise them. We argue that the ability to quickly index handwritten
document images based on scientific names, ranks and authors, helps users to
navigate through large collections of documents in online libraries, such as the
Biodiversity Heritage Library. It opens up possibilities for faceted search, seman-
tic querying and semantic recommendations. Additionally, maintaining a link to
the word image and its position in the full document image is important to allow
the repetition of image processing experiments as well as to allow researchers to
view the original document and therefore the extracted text in context.

4 Data

One of the main issues history of science and natural history researchers
encounter is the inaccessibility of natural history archival collections. Field
books, drawings and specimens are physically stored in museum collection facil-
ities or research institutes, hidden from external researchers and policymakers
interested in long-term developments of global biodiversity [7].

Table 1. Data set class count

Class Genus Species Author Other Total

y 0 1 2 3

n 177 167 144 17309 17797

Transcribed field books exist online, but (to the best of our knowledge) no
segmented and annotated images of handwritten species observations are avail-
able online for experimental research using image processing methods. Therefore,
word images from 240 field notes from a natural history collection have been seg-
mented and semantically annotated. This has been carried out in the context
of the project Making Sense of Illustrated Handwritten Archives [31].4 From
a field book on mammals, we selected field notes from four different writers, to
account for different handwriting styles and structures, ensuring a representative
3 https://makingsense.liacs.nl/rdf/nhc/.
4 http://www.makingsenseproject.org.

https://makingsense.liacs.nl/rdf/nhc/
http://www.makingsenseproject.org
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data set to demonstrate how the automated methods perform on heterogeneous,
real-world data. The segmented word images were obtained from a nichesourc-
ing effort, with the help of a handwriting recognition system MONK and a
group of domain expert labellers. The word images were subsequently manu-
ally annotated using four classes, as shown in Table 1. Two of four classes are
taxonomical entities. The third class refers to the publisher of the taxonomical
name, and lastly we have the class Other, which includes all words that do not
belong to any of the previously mentioned classes. The final counts of examples
per class are shown in Table 1. The process of labelling and annotating words is
time-consuming and, in our case, requires expert knowledge. Therefore, limited
training data is available. As machine learning methods generally require a very
large number of annotated samples, methods have to be adjusted to the data set
size to acquire a predictive model that generalises well. These adjustments are
described in Sects. 5 and 6. This is also one of the challenges of such projects;
to create an adaptive learning system with a generic method that learns from
small amounts of annotated data, but adapts to new data and performs better
over time when more data is annotated. The data set used in this work can be
found online.5

5 Scientific Name Extraction Model

Below we describe the methods that were used in this work. The full pipeline is
shown in Fig. 2, the blue rectangle indicating the scope of this work.

Segment Word images Classify Predictions

Annotate
Knowledge

base

Fig. 2. The full pipeline: automated semantic annotation of scientific names

We used the MONK handwriting recognition system, developed by
Schomaker, for word segmentation [3,23,29,30]. First, the system segments
handwritten document images into lines and second, relative to those lines, into
word zones that potentially hold words. The system allows the labelling, at the
word level, of word images by domain experts. It then uses these labels for

5 10.5281/zenodo.2545573.
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HTR. In this work, the word images were manually annotated using four seman-
tic concepts, or classes: genus, species, author and other. The classification of
each word image to its corresponding semantic class is discussed in Sect. 5.1. In
Sect. 5.2, we discuss the semantic annotation of the classified word images using
the NHC-Ontology6 for species observations.

5.1 Classification of Word Images

To classify the word images to one of four classes, we use three distinct features;
visual structural features, position and context. We chose to create one single
neural architecture, built with help of Keras [16], that could be trained end-to-
end, so that the classification error is only propagated once, in contrast to using
predictions from multiple classifiers and combining them after training to form
a single prediction. The final architecture is explained visually in Fig. 3, and will
be discussed below.

1024 hidden nodes4 hidden nodes

Auxiliary input Pretrained  Deep ConvNet, VGG16 

Main input

4 hidden nodes

Softmax activation

  LSTM, 256 cells

“Genus” “Species”

(rows, columns, channels) image (x,y) centroid (rows, columns, channels) image(x,y) centroid

1024 hidden nodes

Pretrained  Deep ConvNet, VGG16 

Main input

Auxiliary input

1024 hidden nodes

t = 1 t = 2

Softmax activation

1024 hidden nodes

  LSTM, 256 cells

Fig. 3. The MLP-CNN-LSTM architecture, “unrolled” for both time steps t.

