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Abstract
Statistical descriptions of coherent flow motions in the atmospheric boundary layer have
many applications in the wind engineering community. For instance, the dynamical charac-
teristics of large-scale motions in wall turbulence play an important role in predicting the
dynamical loads on buildings, or the fluctuations in the power distribution across wind farms.
Davenport (Quarterly Journal of the Royal Meteorological Society, 1961, Vol. 372, 194-211)
performed a seminal study on the subject and proposed a hypothesis that is still widely used
to date. Here, we demonstrate how the empirical formulation of Davenport is consistent with
the analysis of Baars et al. (Journal of Fluid Mechanics, 2017, Vol. 823, R2) in the spirit
of Townsend’s attached-eddy hypothesis in wall turbulence. We further study stratification
effects based on two-point measurements of atmospheric boundary-layer flow over the Utah
salt flats. No self-similar scaling is observed in stable conditions, putting the application of
Davenport’s framework, as well as the attached-eddy hypothesis, in question for this case.
Data obtained under unstable conditions exhibit clear self-similar scaling and our analysis
reveals a strong sensitivity of the statistical aspect ratio of coherent structures (defined as the
ratio of streamwise and wall-normal extent) to the magnitude of the stability parameter.

Keywords Atmospheric stability · Atmospheric surface layer · Eddy structure · Spectral
coherence

1 Introduction and Context

Coherence quantities of atmospheric surface-layer (ASL) turbulence are of great practi-
cal significance to the wind-engineering community as these are required for determining
the dynamic action of atmospheric turbulence on wind-sensitive structures, such as tall
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buildings, long span bridges (Isyumov 2012), and wind turbines (Saranyasoontorn et al.
2004), or in predicting peak-power distributions across wind farms (Sørensen et al. 2007,
2008). Ground-breaking work on this subject was carried out by Alan G. Davenport and can
be found in Davenport 1961a, b, 2002, Simiu and Scanlan (1996), Pasquill (1971) and Baker
(2007). The particular aspect we focus on here is the degree and extent of the coherence
of wind fluctuations in the vertical direction, which is quantified via the linear coherence
spectrum

γ 2 (z, zR; λx ) ≡ |〈X (z; λx ) X∗ (zR; λx )〉|2〈|X (z; λx )|2
〉 〈|X (zR; λx )|2

〉 , (1)

where, X (z; λx ) = F [ψ(z)] is the Fourier transform of some fluctuating quantity ψ(z) and
λx is a streamwisewavelength. The vertical position is z, and zR denotes the reference position
usually taken close to (or at) the surface. The asterisk * indicates the complex conjugate, 〈〉
denotes ensemble averaging and || is the modulus. It is noted that the numerator equals the
square of the cross-spectral magnitude, while the two energy spectra of ψ(zR) and ψ(z)
form the denominator. Since γ 2 only incorporates the magnitude of the cross-spectrum, the
value of γ 2 represents the maximum correlation for a specific scale λx . Consequently, γ 2

equates to the fraction of common variance shared by χ(zR) and χ(z) and we note that, by
definition, 0 ≤ γ 2 ≤ 1. As indicated in Eq. 1, γ 2 generally is a function of the positions z
and zR and the wavelength λx (Note that we restrict the discussion to streamwise scales here
as, via Taylor’s hypothesis, this direction is the most accessible experimentally).

Davenport (1961a) hypothesised that the coherence is, (i) a function of the ratio Δz/λx

only, where Δz = z − zR , and (ii) used an exponential decay to fit the dependence. Such
a formulation is still widely used in the wind-engineering community to date (e.g., Baker
2007) and we will refer to it as Davenport’s hypothesis.

During the same era asDavenport, A.A. Townsendmade his impact in the field of turbulent
shear flows (Marusic and Nickels 2011), most notably with his attached-eddy hypothesis
(Townsend 1976; Perry and Chong 1982; Marusic and Monty 2019). A central tenet of
the attached-eddy hypothesis states that eddying motions in the logarithmic region of wall-
bounded flows are self-similar and that their size scales with their distance from the wall z. In
the context of the ASL, reference to the attached-eddy hypothesis has been made before, e.g.,
most recently by Li et al. (2018). Evidence in support of self-similarity and wall-scaling has
been reported throughout the boundary-layer community (see, for instance, Jiménez 2012;
Hwang 2015; Marusic et al. 2017) and most recently by Baars et al. (2017) who investigated
the vertical coherence of the longitudinal velocity fluctuations relative to a reference very
close to the wall.

