
Graphical Modeling of Security Arguments:
Current State and Future Directions

Dan Ionita1(B), Margaret Ford2, Alexandr Vasenev1, and Roel Wieringa1

1 Services, Cybersecurity and Safety group, University of Twente,
Drienerlolaan 5, 7522 NB Enschede, The Netherlands

{d.ionita,r.j.wieringa}@utwente.nl
2 Consult Hyperion, 10-12 The Mount, Guildford GU2 4HN, UK

margaret.ford@chyp.com

Abstract. Identifying threats and risks to complex systems often
requires some form of brainstorming. In addition, eliciting security
requirements involves making traceable decisions about which risks to
mitigate and how. The complexity and dynamics of modern socio-
technical systems mean that their security cannot be formally proven.
Instead, some researchers have turned to modeling the claims underpin-
ning a risk assessment and the arguments which support security deci-
sions. As a result, several argumentation-based risk analysis and secu-
rity requirements elicitation frameworks have been proposed. These draw
upon existing research in decision making and requirements engineering.
Some provide tools to graphically model the underlying argumentation
structures, with varying degrees of granularity and formalism. In this
paper, we compare these approaches, discuss their applicability and sug-
gest avenues for future research. We find that the core of existing security
argumentation frameworks are the links between threats, risks, mitiga-
tions and system components. Graphs - a natural representation for these
links - are used by many graphical security argumentation tools. But, in
order to be human-readable, the graphical models of these graphs need
to be both scalable and easy to understand. Therefore, in order to facil-
itate adoption, both the creation and exploration of these graphs need
to be streamlined.

Keywords: Risk assessment · Security requirements
Argumentation · Graphical modeling

1 Introduction

Complete security is impossible and security decisions have to be selective: some
risks can be mitigated in several ways while others will have to be accepted.
Thus, security decision making involves an opportunity cost - the loss of the
value that would have been realized by making an alternative decision.

The ability to trace back previous decisions is important if they have to be
defended or revised, or if new security decisions have to taken. Firstly, the deci-
sion maker may have to justify mitigation decisions made earlier, for instance
c© Springer International Publishing AG 2018
P. Liu et al. (eds.): GraMSec 2017, LNCS 10744, pp. 1–16, 2018.
https://doi.org/10.1007/978-3-319-74860-3_1



2 D. Ionita et al.

in the case of a successful attack [16] or to satisfy the “reasonable security”
requirements of regulators [4]. Second, the ever changing security landscape and
forces decision makers to frequently revisit security decisions. In fact, the new
European GDPR (General Data Protection directive) explicitly requires data
controllers and processors to ensure “ongoing” confidentiality, integrity, avail-
ability and resilience of processing systems and services [12, art 32(1)(b)]. Third,
related systems may face related but not identical risks and therefore, reusing
(parts of) the arguments made for similar systems facilitates decision making for
given systems [13]. By recording the argumentation behind security decisions,
risk assessments can be re-visited when an attack takes place, extended when
new risks surface, and re-used in related products or contexts. Altogether, this
highlights a need to document security decisions and the rationale behind them.

With respect to previous research, security arguments can be compared to
safety cases [1,9,25], in that they summarize the reasons why, and the extent to
which, a system is thought to be acceptably secure (or safe). Several techniques
for modeling security arguments exist, some inspired from legal argumentation
(Toulmin-like argumentation structures [19,22]), others from formal methods
(deontic logic [15], defeasible logic [35]). The various approaches differ in their
scope and applicability. However, security argumentation schemas have only been
applied to toy examples so far and have not yet been adopted (or even evaluated)
in practice, raising questions with regard to their practical usability, utility and
scalability.

A characteristic feature of security risk assessments is that stakeholders with
varying backgrounds must contribute to or check the assessment, and that these
stakeholders have no time to first learn a specialized language for argumen-
tation. Therefore, we argue difficulties in understanding the notation used to
represent security arguments are major threats to the usability of any security
argumentation methodology and that some form of graphical model is needed in
order to enhance understanding. However, a graphical representation with low
expressiveness may have reduced utility while one which is too granular may
face scalability issues. This paper looks at argumentation models have evolved
over time and cross-examines graphical security argumentation frameworks in
order to support researchers in advancing the graphical modeling of security
arguments, as well as inform specialists involved in the security requirements
elicitation or risk assessment about existing security argumentation frameworks
and tools.

