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ABSTRACT
Approximate computing allows the introduction of inaccuracy in
the computation for cost savings, such as energy consumption,
chip-area, and latency. Targeting energy efficiency, approximate
designs for multipliers, adders, and multiply-accumulate (MAC)
have been extensively investigated in the past decade. However,
accelerator designs for relatively bigger architectures have been of
less attention yet.

The Least Squares (LS) algorithm is widely used in digital sig-
nal processing applications, e.g., image reconstruction. This work
proposes a novel LS accelerator design based on a heterogeneous
architecture, where the heterogeneity is introduced using accurate
and approximate processing cores. We have considered a case study
of radio astronomy calibration processing that employs a complex-
input iterative LS algorithm. Our proposed methodology exploits
the intrinsic error-resilience of the aforesaid algorithm, where ini-
tial iterations are processed on approximate modules while the later
ones on accurate modules. Our energy-quality experiments have
shown up to 24% of energy savings as compared to an accurate
(optimized) counterpart for biased designs and up to 29% energy
savings when unbiasing is introduced. The proposed LS accelerator
design does not increase the number of iterations and provides
sufficient precision to converge to an acceptable solution.
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1 INTRODUCTION
Approximate computing has shown hardware efficiency benefits for
processing of error-resilient applications such as machine learning,
search engines, and multimedia digital signal processing [10, 20].
The hardware efficiency benefits refer to a lower chip-area, power
consumption, latency, and energy consumption of a circuit as com-
pared to that of the so-called accurate computing counterparts.

Error-resilient applications have one or more of the following
characteristics: redundant/real-life inputs, iterative/statistical com-
putations, and a set of acceptable outcomes [5]. To evaluate a target
application for error-resilience, statistical[5, 9] approximation mod-
els are applied. These models inject errors during the execution of a
target application on statistical bases to quantify the bearable error
profile. For iterative applications, the analysis in [9] suggests that
a certain number of initial iterations can be approximated while
producing an acceptable outcome.

Being pivotal building blocks of DSP architectures, approximate
multipliers and adders have been extensively researched for in-
creased hardware efficiency [3, 11, 12, 14, 15, 18]. Accumulation
based processing units like multiply-accumulate (MAC) [6] and
square-accumulate (SAC) [8] have also shown higher power/energy
efficiency as compared to their accurate counterparts. However,
approximate accelerator designs for relatively bigger algorithms
have been of less attention yet.

The Least Squares (LS) algorithm is widely utilized in digital
signal processing applications like image reconstruction in radio
astronomy [16, 19], medical [17], and synthetic aperture radar [4]
domains. Despite its importance, no approximate least squares ac-
celerator design has been investigated to the best of our knowledge.

Modern radio telescopes like Square Kilometer Array (SKA) [13]
require highly power-/energy-efficient processing architectures
to process terabytes of raw data per second. For instance, double-
precision fused multiply-add operations will require 7.2MW of
power consumption in the medium-frequency array of SKA if con-
temporary technology would be used [13]. In this work, we inves-
tigate an energy-efficient LS accelerator architecture based on a
case study of radio astronomy calibration processing. The aforesaid
processing employs an iterative LS algorithm to compute sensors’
gains for a certain configuration of a radio telescope.

This paper presents a novel Least Squares (LS) accelerator design
targeting the energy-efficiency. Our design methodology utilizes a
heterogeneous architecture composed of two processing cores that
differ in their precision of computation, namely an accurate core
and an approximate core (Section 3). In Section 4, we show how a
set of initial iterations can be processed in an approximate core,
while the rest of the iterations in an accurate core to achieve an
overall energy-efficiency increase. Finally, the conclusions of our
work are discussed.
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2 BACKGROUND
In order to understand the error resilience of an iterative Least
Squares (LS) algorithm, here we elaborate on the concepts related
to the error-resilience analysis of iterative workloads (applications).
Moreover, as we employ approximate multiplication in our LS ac-
celerator design, it is also briefly discussed in this section.

