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ABSTRACT

Classification of very high resolution (VHR) satellite im-
ages faces two major challenges: 1) inherent low intra-class
and high inter-class spectral similarities and 2) mismatching
resolution of available bands. Conventional methods have ad-
dressed these challenges by adopting separate stages of im-
age fusion and spatial feature extraction steps. These steps,
however, are not jointly optimizing the classification task at
hand. We propose a single-stage framework embedding these
processing stages in a multiresolution convolutional network.
The network, called FuseNet, aims to match the resolution
of the panchromatic and multispectral bands in a VHR image
using convolutional layers with corresponding downsampling
and upsampling operations. We compared FuseNet against
the use of separate processing steps for image fusion, such
as pansharpening and resampling through interpolation. We
also analyzed the sensitivity of the classification performance
of FuseNet to a selected number of its hyperparameters. Re-
sults show that FuseNet surpasses conventional methods.

Index Terms— Convolutional networks, image fusion,
land cover classification, VHR image, deep learning.

1. INTRODUCTION

Classification of very high resolution (VHR) satellite images
presents two major challenges: 1) inherent low intra-class and
high inter-class spectral similarities and 2) mismatching res-
olution of available bands. The first challenge is often ad-
dressed by extracting spatial-contextual features from the im-
age such as texture-describing measures, e.g. gray level co-
occurrence matrix (GLCM) and local binary patterns (LBP)
[1] or products of morphological operators that are expected
to reduce spectral class ambiguities. The second challenge is
dealt with pansharpening and interpolation-based resampling
techniques used to fuse images of different resolutions. A
typical approach to classification of a multiresolution VHR
satellite image would then be as shown in Figure 1 (a). These
additional steps to address problems in classifying a multires-
olution VHR satellite image are disjoint from the supervised
classifier, and hence, not optimized for the task at hand.

Fig. 1. Comparison of a standard (a), state-of-the-art (b), and
proposed (c) piplelines for classifying multiresolution VHR
images.

Deep learning offers a framework to build end-to-end
classifiers by directly learning the predictions from the inputs
with minimal or no separate pre-classification steps. Convo-
lutional neural networks (CNN), for instance, integrate the
feature extraction step within the training of the supervised
classifier and have performed better than intermediate hand-
crafted features [2, 3]. Recently, a patch-based CNN [3] and a
fully convolutional network (FCN) [4], utilizing pansharpen-
ing for image fusion, were used to detect informal settlements
from a multiresolution VHR satellite image. Both works have
addressed the classification challenges as in Figure 1 (b). In
this paper, we present a novel single-stage network perform-
ing image fusion and classification of a multiresolution VHR
satellite image in an end-to-end fashion as in Figure 1 (c).

2. METHODOLOGY

We propose a multiresolution convolutional network, called
FuseNet, to perform an end-to-end image fusion and classi-
fication of a multi-resolution VHR satellite image. FuseNet
is built on top of a fully convolutional network architecture
learning to: 1) fuse panchromatic (PAN) and multispectral
(MS) bands of a VHR satellite image, 2) extract spatial fea-
ture, and 3) classify land cover classes.

FuseNet is specifically designed for VHR satellite images
with PAN band and MS bands having a ground sampling dis-
tance ratio of four (e.g. Quickbird, Worldview 2/3, Pleiades,
Ikonos). This architecture can be generalized to fuse any
number of images with different spatial resolutions and any
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number of bands. It accepts two sets of input: an image patch
of dimensions N×1×4M×4M taken from a PAN image and
another patch of dimensionsN×4×M×M taken from corre-
sponding locations in the MS image. It performs two series of
convolution, nonlinearity, and maximum pooling with down-
sampling to the PAN image patches such that the spatial di-
mensions of the intermediate feature maps match the spatial
dimensions of the MS image patches. The nonlinear opera-
tions use an exponential linear activation function [5]. The
second input is linearly projected in k dimensions using 1×1
convolutions such that k matches the number of intermediate
feature maps extracted from the first set of input. This en-
sures that succeeding feature maps extract the same number
of pattern variations from both sets of inputs. FuseNet merges
the linear projection of the MS image patches with intermedi-
ate feature maps extracted from the PAN image patches via a
concatenation operation.