We start in Sect. 2 with reviewing argumentation theory and its application in
the security domain. In Sect. 3 we review the graphical representation of security
arguments provided by graphical argumentation tools available at the time of
writing. In Sect. 4 we cross-compare the various representations employed by
each of the tools and draw conclusions with regard to their expressiveness and
applicability. In Sect. 5 we draw conclusions from the comparison and indicate
some topics for future work in the direction of making security argumentation
graphs more practically usable.



Graphical Modeling of Security Arguments 3

2 Background

Structured argumentation has its roots in legal reasoning, with examples of dia-
grams being used to capture the justifications of judges or juries dating back
to as early as 1913 [17]. With the advent of computers, attempts to capture
reasoning first behind design decisions and later behind decisions in general also
proliferated [8,14,26]. Significant effort was invested into developing complex
tools and even more complex approaches for automated decision support [27,33].
However, it quickly became apparent that capturing arguments is most useful
when no formal proof is possible but defensibility of the decision is required [30].
This is of course the case for legal reasoning, but a similar situation exits in
the fields of safety and security. Indeed, safety arguments (in the form of safety
cases) were quickly adopted by the industry as a standard way of claiming their
systems are safe [7]. With laws such as the European DPD (Data Protection
Directive) and, in the US, Sect. 5 of the Federal Trade Comission (FTC) act
requiring companies to show that they took reasonable steps in protecting their
customer’s data, argumentation-based approaches started finding their way into
the field of information security. The remainder of this section explores the evo-
lution of argumentation structures from the court of law to their more recent
incarnations in security requirements engineering and in risk assessment. We
leave the discussion of the graphical representations of these arguments for the
next sections.

2.1 Argumentation Modeling

Stephen Toulmin laid the foundations for modeling arguments in his 1958 book
The Uses of Argument [41]. He proposed subdividing each argument into six
components (as shown in Fig. 1): a central claim, some grounds to support that
claim, a warrant connecting the claim to the evidence, a factual backing for the
warrant, a qualifier which restricts the scope of the claim and finally a rebuttal to
the claim. He later identified applications of his framework in legal reasoning [40].

Warrant

Grounds

Backing

Qualifier Rebu�al

Claim

since

because

if unless
so

Fig. 1. The Toulmin argument structure

In the late 1980’s and early 90’s, argumentation models started being used
to support design decisions. Specifically, the emerging field of design rationale
began investigating ways to capture how one arrives at a specific decision, which
alternate decisions were or should have been considered, and the facts and



4 D. Ionita et al.

assumptions that went into the decision making [26]. In 1989 MacLean et al.
[28] introduced an approach to represent design rationale which uses a graphi-
cal argumentation scheme called QOC (for Questions, Options and Criteria) -
depicted in Fig. 2. Buckingham Shum et al. [38] later showed how the QOC nota-
tion can be used as a representative formalism for computer-supported visualiza-
tion of arguments, with applications in collaborative environments. Mylopoulos
et al. [31] introduced Telo, a language for representing knowledge about an infor-
mation system intended to assist in its development. Similarly, Fischer et al. [14]
claim that making argumentation explicit can benefit the design process itself.

Fig. 2. The Questions, Options and Criteria (QOC) graphical argumentation scheme

Soon, modeling of arguments found even wider applications in decision mak-
ing - especially when related to critical systems - where they started being used
to make expert judgment explicit, usually by means of so-called ‘cases’ [8]. Safety
cases, for instance, are structured arguments, supported by evidence, intended
to justify that a system is acceptably safe for a specific application in a spe-
cific operating environment [9]. These arguments should be clear, comprehen-
sive and defensible [25]. Two established approaches to safety cases are the CAE
(Claims Arguments Evidence) notation [10] and the GSN (Goal Structuring
Notation) [24].