2.1 Error Resilience of Iterative Workloads
Chippa et al. [5] proposed a systematic scheme for Application Re-
silience Characterization (ARC). This scheme partitions a workload
into sensitive and resilient parts and characterizes the resilient parts
by utilizing approximation models that represent a wide spectrum
of approximate computing techniques. In a high-level analysis, er-
rors are introduced according to the statistical approximationmodel
(SAM), which injects a normally distributed error profile based on
three parameters: EM (error mean), EP (error predictability) and ER
(error rate). Based on this analysis, an error-resilience profile of an
application is generated that can be utilized for selecting promising
approximation techniques for a given application [5].

Improvements on the ARC framework were introduced in [9],
where an adaptive statistical approximation model (ASAM) was
utilized. In addition to the original three parameters of SAM (EM, EP,
and ER), a new parameter was utilized, i.e., number of approximate
iterations (NAI). The model allows dividing an iterative workload
into exact and approximate iterations. The work in [9] applied
ASAM to radio astronomy calibration processing that showed a
significantly larger approximation space as compared to that of
SAM analysis. For this application, it was demonstrated that the
first 23% of iterations can be made approximate with certain EM,
EP, and ER values, while the remaining iterations remain accurate.

Although the aforesaid SAM and ASAM approximation models
provide a high-level error resilience analysis based on acceptable
output quality, they do not quantify the hardware efficiency im-
provements that can be achieved by exploiting the intrinsic approx-
imation space.

2.2 Approximate Multiplication
The simplest form of approximate multiplication is the truncation
of inputs, where inputs of the multiplier are truncated for lower
significant bits [1]. Another form of approximation is the truncation
of partial products, where the less significant partial products are
not processed to reduce the hardware costs [15, 18].

Hashemi et al. [11] proposed an approximate multiplier with a
dynamic range selection scheme and an unbiased error distribution.
The main idea of their method is to use an exact multiplier but
with smaller operand widths. If the operands to multiply have a
width n, they use a k × k bit multiplier (k < n) and choose the k
bits from each operand by detecting the leading 1 in the bit pattern
and selecting k bits starting from there. It means that instead of
approximating the multiplication process, they approximate the
operands while using an exact multiplier. The 2k bit result is then
shifted to the left by a certain number of bits depending on the
positions of the leading ones in the original operands to get a 2n
bit result. To enable a near-zero mean-error profile, the LSB of the
newly formed k bit operand is set to 1. This allows the multiplier
to be unbiased and have a near-zero average error.

Heterogenous Accelerator
Architecture 

Data Bus
CPU 

Accurate Core 
(Optimized) 

Approximate Core 
(Reduced
Precision) 

Control 

Figure 1: Our design methodology for an approximate Least
Squares (LS) accelerator enables initial iterations to be pro-
cessed on an approximate core (while the rest on an accurate
core) to achieve an overall energy-efficiency.

3 DESIGN OF A HETEROGENEOUS LEAST
SQUARES ACCELERATOR

Our design methodology for an approximate Least Squares (LS)
accelerator is shown in Fig. 1. The accelerator architecture is com-
posed of two cores that differ in computation precision, introducing
heterogeneity in the architecture. The accurate core is optimized
for the required precision for the LS algorithm. However, the ap-
proximate core introduces a reduced-precision in the computation
to provide energy efficiency. In the proposed LS accelerator, the
initial iterations are run on the approximate core, while the rest of
the iterations on the accurate core. This brings an overall energy
efficiency when a central processing unit (CPU) switches off the
unused core. Nevertheless, using two cores instead of one brings
area overhead. However, if the CPU can utilize both cores simul-
taneously for parallel processing of independent processes, this
area overhead can be translated into increased throughput. In any
case, the energy efficiency can be increased for processing the LS
algorithm with or without area penalty.

In this section, we consider a case study of radio astronomy
calibration processing. We demonstrate how to design an LS ac-
celerator using the proposed methodology, wherein the accurate
LS core and the approximate LS core are optimized to achieve an
energy-efficient LS processing.

3.1 Radio Astronomy Calibration Processing
In radio telescope arrays, the gain of the main beam of each tele-
scope and the phase difference between the telescopes have to be
estimated to enhance the quality of astronomical sky images. This
process is called gain calibration [19]. The gains combine the ef-
fects of atmospheric disturbances, telescope geometry, and receiver
characteristics. Atmospheric disturbances can vary within minutes,
hence the calibration of these arrays (like SKA) have to be done
online. This process is computation-intensive and is energy hungry
[9, 13].