Interestingly, it seems that, regarding the coherence, no cross-work exists between the
two respective scientific communities to which Davenport (wind engineering) and Townsend
(turbulent shear flow) belonged. To the authors’ knowledge, only Davenport himself noted
the early work of Townsend, as Davenport (1961b, p. 209) states: “Some of the possible
implications of this have been discussed by Townsend (1957).” In the present study we aim
to connect the progress made in these communities regarding the understanding of the self-
similar turbulent eddy structures in the ASL, as quantified by the coherence diagnostic. In
doing so, we will show that the geometrical self-similarity implied in Davenport’s hypothesis
is consistent with the attached-eddy hypothesis. Further, we will demonstrate that also the
functional form given in Eq. 2 agrees closely with a logarithmic dependence derived from
the attached-eddy model (Baars et al. 2017).

We start out by providing brief reviews of Townsend’s and Davenport’s hypotheses
(Sect. 2) and demonstrate their conformity. Subsequently, we describe high-fidelity veloc-
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ity and temperature data taken along the vertical direction in the ASL over smooth terrain
(Sect. 3). These data are used in Sect. 4 to infer the coherence statistics as a function of atmo-
spheric stability. Throughout, we only employ the fluctuating components of the turbulence
quantities; the streamwise (or longitudinal), spanwise and wall-normal velocity fluctuations
are denoted by u, v and w, respectively, with associated coordinates x , y and z. Temperature
fluctuations are denoted with θ , its mean by Θ.

2 Connecting the Hypotheses of Townsend and Davenport

2.1 Coherence Following Townsend’s Attached-Eddy Hypothesis

Townsend (1976) envisioned that a wall-bounded shear flow encompasses a range of self-
similar ‘attached eddies’. The terminology ‘attached’ thereby implies that turbulence statistics
scale with their distance from the wall, so-called z-scaling. The exact types of characteristic
eddies and whether they are truly attached is of secondary importance. The attached-eddy
description is applicable in the inertial region of the turbulent boundary layer, where the
scales range from O(100) viscous units ν/Uτ to the order of the boundary-layer thickness
δ. In practice, the inertial or ‘logarithmic’ region of the ASL occupies the range from order
of millimetres above the ground to O(100m) and therefore is highly relevant to all wind-
engineering applications. The ratio of the two length scales ν/Uτ and δ forms the friction
Reynolds number, Reτ ≡ δUτ /ν, where ν is the kinematic viscosity and Uτ = √

τ0/ρ is
the friction velocity, with τ0 and ρ being the wall-shear stress and fluid density, respectively.
Note that throughout the superscript ‘+’ signifies normalization by ‘inner’ scales ν/Uτ and
Uτ . A quantity analogous to the shear velocity, the wall conduction velocity, is given by
Θτ = −ε∂zΘ|z=0/Uτ , ε being the thermal diffusivity.

Here, we review key results of Baars et al. (2017), who examined two-point measure-
ments in the wall-normal direction for smooth terrain and well-controlled flow conditions.
Baars et al. (2017) considered ASL measurements taken at the Utah SLTEST facility
over salt flats at Reτ ≈ 1.4 × 106 (Marusic and Heuer 2007); further details on these
types of experimental campaigns to study high-Reynolds-number wall-bounded turbu-
lence can be found in the literature (Metzger et al. 2007; Hutchins et al. 2012; Wang
and Zheng 2016; Yang and Bo 2017). A wall-normal array of five sonic anemometers
was employed, situated above a wall-shear-stress sensor. This unique set-up made it pos-
sible to investigate the coupling between the outer-region turbulence and the near-wall
footprint in the fluctuating friction velocity. In most other cases only a near-wall veloc-
ity measurement is available, as will be considered later. The coupling of fluctuations
at different heights and scales was examined in spectral space using the linear coher-
ence spectrum defined in Eq. 1. One coherence spectrum is obtained per velocity-pair
u(zR)–u(z), where the height z ranges from z+≈3500 up to z/δ ≈ 0.03Reτ (corresponding
to physical dimensions of z = 2 to 5m, Marusic and Heuer 2007). Figure 1a shows the five
γ 2 spectra as a function of λx/z. Note that the streamwise wavelength λx has been com-
puted following λx ≡ U (z)/ f , where U (z) is the mean streamwise wind speed and f is the
temporal frequency.