Both approaches prescribe a graphical representation of the argumentation
structure but differ in terms of what this structure contains. The CAE was
developed by Adelard, a consultancy, and views safety cases as a set of claims
supported by arguments, which in turn rely on evidence. Although these concepts
are expressed using natural language, the cases themselves are represented as
graphs and most implementations suggest their own graphical symbols. Figure 4
shows the CAE representation used by the Adelard’s own ASCE tool [1]. The
GSN (Fig. 3) was developed by the University of York and provides a more
granular decomposition of safety arguments into goals, context, assumptions,
strategy, justifications and solutions [24]. The arguments are also represented
as a graph, with one of two types of links possible between each pair of nodes:
(1) a decompositonal is solved by between a goal and one or more strategies or
between a strategy and one or more goals, as well as (2) a contextual in context of



Graphical Modeling of Security Arguments 5

Jus�fica�on

Goal Assump�on

Strategy

Goal Context

Solu�on Solu�on

Is solved by Is solved by

In
 c

on
te

xt
 o

f

Is solved by

Is solved by

In
 c

on
te

xt
 o

f

In
 c

on
te

xt
 o

f

Fig. 3. The Goal Structuring Notation (GSN)

Claim

Argument

Subclaim Subclaim

Evidence

Is a subclaim ofIs a subclaim of

Supports

Is evidence for

Fig. 4. The Claims Arguments
Evidence (CAE) notation

between a goal, strategy or solution and an assumption, justification or context.
The notation comes with a well defined graphical language which - according to
its creator - attempts to strike a balance between power of expressiveness and
usability [25].

Other, more general representations such as concept maps [29], mindmaps [2]
or generic diagrams can of course also be used to represent and share knowledge,
including arguments [11]. These representations have no (formal or informal)
argumentation semantics and we ignore them in the rest of the paper.

2.2 Argumentation in Security

The success of safety cases has inspired other similar approaches, such as trust
cases [18], conformity cases [8] and, in the field of security, assurance cases [3,32]
used to show satisfaction of requirements and misuse cases [39] used to elicit secu-
rity requirements. Similarly, argumentation schemes for design rationale have
been adapted to provide support for security decisions. Recently, argumentation
modes have been used to encode the entire risk assessment process, from risk
identification to countermeasure selection. This subsection provides an overview
of these applications.

Arguing Satisfaction of Security Requirements. Assurance cases are an
argumentation-based approach similar to the safety cases described in Sect. 2.1.
They use structured argumentation (for instance using the GSN or CAE nota-
tions) to model the arguments of experts that a system will work as expected.
However, while safety cases only make claims pertaining to the safe operation
of a system, assurance cases are also concerned with other important system
functions, in particular security and dependability [37].

Haley et al. [21] laid the groundwork for an argumentation framework aimed
specifically at validating security requirements. It distinguishes between inner
and outer arguments. Inner arguments are formal and consist mostly of claims



6 D. Ionita et al.

about system behavior, while outer arguments are structured but informal and
serve to justify those claims in terms of trust assumptions. Together, the two
form a so-called “satisfaction argument”.

Supporting the Elicitation of Security Requirements. Misuse cases - a
combination of safety cases and use cases - describe malicious actions that could
be taken against a system. They are used to identify security requirements and
provide arguments as to why these requirements are important [39].

Rowe et al. [36] suggest using argumentation logic to go beyond formalizing
domain-specific reasoning and automatically reason about security administra-
tion tasks. They propose decomposing each individual argument into a Toulmin-
like structure and then representing defeasability links between the arguments as
a graph. This would allow both encoding unstructured knowledge and applying
automated reasoning, for example by using theorem provers. They suggest two
applications: attack diagnosis, where experts argue about the root-cause of an
attack, and policy recommendation, where security requirements are elicited.

Haley et al. [20] built their conceptual framework for modeling and validating
security requirements described in [21] into a security requirements elicitation
process, which can help distill security requirements from business goals. The
same authors later integrated their work on modeling and elicitation of security
requirements into a unified framework for security requirements engineering [19].
The framework considers the context, functional requirements and security goals
before identifying security requirements and constructing satisfaction arguments
for them. However, it does not consider the risks the system may or may not be
facing when not all security requirements are satisfied, or when not all security
goals are achieved.

Argumentation-Based Risk Assessment. Franqueira et al. [15] were among
the first to propose using argumentation structures to reason about both risks
and countermeasures in a holistic fashion. OpenArgue (discussed in Sect. 3.1)
supports the construction of argumentation models. Their proposed method,
RISA (RIsk assessment in Security Argumentation) links to public catalogs such
as CAPEC (Common Attack Pattern Enumeration and Classification) and the
CWE (Common Weakness Enumeration) to provide support for security argu-
ments using simple propositional logic. The method does not consider the pos-
sibility that a security threat may not be totally eliminated. Later, Yu et al.
[43] integrated the RISA method and Franqueira’s argumentation schema into
a unified argumentation meta-model and implemented it as part of tool - Open-
RISA - which partly automates the validation process. This tool is discussed in
Sect. 3.1.

