
This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

2 •  IEEE ROBOTICS & AUTOMATION MAGAZINE 1070-9932/19©2019IEEE

T
his article presents the Compliant Joint Toolbox 
for the modeling, simulation, and controller 
development of compliant robot actuators. The 
object-oriented toolbox is written in MATLAB/
Simulink. In a few lines of code, it can batch-

generate ready-to-use joint actuator model classes from 
multiple parameter sets, incorporating a variety of 
nonlinear dynamics effects. 

The toolbox implements a selection of state-of-the-art 
torque and impedance controllers and features tools for 
numeric and analytic actuator analysis and comparison. This 
article introduces the main toolbox features, complete with 
copy-pastable code examples.

The Components Driving Robots
Actuators are the central components that make robots move. 
Novel applications for robot technology demand actuation 
design paradigms and techniques that are fundamentally dif-
ferent than those in traditional robotics. Robots are meant to 
physically collaborate with humans in unstructured 

environments, such as agile industrial production with low 
batch sizes and even in our everyday households. Actuators, 
apart from being the movers (as with conventional bulky, 
position-controlled industrial robots), now become central 
components that also make robots actually perceive interac-
tion forces.

Recent developments in the design and control of torque-
controlled actuators have already led to remarkable advance-
ments in safety, robustness, and interaction performance for 
torque-controlled robots and assistive robotic devices. Still, 
the development of actuators for robotic devices relies largely 
on an engineer’s intuition and experience rather than on any 
rigorous theory that guides the proper balancing of demands 
and takes into account other criteria, such as peak power, 
maximum load capacity, and torque and motion bandwidth 
or impact resilience. The literature lacks a proper explanation  
of the relevant requirements, along with metrics for their 
quantification, to guide this process. Conventional notions 
(such as power density, peak torque, maximum speed, and 
single numbers for bandwidths) are insufficient for new appli-
cations dominated by physical interaction.

The Compliant Joint Toolbox is available on Git under 
the GNU General Public License v3.0. The toolbox can 

© photocredit

By Jörn Malzahn, Wesley Roozing, and Nikos Tsagarakis

An Introduction With Examples

Digital Object Identifier 10.1109/MRA.2019.2896360

Date of publication: 8 April 2019



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

3IEEE ROBOTICS & AUTOMATION MAGAZINE  •

also be inspected on Code Ocean [20]. It emerged during 
our work on actuator modeling, design, and control aimed 
at solutions for the actuator design challenges in diverse 
robotic applications. While the toolbox’s first use was for 
modeling and simulation, it was truly helpful to rapidly 
interface with real actuator hardware for data recording, 
testing, debugging, and tuning of joint torque controllers. 
The toolbox helped us cope with a variety of actuator con-
figurations in terms of, for example, rotor, gearbox, and 
torque sensor combinations, during the development of 
the WALK-MAN, CENTAURO, and CogIMon robots 
(www.walk-man.eu, www.centauro-project.eu, and 
https://cogimon.eu/). It supported the study of the dynam-
ics and control of different compliant electrical actuators 
with integrated torque sensors across arbitrary parameter 
ranges to assess what would be viable actuator designs and 
investigate the impact of nonlinear phenomena, such as 
friction and ripple. The toolbox was an essential tool in the 
preparation of publications on modeling, observer design, 
torque, and impedance control. Through this process, the 
code has reached a certain level of maturity that permits 
productive use.