A coherence spectrogram is formed by presenting the five individual coherence spectra
as iso-contours of γ 2 in the (λx , z) plane (Fig. 1b). The iso-contours increase in value with
increasing wavelength, and the contours follow lines of constant λx/z (slope of 1), reflecting
the collapse of the individual spectra in Fig. 1a. For reference, the energy spectrogram of
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Fig. 1 a Linear coherence spectra for the neutral ASL (Marusic and Heuer 2007). Five spectra correspond
to the five sonic-anemometers (darker shades of grey reflect increasing wall-normal distance). b Coherence
spectra of panel a presented as a spectrogram (red contours with levels 0.1:0.1:0.9 from left-to-right). The
premultiplied streamwise energy spectrogram is shownwith the underlying filled contours (grey contours with
levels 0:2:0:2:1.8). The figure is adopted from Baars et al. (2017)

the streamwise velocity fluctuations is shown with filled iso-contours underneath the γ 2

spectrogram. Energy is presented in premultiplied form kxφuu/U 2
τ , where φuu is the one-

sided power spectrum of u. Evidently, only a portion of the energy is statistically coherent
with the near-wall measurement (the portion of the energy residing below non-zero contours
of γ 2).

Figure 1 demonstrates that only increasingly larger scales remain coherent with zR when
z moves upward. This trend is consistent with Townsend’s attached-eddy hypothesis in the
formulation of Perry and Chong (1982), where a hierarchy of self-similar eddies is assumed
as sketched in Fig. 2a. Each consecutive hierarchy is subject to an arbitrary scaling factor χ .
Figure 2b shows an idealized wall-attached turbulent structure with wall-normal extent l and
streamwise scale Δx . In spectral space this relates to the aspect ratio A ≡ λx/z ∝ Δx/l.
When interpreting the coherence footprint of such a structure, it is important to recall that
the coherence metric relates signal contributions at the same scale λx ∝ Δx . In the present
application, this implies a parallelogram-like eddy structure as shown in Fig. 2b, for which
Δx is the same at all z. The widely observed phase difference in coherence metrics along the
vertical direction (e.g. Panofsky et al. 1974; Marusic and Heuer 2007; Chauhan et al. 2013;
Liu et al. 2017; Salesky and Anderson 2018) is equivalent to the inclination angle α of this
structure as indicated in the figure. However, our definition of the aspect ratio only depends
on Δx and l, i.e. the maximum wall-distance at which coherence at scale Δx is observed.
The aspect ratio A is hence solely determined by the magnitude of the coherence and is
insensitive to a phase shift (or inclination) between the turbulent fluctuations at z and zR .

The implications of the flow organization shown in Fig. 2a on the coherence spectrum
with reference at the wall (zR = 0) is depicted in Fig. 2c. For each eddy hierarchy, there
exists a minimum characteristic streamwise wavelength λx,i ≈ Δxi at which the structure
appears coherent. Since eddies within the same hierarchy appear randomly in space (or time)
(Woodcock and Marusic 2015), a non-zero coherence (and also turbulent energy) exists for
scales larger than λx,i within that hierarchy. Thus, for hierarchy i with a wall-normal extent
of χ(i−1)l, a non-zero contribution γ 2

i to the coherence occurs in the region z < χ(i−1)l and
λx > A ·χ(i−1)l. The magnitude of γ 2

i may vary with λx and z, but for simplicity we assume
a constant magnitude represented by a uniform grey scale per the γ 2

i iso-contour in Fig. 2c.

123



Vertical Coherence of Turbulence in the Atmospheric Surface…
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Fig. 2 a A hierarchical range of self-similar wall-attached turbulent eddy structures; for the purpose of this
sketch, an arbitrary self-similar scaling factor of χ = 1.5 is chosen; b Illustration of the eddy geometry. The
thick blue line represents the parallelogram-like shape implied by the fact that the linear coherence considers
the same wavelength at different z. The structure inclination angle α can equivalently be expressed as a phase
shift Δt between signals at different wall-normal locations. c Filled iso-contours of γ 2 coherence of four
discrete hierarchies (one grey shade per hierarchy i = 1, ..., 4), relative to a very near-wall reference position
zR . d Portion of the wall-reference-coherence spectrogram that survives when zR is placed at an arbitrary
position in the logarithmic region (blue shaded contours)

Our conclusions, however, remain unaffected by eventual variations in γ 2
i as long as these

remain self-similar across hierarchies as implied by the self-similarity of the underlying eddy
field. The full coherence spectrogram finally results from superposing the contributions of
all hierarchies as reflected by increasing grey scales of the superposed transparent rectangles
in Fig. 2c. Within a triangular region in (λx , z) space, bounded by a minimum wall-normal
height z = l, a constant λx/z limit (at small wavelengths) and a constant λx limit (large
wavelengths), the γ 2 iso-contours align with lines of constant λx/z. Within this region, the
magnitude of γ 2 increases linearly with ln(λx ) (for constant z) and decreases with ln(z) (for
constant λx ): a direct consequence of a geometrically self-similar structure. This implies that
as a consequence of the attached-eddy hypothesis assumptions, the coherence magnitude
within the self-similar region adheres to