Gain calibration can be performed by observing a known bright
source in the sky for which a matrix of model visibilities M is
known. Matrix V is a measured signal of this source. To estimate
the gains, the difference in Eq. (1) has to be minimized by finding
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Figure 2: Least Squares (LS) algorithm for radio astronomy
calibration processing [8].

the matrix of gains G,

| |V −GMG | |2 (1)

whereG = diaд(д) represents complex antenna gains. In this work,
we assume 124 antennas and 4 frequency channels. Therefore, the
gains are 124 complex numbers, so the matrix G has size 124×124
with gains on the diagonal and zeros at other entries. V represents
measured visibilities, a matrix with size 124×124×4 as there are
four channels.M represents model visibilities having the same size
as that of V .

One of the algorithms performing the calibration process is called
StEFCal (statistically efficient and fast calibration) [19]. The StEFCal
calibration algorithm iteratively solves a least squares problem. To
compute the gain of the pth sensor in the ith iteration, all elements
of д[i−1] are multiplied by elements of the pth column of the matrix
M , i.e.,M:,p , element-wise to compute vector Z ,

Z = M:,p ⊙ д[i−1] (2)

Then, a linear least squares problem is solved to find a scaling of Z
such that it is as close as possible to the pth column of V , i.e., V:,p ,
to find д[i]p ,

д
[i]
p =

VH
:,p .Z

ZH .Z
(3)

The symbol H denotes the Hermitian transpose, which means that
the vector is transposed, and the complex conjugate of each element
is taken. This process is repeated 124 times to get the vector д[i]p
which is then used in the next iteration to compute a better estimate.
The algorithm stops when the improvement between iterations is
small enough, i.e., when a convergence criterion is reached. In
StEFCal the convergence criterion is the norm of the difference of
two solution vectors divided by the Frobenius norm of the current
solution vector (4). Usually, this process takes around 100 iterations.

Convergence = | |д[i] − д[i−1] | |F
| |д[i] | |F

≤ 10−6 (4)

As illustrated in Fig. 2, the algorithm can be divided into four
stages: element-wise product (EP), square-accumulate (SAC), multiply-
accumulate (MAC), and division. A datapath to which the algorithm
can be mapped is shown in Fig. 3. It is to be noted that multipli-
cation of two complex numbers requires four multiplications, one

addition, and one subtraction, i.e.,

(a + ib)(c + id) = ac − bd + i(ad + bc) (5)

To compute one gain in the current iteration, the first element
of д = a + ib is multiplied by the corresponding element from a
column of matrixM ,m = c + id . The obtained product z = e + i f
is then multiplied by the corresponding element from matrix V ,
v = h + it , the real and imaginary parts are stored in two registers.
Also, z = e + i f is multiplied by its complex conjugate, which
is equal to e2 + f 2, and the result is stored in one register as the
imaginary part is eliminated. This process is repeated 496 times
as there are 124 gains and 4 channels, and the running sum is
stored in the registers. After the accumulation is complete, the
numbers stored in the real and imaginary registers of the MAC
part are divided by the real number computed by the SAC part to
obtain the gain for the next iteration. To compute the next gain, 496
computations are done again with the next columns of M and V
and the current vector д. The gains in the current iteration can be
computed in parallel by 124 structures as in Fig. 3, or all the gains
can be computed in a serial way by one such structure.

3.2 Optimization of Accurate Least Squares
Core

To utilize a heterogeneous accelerator architecture (Fig. 1), we first
optimize the accurate LS core. As the StEFCal algorithm is given
in floating-point double-precision format, it has to be converted to
fixed-point format because fixed-point hardware is more efficient
in terms of area and power. This process consists of two parts. First,
integer parts of the signals are determined by observing the ranges
of all signals, i.e., how many bits are needed to avoid overflow.
Secondly, the required fractional parts are determined to satisfy the
precision requirements of the algorithm.

