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Abstract
A saddle to saddle-focus homoclinic transition when the stable leading 
eigenspace is three-dimensional (called the 3DL bifurcation) is analyzed. Here 
a pair of complex eigenvalues and a real eigenvalue exchange their position 
relative to the imaginary axis, giving rise to a 3D stable leading eigenspace 
at the critical parameter values. This transition is different from the standard 
Belyakov bifurcation, where a double real eigenvalue splits either into a pair 
of complex-conjugate eigenvalues or two distinct real eigenvalues. In the wild 
case, we obtain sets of codimension 1 and 2 bifurcation curves and points 
that asymptotically approach the 3DL bifurcation point and have a structure 
that differs from that of the standard Belyakov case. We give an example 
of this bifurcation in a perturbed Lorenz–Stenflo 4D ordinary differential 
equation model.
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1. Introduction

Homoclinic orbits play an important role in the analysis of ordinary differential equa-
tions (ODEs) depending on parameters

ẋ = F(x,α), x ∈ Rn,α ∈ Rm, (1)

where F is sufficiently smooth in both phase components and parameters. Orbits homoclinic 
to hyperbolic equilibria are of specific interest, as they are structurally unstable, and the corre-
sponding parameter values generically belong to codim 1 manifolds in the parameter space 
Rm. Bifurcations in generic one-parameter families transverse to such manifolds depend cru-
cially on the configuration of leading eigenvalues of the equilibrium, i.e. the stable eigenval-
ues with largest real part, and the unstable eigenvalues with smallest real part.

In figure  1, we see three configurations with simple leading eigenvalues, for which a 
detailed description of the bifurcations occurring near the homoclinic orbit is available (see, 
e.g. [1–4]). For example, in the saddle case, a single periodic orbit appears generically. In the 
saddle-focus case, we can assume that the leading stable eigenvalues are complex by apply-
ing time-reversal if necessary. In this case, infinitely many periodic orbits exist if the saddle 
quanti ty σ0 , defined as the sum of the real part of the leading unstable and stable eigenvalues, 
is positive. This phenomenon is called Shilnikov’s homoclinic chaos [5, 6]. On the contrary, 
if σ0  is negative, then generically only one periodic orbit appears. Thus, the sign of σ0  distin-
guishes wild and tame saddle-focus homoclinic cases. Note that in the wild case many other 
bifurcations occur nearby, including infinite sequences of fold (limit point, LP) and period-
doubling (PD) bifurcations of periodic orbits, as well as secondary homoclinic bifurcations, 
which all accumulate on the primary homoclinic bifurcation manifold [7]. In the focus–focus 
case, which will not be considered in this paper, infinitely many periodic orbits are always 
present.

Moving along the primary homoclinic manifold in the parameter space of (1), one may 
encounter a transition from the saddle case (a) to the saddle-focus case (b). This is a degener-
ate situation, and the corresponding homoclinic parameter values generically form a codim 
2 sub-manifold in the parameter space. Nearby bifurcations should be studied using generic 
two-parameter families transverse to this codim 2 sub-manifold. We can therefore restrict 
ourselves to generic two-parameter ODEs (m  =  2), where the primary homoclinic orbit exists 
along a smooth homoclinic curve in the parameter plane, while the saddle to saddle-focus 
transition happens at an isolated point on this curve. There are many more codim 2 homoclinic 
bifurcations, see [3, 4, 8].

As already noted in [8], at the simplest saddle to saddle-focus transition we have either

 (i)  a double leading eigenvalue; or
 (ii)  three simple leading eigenvalues.

In case (i), see figure 2, the pair of leading complex eigenvalues approaches the real axis and 
splits into two distinct real eigenvalues. At the transition there is a double real eigenvalue and 
the leading eigenspace is 2D. In case (ii), see figure 3, the real eigenvalue exchanges its posi-
tion with the pair of complex-conjugate eigenvalues. At the transition there are two complex-
conjugate eigenvalues and one real eigenvalue with the same real part. All leading eigenvalues 
are simple and the leading eigenspace is 3D.

Case (i) is a saddle to saddle-focus homoclinic transition that appears in various applica-
tions, e.g. in biophysics [9] and ecology [10]. Moreover, in these applications the transition 
corresponds to the wild case with σ0 > 0. This case was first studied analytically by Belyakov 
[11], who proved that the corresponding bifurcation diagram is complicated. We call this case 
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the standard Belyakov case. In [10, 11] a description of the main features of the universal 
bifurcation diagram close to this transition for n  =  3 in the wild case has been obtained:

 1.  There exists an infinite set of LP and PD bifurcation curves.
 2.  There exists an infinite set of secondary homoclinic curves corresponding to homoclinic 

orbits making two global excursions and various numbers of local turns near the equilib-
rium.

Re(λ)

Im(λ)

(a)

Re(λ)

Im(λ)

(b)

Re(λ)

Im(λ)

(c)

Figure 1. Configurations of leading eigenvalues λ (red). Gray area contains all non-
leading eigenvalues. (a) Saddle. (b) Saddle-focus. (c) Focus–focus.
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Re(λ)
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(b)

Re(λ)

Im(λ)
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Figure 2. Eigenvalue configurations of the saddle to saddle-focus transition in case 
(i); α is the parameter along the homoclinic curve and the bifurcation occurs at α = 0. 
Arrows point in the direction of generic movement of eigenvalues. The green marker 
indicates a double real eigenvalue. The gray areas contain non-leading eigenvalues, 
leading eigenvalues are marked red and non-leading eigenvalues are marked black. (a) 
α < 0. (b) α = 0. (c) α > 0.
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Im(λ)

(a)

Re(λ)

Im(λ)

(b)

Re(λ)

Im(λ)
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Figure 3. Eigenvalue configurations of the saddle to saddle-focus transition in case 
(ii); the scalar bifurcation parameter along the homoclinic curve is α. Arrows point in 
the direction of possible movement of eigenvalues. There is a codimension 2 situation 
at α = 0, where the leading stable eigenspace becomes 3D. Non-leading eigenvalues 
are contained in the gray area, leading eigenvalues are marked red and non-leading 
eigenvalues are marked black. (a) α < 0. (b) α = 0. (c) α > 0.
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 3.  Both sets have the same ‘bunch’ shape: the corresponding curves emanate from the codim 
2 point and accumulate onto the branch of primary saddle-focus homoclinic orbits. The 
secondary homoclinics accumulate only from one side.

Case (ii) has recently been observed in [12] for a 4D system of ODEs arising from a study of 
traveling waves in a neural field model. We will revisit this model in section 6, only noting 
here that the transition in this model is tame with σ0 < 0. As in the standard Belyakov case, 
we expect a complicated bifurcation diagram in the wild case, i.e. when σ0 > 0.

Our paper is devoted to the theoretical analysis of the homoclinic saddle to saddle-focus 
transition for case (ii), when the leading stable eigenspace is 3D. We call this transition the 
3DL transition and mainly consider the wild case. To the best of our knowledge, no systematic 
analysis of this case is available in the literature, and it is one of the few remaining untreated 
codim 2 homoclinic bifurcations in ODEs, see [4] for a review. A possible reason for this gap 
is that case (ii) can only occur in (1) with n � 4, while case (i) happens already in 3D ODEs. 
This leads to the study of a 3D return map in case (ii), which is much more difficult to analyze 
than the planar return map in the standard Belyakov case (i).

By considering a generic 4D system with the 3DL transition, we are able to obtain a two-
parameter model 3D return map which describes the bifurcations occurring close to the trans-
ition. We will see that in the wild case σ0 > 0, there exist infinitely many bifurcation curves. 
However, the shape of these bifurcation curves differs essentially from those in the standard 
Belyakov case (i):

 1.  There exist infinitely many PD, LP, torus (Neimark–Sacker, NS) and secondary homo-
clinic curves. These curves accumulate onto the curve of primary homoclinic orbits but 
do not emanate from the codim 2 point.

 2.  Each LP curve is a ‘horn’ composed of two branches. Close to the horn’s tipping point 
LP and PD curves are organized via spring and saddle areas [13]. Transitions between 
the saddle and spring areas are observed. Each secondary homoclinic curve forms a ‘hori-
zontal parabola’.

 3.  Several codim 2 points exist on each of the LP, PD and NS curves. We observe general-
ized period-doubling (GPD) and cusp (CP) points, as well as strong resonances.

Using the model map, we prove analytically that the cusp points asymptotically approach the 
wild 3DL transition point. The same is shown for the secondary homoclinic turning points. 
We present numerical evidence that all other mentioned codimension 2 points form sequences 
also converging to the 3DL transition point.