γ 2
AE = C1 ln

(
λx

z

)
+ C2, (2)

where C1, C2 are fit constants. The aspect ratio then follows from

A = λx

z
|γ 2

AE=0 = exp

(−C1

C2

)
. (3)
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Based on laboratory data at Reτ ≈ 14,000, Baars et al. (2017) obtained C1 ≈ 0.302 and
C2 ≈ − 0.796, which results in A ≈ 14. These values were seen to be consistent with
numerical data at Reτ ≈ 2000 (Sillero et al. 2013) and the ASL data at Reτ ≈ 1.4 × 106

(Marusic and Heuer 2007) (see the corresponding trend line in Fig. 1). All cases represent the
turbulent boundary layer under neutral stability conditions and were performed over smooth
walls/terrain. Since (2) holds for three orders of magnitude in Reτ , it can be concluded
that a wall-attached, self-similar structure is indeed ingrained in the u velocity field. Similar
conclusions formore isolated ranges in Reτ weremade byMorrison andKronauer (1969) and
Bullock et al. (1978) for pipe flow and more recently by del Álamo et al. (2004) for channel
flow.Generally, all these results explicitly show the (wall-)coherent nature of the turbulence in
the logarithmic region (at λx > zA). In particular, for all ASL-type applications (Reτ ∼ 105

to 106), where the relative range of scales that are coherent will grow, these results reflect
large-scale turbulent structures comprising significant lifetimes in the streamwise direction
(Cantwell 1981; Robinson 1991; Hutchins and Marusic 2007).

Thus far, the coherence trend has been discussed only relative to thewall such that zR → 0.
However, in typical tower micrometeorological studies, the reference measurement is taken
at zR ∼ 1m (which is well within the logarithmic region for typical atmospheric conditions).
To illustrate how an off-wall position at height zR affects the idealized coherence trend in
the attached-eddy picture envisioned by Townsend, we increased the number of discrete
hierarchies to 10 in Fig. 2d. For any given zR , only the wall-attached turbulent structures that
extend beyond zR are coherent with zR (their corresponding coherence contours are blue-
shaded). The coherence trend above zR remains unaffected if only wall-attached structures
are considered.

As a final remark, we point out that the above considerations made for the streamwise
velocity component should also apply to the spanwise velocity field and temperature (Perry
and Chong 1982; Krug et al. 2018).

2.2 Comparing Davenport’s Hypothesis to Townsend’s

Davenport (1961a) presented a trend in the wall-normal coherence of streamwise velocity
fluctuations u based on observations from typical tower micrometeorological data. It was
evident from the data that both a decreasingwavelength λx ≡ U/ f and an increase in vertical
separationΔz = z− zR made the turbulent quantities less coherent. He hypothesized that for
a given stability, the coherence should only depend on the ratio of Δz and λx . The implied
geometrical self-similarity is obviously equivalent to the attached eddy framework discussed
above if Δz ≈ z, which is approached either for zR → 0 or for z � zR in experiments. The
Davenport formulation, however, also entails self-similarity for any reference point, not just
the wall, and therefore additionally encompasses also self-similarity of ‘detached’ structures.
Noting that the drop-off in coherence with increasingΔz/λx resembles an exponential decay,
Davenport (1961a) gave the following empirical expression

γ 2
D = exp

(
−2a

Δz

λx

)
, (4)

where a is a decay parameter. Here, a factor of two is added in the exponent compared
to the original formulation, as Davenport proposed the relation for γ (root-coherence) and
we use k ≡ 2a for brevity. Just as in other later works, we prefer γ 2, since the squared
coherence is proportional to the fraction of energy that is coherent over Δz. With respect to
the fitting constant in (4), Davenport initially quoted a = 7.7 for the ‘vertical coherence’ (Δz
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separations) of the u component in neutral conditions. Slightly updated values and extensions
of the formulation to other velocity components and the temperature field have been reported
in the ensuing literature (Pielke and Panofsky 1971; Davison 1976; Berman and Stearns
1977). It is generally accepted that a varies with surface-layer stability in the sense that it is
small in strong convection and large in neutral or stable air, and we address this aspect in the
following. A representation of (4) with k = 23 (Panofsky 1973; Naito and Kondo 1974) is
included in Fig. 1a and is seen to match closely with (2) and the data for neutral conditions.