Prakken et al. [35] proposed a logic-based method that could support the
modeling and analysis of security arguments. The approach viewed the risk
assessment as an argumentation game, where experts elicit arguments and
counter-arguments about possible attacks and countermeasures. Arguments
derive conclusions from a knowledge base using strict or defeasible inference



Graphical Modeling of Security Arguments 7

rules. The method is based on the ASPIC+ framework [34] and uses defeasible
logic. This restricts its usability in practice.

Prakken’s solution inspired a simplified approach, which used spreadsheets
to encode and analyze the arguments [22]. Each argument was decomposed
into only a claim and one or more supporting assumptions or facts. Similar to
Prakken’s approach, any argument could counter any other argument(s) and for-
mulas (this time built-into the spreadsheets) were used to automatically compute
which arguments were defeated and which were not. Argumentation spreadsheets
are discussed in detail in Sect. 3.2.

Later, a dedicated tool was developed which employed the same simplified
argument structure but without differentiating between assumptions and facts.
However, most arguments were found to refer to attacks, while most counter-
arguments proposed countermeasures to attacks. To simplify this, and further
improve usability, an online version was developed which also flattened the inter-
argument structure by only allowing counter-arguments to refer to countermea-
sures. These tools are part of the ArgueSecure family, discussed in Sect. 3.3.

3 Graphical Security Argumentation Tools
and Techniques

Both (formal) first order logic and (informal) structured argumentation provide
methods for analyzing the interaction between arguments. However, structured
argumentation also provides a foundation for presenting arguments for or against
a position to a user [36]. Of the argumentation notations reviewed above, we now
zoom in on those having a graphical representation, and discuss this represen-
tation in more detail by applying them to the same sample scenario. Graphical
security argumentation modeling tools mainly differ in the amount of detail they
use to describe the structure of, and links between, arguments. Therefore, we
evaluate each tool on its expressiveness in terms of intra-argument granularity
E1 (i.e. the number of components an argument has to be decomposed into),
inter-argument granularity E2 (i.e. how many types of rebuttals are possible).
Tools also provide secondary functionality, usually aimed at improving usabil-
ity and scalability. We therefore also identify relevant features provided by each
tool (labelled F1–F6) and summarize everything in a cross-comparison table
(Table 1), to be discussed in Sect. 4.

3.1 OpenArgue/OpenRISA

OpenArgue is an argumentation modeling tool featuring both a syntax editor
and a graphical editor, which comes with the ability to derive an argumentation
diagram from a textual specification [42]. OpenArgue assumes security require-
ments are known at the time of analysis and focuses on identifying ways by which
these requirements could be invalidated. This means all arguments are linked
to a specific security requirement (F1). It benefits from syntax highlighting as
well as a built-in model checker which can identify formal inconsistencies in the



8 D. Ionita et al.

F
ig
.
5
.
O

p
en

A
rg

u
e

-
sa

m
p
le

a
ss

es
sm

en
t



Graphical Modeling of Security Arguments 9

argumentation diagram. OpenArgue has a simplified Toulmin intra-argument
structure consisting of a central claim, supported by grounds, the relevance of
which is supported by warrants (E1 = 3). However, OpenArgue allows specifying
rather complex inter-argument relationships: arguments can rebut or mitigate
one or more other arguments (F3, F4) by challenging either their grounds or
their warrants (E1= 4). This can lead to inter-twined graphical representations
of the argumentation model that are hard to understand. This effect is ampli-
fied by the fact that the tool does not come with a custom editor but rather
uses a generic Eclipse UML editor and thereby poses significant usability and
scalability issues. Figure 5 shows a sample assessment built using OpenArgue.

OpenRISA is an extension of OpenArgue which can, in addition, check the
argumentation model against online knowledge bases and verify that the risks
identified are valid rebuttals.

3.2 Argumentation Spreadsheets

Tables have long served as a convenient means of storing and communicat-
ing structured data [6]. The argumentation spreadsheets attempt to decompose
arguments into three elements: a claim, one or more assumptions and one or
more facts [22] (E1 = 3). Each row encodes one argument divided across several
columns. A screenshot of a sample assessment using argumentation spreadsheets
is shown in Fig. 6.