To find an optimal number of fractional bits for each signal, an
approach described in [2] is used. In this approach, all signals are
kept in floating-point format except one which is converted into
fixed-point. The minimum fractional length of this signal which
satisfies the output-quality is found. This process is repeated for all
signals to get the minimum fractional length for each signal. Then,
all signals are converted to fixed-point and if the output-quality is
satisfied, the optimization is finished. However, typically the frac-
tional widths have to be increased by 1-2 bits from their minimal
found widths. For that, the method in [2] uses an exhaustive com-
binatorial algorithm which tries all possible combinations to find
an optimal combination. It starts with increasing one signal by one
bit, and all signals are tried. If the output-quality is not satisfied,
it increases two signals by two bits, for all possible combinations.
This approach requires a large number of simulations and is only
feasible if the number of signals is not very large, not more than
six as suggested in [2].

If the number of signals is larger, the related and similar signals
can be grouped to simplify the search. As the StEFCal algorithm
has a large number of signals, they can be grouped into six groups
for the optimal bit width search. Each group can have its signals
untouched, increased by one bit, or increased by two bits, so there
are three options for each group. Assuming 6 groups, 36 = 729
simulations are required, which is feasible for the StEFCal algorithm.
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Figure 3: Signal flow of least squares algorithm in radio astronomy calibration processing.

The results of applying this approach to the StEFCal algorithm are
provided in Table 1. All the signals can be seen directly in Fig. 3
or traced from the name of the signal. For example, the et_plus_fh
signal corresponds to the output of the adder which computes the
sum of the outputs of the two multipliers computing the et and fh
signals.

In this work, the performance of the StEFCal algorithm is as-
sumed to be satisfied if the number of iterations to converge is
smaller or equal to the floating-point version and the relative dif-
ference in length between the fixed-point solution vector and the
floating-point answer is not more than 10−5, similar to [9].

Diff_rel = | |дfloat − дfixed | |F
| |дfloat | |F

≤ 10−5 (6)

The signal widths are presented in the WL.FL format which is used
in the Fixed-point designer toolbox of MATLAB. In this format,
the integer length (IL) is equal to the word length (WL) minus the
fractional length (FL). It is to be noted that the accurate LS core is
also referred to as accurate core in the subsequent sections.

3.3 Optimization of Approximate Least
Squares Core

The accurate core of StEFCal specifies the minimum hardware re-
quirements if exact arithmetic units are used. Simplifying it further
will violate the iteration count criterion or the distance from the
floating-point reference result. However, better energy-efficiency
can be achieved by using approximate arithmetic units. As demon-
strated in [9], the algorithm does not require uniform precision in
the course of the computation. It suggests that some number of
initial iterations can bear a certain level of approximations. Here
we demonstrate how simplified reduced-precision hardware can be
utilized to process the initial iterations in order to reduce energy
consumption. In this regard, we discuss how to achieve a maxi-
mum possible energy-efficiency by exploring the design space of
an approximate core.

3.3.1 Design Space Exploration. Application of approximations
to the StEFCal algorithm (or any iterative workload) is not straight-
forward. It requires to determine which signals to further truncate

Table 1: Fixed-point optimization of StEFCal algorithm for
accurate Least Squares (LS) core.

Signal Min.
IL

Min.
FL

Optimal
FL

Optimal
WL.FL

a 9 13 14 23.14
b 8 13 14 22.14
c -9 24 25 16.25
d -10 24 25 15.25
h 6 11 12 18.12
t 6 11 12 18.12
ac -2 23 25 23.25
bd -4 23 25 21.25
ad -3 24 26 23.26
bc -2 24 26 24.26
e_sac -2 21 23 21.23
f_sac -2 21 22 20.22
esq -6 26 28 22.28
fsq -6 26 28 22.28
esq_plus_fsq -6 26 28 22.28
sac 1 22 23 24.23
e_mac -2 23 25 23.25
f_mac -2 24 26 24.26
eh 3 23 25 28.25
ft 1 23 25 26.25
et 2 24 26 28.26
fh 1 24 26 27.26
eh_minus_ft 3 23 25 28.25
et_plus_fh 2 24 26 28.26
mac_real 7 16 18 25.18
mac_imag 6 16 18 24.18
IL, FL and WL represent integer-length, fraction-length,
and word-length respectively.

(approximate), by how many bits (level of approximation), and for
how many iterations. To simplify this problem, the element-wise
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product is kept accurate (in this work) with the parameters deter-
mined in Section 3.2, approximations are applied only to the MAC
and SAC units that already cover above 60% of the computation
load [9].