The Compliant Joint Toolbox is implemented in MAT-
LAB/Simulink, a proprietary software suite for technical com-
puting and rapid algorithm prototyping. The MATLAB 
language is interpreted, requires low learning effort, ships 
with numerous state-of-the-art algorithms and visualization 
tools, and so offers a short time to productivity. The Python 
language shares most of these features. Being nonproprietary, 
Python would have been our preferred choice for implement-
ing the Compliant Joint Toolbox and so making it available to 
the community entirely for free. However, the crucial aspect 
that triggered the decision against a 
purely nonproprietary solution was the 
lack of a mature and sufficiently pow-
erful open alternative for the features 
afforded by the Simulink Real-Time 
Toolbox. It provides the chance to 
quickly interface with the actuator 
hardware based on standard industrial 
protocols, such as Controller Area Net-
work, Ethernet, and EtherCAT. This 
allows the rapid development, deploy-
ment, tuning, and testing of models 
and controllers on different actuator 
hardware and even with the actuator 
hardware in the loop. Doing so mini-
mizes the time and effort required to 
port developed concepts from simula-
tion to experiments, thus improving 
realism in research.

We hope the Compliant Joint Tool-
box can catalyze the ongoing discus-
sion on compliant robot actuation, 
support academic education in the 
field, and contribute to community 

efforts toward common notions, metrics, and benchmarks 
that ease torque-controlled actuation design, comparison, and 
selection across diverse robotic applications. Hence, it is our 
desire to make the Compliant Joint Toolbox public and draw 
community attention to it.

An Overview: The Toolbox Architecture
Figure 1 provides an illustration of the architecture of the 
toolbox. The Compliant Joint Toolbox adopts a variant of 
the factory design pattern to create joint model classes with 
different dynamics and parameter sets. The joint-
Builder class forms the basis of this creational design. It 
utilizes the abstract genericJoint class as an interface 
and derives new actuator model classes from this. The 
Compliant Joint Toolbox notion of an actuator model com-
prises a mathematical structure (i.e., mathematical formu-
las) and a set of values for the parameters present in the 
mathematical structure. As a consequence, two models 
with different mathematical structures can have the same 
values for their common parameters. Conversely, two mod-
els with the same mathematical structure but different 
parameter values are considered two different models. Fol-
lowing this notion, the user specifies the desired joint 
model or an entire set of different models, in terms of phys-
ical parameter sets and the structure comprising the linear 
and nonlinear dynamics to be incorporated. To do so, the 
user instantiates a jointBuilder and calls the build-
Joint method, which constructs the joint model class 
according to this specification.

A separate module, datasheetGenerator, auto-
mates datasheet compilation for the implemented joint 
models, providing an immediate picture of the 

Compliant Joint
Toolbox

Simulation

PDF

SpecificationsLegend:

Nonlinear
Dynamics

Actuator
Types

Parameter
Sets

genericJoint
Class

Outputs/
Application

Core
Classes

jointBuilder
Class

jointModel
Class

Real-Time
Control

datasheetGenerator
Class

Controller
Library

Figure 1. The Compliant Joint Toolbox architecture, adopting a variant of the abstract 
factory creational design pattern.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

4 •  IEEE ROBOTICS & AUTOMATION MAGAZINE

joint’s capabilities using both established and novel actuator 
performance metrics. Controllers provided with the tool-
box make use of the model objects for simulation or even 
real-time hardware control.

The remainder of this section briefly introduces the indi-
vidual modules and how to obtain and set up the toolbox.

The genericJoint Class
The genericJoint class is the virtual class serving as a 
mold for actuator model classes created by jointBuilder. 
It lists joint parameters, assigns default values to them, and 
defines generic methods to access joint properties. A parame-
ter set example is provided in the “Model Parameters” section. 
The genericJoint methods offer conversion between 
discrete- and continuous-time representations of state-space 
models and transfer functions; transform reflected inertia and 
friction parameters between the motor and load side; com-
pute motor characteristics, such as the torque–speed slope, 
no-load speed, and stall torque; and convert between numeric 
and symbolic model representations (the Symbolic Math 
Toolbox is required). 

The jointBuilder Class
The number and complexity of the relevant dynamic 
effects vary from actuator to actuator and depend on the 
user’s design or control objective. Furthermore, the same 
principal dynamics lead to diverse results when parame-
terized differently. As indicated in Figure 1, the joint-
Builder class assembles parameter sets, actuator model 
types, and nonlinear dynamics into jointModel class 
definitions derived from genericJoint classes and 
stores them in separate m-files. By default, the Compliant 
Joint Toolbox locates parameter sets in the directory 
~toolboxroot/param, while the actuator model types 
and nonlinear terms are prototyped in ~toolboxroot/
model/. Created m-files are stored in the build directory 
specified via the jointBuilder.buildDir property. 