This paper is organized as follows. In section 2 we formulate the genericity assumptions on 
(1) with n  =  4 and m  =  2. Next, we derive a model 3D return map and its 1D simplification. In 
section 3 we analyze the 1D model map to describe LP and PD bifurcations of the fixed points/
periodic orbits. An essential part of the analysis of the 1D map is carried out analytically, 
while that of the full 3D model map in section 4 employs advanced numerical continuation 
tools, except for the LP and PD bifurcations (reducible to the 1D return map studied in sec-
tion 3) and the secondary homoclinic bifurcations. In section 5, implications for the dynamics 
of the original 4D ODE system are summarized. Finally, in section 6, we give explicit exam-
ples of tame and wild 3DL transitions in concrete models. The tame example is a system that 
describes traveling waves in a neural field. The wild example is a perturbed Lorenz–Stenflo 
model appearing in atmospheric studies. Various issues, including generalization to higher 
dimensions, are discussed in section 7.
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2. Derivation of the model maps

2.1. Assumptions

We make the following assumptions about the 3DL transition at the critical parameter values, 
which we assume to be α1 = α2 = 0. Recall that we only consider n  =  4 and m  =  2.

 (A.1)  The eigenvalues of the linearization at the critical 3DL equilibrium x  =  0 are

δ0, δ0 ± iω0 and ε0,

   where δ0 < 0,ω0 > 0 and ε0 > 0.
 (A.2)  There exists a homoclinic orbit Γ0 to this 3DL equilibrium, called the primary homo-

clinic orbit.
 (A.3)  The homoclinic orbit Γ0 does not exhibit an additional orbit-flip: The normalized tan-

gent vector to Γ0 has nonzero projections to both the 1D eigenspace corresponding 
to the real eigenvalue δ0 and to the 2D eigenspace corresponding to the complex 
eigenvalues δ0 ± iω0, when approaching the equilibrium.

Any system (1) with (n, m) = (4, 2) and satisfying the assumptions (A.1–3), can be trans-
formed near the critical equilibrium via a translation, a linear transformation, a linear time 
scaling, and introducing new parameters µ = (µ1,µ2), to

ẋ = Λ(µ)x + g(x,µ), x ∈ R4, µ ∈ R2, (2)

where

Λ(µ) =




γ(µ) −1 0 0
1 γ(µ) 0 0
0 0 γ(µ)− µ1 0
0 0 0 β(µ)


 , (3)

and the smooth vector-valued function g(x,µ) vanishes together with its derivative w.r.t. x at 
x  =  0 for all µ ∈ R2 sufficiently small, and

γ(0) =
δ0

ω0
and β(0) =

ε0

ω0
. (4)

Define

ν(µ) := −γ(µ)

β(µ)
 (5)

and let γ0 := γ(0) and β0 := β(0). The number

ν0 = ν(0) = −γ0

β0
= −δ0

ε0
 (6)

is called the saddle index. Note that the saddle quantity σ0  introduced earlier is related to the 
saddle index (6) as follows:

ν0 < 1 ⇐⇒ σ0 > 0,
ν0 > 1 ⇐⇒ σ0 < 0.

We assume from now on that ν0 < 1, so that only the wild case σ0 > 0 is considered.
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In system (2), µ2 = µ2(α) is a ‘splitting function’ so that the primary homoclinic orbit to 
the equilibrium (saddle, 3DL, saddle-focus) exists along the curve µ2 = 0. The exact choice of 
µ2 will be clarified later. The value µ1(α) controls which stable eigenvalue leads. For µ1 > 0, 
the stable leading eigenvalues are complex (saddle-focus case) and for µ1 < 0 the stable lead-
ing eigenvalue is real (saddle case).

Now we can formulate the final (transversality) assumption:

 (A.4)  The components of µ = (µ1,µ2) are small and the 3DL saddle exists at µ = 0. 
Moreover, the mapping α �→ µ(α) is regular at α = 0, i.e. Dµ(0) is nonsingular.

2.2. Introducing cross-sections

Our next aim is to derive the model Poincaré map close to Γ0 near the 3DL transition, that we 
will use for the two-parameter perturbation study.

Using the Ovsyannikov–Shilnikov theorem [3, 14] (see also [15–17]) and a time reparam-
eterization, we can conclude that (2) is smoothly orbitally equivalent in a neighborhood of x  =  0 to

{
u̇ = A(µ)u + f (u, v,µ)u,
v̇ = β(µ)v, (7)

where u = (u1, u2, u3) ∈ R3, v ∈ R,

A(µ) =



γ(µ) −1 0

1 γ(µ) 0
0 0 γ(µ)− µ1


 , (8)

and, for all sufficiently small µ ∈ R2, the (3 × 3)-matrix-valued function f  vanishes at 
u1 = u2 = u3 = v = 0 and, moreover, f (u, 0,µ) = 0 for all u ∈ R3 with sufficiently small 
‖u‖, while f (0, v,µ) = 0 for all sufficiently small |v|. Note that in general (7) is only Ck−2-
smooth in (u, v,µ) even if the original system (2) is Ck.

Eu

Σu
yu

Σs

ys

Es

Γ0

Πloc

Πglob

Figure 4. The choice of cross-sections close to the critical 3DL saddle at (0, 0, 0, 0) 
and the homoclinic connection Γ0, in order to obtain the map Π : Σs → Σs. Here Σu is 
defined by the cross-section v = du and Σs is the cross-section u2  =  0. The homoclinic 
connection is assumed to pass through the points ys = (ds, 0, d̃s, 0) and yu = (0, 0, 0, du). 
The stable and unstable invariant manifolds locally coincide with the eigenspaces Es 
and Eu, respectively.
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Figure 4 gives an impression of the homoclinic connection to a 3DL saddle in the 4D sys-
tem (7). As we are interested in understanding the bifurcations close to the homoclinic orbit, 
we define two Poincaré cross-sections,

Σs = {(u1, u2, u3, v)|u2 = 0} , (9)

Σu = {(u1, u2, u3, v)|v = du} , (10)

and assume that the homoclinic orbit passes through these cross-sections at ys = (ds, 0, d̃s, 0) 
and yu = (0, 0, 0, du), respectively, for all parameter values along the primary homoclinic 
curve, where ds, d̃s and du are sufficiently small but positive. This is possible due to assumption 
(A.3), which also guarantees that the primary homoclinic orbit does not exhibit an orbit-flip.

Clearly, both cross-sections are transversal to the flow and to the stable and unstable eigen-
spaces. Thus, by following orbits starting from Σs to Σu and returning back to Σs, we can 
define a 3D map Π mapping (a subset of) Σs to itself. We will use this map to study both 
periodic orbits and secondary homoclinic orbits.

We shall construct the map Π by composing two maps, Πloc : Σs → Σu and Πglob : Σu → Σs, 
i.e.

Π = Πglob ◦Πloc. (11)

We want to construct a solution of (7) that starts at t  =  0 from a point x0 ∈ Σs close to y s 
and arrives at a point xτ ∈ Σu close to y u at some t = τ > 0. This solution will be used to 
define the local map Πloc.

2.3. Derivation of the return map

Following the classical approach by Shilnikov [3, 14], consider the integral equation on [0, τ ]:
{

u(t) = eAtu0 +
∫ t

0 eA(t−s)f (u, v,µ)u(s)ds,
v(t) = e−β(τ−t)vτ ,

 (12)

where τ > 0 is some constant. Let ε > 0 be sufficiently small, and let τ > 1/ε. Given any 
(u0, vτ ) ∈ R4 with ‖u0‖+ |vτ | < ε, a unique solution (u(t), v(t)) satisfying the above integral 
equation for t ∈ [0, τ ] can be obtained by successive approximations. The resulting solution 
x(t) = (u(t), v(t)) satisfies (7) with u(0)  =  u0 and v(τ) = vτ , and depends (as smoothly as 
(7)) on τ , as well as on (u0, vτ ) and µ (see [4, 14]).

This solution will be used to define the local map Πloc that sends x0 = (xs
1, 0, xs

3, xs
4) ∈ Σs  

to a point xτ = (xu
1, xu

2, xu
3, du) ∈ Σu, i.e. when u0 = (xs

1, 0, xs
3) and vτ = du. We now write x(t) 

in a more explicit form.
First, by linearly scaling the phase variables, we transform (7) to





ẋ1 = γ(µ)x1 − x2 +
1
ds

∑3
j=1 f1j(x̃,µ)x̃j,

ẋ2 = x1 + γ(µ)x2 +
1
ds

∑3
j=1 f2j(x̃,µ)x̃j,

ẋ3 = (γ(µ)− µ1) x3 +
1
d̃s

∑3
j=1 f3j(x̃,µ)x̃j,

ẋ4 = β(µ)x4,

 (13)

where x̃ = (dsx1, dsx2, d̃sx3, dux4). Note that the homoclinic orbit now passes through y s  =  
 (1, 0, 1, 0) and y u  =  (0, 0, 0, 1), since Σu is now characterized by x4  =  1.