As already discussed, the role of an approximate core is to pro-
cess the initial iterations, while the rest of the iterations are to
be processed in the accurate core. To find the energy savings (Es )
due to the approximations employed in the approximate core, the
following expression is used,

Es =
100 × (Eacc − Eax ) × Nax

Eacc × Nacc
% (7)

where Eacc and Eax refer to energy consumption (for one iteration)
of accurate and approximate cores respectively, Nacc refers to the
total number of iterations if only an accurate core is utilized, and
Nax refers to the number of iterations that are run in the approxi-
mate core. We have assumed an equal frequency of operation for
accurate and approximate cores, which means an equal processing
time for both cores for executing a single iteration. Therefore, Eq.
(7) is reduced to power (P ) numbers only, as in Eq. (8).

Es =
100 × (Pacc − Pax ) × Nax

Pacc × Nacc
% (8)

Even approximation of only one signal has to be optimized. For
example, if a signal can be truncated by 3 bits and 40 iterations or
by 2 bits and 60 iterations, it has to be assessed which option saves
more energy. This can be done by synthesizing the design using
ASIC tooling and performing a power simulation. However, it is
infeasible for such a complex architecture as it requires a significant
amount of time for design, compilation, and simulation. For this
reason, to analyze the effect of approximations and understand
how much power is saved for each approximation, the unit gate
model is used [21]. This gate model counts the number of gates
required for each hardware configuration. In this model the NOT
gate is equal to 0.5 gates, two-input gates AND, OR, NAND, NOR
are assigned a value of 1, and the XOR gate has a cost of 2 gates.
If an approximation is applied in such a way that all the logic
after an approximated multiplier is simplified, these effects are also
included in the model. The gate model outputs a single number
which corresponds to the number of gates required by the whole
datapath – multipliers, squarers, adders, and registers in the design.
As the unit gate model is more relevant to area estimations and
the optimization goal is the reduction of power consumption, an
assumption is made that the smallest architecture will have the
smallest power. In that sense the purpose of the model is to find
the minimum, the real percentage of saving may be different, and
will be reported by synthesizing the best designs and performing
the power simulations in ASIC flow (see Section 4).

In Eq. (8), Pacc is a constant number because the accurate core is
not modified. Nacc is also a constant, which is equal to the number
of required iterations if only an accurate core is utilized (92 in our
case). Every approximation applied to the approximate core will
change Pax to some number smaller than Pacc , and it will also
change Nax . There is a trade-off between Pax and Nax , as smaller
Pax corresponds to more coarse approximations, leading to smaller
number of iterations which can survive this approximation. There-
fore, the optimization goal is to find an approximate architecture

which minimizes Pax and maximizes Nax in such a way that the
savings in Eq. (8) are maximized.

To determine the energy-efficiency offered by an approximation
technique, the following steps are applied: (1) Apply the approx-
imation technique. (2) Run the algorithm with all iterations on
the approximate core (maximum possible savings). If the results
are not acceptable, decrease the number of approximate iterations
and map the other iterations to the accurate core. The number of
approximate iterations is decreased until the results become accept-
able. (3) Compute the savings using Eq. (8), where power (P ) values
are determined by the unit gate model. (4) Increase the level of
approximation and repeat steps 1-3. Select the approximate design
which provides the maximum Es . (5) Implement the selected archi-
tecture in a hardware descriptive language, synthesize the design
and perform the power simulation to obtain the synthesized area
and power numbers.

4 EXPERIMENTAL RESULTS
To quantify the reduction in energy-consumption (or increase in
energy efficiency) offered by our proposed Least Squares (LS) accel-
erator design, we have conducted an energy-quality study based on
the StEFCal (LS) algorithm. In the following subsections, we discuss
our experimental setup, and the results obtained for accurate and
approximate cores.

4.1 Experimental Setup
The optimized fixed-point version (accurate core) and the approxi-
mation techniques (for approximate core) are implemented in the
MATLAB for quality analysis. Similar to [8], chip-area and power
estimations have been obtained by synthesizing the designs in Syn-
opsys ASIC flow (Design Compiler and Power Compiler) for the
TSMC 40nm Low Power (TCBN40LP) technology library.