The use of jointBuilder is exemplified in the “Model 
Generation” section.

The datasheetGenerator Class
The datasheetGenerator produces datasheet files for 
actuator models created by the jointBuilder. To this 
end, it relies on a LaTeX environment installed on the user 
machine. The generated datasheets make up a table listing the 
parameters of the actuator along with detailed descriptions of 
each parameter. Figures display the actuator characteristics, 
such as the torque–speed curve, efficiency curve, torque 
bandwidth, and thermal operation characteristics. These plots 
are detailed in the “Joint Model Analysis” section. The basic 
use of datasheetGenerator is demonstrated in the 
“Analysis Plots and Datasheet Generation” section, and an 
example datasheet is provided. Apart from the generation of 
fully formatted datasheets, the visualization functionality 
needed to produce embedded graphs for custom analysis is 
available to the user through a public method interface.

Simulation and Control
A result of research efforts on the modeling, design, and con-
trol of torque-controllable robot actuators, the Compliant 
Joint Toolbox features a Simulink block library implementing 
state-of-the-art torque controllers. The available controllers, 
detailed in the “Controllers” section, are implemented in dis-
crete-time masked Simulink blocks and use previously gener-
ated joint model classes for configuration. In this way, the 
Simulink code generation and real-time control features (the 
Mathworks Real-Time Workshop and/or Simulink Coder 
toolboxes are required) can be exploited with the Compliant 
Joint Toolbox to rapidly prototype a control system for an 
experimental hardware setup. An example is described in the 
“Interfacing With Hardware” section.

Getting Started
To get started, all that is necessary is to obtain the toolbox 
code from its GIT repository at https://github.com/geez0x1/
CompliantJointToolbox. To add the Compliant Joint Toolbox 
to a MATLAB search path, change the current MATLAB 
working directory to the toolbox directory, and run 
setCJTPaths.m. You can begin from the available exam-
ples by using the browser example displayed in Figure 2 or by 
following the Quickstart guide, which is provided online [21] 
as a short version of the complete toolbox documentation [22]. 
Alternatively, the toolbox can be inspected and run completely 
contained on Code Ocean [20].

Generating Joint Models
The Compliant Joint Toolbox comprises linear models of 
both the mechanical actuator subsystem and the electrical 
actuator subsystem as well as a number of parasitic and non-
linear effects. This section details how to provide the parame-
ters for such dynamic effects and how to generate model 
classes from them. The following sections provide a number 
of code examples, which can be found in Take_a_Tour.m.

Figure 2. The browser example (cjtExamples.m) allows 
browsing through available MATLAB and Simulink offerings to 
inspect or directly run them.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

5IEEE ROBOTICS & AUTOMATION MAGAZINE  •

Generic Model Implementation
The linear electrical and linear mechanical subsystem models 
(Table 1) <AU: Please check placement of table reference.> 
of a compliant electrical actuator form the core of the Com-
pliant Joint Toolbox. Nonlinear terms use the states of these 
subsystems and modulate their input–output behavior, which 
allows the capture of a broad range of practically relevant 
nonlinear dynamic effects.

The Electrical Subsystem
The most common electrical drive in torque-controlled 
robotic actuators is the brushless dc motor, which can be 
operated such that the actual three-phase motor dynamics are 
well described by a single-phase approximation. The govern-
ing parameters are the electrical resistance and inductance. In 
torque-controlled electrical actuators, the inductance is typi-
cally designed to be low. As a consequence, the electrical time 
constant becomes very small ( )10 s6. -  compared to the 
mechanical time constant ( ) .10 s3. -  Unless it is specifically 
intended to analyze the current control performance or its 
implications for higher-level controllers, the electrical dynam-
ics can be neglected with respect to the mechanical time con-
stant. This substantially shortens the simulation time. Hence, 
a static model is used by default in building actuator models. 
The “Model Generation” section describes how to switch to a 
dynamic model.