It follows from [4, 14] that the solution x(t) of (13) can be written for sufficiently small 
‖µ‖, as

M Kalia et alNonlinearity 32 (2019) 2024



2031

x(t) =




xs
1eγ(µ)t

[
(1 + ϕ̃11) cos(t) + ϕ̃12 sin(t) + o

(
eγ(µ)t

)]
xs

1eγ(µ)t
[
(1 + ϕ̃21) sin(t) + ϕ̃22 cos(t) + o

(
eγ(µ)t

)]
xs

3e(γ(µ)−µ1)t
[
1 + ϕ̃31 + o(eγ(µ)t)

]
e−β(µ)(τ−t)


 . (14)

The functions ϕ̃ij are smooth functions of (t, x0,µ, ds, d̃s, du) and satisfy ϕ̃ij = O(d), where 
d = min{ds, d̃s, du}. In general, these functions and the o-terms are only Ck−2-smooth when 
the scaled system (13) is Ck [16, 17].

Evaluating x(t) at t = τ , where

τ = − 1
β
ln(xs

4), (15)

we get the local map Πloc,

Πloc :




xs
1

xs
3

xs
4


 �→




xs
1(x

s
4)

ν(µ) [(1 + ϕ11) cos(τ) + ϕ12 sin(τ) + o ((xs
4)

ν)]

xs
1(x

s
4)

ν(µ) [(1 + ϕ21) sin(τ) + ϕ22 cos(τ) + o ((xs
4)

ν)]

xs
3(x

s
4)

ν(µ)+µ1/β(µ) [1 + ϕ31 + o ((xs
4)

ν)]


 ,

 

(16)

where ν(µ) is defined by (5) and ϕij are smooth functions of (xs
1, xs

3, xs
4,µ).

For the global return map Πglob : Σu �→ Σs, we use a general smooth approximation of the 
flow of (13) from (0, 0, 0, 1) to (1, 0, 1,µ2). Here µ2 is the aforementioned splitting parameter. 
It controls the return of the orbit to the critical saddle. For µ2 = 0 only, we have a primary 
homoclinic connection.

Thus, the following representation of Πglob can be used

Πglob :




xu
1

xu
2

xu
3


 �→




1
1
µ2


+




a11(µ) a12(µ) a13(µ)

a21(µ) a22(µ) a23(µ)

a31(µ) a32(µ) a33(µ)







xu
1

xu
2

xu
3


+ O(‖xu‖2),

 

(17)

where xu = (xu
1, xu

2, xu
3). For A0 = [aij(0)], we also have det(A0) �= 0 which follows from the 

invertibility of Πglob for µ small enough.
Equations (16) and (17) together give us the full return map Π = Πglob ◦Πloc. Keeping the 

dependence of all coefficients on µ implicit, we can write Π as

Π :




xs
1

xs
3

xs
4


 �→




1 + b1xs
1(x

s
4)

ν cos
(
− 1

β ln xs
4 + θ1

)
+ b2xs

3(x
s
4)

ν+µ1/β

1 + b3xs
1(x

s
4)

ν sin
(
− 1

β ln xs
4 + θ2

)
+ b4xs

3(x
s
4)

ν+µ1/β

µ2 + b5xs
1(x

s
4)

ν sin
(
− 1

β ln xs
4 + θ3

)
+ b6xs

3(x
s
4)

ν+µ1/β


+ o(‖xs‖ν), (18)

where xs = (xs
1, xs

3, xs
4) and

sin θ1 = − a12√
a2

11+a2
12

, cos θ2 = a22√
a2

21+a2
22

, cos θ3 = a32√
a2

31+a2
32

,

b1 =
√

a2
11 + a2

12, b3 =
√

a2
21 + a2

22, b5 =
√

a2
31 + a2

32,

b2 = a13, b4 = a23, and b6 = a33.

 

(19)

Following [7], we make the smooth invertible transformation xs
4 �→ xs

4 exp (θ3β) to  
eliminate θ3. This gives
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Π :




x1

x3

x4


 �→




1 + α1x1xν4 cos
(
− 1

β ln x4 + φ1

)
+ α2x3xν+µ1/β

4

1 + α3x1xν4 sin
(
− 1

β ln x4 + φ2

)
+ α4x3xν+µ1/β

4

µ2 + C1x1xν4 sin
(
− 1

β ln x4

)
+ C2x3xν+µ1/β

4


+ o(‖x‖ν),

 (20)
where we have dropped the superscript ‘s’ from the coordinates of x = (x1, x3, x4) for conve-
nience, and where

φ1 = θ1 − θ3, φ2 = θ2 − θ3,
α1 = b1 exp(θ3βν), α2 = b2 exp((ν + µ1/β)θ3β),
α3 = b3 exp(θ3βν), α4 = b4 exp((ν + µ1/β)θ3β),
C1 = b5 exp(θ3βν), C2 = b2 exp((ν + µ1/β)θ3β).

 

(21)

Observe that αj and Ck depend on µ and that C1  >  0. Let us denote by α0
j  and C0

j  their critical 
values at µ = 0.

Truncating the o(‖x‖ν) terms in (20) and taking only the critical values of all coefficients, 
we define

G(x,µ) :=




1 + α0
1x1xν0

4 cos
(
− 1

β0
ln x4 + φ0

1

)
+ α0

2x3xν0+µ1/β0
4

1 + α0
3x1xν0

4 sin
(
− 1

β0
ln x4 + φ0

2

)
+ α0

4x3xν0+µ1/β0
4

µ2 + C0
1x1xν0

4 sin
(
− 1

β0
ln x4

)
+ C0

2x3xν0+µ1/β0
4


 . (22)

This map G is the final form of the 3D model return map that we will use for the numerical 
analysis ahead.

Now, to analyze periodic orbits close to the homoclinic connection with respect to the 
critical 3DL saddle, we look for fixed points of the map Π given by (20). These fixed points 
correspond to periodic orbits in the original ODE system. Bifurcations of these fixed points 
describe the various local bifurcations of the corresponding periodic orbits.

The fixed point condition for map (20) is




x1

x3

x4


 =




1 + α1x1xν4 cos
(
− 1

β ln x4 + φ1

)
+ α2x3xν+µ1/β

4

1 + α3x1xν4 sin
(
− 1

β ln x4 + φ2

)
+ α4x3xν+µ1/β

4

µ2 + C1x1xν4 sin
(
− 1

β ln x4

)
+ C2x3xν+µ1/β

4


+ o(‖x‖ν),

 (23)
where all constants αj and Ck still depend on µ. For non-degeneracy, we require that the real 
constants C1 and C2 are nonzero. We justify this later. The coefficients C1 and C2 play the role 
of separatrix values (see [3]).

From (23), we get, using the implicit function theorem, the following expressions for x1 
and x3:

x1 = 1 + α1xν4 cos
(
− 1

β ln x4 + φ1

)
+ α2xν+µ1/β

4 + o(|x4|ν),

x3 = 1 + α3xν4 sin
(
− 1

β ln x4 + φ2

)
+ α4xν+µ1/β

4 + o(|x4|ν),
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which gives the condition for x4

x4 = µ2 + C1xν4 sin
(
− 1
β
ln x4

)
+ C2xν+µ1/β

4 + o(|x4|ν), (24)

as a 1D fixed point condition. As we are interested in the behavior close to (1, 0, 1, 0) on the 
cross-section Σs, we consider only the leading terms of (24) and introduce the following sca-
lar model map:

x �→ F(x,µ) := µ2 + C0
1xν0 sin

(
− 1
β0

ln x
)
+ C0

2xν0+µ1/β0 . (25)

The extra additive term C0
2xν0+µ1/β0 is what makes this map different from the scalar model 

maps describing the codim 1 saddle-focus case.
If we were to set C0

1  to zero, then we get the saddle case, where we obtain finitely many 
fixed points for all values of ν0,µ1,β0,µ2 and C0

2 . If we set C0
2  to zero, we get the codim 1 

saddle-focus case.
Thus we assume

 (A.5)  The homoclinic orbit Γ0 does not exhibit an additional inclination-flip:

C0
1C0

2 �= 0.

3. Analysis of the scalar model map

In this section, we study bifurcations of fixed points of the map (26). To stay close to the 3DL 
bifurcation, we only work with small values of x and µ. To simplify notations, we rewrite the 
scalar model map (25) as

x �→ F(x,µ) := µ2 + C1xν sin
(
− 1
β
ln x

)
+ C2xν+µ1/β , (26)

assuming that ν,β and C1,2 are fixed at their critical values.

3.1. Numerical continuation results

Using the continuation package MatContM [18, 19], we obtained many LP and PD bifur-
cation curves, which form interesting structures. There is strong evidence that there exist 
infinitely many PD and LP curves in the (µ1,µ2)-parameter space. Several such curves can be 
seen in figure 5. We make the following observations:

 (i)  The curves exhibit a repetitive behavior: two branches of one LP curve meet to form a 
horn. The sequence of these horns in the parameter space appears to approach the half axis 
µ2 = 0(µ1 > 0) asymptotically, which is the curve of primary homoclinic orbits. Also, 
the tips of the horns are always located entirely in either the second or third quadrant of 
the (µ1,µ2)-space.

 (ii)  The PD and LP curves appear to coincide on visual inspection, and there can exist GPD 
points in the vicinity of the tip of the LP horn.

 (iii)  The tip of each LP horn is a cusp point. These cusps always exist for all values of C1 and 
C2 and form a sequence that appears to approach the origin µ = 0.