In our hardware analysis, an operating frequency of 50 MHz
is selected in order to have enough timing-slack left for each de-
sign. A reasonable slack in each design helps to avoid different
levels of optimizations provided by the tool for different designs,
e.g., the synthesis tool may use a ripple-carry adder in one design
and a fast adder structure requiring more power (for example a
carry-lookahead adder) in another design, which brings different
area/power results complicating comparisons and savings estima-
tions. Therefore, fixing the frequency limit to 50MHz brings a le-
gitimate comparison of various designs. However, our proposed
design can also be synthesized at higher frequencies as per the
design requirements.

4.2 Accurate Core Results
The accurate design is implemented without using behavioral de-
scriptions for the multipliers and squarers in VHDL. They are im-
plemented by constructing the partial product matrix consisting of
AND gates which are then summed by an adder tree selected by
the synthesis tool. So the approximations can be applied directly
to the partial product matrix for an approximate core. The power
consumption and chip area for the accurate core are 3.5530 mW
and 27023 µm2 respectively.

The comparison between the double-precision floating-point
(float) and optimized fixed-point (fixed) versions can be seen in
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Figure 4: Comparison between the double-precision
floating-point (float) and optimized fixed-point (fixed)
StEFCal processing, the latter is referred to as the accurate
core.

Fig. 4, where the latter refers to the accurate core. Fig. 4a shows
that both versions converge to 10−6 in 92 iterations. Fig. 4b shows
the difference ||V-GMG||. The comparison between the computed
gains is shown in Fig. 5, demonstrating identical results for the 124
complex gains.

4.3 Approximate Core Results
To optimize an approximate core, three approximations are applied
in this work, namely: truncation of partial products, truncation of
inputs, and DRUM [11].

The approximations are applied to the four multipliers of the
MAC unit and to the two squarers of the SAC unit. First, the multi-
pliers and squarers are approximated one by one, while the others
remain accurate. This way an optimal approximation level for each
of the units individually is determined. Then, the multipliers and
squarers are approximated in pairs, around the determined numbers.
This approach does not guarantee to find the optimal approximate
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Figure 5: Gains computed by double-precision floating-
point (float) and optimized fixed-point (fixed) processing.
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Figure 6: Effect of partial product truncation for biased and
unbiased cases.

designs, but it allows to reduce the number of time-consuming sim-
ulations and provides a near-optimal solution for each method. The
synthesized results for area and power, and the quality analysis of
the chosen (near-optimal) designs for each approximation method
are discussed in the following subsections.

4.3.1 Truncation of Partial Products. The power consumption
and chip area for the approximate core (utilizing the truncation of
partial products) are 2.2280 mW and 22523 µm2 respectively. The
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quality comparison between this design and the optimized fixed-
point (accurate core) design is shown in Fig. 6. In the proposed
architecture, the first 51 (61 for the unbiased case) iterations are
computed on the approximate core. After switching to the accurate
core, two phenomena can be noticed: (1) the precision-oriented
metric, i.e., convergence, experiences jumps because of the increase
(change) in computation precision, see Fig. 6-left. (2) the deviation
from the accurate solution gradually decreases, see Fig. 6-right.
Overall, the solution converges to an acceptable value in the same
number of iterations.

The truncated architecture has a negative bias as all the deleted
partial products are equal to zero. The unbiasing is performed by
placing three different initial values in each of the three accumu-
lators, see Fig. 3. These values are determined by performing two
simulations in parallel, one with the optimized accurate structure,
and onewith the approximate structure. Themean of the differences
between the corresponding values is computed for each accumu-
lator and the value is added to the corresponding accumulator.
The effect of unbiasing is that the StEFCal is able to withstand the
truncation of partial products for 61 iterations, ten iterations more
compared to the biased case.

4.3.2 Truncation of Inputs. The power consumption and chip
area for the approximate core (utilizing the truncation of inputs)
are 2.0821 mW and 20604 µm2 respectively. The following number
of input bits have been truncated (as compared to Table 1) to obtain
the approximate core: 8 bits for e_sac, f_sac, and e_mac; and 12
bits for f_mac. However, no further truncation was possible for
h and t signals. The quality comparison between this design and
the optimized fixed-point (accurate core) design is shown in Fig.
7. Similar to the truncation of partial products, the unbiasing tech-
nique within input-truncation increases the number of approximate
iterations (by 12) as compared to that of the biased (Nax = 52) case.