Fig. 6. Argumentation spreadsheets - sample assessment

An argument describes either a risk or a risk mitigation and can rebut one
argument of an opposite type. This leads to a linear, attacker versus defender
game-like process of filling in the table: first, a risk is described; then, either



10 D. Ionita et al.

the risk is accepted or a counterargument describing a mitigation is added; this
back-and-forth rhetoric can continue until the risk is completely eliminated or
the residual risk is accepted. The tool keeps track of each argument’s state
(IN for arguments without rebuttals or arguments whose rebuttal was defeated
and OUT for arguments with an IN rebuttal), as well as automatically tagging
arguments which mention one of the assets in the asset column (F2). Finally, the
user can tag risk mitigation arguments with either a “Red.” or a “Transf.” tag
signifying that the suggested countermeasure only partially mitigates the risk,
or that it transfers the risk to a third-party (F5). Since this means a rebuttal can
be full or partial, the spreadsheets score a 2 on the inter-argument granularity.

In total therefore, four types of risk response exist: (1) ignore (undefeated
attacker argument), (2) eliminate (defeated attacker argument), (3) mitigate
(partially defeated attacker argument) and (4) transfer.

3.3 ArgueSecure

ArgueSecure is an umbrella terms for a pair of tools - one online and one offline
- derived from the spreadsheets described in the previous section.

The offline version is designed to streamline the manual process of filling in
the argumentation spreadsheets. Therefore, ArgueSecure-online maintains the
risk assessment game philosophy, where attacker arguments make claims with
regard to risks and defender arguments rebut them by describing mitigations.
However, it drops the concept of “facts” and does not support linking arguments
to assets [23] (E1 = 2), and it also does not differentiate between partial or full
mitigation (E2 = 1). In addition to the other tools reviewed so far, it provides
keyboard shortcuts, various report generation functionality (F9) and differen-
tiates between implemented and planned countermeasures (F7). It represents
the risk assessment as an indented, collapsible list, with color-coded argument
statuses (see screenshot in Fig. 7).

The online version makes the risk assessment process a collaborative one:
participants no longer have to be in the same room; they can contribute remotely
and asynchronously thereby transforming the argumentation model into a living
document which keeps track of risks as they are discovered and countermeasures
as they are proposed and implemented (F6). ArgueSecure-online also comes with
a simplified interface (see Fig. 8 for a screenshot) aimed at non-experts and
similar report generation functionality as its offline counterpart (F9), as well as
differentiating risk transfers from other types of mitigations (F5). However, it
also introduces new functionality, namely the ability to define many-to-many
relationships between risks and attacks (F3) and between attacks and defenses
(F4) and re-introduces the ability to relate arguments to assets (F2). This turns
the argumentation model into a graph, but in order to avoid inter-twined links,
the tool represents it as a tree by duplicating nodes with multiple incoming links.



Graphical Modeling of Security Arguments 11

Fig. 7. Arguesecure-offline - sample risk assessment

Fig. 8. Arguesecure-online - sample risk assessment

4 Comparison and Discussion

Table 1 compares the features provided by the graphical security argumentation
modeling tools described in the previous section.

In OpenRISA (and its predecessor, OpenArgue) a risk, by definition violates
a known security requirement. ArgueSecure does not have such a restriction,
allowing more flexibility and creativity but for this reason it also cannot support
linking countermeasures back to security requirements. Therefore the two have
slightly different application scenarios: OpenRISA assumes Security Require-
ments are known and they need to be implemented, while ArgueSecure can help
identify them.

OpenRISA and both of the ArgueSecure tools use a graph to encode the
argumentation model. The argumentation spreadsheet could also be represented



12 D. Ionita et al.

Table 1. Feature comparison of graphical security argumentation modeling tools

OpenArgue Arg. sheets AS-offline AS-online

E1: intra-argument granularity 3 3 2 2

E2: inter-argument granularity 4 2 1 1

F1: ability to relate to security req. Y N N N

F2: ability to relate to assets N Y N Y

F3: multiple attack vectors per risk Y N N Y

F4: multiple mitigations per attack Y N N Y

F5: supports risk transfer N Y Y Y

F6: collaborative N N N Y

F7: differentiates between
implemented and planned mitigations

N N Y N

F8: search and filtering N N N Y

F9: export and reports N N Y Y

as a graph, with each row describing one node and its links. In addition, most
generic argumentation tools (such as ASCAD) also use graphs. We therefore
conclude that graphs are a suitable representation for security arguments (O1).