 (iv)  Upon closer inspection, we observe that there exists either of the two subtle structures 
near the top of every LP horn. One is a spring area, where the PD curve loops around the 
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cusp point. The other is a saddle area, where the PD curve makes a sharp turn close to 
the cusp, see the insets in figure 5. The spring area is accompanied by two GPD points 
along the PD loop. These points are absent in the saddle area. Mira et al [13] discuss in 
detail the spring and saddle areas, including transitions from one case to the other and 
their genericity.

 (v)  The global behavior of this set of curves depends on parameters C1 and C2. For example, 
by switching the sign of C2, the set of curves can be moved from the second to the third 
quadrant of the µ-space, or vice versa. The presence of saddle or spring areas depends on 
the parameters C1 and C2, but the exact conditions are not clear.

In the sections ahead, we support most of the observations by analytical asymptotics of the LP 
and PD bifurcation curves of (26).
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−0.06
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−0.02
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µ2

(A)
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PD
Cusp

−0.06 0.02

−0.04

−0.02

0.02

0.04

0.06

µ1

µ2

(B)

LP, C2 > 0
LP, C2 < 0
Cusp

−0.04 −0.02 0.02

−0.008

−0.016
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µ2

(C)

LP
PD
Cusp

−0.051857 −0.051847 −0.04 −0.02 0.02

0.008

0.016

0.024

0.032

µ1

µ2

(D)

LP
PD
GPD
Cusp

−0.04275 −0.0427

Figure 5. Primary LP and PD bifurcation curves obtained by numerical continuation, 
for the map (26) for some representative values of C1 and C2. We fix β = 0.2 and 
ν = 0.5. In panel (A) we plot four pairs of these curves. All of them have the same 
global structure. There are two types of codimension 2 points that can be found along 
these curves: cusp (on LP curves) and GPD (along PD curves). In panel (B) we see 
what happens when we switch the sign of C2: the horns move from µ2 > 0 to µ2 < 0. 
In panels (C) and (D) we see examples of a PD and LP curve with the saddle area and 
spring area, respectively (zoomed in). In the insets, µ2 is scaled for visualization.  
(A) C1 = 1.2, C2 = 0.7, (B) C1 = 1.2, C2 = ± 0.7, (C) C1 = 1.2, C2 = 0.7 (Saddle area), 
(D) C1 = 0.8, C2 = −1.1 (Spring area).
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3.2. Asymptotics

In this section we derive approximate solutions to the LP and PD conditions, and use them to 
justify numerical observations. As we are interested in solutions close to the 3DL bifurcation 
point (µ1,µ2) = (0, 0) we assume that x,µ1 and µ2 are sufficiently small. As we investigate 
only the wild case we restrict ourselves to ν < 1.

3.2.1. LP horns and cusp points. For the scalar model map (26) the fixed point condition is 
given by

µ2 + C1xν sin
(
− 1
β
ln x

)
+ C2xν+µ1/β − x = 0. (27)

Notice that x is a higher-order term compared to xν and xν+µ1/β for sufficiently small µ1. 
Therefore, studying fixed points is asymptotically equivalent to studying zeros of F(x,µ). We 
introduce α := min(1, 2ν) and parametrize x using the following relation,

− 1
β
ln x = 2πn + θ, (28)

for large n ∈ N and θ ∈ (0, 2π). Thus, (27) becomes

µ2 + C1e−βν(2πn+θ) sin θ + C2e−β(ν+µ1/β)(2πn+θ) + O(e−αβ(2πn+θ)) = 0.
 (29)

Let us define

Φ(θ,µ1,µ2) := µ2 + C1e−βν(2πn+θ) sin θ + C2e−β(ν+µ1/β)(2πn+θ). (30)

Then

Φθ(θ,µ1,µ2) = 0,

is the extra condition for an asymptotic LP point. Computing the derivative, we get

C1 (βν sin θ − cos θ) + C2(βν + µ1)e−µ1(2πn+θ) = 0. (31)

We now simultaneously solve (27) and (31) to obtain a sequence of functions µ(n)
2 (µ1) which 

describe the sequence of LP horns already observed numerically. Thus, rewriting (31), we 
have

βν sin θ − cos θ = −C2
C1

(βν + µ1) e−µ1(2πn+θ)

= −C2
C1

(βν + µ1) e−2πµ1n
[
1 − µ1θ + O(µ2

1)
]

= −C2
C1

e−2πµ1n
[
βν − (1 − βνθ)µ1 + O(µ2

1)
]

.
 

(32)

Collecting trigonometric terms on the left we get

sin(θ − φ) = − 1√
1 + β2ν2

C2

C1
e−2πµ1n [βν − (1 − βνθ)µ1 + O(µ2

1)
]

, (33)

where sinφ = (1 + β2ν2)−1/2 and φ ∈ (0,π/2). Note that for large n and negative µ1, the 
corresponding solution θ exists only for small |µ1|. Let

θn
0 := arcsin

(
− βν√

1 + β2ν2

C2

C1
e−2πµ1n

)
. (34)
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Then we have two solutions,

θ1 = φ+ θn
0 + 2πδi1 + O(µ1),

θ2 = φ+ π − θn
0 + O(µ1),

 (35)

where i = −sign(C2) and δij is the Kronecker delta.
For each n, we obtain two solutions θ = θ1,2 given by (35). The corresponding functions 

µ
(n)
2 (µ1) follow from (29),

{
µ
(n,1)
2 (µ1) = −C1e−βν(2πn+θ1) sin θ1 − C2e−β(ν+µ1/β)(2πn+θ1),

µ
(n,2)
2 (µ1) = −C1e−βν(2πn+θ2) sin θ2 − C2e−β(ν+µ1/β)(2πn+θ2).

 (36)

On expanding sin θ1 and sin θ2 we get the expressions for two LP branches forming the nth 
horn



µ
(n,1)
2 (µ1) = −e−βν(θn

0+φ+2πδi1) e−2πβνn√
1+β2ν2

[
C1

(
1 − β2ν2

1+β2ν2
C2

2
C2

1
e−4πµ1n

)1/2

+ C2√
1+β2ν2

e−µ1(2πn+2πδi1+θn
0+φ) + O(µ1)

]
,

µ
(n,2)
2 (µ1) = −e−βν(π−θn

0+φ) e−2πβνn√
1+β2ν2

[
−C1

(
1 − β2ν2

1+β2ν2
C2

2
C2

1
e−4πµ1n

)1/2

+ C2√
1+β2ν2

e−µ1(2πn+π−θn
0+φ) + O(µ1)

]
.

 

(37)

Upon setting µ(n,j)
2  to zero, we get a sequence µ(n)

1

∣∣∣
µ2=0

 of intersections of one of these 

branches with the axis µ2 = 0. Thus asymptotically

µ
(n)
1

∣∣∣
µ2=0

=
1

4πn

[
ln

(
C2

2

C2
1

)
+ O

(
1
n

)]
. (38)

For genericity of the LP, we further require that the second derivative Φθθ �= 0. Thus, the 
condition

Φθθ = 0,

determines a cusp point. We solve the following three conditions together


Φ(θ,µ1,µ2) = 0,
Φθ(θ,µ1,µ2) = 0,
Φθθ(θ,µ1,µ2) = 0.

 (39)

Differentiating with respect to θ in (33) gives the third equation of (39),

cos(θ − φ) +
1√

1 + β2ν2

C2

C1
e−2πµ1n [βνµ1 + O(µ2

1)
]
= 0. (40)

Using (33) and (40) we get

1
(1 + β2ν2)

C2
2

C2
1

e−4πµ1n [β2ν2 + O(µ1)
]
= 1, (41)
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which gives the value of µ1 at the cusp point,

µn
1 =

1
4πn

[
ln

(
β2ν2

(1 + β2ν2)

C2
2

C2
1

)
+ O

(
1
n

)]
. (42)

The corresponding value of µ2 is obtained from (29). We get

µn
2 = −e−βν(2πn+θ0+φ) sign(C2)C1

βν
√

1 + β2ν2
a−(θ0+φ)/4πn + O

(
1√
n

)
, (43)

where θ0  is the value of θn
0  at the cusp point, that is

θ0 =

{
π/2, if C2 < 0,
3π/2, if C2 > 0, (44)

and

a =
β2ν2

1 + β2ν2

C2
2

C2
1

. (45)

Clearly, this cusp point is precisely where the two branches of a horn from (36) meet, i.e. when

sin2 θn
0 = 1.

3.2.2. PD curves. The formulas derived to describe the LP horns also describe PD bifurca-
tion curves away from the cusp points. Indeed, the asymptotic conditions for PD curves are

{
Φ(θ,µ1,µ2) = 0,
Φθ(θ,µ1,µ2) = 0, (46)

which gives the same expressions (35) and (36) to describe PD curves.

3.3. Summarizing lemma for 1D model map

We summarize our findings in the following lemma.