The Mechanical Subsystem
The mechanical subsystem is modeled as a chain of rotating 
masses interconnected via massless spring-damper elements, 
as depicted in Figure 3. The electrical drive rotor has an inertia 

,Im  which experiences a damping dm  with respect to ground. 
The gearbox contributes an inertia Ig  and can be compliant 
with a linear stiffness kg  and internal damping .dmg  Gear fric-
tion with respect to ground is captured by dg . The second elas-
tic element is represented by a massless torsional spring with 
linear stiffness kb  and internal material damping .dgl  Finally, 
the rotary inertia Il  models the load with frictional damping 
dl . The motor, gearbox, and load angles are denoted by ,qm  

,qg  and ,ql  respectively. The torques acting on the motor, gear-
box, and load are ,m gx x , and lx , respectively.

Deriving the linear equations of motion for this three-mass 
system from first principles is straightforward and can even be 
found in many textbooks on control or structural dynamics, 
such as [1]. The Compliant Joint Toolbox features several vari-
ants of this general model structure, such as a rigid gearbox, 
complete rigidity (a single moving 
mass with friction), and fixed-output 
configurations. In the latter, the load 
motion is defined by an external 
source, effectively allowing the connec-
tion of the actuator model to the com-
plex articulated robot dynamics. Load 
motion can be zero to emulate a locked 
actuator output or, equivalently, infi-
nitely high load inertia. This last 

scenario is often used for torque controller design and anal-
ysis [2]–[4].

The Compliant Joint Toolbox implements the linear 
mechanical dynamics in state-space form. The joint model 
has, in total, two inputs and generally seven outputs. The two 
inputs are the motor current and a disturbance input, which 
is either an externally applied load torque lx  or load motion 
qlo , depending on whether a locked-output model is chosen. 
The first three elements of the output vector are the three 
angles ,q qm g , and ql , and elements four to six are their 
derivatives. For convenience, the seventh output is the joint 
output torque applied to the load, following from

.q q k q q dl g l b g l glx = - + -o o^ ^h h

The benefit of the toolbox here is that the user can rapidly 
switch between mechanical and electrical models or compare 
actuator model structures against each other for identical 
parameter sets and within identical control schemes without 
manipulating equations or commenting/uncommenting 
duplicating source code.

Nonlinear Dynamics
Figure 4 illustrates the mechanical subsystem model realiza-
tion with state vector xq , system matrix Aq , input and out-
put matrices Bq  and Cq , and direct feedthrough matrix Fq . 
Note, the symbol Fq  for the feedthrough matrix deviates 
from the common usage in the control literature to better 
distinguish it from the damping matrix D. Furthermore, for 
continuous-time models, F 0q / . The input and output of 
this model are denoted by uq  and yq , respectively. The addi-
tive nonlinear dynamics term ( )xg q  in Figure 4 augments 
the linear state-space model; together, they represent the 

dm

kg kb

dgldmg
Im Ig Il

qm,

dg dl

m qg, g ql, l

Figure 3. The linear mechanical system at the core of the 
Compliant Joint Toolbox.

uq

gTd,i Td,o
ni no

yq
Bq

Aq

Fq

xq

Cq
ũ ỹ

∆i ∆o

x
.

Figure 4. The model structure for the mechanical subsystem.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

6 •  IEEE ROBOTICS & AUTOMATION MAGAZINE

nominal system behavior. The following nonlinear effects 
are supported by the toolbox.

Asymmetric Viscous Friction
The most dominant nonlinear dynamics effect in torque-con-
trolled actuators is friction. The parameters ,d dm g , and dl  
describe the symmetric linear viscous friction behavior in the 
support and transmission mechanisms. However, viscous 
friction may be modeled to be asymmetric with respect to the 
sign of the velocity.