Additional series of convolution, nonlinearity, and max-
imum pooling with downsampling operations are applied to
the merged feature maps thus producing a set of feature maps
with the smallest spatial dimensions—called a bottleneck.
FuseNet then upsamples the bottleneck back to the resolution
of the PAN input image patches using transposed convolu-
tions. The resulting set of feature maps is linearly projected
again using 1×1 convolutions such that the number of feature
maps matches the number of classes C. FuseNet applies a
softmax activation to calculate normalized class score maps
and couples those with a cross-entropy loss function:

EN = −
N∑

n=1

tn • log(yn) (1)

where E is the loss function value evaluated over N samples,
tn is a binary vector encoding the the target class labels (with
the index corrresponding to a class having a value of 1 and
0 otherwise), • denotes the dot product, and yn is the class
score maps of a sample n calculated using a softmax activa-
tion function.

This configuration of FuseNet is called FuseNetlow be-
cause it performs fusion at the lower (MS image) resolution.
We also tested a network, called FuseNetskip, adding skip
connections to lower-level feature maps of FuseNetlow [6].
Additionally, we experimented with a version of FuseNet per-
forming fusion at the resolution of the PAN image, called
FuseNethigh which is more similar to pansharpening as it up-
samples the MS image patches first before fusing them with
the PAN image patches. Table 1 shows details of the oper-
ations, including dimensions of intermediate output feature
maps used by FuseNetlow.

3. EXPERIMENTAL RESULTS

We evaluated the proposed network for a land cover classi-
fication of a dataset covering Quezon City, Philippines. The

Table 1. Detailed operations of FuseNetlow.
FuseNetlow

xPAN (1×4M×4M ) xMS(4×M×M )
conv13-16 conv1-32
maxpool
conv7-32
maxpool

IFM1 (32×M×M ) IFM2 (32×M×M )
concat

IFM3 (64×M×M )
conv3-64
maxpool

conv3-128
maxpool

BFM (128×M /4×M /4)
ups2-128
ups2-64
ups2-32
ups2-16
conv1-6

IFM4 (6×4M×4M )
softmax

Table format as in [7].
xPAN and xMS denote input patches from
the PAN and MS images, respectively.
IFM and BFM corresponds to intermediate
and bottleneck feature maps respectively.

dataset is composed of a Worldview-03 satellite image ac-
quired on 17th April 2016 and manually prepared reference
images for five chosen tiles (subsets) of the satellite image.
The satellite image has a PAN band of 0.3 m resolution and
four MS bands (near-infrared, red, green, and blue) of 1.2 m
resolution.

The satellite image was first divided into regularly-
sized image tiles. PAN image tiles have a dimension of
3200×3200 pixels, while MS image tiles have a dimension
of 800×800 pixels. Five non-adjacent tiles were sparsely
labeled—annotating a pixel with a label belonging to one of
the following six classes: 1) impervious surface, 2) building,
3) low vegetation, 4) tree, 5) car, and 6) clutter. Two of the
five labeled tiles were used for training (tiles 100 and 105),
one for validation (tile 45), and the remaining two for testing
(tiles 78 and 82). Figure 2 shows the two tiles used for testing.

We compared FuseNet with two baseline methods: one
using pansherpening and the second using bilinear interpo-
lation to match the resolution of the MS image patches to
the resolution of the PAN image patches, called Netpansharp,
SegNet [8], Netpan−cnn, and Netbilinear, respectively. Netpansharp
applies the Gram-Schmidt pansharpening technique, Seg-
Net uses the first three principal components of the inputs
of Netpansharp, while Netpan−cnn adapts the CNN-based
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Fig. 2. PAN, MS, and reference images in the tiles used for
testing. Corresponding legend is shown.

pansharpening method proposed in [9]. Only the pansharp-
ened image is fed as an input into Netpansharp, SegNet,
and Netpans−cnn. In contrast, Netbilinear upsamples the
resolution of the MS image to match the resolution of the
PAN image using bilinear interpolation. The upsampled MS
images are then merged with the PAN image using concate-
nation. The architecture of the network after the fusion is
kept the same to have a fair comparison among the different
methods.