Lemma 3.1. In a neighborhood of the origin of the (µ1,µ2)-plane, the scalar model map 
(25) has an infinite number of fold curves for fixed points LP(1)

n , n ∈ N, accumulating at the 
half axis µ2 = 0 with µ1 � 0.

Each curve resembles a horn with the following asymptotic representation of its two 
branches:




µ
(n,1)
2 (µ1) = −e−β0ν0(θ

n
0+φ0+2πδi1) e−2πβ0ν0n√

1+β2
0ν

2
0

[
C0

1

(
1 − β2

0ν
2
0

1+β2
0ν

2
0

(C0
2)

2

(C0
1)

2 e−4πµ1n
)1/2

+
C0

2√
1+β2

0ν
2
0

e−µ1(2πn+2πδi1+θn
0+φ0) + O(µ1)

]
.

µ
(n,2)
2 (µ1) = −e−β0ν0(π−θn

0+φ0) e−2πβ0ν0n√
1+β2

0ν
2
0

[
−C0

1

(
1 − β2

0ν
2
0

1+β2
0ν

2
0

(C0
2)

2

(C0
1)

2 e−4πµ1n
)1/2

+
C0

2√
1+β2

0ν
2
0

e−µ1(2πn+π−θn
0+φ0) + O(µ1)

]
 (47)

where

φ0 := arcsin

(
1√

1+β2
0ν

2
0

)
, θn

0 := arcsin

(
− β0ν0√

1+β2
0ν

2
0

C0
2

C0
1
e−2πµ1n

)
,
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and δij is the Kronecker delta where i = −sign(C0
2).

The branches of each LP(1)
n  curve meet at a cusp point CP(1)

n  with the following asymptotic 
representation:

CP(1)
n =

(
µn

1

µn
2

)
=




1
4πn

[
ln(a) + O

( 1
n

)]

−e−β0ν0(2πn+θ0+φ0) sign(C0
2)C0

1

β0ν0

√
1+β2

0ν
2
0

a−(θ0+φ0)/4πn + O
(

1√
n

)

 ,

 (48)

where

θ0 :=
{
π/2, if C0

2 < 0,
3π/2, if C0

2 > 0,

and

a :=
β2

0ν
2
0

1 + β2
0ν

2
0

(C0
2)

2

(C0
1)

2
.

Moreover, there exists an infinite number of PD curves PD(1)
n , n ∈ N, which have—away 

from the cusp points CP(1)
n —the same asymptotic representation as the fold bifurcation curves 

LP(1)
n . Depending on (C0

1, C0
2), the PD curves could either be smooth or have self-intersections 

developing small loops around the corresponding cusp points.

Figure 6 illustrates lemma 3.1 by comparing the leading terms of the asymptotic expres-
sions for LP curves with actual LP curves of the 1D model map (25) obtained by accurate 
numerical continuation.

4. Analyzing the 3D model map

In this section we study the original 3D model map (22) that we restate here for convenience

G :




x1

x2

x4


 �→




1 + α1x1xν4 cos
(
− 1

β ln x4 + φ1

)
+ α2x2xν+µ1/β

4

1 + α3x1xν4 sin
(
− 1

β ln x4 + φ2

)
+ α4x2xν+µ1/β

4

µ2 + C1x1xν4 sin
(
− 1

β ln x4

)
+ C2x2xν+µ1/β

4


 . (49)

The analysis of fixed points of (49) leads to the same equation (24) for the x4 coordinate. 
Thus, all conclusions about the existence and asymptotics of LP(1)

n  and PD(1)
n  curves, as well 

as CP(1)
n  points in lemma 3.1, remain valid. Indeed, taking into account the o(|x|ν)-term in (26) 

does not alter the leading terms in any expression.

4.1. Results of numerical continuation

We look for fixed points of map (49) and their various codim 1 curves. The results are similar 
to that of the scalar model map, except for higher dimensional codim 2 points that exist only 
in the 3D model map. In figure 7, we show the PD and LP curves obtained via numerical con-
tinuation in µ for a fixed set of parameters:

ν = 0.5,β = 0.2, C1 = 0.8, C2 = 1.2,α1 = 0.8,α2 = 1.3,α3 = 0.6,α4 = 1.1,φ1 = φ2 = π/6. 
(50)
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We immediately see similarities with the scalar case. The global structure of these curves is 
the same as in the scalar case. They form sequences that accumulate on the primary homo-
clinic curve asymptotically. The LP horns have cusp points and are accompanied by PD curves 
with/without GPD points (depending on the saddle or spring area). All this is expected as the 
scalar map is a correct asymptotic representation of the 3D model map.

There are however three main differences with respect to the scalar model map, which can 
be attributed to the higher dimension of the 3D map:

 (i)  Spring and saddle areas may occur differently for the 1D and 3D model maps for the same 
parameter values.

 (ii)  Between the PD and LP curves, there exist NS curves. The end points of each NS segment 
are strong resonance points.

 (iii)  Along the PD, LP and NS curves we observe many higher dimensional codimension 2 
points. These points are R1 (resonance 1:1), R2 (resonance 1:2), LPPD (fold-flip), R3 
(resonance 1:3), R4 (resonance 1:4).

These points appear to numerically approach the origin µ = 0 (3DL transition). The endpoints 
of the NS curve are points R1 and R2, as can be seen in figure 7(B). For a detailed discussion 
on the various codimension 2 points and their local bifurcation diagrams, see [20].

We did not see a significant difference in behavior of the PD/LP curves upon changing the 
coefficients αi and φj. This can be attributed to the effect of the corresponding terms in (49) 
to the dynamics of x4. These terms are o(|x4|ν) in the fixed point equation for x4. In table 1 we 
present sequences of some of the codimension 2 points found on successive PD/LP curves of 
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Figure 6. Plots of the truncated asymptotic curves and actual PD/LP curves 
obtained by numerical continuation. We fix β = 0.2 and ν = 0.5. In (A) we see 
how successive asymptotic curves in n approximate the set of PD/LP curves. Here, 
cusps are obtained by performing Newton iterations to the defining system of the 
cusp bifurcation with starting points as the asymptotic cusps. In (B), convergence 
of the asymptotic cusps to the actual cusps is observed. The corresponding values 
of n in both plots are n = 10, 11..., 90. (A) C1 = 1.2, C2 = 0.7, n = 10, 11, …,   
(B) Relative norm: asymptotic versus actual cusps.
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figure 7. These sequences are obtained via detection along PD/LP curves from continuation. 
GPD and CP points are not reported as they are generally hard to detect along continuations, 
due to large test function values and absolute gradients. GPDs are approximated in practice 
by noting where the sign of the corresponding test function changes. Note that codimension 2 
points such as R1, R2 and LPPD were observed more than once on a single PD/LP curve. In 
table 1 we show only one point per curve for each of the different bifurcation points.

For the scalar map we observed that transitions exist between spring and saddle areas. 
These transitions can be explained by observing the appearance and disappearance of GPD 
points, as they exist generically on the PD loop in a spring area, and do not exist in the case 
of a saddle area. In the 3D case too, we numerically observe such transitions. However, 
when there is a spring (saddle) area in the 3D case, it does not imply that the same structure 
would exist in the 1D map for the same choice of parameters C1 and C2. This is shown in 
figure 8.
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Figure 7. Primary LP (solid red) and PD (dashed blue) curves obtained by numerical 
continuation for the map (49) with parameters (50). The curves have almost the same 
global structure as for the 1D map, as can be seen in (A). In (B) one such curve is 
presented, together with several codim 2 points found along it. In Inset (1) we see the 
previously described spring area made up by the PD and LP curves. Three codim 2 
bifurcation points are observed, two corresponding to the GPD bifurcation and one 
corresponding to the cusp bifurcation. In Inset (2) we see the interaction between the 
1:2 resonance (R2) point on the PD curve and the 1:1 resonance point (R1) on the 
LP curve, via the primary NS curve (solid black). On this curve we find two more 
codimension 2 bifurcation points: 1:3 resonance (R3) and 1:4 resonance (R4).
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4.2. Secondary homoclinic orbits

In this section we analyze a particular type of homoclinic orbit, i.e. secondary homoclinic 
orbits, which—after leaving the saddle along the unstable manifold—make two global excur-
sions before returning to the saddle.

We look at the existence of these homoclinic orbits close to the primary homoclinic orbit 
in (2), upon perturbing parameters µ1 and µ2. The existence of the orbits is a codim 1 situation 
and corresponds to a curve in the (µ1,µ2)-plane. As before, we look for these curves in the 
wild case, where ν < 1. In the tame case ν > 1, they do not exist.

Consider figure 9. The secondary homoclinic orbit Γ1 in the scaled ODE (13) leaves the 
point yu = (0, 0, 0, 1) ∈ Σu along the unstable manifold and crosses Σs at x = (xs

1, 0, xs
3,µ2). 

From this point, the orbit departs again and this time returns along the stable manifold, thus 
approaching the origin. The orbit then crosses Σs at y s  =  (1,0,1,0). Using the 3D model map 
G defined by (49), the condition is

Table 1. Cascades of codimension 2 points numerically obtained during continuation 
of LP/PD solutions of the 3D map (49). Other parameter values are as in figure 7.