Since the introduction of (4) in 1961, many researchers have tested their data against
Davenport’s hypothesis. Studies range from research focusing on the vertical coherence of
various velocity components in towermicrometeorological data (Davenport 1961a; Panofsky
and Singer 1965; Pielke and Panofsky 1971; Naito and Kondo 1974; Panofsky et al. 1974;
Brook 1975; Seginer andMulhearn 1978; Kanda and Royles 1978; Soucy et al. 1982; Bowen
et al. 1983; Saranyasoontorn et al. 2004), investigations including the lateral/spanwise coher-
ence (Kristensen and Jensen 1979; Ropelewski et al. 1973; Panofsky andMizuno 1975; Perry
et al. 1978; Kristensen 1979; Kristensen et al. 1981; Schlez and Infield 1998), the coherence
of temperature fluctuations (Davison 1976) and even mesoscale applications (typically in
the horizontal directions) (Hanna and Chang 1992; Woods et al. 2011; Vincent et al. 2013;
Larsén et al. 2013; Mehrens et al. 2016). Together, these measurements cover a great variety
of terrain and topography. Here we wish to restrict the discussion to the effect of stability and
limit the analysis to the base case over smooth terrain, where high fidelity data are available
from experiments at the Utah salt flats.

Before we introduce this dataset (see Sect. 3), we briefly consider stability effects in more
detail. For this purpose, we have replotted the parametrizations according to (2) and (4)
already included in Fig. 1a in Fig. 3 along with the Davenport parametrizations at varying k.
As mentioned before, increasing stability corresponds to increasing k and the linear plot of γ
vs. z/λx in Fig. 3a clearly illustratres how this leads to a faster decay of coherence. From the
plot of γ 2 vs. λx/z in Fig. 3b it becomes apparent that a change in k approximately leads to
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Fig. 3 Parametrizations of the coherence spectrogram according to (2) with C1 = 0.302 and C2 = −0.796
(solid blue line) and (4) with k = 23 (thick dashed red line). Panel a shows γ vs. z/λx on linear axes as
commonly plotted in the wind-engineering community, in b γ 2 is plotted vs. λx/z on semi-logarithmic axes.
Additional thinner dashed lines in varying shades of red illustrate the effect of varying k in (4) over a range
k = 5 to k = 39 in increments of 3
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a horizontal shift of the curves. In the framework of Baars et al. (2017), such a shift implies
a change in aspect ratio of the wall-attached structures and we investigate this aspect in more
detail below.

3 Dataset

The experimental dataset employed herein has been recorded by Marusic and Heuer (2007),
Marusic and Hutchins (2008) and was previously employed in a study of the neutral ASL by
Hutchins et al. (2012) and investigation of the stability dependence of the structure inclination
angle by Chauhan et al. (2013).We refer to these papers for details beyond the short overview
provided here.

The complete dataset consists of a continuous recording over several days (26 May to
4 June 2005) at the Surface Layer Turbulence and Environmental Science Test (SLTEST)
facility in the salt flats of western Utah. A measurement tower held nine logarithmically-
spaced sonic anemometers (Campbell Scientific CSAT3) at distances ranging from 1.42m to
25.69m above ground, which recorded all three velocity components alongwith temperature.
All measurements were synchronized and recorded at a sampling rate of 20Hz. In addition,
there was a spanwise array at zs = 2.14m above ground with nine anemometers of the same
type evenly spaced over 30m from the tower. Data from this array are only employed here
to characterize the stability of the ASL.

Prior to further analysis, the data are corrected for wind direction and a de-trending
procedure is applied (see Hutchins et al. 2012, for details).While the de-trending is necessary
to remove slow temporal trends in the data, it inherently also compromises the coherence
at very long scales, which needs to be kept in mind when interpreting the data. After data
selection a total of 63 1-h long segments, corresponding to the dataset used in Chauhan et al.
(2013), remains. The stability of each segment is characterized using the Monin–Obukhov
stability parameter zs/L with the Obukhov length scale

L = − ΘU 3
τ

κgwθ
, (5)

where the von Kármán constant κ = 0.41, g is the acceleration due to gravity, and Uτ =
(−uw)1/2 is the friction velocity. All quantities are evaluated from an average of the total of
10 sonic anemometers at zs = 2.14m. Most of our data lie in the unstable regime zs/L < 0
but a few data points also have zs/L > 0.

Next, we will employ the SLTEST dataset to investigate how stability affects the self-
similarity of coherent structures and how this changes the aspect ratio of the structures in the
flow. We use the lowest measurement point as reference throughout, i.e. zR = 1.41m from
now on.