Visual Structural Features. The feature detector that was used in this work
for the detection of visual structural features is a Convolutional Neural Network
(CNN) [14]. It has been shown that CNNs outperform other neural networks on
image recognition tasks [26]. The basic network used here is a deep CNN for
object recognition developed and trained by Oxford’s Visual Geometry Group
(VGG) and called the VGG network [26]. We use their configuration, with 16
convolutional layers, and import weights from the VGG, pre-trained on the Ima-
geNet task [6]. Previous work [20] has demonstrated that transferring image rep-
resentations with CNNs overcomes the problem of training with limited training
6 http://www.makingsense.liacs.nl/rdf/nhc/.

http://www.makingsense.liacs.nl/rdf/nhc/
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data, e.g., less than a few thousand training images, despite differences in image
statistics between the source data set and target data set. By, for instance,
training on the ImageNet task, the VGG model learns filters on various different
scales, which can be used as feature extractors for other types of images. These
features, extracted from handwritten documents with help of the convolutional
part of the VGG network, are used for training a simple Multi-Layer Perceptron
(MLP) on our task.

Position. In addition to visual features, the position of a word in a document
often provides a good descriptive feature for the recognition of a named entity.
The position is therefore often used as a feature in the field of NERC, however,
it has been used more often in text [17] than in images [1,5,28]. In this work,
we use the relative centroid of a word image’s position in the image as input
features to a simple MLP. Hence, each training example (x(i), y(i)), x(i) ∈ R

2,
where every xi lies within the interval [0,1], is used to train a simple MLP with
4 hidden layers. To train the entire model end-to-end, we concatenated the last
hidden layers of both models. The merged hidden layer therefore has a size of
1024 + 4 = 1028.

Fig. 4. Adjacency matrix that shows frequencies for word bi-grams (sequences of two
adjacent words). E.g., ‘genus’ was left of ‘species’ 91% of the time ‘genus’ was encoun-
tered.

Context. As a third feature type, we introduce context: the characteristics of
adjacent word images, specifically bi-grams. Figure 4 shows frequencies for word
image bi-grams. First, horizontal pairwise alignment was calculated for each pair
of word images (w(i), w(j)), w ∈ W , where i �= j. They were seen as horizontally
aligned if y

(i)
1 < y

(j)
c < y

(i)
2 , where y

(i)
1 indicates the first y coordinate of the

bounding box of w(i), y(i)2 the second, and y
(j)
c the y coordinate of the centroid

of w(j).
Second, the right neighbouring word of w(i) was retrieved by calculating all

pairwise vertical distances for the horizontally aligned words: distij = x
(i)
c −x

(j)
c ,

where x
(i)
c and x

(j)
c refer to the x coordinates of the centroids of w(i) and w(j).
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The smallest negative distance indicated right adjacency. The adjacency matrix
only takes into account instances that actually have an adjacent word, as it could
be that a word is surrounded by white space on every side.

As expected, the different classes have strong co-occurrence dependencies.
Therefore, we converted the data set to sequences of size two (bi-grams), and
added a last layer to the model architecture for sequence prediction. For an
adequate prediction we used a Bidirectional Long Short-Term Memory (BLSTM)
neural network, a type of Recurrent Neural Network (RNN) that implements a
memory node in order to learn long-term dependencies between features [24]. By
using the bidirectional variant of the LSTM [11], dependencies can be learned in
both horizontal orientations, see Fig. 3. This is beneficial for our work, as in the
bi-gram species-author, the identification of the ‘author’ class largely depends
on the visual characteristics of the word image left adjacent to it.

nc:taxon1 rdf:type dwc:Taxon

nhc:scientificNameAuthorship nc:author1

nhc:taxonRank nc:species

nc:author1 rdf:type foaf:Person

nc:anno1 oa:hasBody nc:taxon1

oa:hasTarget nc#image1.jpg#xywh=x,y,h,w

oa:hasTarget nc#image1.jpg#xywh=x,y,h,w

nc:anno2 oa:hasBody nc:author1

oa:hasTarget nc#image1.jpg#xywh=x,y,h,w

Listing 1.1. Example of a semantically annotated species name

5.2 Semantic Annotation of Word Images

The NHC-Ontology7 is an ontology for species observations, based on the Dar-
win Semantic Web (DSW) Ontology, and written in OWL.8 The ontology is
centered around the description of meta-data relating to the observation of an
organism, and allows a researcher to describe to which various taxon groups
an organism is identified by a researcher. The model uses the Web Annota-
tion Data Model9 to link bounding boxes of word images to their semantic
labels. In the examplary fragment above, listing 1.1, two images refer to a genus
and a species, which together constitute one taxonomical name nc:taxon110

of rank nc:species. They are linked to the publisher of the name with the
nhc:scientificNameAuthorship predicate.