The ArgueSecure tools only decompose an argument into two parts: a sum-
marized claim, together with some support for that claim (AS-offline calls them
claim plus assumptions, and AS-online, title plus description). OpenArgue adds
the concept of a warrant. An argumentation spreadsheets call the warrant an
inference rule and adds facts, which differ from assumptions in the sense that
they cannot be rebutted. However, these fields are often left empty in practice,
as the inference rule or backing are mostly considered obvious [23] (e.g. a vul-
nerability creating a risk) and the difference between a fact and an assumption
is many times only philosophical (e.g. facts can change with the specification).
This leads us to our second observation: in order to describe a security argu-
ment, one needs to be able to specify at least the vulnerability or vulnerabilities
involved, the risk they create and which mitigations are relevant (O2).

ArgueSecure only shows which argument attacks which other argument, but
in the argumentation spreadsheets it is possible to specify which component of
the argument is being attacked and in OpenRISA even how. Because OpenRISA
allows to model rebuttal relationships in more detail, the resulting diagrams are
more complex and inter-twined (see Fig. 5 vs. Fig. 8). The argumentation spread-
sheets also model rebuttals in similar detail, but due to the tabular representa-
tion, the result is more compact and readable (see Fig. 6). ArgueSecure, which
only supports binary rebuttal relationships between attacks and countermea-
sures and therefore manages to achieve similar scalability as the argumentation
spreadsheets (see Figs. 8 and 7). Our tentative observation is that while rebut-
tals are necessary for relating security arguments, anything other than binary
rebuttals can pose a significant scalability challenge (O3).



Graphical Modeling of Security Arguments 13

With regard to usability, the two ArgueSecure tools are the only ones which
use icons. In addition, they also attempt to manage scalability by collapsing
and expanding any part of the argumentation graph. The online version even
supports filtering nodes by tags. In our toy examples scalability was not much
of an issue. But realistic assessments can have hundreds of nodes, and there-
fore features to help navigate the argumentation graph are critical to making it
human-writable and human-readable (O4).

5 Conclusions and Outlook

Perfect security is invisible, and also impossible. Security arguments can show
that a system is secure to some extent by providing structured, but human-
readable explanations as to which risks were considered and how they were
mitigated. This is important for a variety of reasons, ranging from certification
to compliance, and from awareness to assurance.

Unsurprisingly, most argumentation modeling tools employ a simplified ver-
sion of Toulmin’s argument structure for conceptualizing security arguments but
vary in terms of either the granularity by which they decompose the argument
or in the way they represent inter-argument structures. However, very few tools
exist which address the specifics of security argumentation, and their audience
is mostly academic.

Indeed, confronting the tools of Sect. 3 with practical security arguments
shows that in order to be usable, security argumentation techniques need to
be simple and reduce themselves to the essential information that needs to be
present in order to argue about (in-)security of a system or software: the links
between mitigations, risks and system components or modules. As these links can
be of type “many-to-many”, graphs are a natural fit for representing these links.

In the words of Buckingham-Shum [5], diagramming tools differ not only in
the type of information they are able to represent, but especially in regard to
the trade-off they make between expressiveness and usability. This is true also
for argumentation graphs, which can explode in size when all known risks and
relevant mitigations pertaining to a real system are added. Therefore, ensuring
scalability is critical to maintaining reasonable usability. Only some of the tools
available provide ways of navigating the graph, for example by searching, fil-
tering or collapsing parts of the argumentation structure. We believe this topic
has to be better investigated before security argumentation modeling becomes
usable in practice. To further enhance scalability, automation and re-usability
are also relevant topics not only in security argumentation, but security in gen-
eral. Future work could look therefore into ways by which the argumentation
graph can be filled in semi-automatically, for instance by recognizing patterns,
linking to knowledge bases or parsing the output of vulnerability scanners. This
might require (re-)introducting some level of formalism into the argumentation
structure.