LPPD (1) R1 (1) R2 (2)

µ1 µ2 µ1 µ2 µ1 µ2

5.9031 · 10−3 −2.4503 · 10−4 −9.9025 · 10−3 −5.1621 · 10−3 −0.0402 −0.0423

5.3053 · 10−3 −1.3752 · 10−4 −8.8301 · 10−3 −2.7386 · 10−3 −0.0347 −0.0200

4.3915 · 10−3 −4.1359 · 10−5 −7.2678 · 10−3 −7.7386 · 10−4 −0.0274 −5.0254 · 10−3

3.7375 · 10−3 −1.212 · 10−5 −6.1795 · 10−3 −2.1925 · 10−4 −0.0227 −1.3355 · 10−3

3.2506 · 10−3 −3.5143 · 10−6 −5.3758 · 10−3 −6.2199 · 10−5 −0.0195 −3.6375 · 10−4

3.0515 · 10−3 −1.8884 · 10−6 −5.0477 · 10−3 −3.3139 · 10−5 −0.0182 −1.9084 · 10−4

2.8753 · 10−3 −1.0137 · 10−6 −4.7574 · 10−3 −1.7659 · 10−5 −0.0160 −5.288 · 10−5

2.7184 · 10−3 −5.4376 · 10−7 −4.4987 · 10−3 −9.4115 · 10−6 −0.0152 −2.7905 · 10−5
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Figure 8. Plots of spring and saddle areas in the scalar map (26) and 3D map (22). 
We fix ν = 0.5,β = 0.2,α1 = 0.8,α2 = 1.3,α3 = 0.6,α4 = 1.1 and φ1 = φ2 = π/6. 
In all plots µ2 is scaled for convenience. In (A) we see that there exists a saddle area in 
the 3D case, where GPD points are absent. (B) and (C) are plotted for the same value of 
C1 and C2, but with respect to the 3D map (22) and 1D map (26), respectively. We see 
that the existence of the spring area in the 3D map does not imply the existence of the 
same in the 1D map. Other parameters are fixed as in figure 7. (A) C1 = 0.5, C2 = 1.1, 
(B) C1 = 1.2, C2 = 0.7, (C) 1D map: C1 = 1.2, C2 = 0.7.

M Kalia et alNonlinearity 32 (2019) 2024



2042

G




1
1
µ2


 =




1
1
0


 , (51)

which implies

µ2 + C1µ
ν
2 sin

(
− 1
β
lnµ2

)
+ C2µ

ν+µ1/β
2 = 0. (52)

Let us define

H(µ) := µ2 + C1µ
ν
2 sin

(
− 1
β
lnµ2

)
+ C2µ

ν+µ1/β
2 . (53)

Note that here µ2 must be positive. The shape of H(µ) = 0 is similar to the curve F(x,µ) = 0 
(from (26)). For positive µ1, it is possible to obtain infinitely many solutions of (52) for µ2 
sufficiently small. That is not the case when µ1 < 0, as there are only finitely many or no non-
trivial solutions for µ2 sufficiently small.

In figure 10 the non-trivial solutions are continued with respect to the parameters µ1 and µ2 
for two different sets of values of C1 and C2. We observe three things:

 (i)  There are secondary homoclinic curves which form horizontal parabolas and these 
parabolas approach the primary homoclinic curve µ2 = 0 asymptotically.

 (ii)  These parabolas possess turning points where the two upper and lower secondary homo-
clinic branches merge. The sequence of turning points obtained from successive parabolas 
appears to approach the origin asymptotically.

 (iii)  For different values of C1 and C2, the sequence of turning points is located strictly either 
in the first or second quadrant.

Σu yu

Σs

ys

Γ1

Figure 9. Poincaré map for the secondary homoclinic solution Γ1. Upon leaving y u 
along the unstable manifold, the corresponding orbit makes two global excursions and 
returns to the origin.
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4.3. Asymptotics of secondary homoclinics

The observations above can be explained to some extent by asymptotic expressions for the 
parabolas and the corresponding turning points.

Noticing µ2 > 0, let

− 1
β
lnµ2 = 2πm + θ, (54)

for large m ∈ N and θ ∈ (0, 2π). On dividing both sides by µν
2 �= 0 and using the above 

parameterization for µ2, (52) becomes

e−β(1−ν)(2πm+θ) + C1 sin θ + C2e−µ1(2πm+θ) = 0. (55)

On simplifying, we get

sin θ = −C2

C1
e−2πµ1m(1 − µ1θ + O(µ2

1)) + O(e−αm), (56)

where α = 2πβ(1 − ν). For large m and negative µ1, a solution θ exists only for small |µ1|. 
Thus we get two solutions θ from (56),

θ1 = θm
0 + 2πδi1 + O(1/m),

θ2 = π − θm
0 + O(1/m), (57)

where

θm
0 := arcsin

(
−C2

C1
e−2πµ1m

)
,

the index i = −sign(C2) and δij is the Kronecker delta. Thus the expressions for the two ‘half-
parabolas’ are

{
µ
(m,1)
2 = e−β(2πm+θm

0 +2πδi1)(1 + O(1/m)),

µ
(m,2)
2 = e−β(2πm+π−θm

0 )(1 + O(1/m)).
 (58)

Taking derivative with respect to θ in (56) gives

cos θ =
C2

C1
e−2πµ1m(µ1 + O(µ2

1)) + O(e−αm). (59)

Solving (56) and (59) together gives the condition for the turning points. Using the two condi-
tions gives

C2
2

C2
1

e−4πµ1m(1 + O(µ1)) + O(e−αm) = 1.
 (60)

From this we get µ1,

µ1 =
1

4πm

[
ln

(
C2

2

C2
1

)
+ O

(
1
m

)]
, (61)

which also follows from the condition

sin2 θ = 1. (62)

Thus the sequence of turning points is given by
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(
µ
(m)
1

µ
(m)
2

)
=

(
1

(4πm)

(
ln
(

C2
2

C2
1

)
+ O

( 1
m

))

e−β(2πm+θ0)
(
1 + O

( 1
m

))
)

, (63)

where
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Turning points
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Asymptotic curves

m = 3 and m = 4

Continuation data

Actual turning point

Asymptotic turning point
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Figure 10. Solutions of (52) in (µ1,µ2)-space. We fix β = 0.2 and ν = 0.5. In (A), 
parabolas are obtained via continuation in MatCont, for two sets of parameter values. 
The turning points (in black) are computed with high accuracy by Newton iterations. 
In (B), the computed curves are plotted together with asymptotic curves defined by the 
leading terms in (66). In (C), we plot relative norm differences between asymptotic and 
numerically computed turning points. (A) Continuations: m = 3, 4...6, (B) C1 = 1.2, C2 =  
0.7, m = 3, 4..., 90, (C) Convergence: C1 = 1.2, C2 = 0.7.
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θ0 =

{
π/2, if C2 < 0,
3π/2, if C2 > 0. (64)

We summarize the results in the following lemma.

Lemma 4.1. For the 3D model map G defined by (22), the condition

G




1
1
µ2


 =




1
1
0


 (65)

defines in a neighborhood of the origin of the (µ1,µ2)-plane, an infinite sequence of parabolas 
Hom(2)

m , m ∈ N, that accumulate onto the half axis µ2 = 0 with µ1 � 0. Each parabola is 
formed by two branches with the following asymptotic representation:

{
µ
(m,1)
2 = e−β0(2πm+θm

0 +2πδi1)
(
1 + O

( 1
m

))
,

µ
(m,2)
2 = e−β0(2πm+π−θm

0 )
(
1 + O

( 1
m

))
,

 (66)

where

θm
0 := arcsin

(
−C0

2

C0
1

e−2πµ1m
)

.

These branches meet at a sequence of turning points T(2)
m , which converges to the origin of 

the (µ1,µ2)-plane and is given by

T(2)
m =

(
µ
(m)
1

µ
(m)
2

)
=

(
1

(4πm)

(
ln
[
(C0

2)
2

(C0
1)

2

]
+ O

( 1
m

))

e−β0(πm+θ0)
(
1 + O

( 1
m

))
)

, (67)

where

θ0 =

{
π/2, if C2 < 0,
3π/2, if C2 > 0. (68)

5. Interpretation of the original ODE system

Let us consider the original 4D system (2) in the (u, v)-coordinates (7) near the equilibrium, 
the geometric construction in figure 4 and the full 3D map Π defined by (20).

Fixed points of this map Π in Σs correspond to periodic orbits, thus PD and fold bifurca-
tions of these fixed points of this map correspond to the same bifurcations of periodic orbits 
in the original ODE system.