7 http://makingsense.liacs.nl/rdf/nhc/, https://github.com/lisestork/nhc-ontology/.
8 https://www.w3.org/OWL/.
9 https://www.w3.org/TR/annotation-model/.

10 nc: is the prefix for the http://makingsense.liacs.nl/rdf/nhc/nc# namespace.

http://makingsense.liacs.nl/rdf/nhc/
https://github.com/lisestork/nhc-ontology/
https://www.w3.org/OWL/
https://www.w3.org/TR/annotation-model/
http://makingsense.liacs.nl/rdf/nhc/nc#
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6 Experiments and Results

To analyse the influence of the three features on the predictive performance of
the model, we conducted multiple experiments where we tested the performance
of the pre-trained CNN, MLP-CNN and MLP-CNN-BLSTM.

6.1 Experimental Methodology

Before training, the images were scaled by dividing them by 255 so that they
would fall within the range [0−1]. All images were re-sized to the average image
dimensions: y = 74, x = 139. No data augmentation was used. Based on hori-
zontal adjacency, as explained in Subsect. 5.1, image bi-grams were constructed,
sequences of l = 2, as input to the BLSTM.

The word images were shuffled, keeping together word images from the same
page, and thereafter split into a train and test set. As one word image could occur
in two bi-grams, we hereby avoid that word images from the test set were also in
the training set, which would bias the classification results. However, by shuffling
the pages, we still ensure that the model does not overfit to one writing style
or structure. We used 80% of the word images for training and the remaining
partition as test set, making sure that 20% of the scientific name elements were
in the test set. As classes in the word bi-grams were highly imbalanced, we
used random minority oversampling with replacement, to increase the counts
of samples from minority classes in the training data. When training a CNN,
oversampling is thought to be the best method to deal with imbalanced data
sets with few examples in minority classes, and appears to work best if the
oversampling totally eliminates the imbalance [2]. However, as we are dealing
with sequences rather than singular samples, we chose to oversample sequences,
e.g., species-author. Converted back to singular images, this would result in a step
imbalance with a small imbalance ratio p = ±1.1 rather than a large imbalance
ratio of p = ±16 [2].

The networks were all trained using the Adam classifier with a learning rate
of 10−4 and categorical cross-entropy loss. Each network was trained using early
stopping with patience 2, meaning that training was stopped when, for two
epochs, the validation error was increasing. Per epoch, the weights were only
stored if the predictive performance had increased compared to the previous
epoch. In the testing phase, thresholding was applied to the output of the net-
works to compensate for oversampling the data during training, as oversampling
alters prior probability distributions. One way to perform thresholding is to sim-
ply correct for these prior probabilities, by dividing the output of the network for
each class, then seen as posterior probabilities, by the estimated prior probabili-
ties. In our case, the imbalance was not completely eliminated, so the thresholds
were calculated as the ratio between the original class counts and those after
oversampling.

As a final step, the output of the model that performed best was used to test
the whole pipeline. Word images from the test set, that were classified as scien-
tific names, were assigned IRIs within the project’s namespace, e.g., nc:taxon1.
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The names were linked and semantically enriched using terms from the ontology
and transformed to the Resource Description Framework (RDF) format. The
code can be found online.11

6.2 Results and Discussion

Table 2 summarises the final classification results for each network. Due to a large
class imbalance, precision and recall were used to assess the predictive power of
the classifier. Reporting accuracies would be misleading, as they would portray
the underlying distribution rather than the predictive power of the model (if
the model would always predict ‘Other’, it would be a bad predictor for the
task, but the accuracy would be 93%, as the ‘Other’ class accounts for 93% of
the data). The table indicates that the BLSTM produced the highest average
F1 scores for each class. The addition of the BLSTM layer specifically increases
precision and recall scores for the author names. This makes sense; without
context these appear similar to regular words. The input of centroid data to
the network does not have an effect on the recall or precision of author names,
but does increase precision for the retrieval of species names. Figure 5 shows
4 images from the test set that were misclassified. While both the CNN and
MLP-CNN network misclassify most of the same word images, the output of the
MLP-CNN-BLSTM is quite different. Image (a) and (b) were both misclassified
by the networks without the BLSTM layer, but were correctly classified by the