14 D. Ionita et al.

References

1. Adelard Safety Case Development (ASCAD) Manual, London, UK (2010)
2. Beel, J., Langer, S.: An exploratory analysis of mind maps. In: Proceedings of the

11th ACM Symposium on Document Engineering, pp. 81–84. ACM (2011)
3. Bloomfield, R.E., Guerra, S., Miller, A., Masera, M., Weinstock, C.B.: International

working group on assurance cases (for security). IEEE Secur. Priv. 4(3), 66–68
(2006)

4. Breaux, T.D., Baumer, D.L.: Legally “reasonable” security requirements: a 10-year
FTC retrospective. Comput. Secur. 30(4), 178–193 (2011)

5. Buckingham Shum, S.: The Roots of Computer Supported Argument Visualization,
pp. 3–24. Springer, London (2003)

6. Campbell-Kelly, M.: The History of Mathematical Tables: From Sumer to Spread-
sheets. Oxford University Press, Oxford (2003)

7. Cleland, G.M., Habli, I., Medhurst, J.: Evidence: Using Safety Cases in Industry
and Healthcare. The Health Foundation, London (2012)

8. Cyra, L., Górski, J.: Support for argument structures review and assessment.
Reliab. Eng. Syst. Saf. 96(1), 26–37 (2011). Special Issue on Safecomp 2008

9. Defence standard 00-56 issue 4 (part 1): Safety management requirements for
defence systems, July 2007

10. Emmet, L.: Using claims, arguments and evidence: a pragmatic view-and tool
support in ASCE. www.adelard.com

11. Eppler, M.J.: A comparison between concept maps, mind maps, conceptual dia-
grams, and visual metaphors as complementary tools for knowledge construction
and sharing. Inf. Vis. 5(3), 202–210 (2006)

12. Regulation (EU) 2016/679 of the European Parliament and of the Council of 27
April 2016 on the protection of natural persons with regard to the processing of
personal data and on the free movement of such data, and repealing Directive
95/46/EC (General Data Protection Regulation). Off. J. Eur. Union L119/59, 1–
88, May 2016. http://eur-lex.europa.eu/legal-content/EN/TXT/?uri=OJ:L:2016:
119:TOC

13. Firesmith, D.G.: Analyzing and specifying reusable security requirements. Techni-
cal report DTIC Document (2003)

14. Fischer, G., Lemke, A.C., McCall, R., Morch, A.I.: Making argumentation serve
design. Hum.-Comput. Interact. 6(3), 393–419 (1991)

15. Franqueira, V.N.L., Tun, T.T., Yu, Y., Wieringa, R., Nuseibeh, B.: Risk and argu-
ment: a risk-based argumentation method for practical security. In: RE, pp. 239–
248. IEEE (2011)

16. Gold, J.: Data breaches and computer hacking: liability & insurance issues. Amer-
ican Bar Association’s Government Law Committee Newsletter Fall (2011)

17. Goodwin, J., Fisher, A.: Wigmore’s chart method. Inf. Logic 20(3), 223–243 (2000)
18. Górski, J., Jarz̧bowicz, A., Leszczyna, R., Miler, J., Olszewski, M.: Trust case

justifying trust in an it solution. Reliab. Eng. Syst. Saf. 89(1), 33–47 (2005)
19. Haley, C., Laney, R., Moffett, J., Nuseibeh, B.: Security requirements engineering: a

framework for representation and analysis. IEEE Trans. Soft. Eng. 34(1), 133–153
(2008)

20. Haley, C.B., Laney, R., Moffett, J.D., Nuseibeh, B.: Arguing satisfaction of security
requirements. In: Integrating Security and Software Engineering: Advances and
Future Visions, pp. 16–43 (2006)

www.adelard.com
http://eur-lex.europa.eu/legal-content/EN/TXT/?uri=OJ:L:2016:119:TOC
http://eur-lex.europa.eu/legal-content/EN/TXT/?uri=OJ:L:2016:119:TOC


Graphical Modeling of Security Arguments 15

21. Haley, C.B., Moffett, J.D., Laney, R., Nuseibeh, B.: Arguing security: validating
security requirements using structured argumentation. In: Proceedings of Third
Symposium on Requirements Engineering for Information Security (SREIS 2005)
held in conjunction with the 13th International Requirements Engineering Confer-
ence (RE 2005) (2005)

22. Ionita, D., Bullee, J.W., Wieringa, R.J.: Argumentation-based security require-
ments elicitation: the next round. In: 2014 IEEE 1st Workshop on Evolving Security
and Privacy Requirements Engineering (ESPRE), pp. 7–12. Springer, Heidelberg,
August 2014

23. Ionita, D., Kegel, R., Baltuta, A., Wieringa, R.: Arguesecure: out-of-the-box secu-
rity risk assessment. In: 2016 IEEE 24th International Requirements Engineering
Conference Workshops (REW), pp. 74–79, September 2016