(Asymmetric) Coulomb Friction
In addition to viscous friction, constant Coulomb friction is a 
nonlinear effect that dominates, especially the lower-speed 
regime of torque-controlled actuators, and it can also be 
asymmetric.

Torque Ripple
Apart from friction, torque ripples perturb the actuator torque 
generation. Multiple sources contribute to this effect, including 
commutation ripple, mutual torque ripple, cogging torque rip-
ple, current offset ripple, gearbox teeth-meshing ripple, assem-
bly eccentricity, and encoder ripple. All ripple sources combine 
to produce a ripple torque rx  that is periodic with the rotor 
angle qm . The Compliant Joint Toolbox incorporates ripple 
through a Fourier series in the rotor angle qm . This ripple 
model is linear in the amplitude parameters A j and B j  and 
considers a number N~  of spatial ripple frequencies .q~  As all 
nonlinear dynamics terms result in torque, they can be intro-
duced into the models as an additional summand through 

( )g xq  in the state equation, as indicated by Figure 4.

Noise, Quantization, and Delays
A use case of the toolbox is to simulate the nominal joint 
behavior to conceptually test and analyze controllers under 
ideal conditions. In nonideal cases, the actual system input 
and output are each subject to additive noise. The communi-
cation interfaces with the hardware introduce delays in the 
commands and measurements. Finite numeric data-type pre-
cision and converter and pulse-width modulation resolution 
introduce quantization. The Compliant Joint Toolbox allows 
the investigation of their impact on control performance as 
well as quick comparison with the ideal case.

Model Parameters
The starting point for modeling an actuator is a parameter 
file. Parameter files are nothing but m-scripts defining a struct 
named param. The class genericJoint assigns default 
values to all parameters; the parameter script is required only 
to specify deviations from these default values. Algorithm 1 
shows an example of such a parameter file.

A full list and description of model parameters can be 
found on the documentation page of the genericJoint 
class (see Algorithm 2). 

We save these parameters in an m-file, example_
params.m. Moreover, the toolbox comes with a collection of 
detailed parameter file examples. Historically, they comprise 
parameters for TREE robotics actuators (https://www.treero-
botics.eu). The files are located in the param subdirectory of 
the toolbox.

Model Generation
After collecting a joint’s parameters in the param struct, 
the next step is to instantiate a jointBuilder  that 
enables the generation of ready-to-use model classes. Once 
instantiated, the joint builder generates the model classes 
through the buildJoint  method. The technique 
requires the parameter file and the desired linear dynamics 
to be specified. Here, we reuse the parameter file exam-
ple_params.m created in the example in the “Model 
Parameters” section. Optionally, a cell list of nonlinear 
effects can be provided, and a custom class name (here, 
Example_Joint) can be specified (see Algorithm 3).

Algorithm 1: An Example of a Parameter File

% Save these lines in example_
params.m
% for later use in other examples.
%% Motor parameters
% Motor rotor inertia [kg m^2]
params.(‘I_m’) = 9.407000e-02;
% Motor Damping [Nms/rad]
params.(‘d_m’) = 2.188643e-03;
% Motor Coulomb damping [Nm]
params.(‘d_cm’) = 2.6400;
% Torque constant [Nm/A]
params.(‘k_t’) = 4.100000e-02;

%% Gear parameters
% Gear transmission ratio [.]
params.(‘n’) = 100;
% Gearbox damping [Nms/rad]
params.(‘d_g’) = 2.2000;
% Gearbox Damping - negative direc-
tion [Nms/rad]
params.(‘d_g_n’) = 2.1000;
% Gearbox Coulomb damping [Nm]
params.(‘d_cg’) = 3.2800;
%% Sensor parameters
% Sensor inertia [kg m^2]
params.(‘I_l’) = 1.137000e–04;
% Sensor stiffness [Nm/rad]
params.(‘k_b’) = 21000;

Algorithm 2: The Documentation Page of the  
genericJoint Class

% genericJoint class documentation
doc genericJoint



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

7IEEE ROBOTICS & AUTOMATION MAGAZINE  •

Possible values and combinations of the input param-
eters are detailed in the method documentation (see 
Algorithm 4). 