4 Results

4.1 Stability Dependence of the Self-Similar Scaling

We start out by considering a representative casewith stable stratification zs/L > 0 in Fig. 4a.
Evidently, the stable stratification has a significant effect on the spectral energy distribution
of the streamwise velocity fluctuations. Even more importantly, however, these changes are
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seen to also propagate to the coherence spectrogram.While the coherence levels are generally
lower, the isolines are also seen to deviate notably from a slope of 1, which would be expected
for self-similarity as discussed above (recall Fig. 1). This equally holds for plotting γ 2 vs.
z (as implied by the attached-eddy hypothesis), as well as vs. Δz following Davenport’s
hypothesis. The same observations could be made for the other stable data points (in total
we have 11), other velocity components and temperature (not shown here). Remarkably, this
is already the case for relatively moderate values of zs/L . In fact, the case at zs/L = 0.10
shown in Fig. 4 corresponds to the most stable conditions in the dataset. Based on these
findings, the application of both (2) and (4) does not appear justified for stable stratification
and will not be pursued further.

The situation is different for unstable configurations, where the heat flux is directed
upward, as can be seen from Fig. 4b. Also, here, the turbulence field is significantly affected
by buoyancy as evidenced by considerably higher fluctuation levels. In contrast to the stable
case, however, the coherence isocontours in this case are observed to follow a slope of 1 for
large enough z+ consistent with the presence of self-similar wall-attached structures. The fact
that such a scaling is only obtained for sufficiently large z+ is to be expected since, for small
separations, also structures that are not attached to the wall will be coherent (trivially γ 2 = 1
at all scales z = zR) and pure wall-scaling is only recovered once their influence has decayed.
For large Δz, there is no difference between plotting γ 2 as a function of z and Δz, consistent
with the expectation at Δz � zR . A more interesting observation can be made at smaller
Δz, for which Δz � zR does not hold. Even for this range, the slope of the γ isocontours is
now approximately one, indicative of self-similar scaling, all the way to the smallest vertical
separation distance (noting thatΔz = 0 is not shown due to the logarithmic axis). This means
that self-similarity is now also observed where it was compromised by the contribution of
non-attached structures when plotting with reference to the wall. The extended scaling region
is therefore, in fact, indicative of self-similarity of non-wall-attached structures as suggested
by the formulation of Davenport. Judging by the fact that the red lines for the ramp-up in
coherence are relatively straight, detached and wall-attached structures have the same aspect
ratios. As a side note to the discussion here, we point out that the eventual decay of coherence
for λx > 106 is likely an artefact of the de-trending procedure since a similar effect was not
observed in laboratory data (see Baars et al. 2017).
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Fig. 4 Coherence spectrogram of the streamwise velocity component plotted vs. z ( black lines) and Δz =
z − zR (shades of red) for a case with stable (a) and unstable (b) stratification
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Fig. 5 Same as Fig. 4 but for the spanwise velocity component v (a), and temperature θ (b)

Our dataset allows us to investigate self-similar scaling also in the spanwise velocity
component and the temperature fields. Such data are not commonly available in laboratory
experiments and have therefore not been are used previously in this context. We plot the
results corresponding to the unstable case in Fig. 4b but now for v and θ in Figs. 5a, b,
respectively. With maybe some minor limitations in the scaling vs. z+ in the v-component,
the situation is very similar to that observed in the plot for the streamwise component in
Fig. 4b.This provides evidence of self-similar scaling also in the spanwise velocity component
and the temperature field. Especially the fact that the temperature field adheres to a similar
geometrical organization appears remarkable in view of howdifferent the energy spectrogram
looks in this case. Compared to the velocity counterparts, the relative contributions at high
λx , as well as further away from the wall, are considerably lower for the scalar spectrogram.

A more quantitative analysis is best achieved by replotting the data in the style of Fig. 1a.
This is done in Fig. 6 for the two velocity components and the temperature in the unstable
case with zs/L = −2.80. Note that here we use the normalization with Δz as this provides
a more extensive scaling region. Using z instead provides similar results—albeit with larger
uncertainties. Plotting the results as presented in Fig. 6 scrutinises the aspect of self-similarity,
since for this case a collapse of curves at different Δz is expected. As can be seen from the
figure, such a nominal collapse is indeed observed for all quantities plotted. Identifying the
scaling region by the range of this collapse (marked in red in the figure) allows us to fit the
expression (2) to the data and to extract the statistical aspect ratio. These results are also
included in Fig. 6 and it is obvious that the resulting A = 2.0 to A = 3.0 is significantly
lower than the value ofA ≈ 14 obtained under neutrally stable conditions. It therefore seems
that unstable conditions drastically reduce the aspect ratio of coherent structures in the flow.