24. Kelly, T., Weaver, R.: The goal structuring notation - a safety argument notation.
In: Proceedings of Dependable Systems and Networks 2004 Workshop on Assurance
Cases (2004)

25. Kelly, T.P.: Arguing Safety: A Systematic Approach to Managing Safety Cases.
University of York, York (1999)

26. Lee, J., Lai, K.Y.: What’s in design rationale? Hum.-Comput. Interact. 6(3–4),
251–280 (1991)

27. Liao, S.H.: Expert system methodologies and applications - a decade review from
1995 to 2004. Exp. Syst, Appl. 28(1), 93–103 (2005)

28. Maclean, A., Young, R.M., Moran, T.P.: Design rationale: the argument behind
the artefact. In: Proceedings of the Computer Human Interaction conference (CHI)
(1989)

29. Markham, K.M., Mintzes, J.J., Jones, M.G.: The concept map as a research and
evaluation tool: further evidence of validity. J. Res. Sci. Teach. 31(1), 91–101 (1994)

30. Mosier, K.L.: Myths of expert decision making and automated decision aids. In:
Naturalistic Decision Making, pp. 319–330 (1997)

31. Mylopoulos, J., Borgida, A., Jarke, M., Koubarakis, M.: Telos: representing knowl-
edge about information systems. ACM Trans. Inf. Syst. (TOIS) 8(4), 325–362
(1990)

32. Park, J.S., Montrose, B., Froscher, J.N.: Tools for information security assurance
arguments. In: Proceedings of the DARPA Information Survivability Conference,
DISCEX 2001, vol. 1, pp. 287–296 (2001)

33. Polikar, R.: Ensemble based systems in decision making. IEEE Circ. Syst. Mag.
6(3), 21–45 (2006)

34. Prakken, H.: An abstract framework for argumentation with structured arguments.
Argument Comput. 1, 93–124 (2010)

35. Prakken, H., Ionita, D., Wieringa, R.: Risk assessment as an argumentation game.
In: Leite, J., Son, T.C., Torroni, P., van der Torre, L., Woltran, S. (eds.) CLIMA
2013. LNCS (LNAI), vol. 8143, pp. 357–373. Springer, Heidelberg (2013). https://
doi.org/10.1007/978-3-642-40624-9 22

36. Rowe, J., Levitt, K., Parsons, S., Sklar, E., Applebaum, A., Jalal, S.: Argumen-
tation logic to assist in security administration. In: Proceedings of the 2012 New
Security Paradigms Workshop, NSPW 2012, pp. 43–52. ACM, New York (2012)

37. Rushby, J.: The interpretation and evaluation of assurance cases. SRI International,
Menlo Park, CA, USA (2015)

38. Shum, S.J.B., MacLean, A., Bellotti, V.M.E., Hammond, N.V.: Graphical argu-
mentation and design cognition. Hum.-Comput. Interact. 12(3), 267–300 (1997)

39. Sindre, G., Opdahl, A.L.: Eliciting security requirements with misuse cases.
Requirements Eng. 10(1), 34–44 (2005)

https://doi.org/10.1007/978-3-642-40624-9_22
https://doi.org/10.1007/978-3-642-40624-9_22


16 D. Ionita et al.

40. Toulmin, S., Rieke, R., Janik, A.: An Introduction to Reasoning. Macmillan,
Basingstoke (1979)

41. Toulmin, S.E.: The Uses of Argument. Cambridge University Press, Cambridge
(1958)

42. Yu, Y., Tun, T.T., Tedeschi, A., Franqueira, V.N.L., Nuseibeh, B.: Openargue:
supporting argumentation to evolve secure software systems. In: 2011 IEEE 19th
International Requirements Engineering Conference, pp. 351–352, August 2011

43. Yu, Y., Franqueira, V.N.L., Tun, T.T., Wieringa, R., Nuseibeh, B.: Automated
analysis of security requirements through risk-based argumentation. J. Syst. Soft.
106, 102–116 (2015)


	Graphical Modeling of Security Arguments: Current State and Future Directions
	1 Introduction
	2 Background
	2.1 Argumentation Modeling
	2.2 Argumentation in Security

	3 Graphical Security Argumentation Tools and Techniques
	3.1 OpenArgue/OpenRISA
	3.2 Argumentation Spreadsheets
	3.3 ArgueSecure

	4 Comparison and Discussion
	5 Conclusions and Outlook
	References