4.3.3 DRUM. We have also utilized a Dynamic Range Unbiased
Multiplier (DRUM) technique because it provides a near-to-zero
mean error profile [11]. Unbiasing by the accumulator initialization
is not effective for this method, presumably because it is already
unbiased, as can be suggested by the fact that it can be applied for
60 iterations, more than the truncation methods in the biased cases.

The power consumption and chip area for the approximate core
(utilizing the DRUM methodology) are 2.7114 mW and 20835 µm2

respectively. The quality comparison between this design and the
optimized fixed-point (accurate core) design is shown in Fig. 8.

4.4 Overall Energy Savings
The overall energy-savings achieved by the proposed heteroge-
neous LS accelerator design by utilizing three approximation tech-
niques are presented in Table 2. These savings have been calculated
using Eq. (8), which compares our proposed accelerator design (a
two core architecture) with that of a single core architecture and
assumes that only one core is switched on at a certain period of
time in our proposed design.

Table 2 also shows the number of iterations that can run on the
approximate core (Nax ) are improved (increased) while using unbi-
ased (UnB) design techniques. For example, in case of truncation of
partial products, the first 51 (Nax = 51) iterations can be processed
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Figure 7: Effect of the truncation of inputs for the biased and
unbiased cases.
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Figure 8: Effect of the DRUM technique.

in the approximate core, while the rest (92-51=41) are processed
in the accurate core. However, when the unbiasing technique is
utilized, the first 61 (Nax = 61) iterations can be processed in the
accurate core. Therefore, the unbiased case brings better energy
savings. The truncation of inputs is the most effective method to
apply to the StEFCal algorithm. It allows saving more than the other
methods while having the smallest area overhead.
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Table 2: Energy savings based on employed approximations
in the proposed heterogeneous Least Squares (LS) accelera-
tor. The proposed accelerator design provides up to 24% and
29% of energy improvements for biased and unbiased trun-
cation techniques respectively.

Approximation
Method

Nax AO
%

Energy
Savings %

Bias UnB Bias UnB
Truncation of partial
products 51 61 83 20 25

Truncation of inputs 52 64 76 24 29
DRUM - 60 77 - 15
Nax represents the number of iterations that can run on
the approximate core. Bias and UnB represent biased and
unbiased approximations.
AO is area overhead, whichmay be translated into throughput
increase as discussed in Section 4.5.

4.5 Discussion and Future work
Table 2 compares our proposed accelerator design (a two core ar-
chitecture) with that of a single core architecture. Therefore, we
can see area overhead (AO), which is due to the addition of the
approximate core. It is to be noted that a CPU (see Fig. 1) may also
utilize both cores simultaneously for different processes, e.g., pro-
cessing two calibration operations in parallel. This may translate
the area overhead to throughput increase while having the same
energy efficiency benefits for each process.

It is to be noted that the case study of radio astronomy calibration
(StEFCal) processing has been discussed to show how to employ
the proposed heterogeneous accelerator architecture by using a
single time slot LOFAR [7] data. Nevertheless, an increased data set
would better provide the allowable number of iterations to run on
an approximate core, therefore, a better estimate of energy savings
that can be achieved using the proposed accelerator architecture.

5 CONCLUSIONS
A novel heterogeneous architecture for Least Squares (LS) accelera-
tion has been presented targeting the energy-efficiency. We have
shown how a combination of optimized-precision (accurate) and
reduced-precision (approximate) computing cores can be utilized to
provide acceptable quality output while reducing energy consump-
tion as compared to that of an accurate optimized architecture. Our
design methodology exploits the inherent error-resilience of an
iterative workload to leverage an approximate computing core for
processing the initial iterations of the LS algorithm. A case study of
radio astronomy calibration processing has shown up to 24% (and
29%) of energy savings as compared to that of the accurate counter-
part for biased (and unbiased) design. However, it is to be noted that
the proposed methodology is independent of the application, pro-
vided that the computation pattern is iterative in nature. We have
utilized input truncation, partial product truncation, and DRUM
multipliers as the means of approximations within an approximate
core. However, our methodology can utilize any approximation
technique that is promising for the target application.
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