We systematically investigate this trend by applying the same fitting procedure to all
unstable datasets available. The results obtained from doing so are presented for u, v, and θ

in Fig. 7a–c. In all three cases, there is a clear trendof decreasingAwith increasingmagnitude
of the stability parameter up to −zs/L ≈ 1. For even higher values of −zs/L , the aspect
ratio consistently attains approximately constant values in all three quantities in the range 2
to 3. It is worth highlighting how sensitive the aspect ratio is to even only weakly unstable
conditions. Indeed, the data appear well represented by an entirely empirical, logarithmic fit
for −zs/L < 1. The grey-shaded region corresponds to |zs/L| < 0.1, which is a commonly
used limit for approximately neutral conditions (e.g. Högström et al. 2002; Metzger et al.
2007; Hutchins et al. 2012). As our results show, A varies by up to 50% in this region,
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Fig. 6 γ 2 in the range 1.58m ≤ Δz ≤ 11.10m (with increasing Δz indicated by lighter shades of grey)
for the streamwise (a), and spanwise (b) velocity components as well as temperature (c) for the case with
zs/L = −2.80. The blue line is a fit according to Eq. 2 with C1 = 0.302 fixed; the fitting region used here is
bounded by γ 2 > 0.1 and λx < 100m and is indicated in red

lending support to more stringent criteria such as |z/L| < 0.06 applied in Wang and Zheng
(2016) at least for certain statistical quantities. We do note, however, that the precise value of
the stability parameter depends on the choice of the reference height z (we use z = 2.14m) as
L is determined by wall quantities only. This choice is somewhat arbitrary for the multipoint
statistics presented here and wasmotivated by data availability and consistency with previous
studies in the present case. The dependence is linear however, and the values can therefore
easily be transformed to other reference heights.

Finally, we briefly comment on the differences in the aspect ratios obtained from the
three different quantities. We already established from Fig. 7a–c that the general trends are
consistent across u, v and θ . In Fig. 7d, we plot Av and Aθ with respect to Au , and
in general all ratios are close to 1. It will require further research to determine whether
the slight deviations from 1, e.g., both Av/Au and Aθ /Av tend to be slightly < 1 for
−zs/L < 1, are statistically significant or simply owed to inaccuracies in determining A.
Differences between the coherence decay in different velocity components have nevertheless
also been reported in the wind-engineering community where Berman and Stearns (1977)
and similarly Pielke and Panofsky (1971) report somewhat smaller decay rates (lower k) for
the v-component as compared to the u-component.

4.2 Relationship BetweenA and k

The relationship between the statistical aspect ratioA derived based on (2) and the parameter
k in (4) is addressed in the following. An analytical relationship is readily derived by setting
(2) and (4) equal at a reference point ξ ≡ λx/z|ref and assuming z = Δz. In this case, we
obtain

k = −ξ/2 ln [C1 ln(ξ) − ln(A)] , (6)

and from Fig. 6, ξ = 20 is a reasonable choice for the present data as it corresponds to
γ 2 ≈ 0.5. A representation of (6) with this parameter is included in Fig. 8a along with results
for ki obtained from fitting (4) to the same data points used to determine Ai (here and in
the following i = u, v, θ ). Overall, the agreement of (6) with the data is very good and there
is little scatter even between different components and the scalar. For the region of interest,
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Fig. 7 Results for the aspect ratio as a function of the stability parameter zs/L for velocity components u
(a) and v (b), as well as temperature (c). Lines and the equations in a–c represent the results from fitting
a linear relation for zs/L < 0.1 and a constant for zs/L > 0.1, respectively. Panel d compares the aspect
ratios obtained from different quantities by showing the ratiosAv/Au (blue triangles) andAθ /Au (green
diamonds). The region shaded in grey denotes the −zs/L < 0.1, a range widely considered as near-neutral

the somewhat unwieldy relation (6) is very well approximated by a linear function and the
corresponding linear dependence is included in Fig. 8a. Figure 8b and c compare our results
for ku and kv to values reported in the wind-engineering literature and collected by Panofsky
(1973). In these figures the region corresponding to stable conditions is shaded as our detailed
analysis revealed a lack of self-similar scaling as implied by both (2) and (4). The scatter in the
literature data is considerable between different observation sites likely reflecting differences
in topography. In this sense, our data from the SLTEST can be considered as a reference case
with minimal roughness and topographical effects. Consequently, the scatter in the present
data is significantly lower. For both, u and v, the new data points are largely consistent with
the dashed lines labelled ‘Trend others’, which is a trend line (by eye) for all measurements
but those at theKennedy SpaceCenter drawn by Panofsky (1973). The data from theKennedy
Space Center (and the corresponding trend lines) lie at consistently and significantly higher
values of ki than our results. Nonetheless, the fact that ki levels off at an approximately
constant value beyond −zs/L = 1 is a feature that appears to be shared by all available
datasets. Once again, we emphasize that the exact values of the stability parameter might

