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High resolution Secondary Electron (SE) images and Backscattered Helium (BsHe) images are
the standard image types in Helium lon Microscopy (HIM). The contrast ratio that can be achieved in
both types of images is subject not only to the chemical composition but also depends on the crystal
orientation. Channeling along low index directions affects SE as well as BSHe images.

In fig. 1 SE images of a polycrystalline Au{l111} sample are presented. The polar angle of the
incident beam was fixed at 35°. The change in grey level of several grains is plotted in fig. 2(a) for
primary energies (PE) of 15 keV and 33.6 keV. The fact that for a low index channeling direction the
SE yield drops by a factor of two demonstrates how important it is to properly align samples with
respect to their crystallographic axis in HIM. Fig. 2(b) shows the opaque fraction in the projection of
a modeled 12 layer Au slab for the same set of orientations as in fig. 2(a). The remarkable agreement
between the two figures allows us to unambiguously identify the crystal orientation of the individual
grains. In principle this angular dependence can be utilized to perform crystal orientation mapping
comparable to electron back scatter diffraction.

In the second part we will discuss how channeling can be utilized to gain unexpected contrast in
BsHe images on ultra thin surface layers. HIM already provides superior surface sensitivity in SE
based images. Figure 3 presents BsHe and SE (inset) images of para-sexiphenyl (6P) islands grown
on the native oxide of a Si{001} wafer [1,2]. While for normal beam incidence the island is clearly
visible in both SE and BsHe images (left), the island is no longer discernable after tilting the sample
by 10°. The fact that the island can be seen at all in a BsHe images cannot be explained by additional
backscattering from the ad-layer due to the mass difference. SRIM calculations show that the
additional back scattering from the lighter carbon ad-layer can be neglected. Moreover, tilting the
sample should increase the surface sensitivity also in the BsHe image, but in contrast the island
disappears. This can be understood if one accounts for the channeling of the He in the Si substrate.
For normal beam incidence the sample is seen along a channeling direction. However, the carbon
ad-layer locally blocks this channel and leads to an enhanced backscattering by dechanneling the
ions. After tilting the sample sufficiently to lift the channeling condition for the underlying Si{001}
the contrast vanishes. The presented work also underlines the importance of good vacuum conditions
in HIM. We analyzed the projected opaque fraction of a Si crystal slab with and without a carbon
ad-layer for several incident conditions. For normal incidence, the addition of only a single carbon
ad-layer reduced the open area by 60%. As we have shown above, this changes the channeling
conditions and subsequently will affect SE and BsHe yields. To avoid this effect the above presented
experiments were performed in a unique ultra high vacuum HIM [3].

The described contrast mechanism for BsHe images extends the already high surface sensitivity in
SE images to backscatter images. In addition, this effect will not depend on the mass of the element
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but on changes in the crystalline arrangement and will therefore also allow the identification of thin
surface layers with similar composition but different crystallographic structure.
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Fig. 1: HIM SE images of a hydrogen flame-annealed Au{111} film. Images have a field of view of
10 um and were recorded with a PE of 15 keV. Azimuth angles presented are 30°, 62°, and 90°. The

polar angle is fixed at 35°. The gray level of the marked grain changes from medium gray to bright
and back to a dark gray level.
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