Table 2. Comparison of fusion approaches
Network OA (%) κ (%) AA (%) F1 (%)
Netbilinear 84.76 78.70 81.99 77.48
Netpansharp 86.87 81.53 82.76 77.86
Netpan−cnn [9] 87.88 82.69 84.58 72.45
SegNet [8] 88.11 83.17 83.96 77.01
FuseNethigh 88.03 83.18 89.79 79.06
FuseNetlow 91.63 88.03 92.91 82.90
FuseNetskip 91.90 88.43 93.46 81.74

Table 2 shows the results of accuracies comparing differ-
ent fusion approaches. FuseNetskip scores the highest in all
the four numerical metrics, except for F1 where FuseNetlow
scores the highest. Correspondingly, FuseNetlow, the archi-
tecture from which FuseNetskip was derived, outperforms all
the other networks, except for FuseNetskip itself. Observing
each metric: FuseNetlow gains about 3–6% in OA, 4–9% in
κ, 3–10% in AA, and 3–10% in F1 against the other base-

Fig. 3. Classification maps from selected FuseNet variants
and baseline methods of a zoomed subset from the test tiles.

lines. FuseNetskip further increases the numerical results of
FuseNetlow for the first three metrics by about 0.2–0.5%, but
degrades the F1 by about 1.2%.

We notice that: 1) learning fusion can improve the clas-
sification of PAN and MS VHR images with different reso-
lutions; 2) fusing at the scale of the image with lower reso-
lution results in better classification than performing fusion
at the scale of the image with higher resolution. The first
point demonstrates our expected effectiveness of coupling and
learning the fusion operation within a supervised classifier.
Regarding the second point, introducing upsampling layers
early in the network (FuseNethigh) may produce artifacts that
can degrade its performance.

Figure 3 shows the classification maps from selected
FuseNet variants and baseline methods. The most noticeable
misclassifications are found in large and high-rise buildings
and overpassing roads. The facades and rooftops of the
buildings are often mistaken to be impervious surfaces by
the classifiers, while overpassing roads are mistaken to be a
building. These regions can appear to have similar spectral
characteristics and can only be distinguished by presence of
other indications such as appearing to be elevated. Manu-
ally distinguishing arguably vaguely-defined classes such as
low-vegetation and impervious surface can also be problem-
atic, especially in the PAN image, with the lack of ancillary
information such as elevation. The cars are also generally
misclassified by all the classifiers. This is, aside from being
underrepresented in terms of the number of labeled pixels,
due to the lack of spatial resolution of the MS bands and
the spectral similarity of cars with other classes impervious
surface and buildings in the PAN band. Overall, FuseNetskip
has less errors in the facade of large buildings and provides
a better delineation of classes with irregular boundaries such
as trees and low-vegetation—providing the best classification
results.

3.1. Sensitivity Analysis

Fig. 4 shows the results of a sensitivity analysis performed on
four chosen hyperparameters of FuseNet: 1) bottleneck fea-
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Fig. 4. Plots showing the results of sensitivity analysis. Patch
sizes are written as “〈(4M ,M )〉”. N-neighbor denotes nearest
neighbor interpolation.

ture map dimensions, 2) number of convolutional layers in the
downsampling part of the network, 3) input patch sizes, and 4)
upsampling methods. We got the highest validation accuracy
of 90.35% using a bottleneck feature map dimension of 4×4
pixels. Decreasing the dimension below its optimum severely
degrades the classification resulting to large uniform areas
producing stamp-like patterns especially at the 1×1 level. In-
creasing the dimensions produces much noisier classification.
Fixing the bottleneck size dimension to 4×4 and further in-
creasing the number of convolutional layers without down-
sampling did not produce any improvements in the validation
accuracy. Hence, the results show that with only eight con-
volutional layers with downsampling, we can learn enough
contextual information for the most accurate classification.

We found the optimal patch sizes to be equal to 64×64 for
the PAN image patches and 16×16 for the MS image patches.
Further increasing the patch sizes results in overclassification
of a single class impervious surface. Increasing the patch size
also increases the proportion of frequently occurring classes
in the training sample, possibly resulting into overclassifica-
tion. Lastly, we noted that the use of transposed convolution
for learned upsampling performs better than the use of inter-
polation for fixed upsampling. This result supports the ex-
pected flexibility of empirically learning upsampling directly
from the data.

4. CONCLUSION

In this paper, we presented a multiresolution convolutional
network named FuseNet to classfiy a VHR satellite image.
The operations for fusing the bands with different resolutions
are learned within convolutional layers with corresponding
downsampling and upsampling operations to match the res-
olution of the images. Results show the advantages of in-
corporating image resolution matching within the training of

the classifier. To this end, we provided a single-stage classi-
fication pipeline incorporating image fusion and feature ex-
traction combined in a convolutional network trained in an
end-to-end manner.
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