Table 2. Classification results per network

Method Class Precision Recall F1-score Support

CNN Genus 0.80 0.78 0.79 36

Species 0.64 0.97 0.77 33

Author 0.78 0.78 0.78 32

Other 1.00 0.97 0.98 525

avg/total 0.82 0.77 0.80 626

+MLP Genus 0.85 0.81 0.83 36

Species 0.81 0.88 0.84 33

Author 0.78 0.78 0.78 32

Other 0.99 0.99 0.99 525

avg/total 0.96 0.96 0.96 626

+BLSTM Genus 0.86 0.89 0.88 36

Species 0.94 0.91 0.92 33

Author 0.78 0.88 0.82 32

Other 1.00 0.99 0.99 525

avg/total 0.98 0.97 0.98 626

11 https://github.com/lisestork/asa-species-names.

https://github.com/lisestork/asa-species-names
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final model. Image (a) for example, was classified as ‘Species’, while actually
being labelled as an author name. Visually, it resembles a species name; it is
underlined and appears in a similar position on the page. Without context of
other words it is challenging to correctly classify such images without proper
historical knowledge of the domain. Image (b) was misclassified as ‘Other’, but
correctly identified as an author name in the BLSTM model, most likely due to
the visual characteristics of the word image that is left adjacent. On the other
hand, image (c) and (d) are together misclassified as a species name and its
author by the BLSTM network, while they were correctly classified by the other
networks. Eyeballing the images, we see that they are adjacent and visually
resemble these classes (capitals, underlining).

(a) y = 2, ŷ = 1 (b) y = 2, ŷ = 3 (c) y = 3, ŷ = 1 (d) y = 3, ŷ = 2

Fig. 5. Four misclassified examples. Classlabels relate to those discussed in Table 1

In Table 3, we present retrieval scores for the identification of complete scientific
names from field book pages. A python script parsed the recognised species ele-
ments from the test set, and connected them together using the NHC-Ontology.
A total of 27 out of 36 species names were retrieved, with an F1 score of 0.86.
Interestingly, there were no false-positives among the final predictions. Figure 6
shows one of the correctly classified scientific names. The final RDF data set can
be queried through our online SPARQL endpoint.12

Table 3. Final classification results for the detection of scientific names

Method Class Precision Recall F1-score Support Total

+BLSTM Scientific names 1.0 0.75 0.86 27 36

(a) y = 0, ŷ = 0 (b) y = 1, ŷ = 1 (c) y = 2, ŷ = 2

Fig. 6. A correctly classified scientific species name: (a) Genus (b) Species (c) Person

12 http://makingsense.liacs.nl/rdf4j-server/repositories/SN, can be queried through a
query editor such as: https://yasgui.org/.

http://makingsense.liacs.nl/rdf4j-server/repositories/SN
https://yasgui.org/
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6.3 A Semi-automated Process

This work serves as a step within the development of an adaptive system, with
the MONK handwriting recognition system at its core [31], for the segmentation,
recognition and semantic annotation of handwritten words, named entities and
illustrations from historical biodiversity collections. Using labelling input from
domain experts, representations of the document images are learned in order
to generate new, machine learned, labels. Simultaneously, domain experts can
provide contextual knowledge on specific biodiversity expeditions from which
the annotation process can benefit. For example, named entities - such as author
names - can be used to pre-populate the knowledge base so that they can be
retrieved during the semantic annotation process. Moreover, domain experts can
link the - validated - automatically identified scientific names to word images
containing higher ranks, so that collections can be browsed using faceted search.

7 Conclusions and Future Work

In this work we show that we can accurately identify and classify components of
handwritten species observation records from different features: visual structural
features, position and context. We show that our methods are applicable even
though the data set contains four authors with different handwriting styles and
different processes of recording their species observations. A major challenge of
working with handwritten text is its irregularity. Our results show that we can
mitigate this challenge by building up multiple pieces of evidence for classifica-
tion by learning from multiple features. Each of the different features we examine
in our model adds information and improves the overall results. In addition, as
the results are extracted and structured in RDF as part of the process, they are
immediately available for search and comparison with other archives - historical
or present day.

The entire data set used for these experiments is part of the same expedi-
tion archive. Although we represent multiple authors and styles, the next step
would be to demonstrate the generic nature of our results by analysing biodi-
versity records from other expeditions. Once we establish that, we will extend
our methods to identify other common classes from biodiversity data, for exam-
ple, locations, dates and anatomical entities. In the context of the Making Sense
project, we aim to integrate the new methods with established methods for auto-
mated handwriting recognition, using the MONK system.

Acknowledgements. This work is supported by the Netherlands Organisation for
Scientific Research (NWO), grant 652.001.001, and Brill publishers.
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