The second iterate of the map (20), for µ2 > 0, defines an orbit in the original system 
(2) which makes an extra global excursion before returning to Σu. Starting at a point in the 
unstable 1D manifold of the equilibrium and letting the third component of the image go to 
zero, implies that we consider an orbit of the ODE that departs along the unstable manifold 
and returns along the stable manifold back to the saddle. This orbit is therefore a secondary 
homoclinic orbit near the primary one.
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Using lemmas 3.1 and 4.1 we are now able to formulate our main results in terms of the 
original 4D ODE near the wild 3DL homoclinic transition. It follows from the fact that tak-
ing into account the o(‖x‖ν)-term in (20) does not alter the leading terms in all expressions, 
which further implies that the given asymptotics are the same for the truncated map (49) and 
full 3D return map (20).

Theorem 5.1. Consider a smooth 4D ODE system depending on two parameters

ẋ = f (x,α), x ∈ R4, α ∈ R2. (69)

Suppose that at α = 0 the system (69) satisfies the following assumptions:

 (A.1)  The eigenvalues of the linearization at the critical 3DL equilibrium x  =  0 are

δ0, δ0 ± iω0 and ε0,

   where δ0 < 0,ω0 > 0, ε0 > 0 and σ0 = δ0 + ε0 > 0.
 (A.2)  There exists a primary homoclinic orbit Γ0 to this 3DL equilibrium.

Then, in addition to the primary homoclinic curve Hom(1), the bifurcation set of (69) in a 
neighborhood of α = 0 generically contains the following elements:

 (i)  An infinite number of fold bifurcation curves LP(1)
n , n ∈ N, along which limit cycles with 

multiplier  +1 exist making one global excursion and a number of small turns near the 
equilibrium. These curves accumulate in the saddle-focus part of the primary homoclinic 
curve. Each curve resembles a horn consisting of two branches that meet at a cusp point 
CP(1)

n . The sequence of cusp points converges to α = 0.
 (ii)  An infinite number of period-doubling bifurcation curves PD(1)

n , n ∈ N, along which limit 
cycles with multiplier  −1 exist making one global excursion and a number of small turns 
near the equilibrium. Away from the cusp points CP(1)

n , these PD curves have the same 
asymptotic properties as the fold bifurcation curves LP(1)

n . These PD curves could either 
be smooth or have self-intersections developing small loops around the corresponding 
cusp points.

 (iii)  An infinite number of secondary homoclinic curves Hom(2)
m , m ∈ N, along which the 

equilibrium has homoclinic orbits making two global excursions and a number of turns 
near the equilibrium after the first global excursion. These curves also accumulate in the 
saddle-focus part of the primary homoclinic curve. Each curve resembles a parabola and 
the sequence of turning points converges to α = 0.

The genericity mentioned in the theorem means the nondegeneracy conditions (A.3)– 
(A.5). Part (i) of theorem 5.1 is illustrated in figure 11. Notice that LP(1)

n  curves can intersect 
the primary homoclinic branch Hom(1) either at saddle points (figure 11(a)) or at saddle-
focus points (figure 11(b)). In terms of the 1D (or 3D) model map these cases correspond to 
C0

1 > |C0
2| or 0 < C0

1 < |C0
2|, respectively. See equation (38).

Part (iii) of theorem 5.1 is illustrated in figure 12. Notice that the turning points of the 
secondary homoclinic curves Hom(2)

m  approach the 3DL transition point on Hom(1) either 
along its saddle part (figure 12(a)) or its saddle-focus part (figure 12(b)). Note that in case 
(a) we have an infinite sequence of pairs of secondary 3DL transitions accumulating at the 
primary 3DL transition. In terms of the 2D (or 3D) model map these cases also correspond to 
C0

1 > |C0
2| or C0

1 < |C0
2|, respectively. See equation (61).
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Our numerical analysis of the truncated model 3D map (22) also reveals NS curves in very 
small domains between the PD and LP curves. These curves correspond to torus bifurcation of 
cycles in the ODE system and do not exist for all combinations of (C0

1, C0
2). The end points of 

the NS segment are strong resonance points. There are other codimension 2 points, i.e. GPDs 
and LPPDs. All these points will also be present in the generic ODE system and should form 
sequences that converge to the 3DL transition point.

6. Examples

In this section we study the presence of the 3DL transition in two 4D ODE models.

(a) (b)

LP
(1)
n

LP
(1)
n+1

3DLHom(1)

CP
(1)
n+1

LP
(1)
n

LP
(1)
n+1

Hom(1)

CP
(1)
n

CP
(1)
n+1

CP
(1)
n

3DL

Figure 11. A sketch of two consecutive LP horns from theorem 5.1. The saddle-focus 
part of Hom(1) branch is drawn in blue. The difference between cases (a) and (b) is 
explained in the text.

(b)(a)

Hom
(2)
m

Hom
(2)
m+1

3DL 3DL

Hom
(2)
m+1

Hom
(2)
m

Hom(1) Hom(1)

Figure 12. A sketch of two consecutive secondary homoclinic curves from theorem 
5.1. The saddle-focus part of Hom(1) branch is drawn in blue. The difference between 
cases (a) and (b) is explained in the text. The vertical dashed line indicates the saddle 
to saddle-focus transition. In case (a) the points where the secondary homoclinic curves 
intersect the dashed line correspond to secondary 3DL transitions.
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6.1. Neural field model

In [12], a 3DL transition was observed in a traveling wave system for a neural field equation. 
The corresponding ODE system is




u̇ = −u+ψ−a
c ,

φ̇ = φ,
ψ̇ = ψ − f (u),
ȧ = κu−a

cτ ,

 (70)

where f (u) = (1 + exp (β(u − θ)))−1. The parameters β = 20, τ = 4.4, θ = 0.3 are fixed 
and κ, c are varied. The adaptation strength κ influences which wavespeeds c are admis-
sible. Figure 13(a) shows a part of the bifurcation diagram where the homoclinic orbit corre-
sponding to a traveling wave is recomputed using MatCont [21, 22]. The upper part of 
this curve involves stable waves. On the homoclinic orbit we have detected two codim 2 
bifurcation points. The first is the 3DL point at (κ, c) ≈ (0.7413, 0.4213), while a neutral 
saddle (Wild-Tame, WT) occurs at (κ, c) ≈ (0.7415, 0.5232). The real part of the eigen-
values along the branch is shown in figure  13(b). At the 3DL point we have eigenvalues 
λ1 = 0.9847,λ2 = −1.2999,λ3,4 = −1.2999 ± 0.058i. So this concerns the tame case 
(ν0 > 1), while the saddle-focus switches from tame to wild at the neutral saddle (WT). Next, 
we were able to locate two limit point of cycle horns with corresponding cusps (using 120 
mesh points with default tolerances). As predicted, we observe only finitely many horns as this 
example exhibits the tame case. Note that CP2  corresponds to a cycle with higher period than 
CP1, and is further away from 3DL.

The significance of the two codim 2 points is as follows. As we start from c  =  0.4 and 
increase c, we have a saddle-homoclinic orbit and move past the 3DL point. We then have 
a tame saddle-focus homoclinic orbit. For nearby parameters, there are only finitely many 
periodic orbits. For the traveling waves, this implies the existence of a finite number of 
periodic pulses (wave trains), see [12] for more details. The additional wave trains appear 
from the limit point of cycle bifurcations. Beyond the WT point, there are infinitely many 
such waves.

6.2. Lorenz–Stenflo model

As an example of a wild 3DL transition, we study the Lorenz–Stenflo equations. These equa-
tions  are a generalization of the well-known Lorenz equations  [23], that describe low-fre-
quency, short-wavelength acoustic gravity perturbations in the atmosphere with additional 
dependence on the earth’s rotation. The Lorenz–Stenflo equations are as follows:





ẋ = σ(y − x) + su,
ẏ = rx − xz − y,
ż = xy − bz,
u̇ = −x − σu,

 (71)

where σ is the Prandtl number, r is a generalized Rayleigh parameter, b is a positive parameter 
and s is a new parameter dependent on the Earth’s rotation [24]. Setting s  =  0 reduces the 
first three equations in (73) back to the original Lorenz model. The system (71) demonstrates 
chaotic dynamics and has a very complicated bifurcation diagram [25–27].

System (71) possesses the Z2-symmetry
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(x, y, z, u) �→ (−x,−y, z,−u),

and has one or three equilibria (the trivial equilibrium exists always). The system exhibits a 
wild 3DL transition of the primary homoclinic orbit to the trivial equilibrium at parameter 
values

σ = 2, s = 203.479 75, r = 126.435 27, b = 6, (72)

for which the eigenvalues are δ0 ± iω0, δ0 and ε0 with δ0 = −6, ω0 ≈ 2.5708, and ε0 ≈ 7, so 
that ν0 < 1 indeed. However, the corresponding PD and LP curves are difficult to resolve due 
to highly contractive properties close to the transition, caused by large real parts of the eigen-
values at the trivial equilibrium. Moreover, its bifurcation diagram will include additional 
bifurcation curves, e.g. related to (symmetric) cycles and heteroclinic orbits.

To overcome this, we perturb the system to get



ẋ = σ(y − x) + su,
ẏ = rx − xz − y + ε1z,
ż = xy − bz,
u̇ = −x − σu + ε2y, 

(73)

where the bold expressions are perturbation terms. This system is not Z2-symmetric anymore, 
but still has a trivial equilibrium for all parameter values. We are not aware of any physical 
interpretation of the added terms.