123



Vertical Coherence of Turbulence in the Atmospheric Surface…

(a)

(b) (c)

0 2 4 6 8 10 12 14
0

0

10

20

30

40

50

-1 0 1 2 3 -1 0 1 2 3 
0

10

20

30

40

50

5

10

15

20

Hill Hill

zs /L zs /L

Fig. 8 a Fit results for ki vs. those for Ai (same symbols as in Fig. 7), with i = u, v, θ . Black dashed line
represents the relation (6) with ξ = 20, solid lines are linear fits to the data as labelled in the legend. Panels b
and c respectively compare our results for ku and kv to literature values obtained from Panofsky (1973). The
fits to the current data shown here are obtained from the fits toA in Fig. 7(a, b) along with the linear relations
in panel a of this figure

change slightly depending onwhich reference height is chosen; unfortunately, information on
the reference heights could not be retrieved for all literature datasets introducing an element
of uncertainty.

5 Concluding Remarks

The main findings of the present study are summarized as follows:
– We have demonstrated that implications of Townsend’s attached-eddy hypothesis for the

coherence trend are consistent with Davenport’s hypothesis. This applies to the geomet-
rical self-similarity of wall-attached structures as well as to the fact that the empirically
derived exponential decay inDavenport’s formulationmatches closely with a logarithmic
expression that follows directly from the aspect of self-similarity.

– The self-similarity implied by Davenport is even more comprehensive and also
encompasses structures that are not attached to the wall. Evidence of such a self-
similar behaviour could indeed be observed for the high Reτ SLTEST data employed
herein.

– The self-similarity assumptions/hypotheses do not seem to hold for stable data. Neither
z- nor Δz-scaling is observed in this case, which implies that there is no self-similarity
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for stable data. This is clearly observed in our results since we compute the coher-
ence spectrum (a continuous function of scale with a finely frequency-discretized fast
Fourier transform approach). In the literature, the coherence is often computed at coarsely
spaced frequency discretizations with fits based on a few data points only. Our results
provide clear evidence that the stable ASL has no self-similar coherence and hypothe-
ses of Townsend and Davenport should not be applied in this case. We point out
that it is predominantly the self-similarity aspect that fails in the stable regime while
there is still non-zero coherence. The departure from self-similarity occurs far from
extreme (‘z-less’) conditions at relatively weak stratification, for whichMonin–Obukhov
similarity theory holds. While we do not observe self-similarity for any of our sta-
ble data, it appears likely that for very weak stable stratification self-similarity may
be recovered. Unfortunately, we cannot determine such a threshold from the present
dataset.

– Consistent with expectations based on the attached-eddy hypothesis framework, self-
similar scalingwas not only observed for the u-component, but also for spanwise velocity
fluctuations v and temperature fluctuations θ .

– Even relatively weak unstable stratifications drastically reduce the statistical aspect ratio
A for all quantities investigated here. Based on our results, we were able to parametrize
this trend in terms of a logarithmic decay for zs/L < 1 and constant values for zs/L > 1.

– Generally, the trend of decreasing A with decreasing stability is intuitively consistent
with the fact that buoyancy supports the upward motion of structures from the wall. The
question remains as to whether the nature of the structures themselves changes under
very unstable conditions (e.g. towards convection cell-type motion) as may be suspected
based on the change in trend forA around zs/L = 1. A conclusive answer in this regard
cannot be provided from the present analysis. It is, however, remarkable that the slopeC1

is largely insensitive to zs/L in our data. Physically, the parameter C1 can be interpreted
as a measure for the relative contribution of attached structures to the overall turbulence
intensity. The fact that this quantity remains unaltered seems to indicate that, at least in
the parameter range accessed here, the fundamental flow organization does not change
significantly. This notion is substantiated by the observation that also self-similarity still
holds in the unstable regime.

– We established a simple linear relation between the aspect ratioA and k in the Davenport
formulation, such that thefit parameter k canbe interpreted as an aspect ratio. Comparison
of our results for the stability dependence of k with the literature reveals significantly
lower scatter for the high-fidelity ASL data over smooth-terrain presented here. As such,
the present dataset serves as a base-case for the vertical coherence over any other type of
terrain.

As a final remark, we point out that even though the present study is limited to verti-
cal coherence, connecting Davenport’s to Townsend’s framework for this case also places
predictions and applications to horizontal coherence on a stronger footing.
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