The trivial equilibrium has homoclinic orbits, and in figure 14, we see a wild 3DL trans ition 
along the primary homoclinic curve (black) in the perturbed Lorenz–Stenflo system (73) with

σ = 0.1, s = 33, ε1 = 0.1, ε2 = 0.3. (74)

The 3DL transition point is located at

(r, b) ≈ (15.302 531, 1.9884).

0.72 0.73 0.74 0.75 0.76
0.4

0.45

0.5

0.55

c
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CP1

CP2

3DL
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0.35 0.4 0.45 0.5 0.55

c

-2

-1

0

1

Re( )

(b)

Figure 13. Bifurcation diagram of system (70). (a) The homoclinic bifurcation curve 
exhibits two codim 2 points, 3DL and WT. Near the homoclinic bifurcation curve there 
are two more folds of cycle bifurcation curves. They are too close to the homoclinic 
to be resolved, but both fold curves exhibit a cusp bifurcation CP1,2. (b) Real part of 
eigenvalues of the saddle on the homoclinic bifurcation curve. At c  =  0.4213, the three 
stable eigenvalues are distinct but have equal real parts. At c  =  0.5232, the saddle 
quantity vanishes. (a) Partial bifurcation diagram. (b) Real part of eigenvalues.
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The corresponding eigenvalues are δ0 ± iω0, δ0 and ε0 with δ0 ≈ −1.9884,ω0 ≈  
6.2265, ε0 ≈ 2.7769, so that ν0 < 1 as well.

We clearly see PD (blue) and LP (red) curves accumulating on the primary homoclinic 
curve according to the theory. The PD curve within each horn forms a saddle area. The sec-
ondary homoclinic curves (green) form parabolas on one side of the primary homoclinic curve 
as expected. The curve of trivial equilibria with a 3D stable eigenspace is shown as a dashed 
line. The cusp points on each LP horn form a sequence, and asymptotically approach the 3DL 
point at the intersection of the black curve with the dashed line. The inset shows only the LP 
horns. For this model the bifurcation curves have been computed using MatCont [21], also 
based on [22, 28]. There are, however, no stable chaotic dynamics in the parameter range of 
figure 14.

We have also computed kneading indices [29, 30] to characterize the nature of attractors 
in parameter space in more detail. At each point in the parameter space, an orbit is computed 
starting from a phase point near the trivial equilibrium shifted in the unstable direction with 
x negative. Next, the number of extrema in the x-variable are indexed as follows. For the ith 
extremum at time ti we have

ci =

{
1, if x(ti) < 0,
0, if x(ti) > 0. (75)

Next we compute the finite approximation of the kneading index,

K =

N∑
i=1

ciqi, (76)
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1.8
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2.2

Figure 14. Bifurcation curves near a wild 3DL transition in the (b, r)-plane: cyclic 
folds (red), PDs (blue), primary homoclinic (black), 3DL equilibrium transition (dashed 
black) and secondary homoclinics (green). For other parameter values, see (74).
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where q is chosen to be less than 1 and N is finite. The value of K itself bears no meaning, but 
a change in index may quantify the following events: either there is a homoclinic bifurcation, 
or one of the extrema of the time series passes zero. The latter is not a bifurcation as there is 
no structural change in the dynamics. It is difficult, however, to eliminate such false bifurca-
tions automatically. In figure 15 we overlay homoclinic bifurcation curves to find agreement 
between changes in the kneading index and homoclinic bifurcation curves. The changes in 
color indicate where one may find a homoclinic bifurcation. Kneading indices are typically 
used for symmetric systems which allow a clear threshold to set ci, but as a first inventory of 
homoclinic bifurcations prove rather useful here, e.g. the double and triple homoclinic bifur-
cation curves.

7. Discussion

We have studied bifurcation diagrams of 4D two-parameter ODEs having at some critical 
parameter values a homoclinic orbit to a hyperbolic equilibrium with one simple unstable 
eigenvalue and three simple stable eigenvalues (one real and one complex-conjugate pair). We 
demonstrated that this phenomenon occurs in two 4D ODE systems appearing in applications. 
We focused on the case where a transition from a saddle homoclinic orbit to Shilnikov’s wild 
saddle-focus homoclinic orbit takes place at the critical parameter values. Similar to the 3D 
Belyakov’s saddle to wild saddle-focus homoclinic transition, we found infinite sequences of 
codim 1 bifurcations curves related to limit cycles, i.e. folds and PDs, and secondary homoclinic 

15.2 15.3 15.4 15.5 15.6 15.7 15.8 15.9 16
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Figure 15. Kneading indices for the perturbed Lorenz–Stenflo model (73) in the 
(b, r)-plane for fixed parameters (74). Color codes in gray indicate domains with the 
same kneading index. The following bifurcation curves computed in MatCont are 
overlaid: primary homoclinic (black, dashed), secondary homoclinic (green), tertiary 
homoclinic (pink), quadruple homoclinic (blue) and cyclic fold (red).
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orbits accumulating on the primary (wild) saddle-focus homoclinic branch. However, there is 
a striking difference between these two cases. While in the standard Belyakov case all bifurca-
tion curves approach the codim 2 point in the parameter plane tangentially to the saddle-focus 
homoclinic curve (having actually tangency of infinite order) and form bunches, in the con-
sidered 3DL case none of them emanate from the codim 2 point. Instead, they form sequences 
of horns with cusps and other codim 2 bifurcation points, or parabolas. The sequences of 
codim 2 points and parabola tips indeed converge to the studied homoclinic 3DL point. In 
a sense, the bifurcation diagram for the considered 3DL transition more resembles another 
codim 2 homoclinic bifurcation studied by Belyakov: a transition from tame to wild saddle-
focus homoclinic orbit in 3D ODEs, when the saddle quantity vanishes [31]. In that case, fold 
bifurcation curves for cycles also have cusp points accumulating at the transition point, while 
the secondary homoclinic curves look like parabolas with tips tending to the trans ition point. 
The exact source of this similarity remains a mystery but might be related to the simplicity of 
all eigenvalues in both cases.

One can employ the C1 linearization theorem by Belitskii [1, 32] to get the C1 equivalence 
of the flow generated by (2) to that corresponding to its linear part, near the equilibrium 
O = (0, 0, 0, 0)




ẋ1 = γ(µ)x1 − x2,
ẋ2 = x1 + γ(µ)x2,
ẋ3 = (γ(µ)− µ1) x3,
ẋ4 = β(µ)x4.

 (77)

This theorem is applicable, since

Re λi �= Re λj + Re λk

for all eigenvalues of the saddle-focus at and near the 3DL homoclinic transition. This would 
allow one to easily obtain the Poincaré return map (20), but only permits to employ its first-
order partial derivatives due to lack of smoothness. This would be sufficient to derive asymp-
totics for the fold and PD bifurcations of the primary limit cycles, as well as those for the 
secondary homoclinic orbits. However, to verify nondegeneracy conditions for LP and PD 
bifurcations and to detect codim 2 points, one needs higher-order partial derivatives of the 
return map Π. Their existence can be granted by using the Ck-linearization near the equi-
librium with sufficiently big k  >  1. This exists according to the Ck-linearization theorem by 
Sternberg [33], if one imposes a finite number of low-order non-resonance conditions on the 
eigenvalues, i.e.

λi �=
4∑

j=1

njλj,

where nj � 0 and 2 �
∑4

j=1 nj � N  for some N = N(k) (see also [4, 34]). However, our anal-
ysis shows that such extra conditions can be avoided, similar to other homoclinic bifurcation 
scenarios [3].

For n-dimensional systems, generically the analysis of homoclinic bifurcations can be 
restricted to the homoclinic center manifold, a k-dimensional invariant finitely smooth mani-
fold that is tangent at the equilibrium to the eigenspace corresponding to the union of all 
leading eigenvalues [14, 35–37]. Thus, k is the number of all leading eigenvalues of the equi-
librium, counting their multiplicities. For the considered 3DL saddle to saddle-focus homo-
clinic transition case, we have k  =  4. Thus, our analysis of 4D ODEs is sufficient to predict 
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the main features of the bifurcation diagram near this transition in a generic n-dimensional 
situation. However, some ‘gap’ conditions should be imposed on the eigenvalues of the criti-
cal equilibrium to guarantee more than C1 smoothness of the homoclinic center manifold that 
is needed for bifurcation analysis. Whether or not one can avoid using the homoclinic center 
manifold requires further analysis.

It will also be interesting to study n-homoclinic orbits with n � 2 near the considered 
bifurcation and, in particular, investigate whether they could be degenerate. Another chal-
lenge would be to prove analytically the existence of infinite sequences of GPD points and 
strong resonances (see figure 7), at least for the truncated 3D model map (22). An interesting 
research direction is also to study the homoclinic 3DL transition in volume-preserving 4D 
ODEs, where it is always wild and has codim 1.
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