After model generation, the jointBuilder build direc-
tory must be added to the MATLAB search path, and the 
freshly generated model class object can be instantiated. In 
the previous example, the generated model class was named 
Example_Joint, which can be instantiated as shown in 
Algorithm 5. 

Joint Model Analysis
This section demonstrates the use of the Compliant Joint 
Toolbox for the analysis of actuator models. Because of space 
constraints, a preview of the expected output is not shown 
here, but it can be found in the online documentation [23].

Linear Analysis
The genericJoint class builds upon the MATLAB core 
capabilities for numeric linear system analysis via transfer 
functions and state-space systems in continuous and dis-
crete time. A benefit offered by the toolbox is that it 
removes the need to manually equate and insert the model 
parameters into the corresponding built-in MATLAB func-
tions (tf, ss, and so forth). Using the generated classes, it 
offers direct access to the transfer functions and state-space 
matrices in the continuous- and discrete-time domains 
through a single line of code, independent of the selected 
model. This enables rapid switching and comparison of 
transfer functions or state-space matrices for different 
models and parameter sets. In linear analysis, nonlinear 

dynamics are linearized or ignored. (Coulomb friction is 
inherently not linearizable and is thus ignored; asymmetric 
viscous friction is made symmetric, and torque ripple is 
ignored.) The case in Algorithm 6 uses the previously gen-
erated joint class example and demonstrates how to obtain 
the transfer functions and state-space models.

Symbolic Equations
With the Symbolic Math Toolbox installed, the Compliant 
Joint Toolbox also allows inspection of the dynamics in 
symbolic form. This eases the analytical comprehension of 
how individual parameters affect the dynamics. In terms of 
implementation, the toolbox offers the genericJoint 
methods makeSym and makeNum to convert instances of 
joint models between numeric and symbolic representa-
tions. The case in Algorithm 7 considers the transfer func-
tion of the previous example, but this time in symbolic form.

Analysis Plots and Datasheet Generation
The datasheetGenerator class is instantiated for a given 
joint class and implements a public method interface to draw 

Algorithm 3: An Instantiated Joint Builder

%% Instantiate a jointBuilder
jb = jointBuilder;

%% Build joint model classes
% Here we reuse the parameters stored in
% example_params.m during the previous 
example.
jb.buildJoint (...
‘example_params’,... % parameters
‘ o u t p u t _ f i x e d _
rigid_gearbox’,...

% linear dynamics

{‘coulomb’, ‘vis-
cous_asym’},...

% nonlinear dynamics

‘electric_dyn’,... % electro-dynamics
‘Example_Joint’); % custom class name

Algorithm 4: The Method Documentation

%% buildJoint method documentation
doc jointBuilder/buildJoint

Algorithm 5: Adding the Joint Builder Directory to 
the MATLAB Search Path

%% Instantiate joint models
% add build directory to search path
addpath(jb.buildDir);
% create joint object
exJoint = Example_Joint;

Algorithm 6: Obtaining the Transfer Functions and 
State-Space Models 

%% Transfer Functions of the Example 
Joint
% Get all transfer functions
exTF = exJoint.getTF();
% Look at the torque output (row 
index 7)
% w. r. to the input current (col 
index 1) 
exTF(7, 1)

% We obtain the same in the discrete
% time domain with:
exTFd = exJoint.getTFd();
exTFd(7, 1)

%% Get state-space system of Example 
Joint
% Continuous-time
exSS = exJoint.getStateSpace();
% Discrete-time
exSSd = exJoint.getStateSpaceD();



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

8 •  IEEE ROBOTICS & AUTOMATION MAGAZINE

analysis plots illustrating torque speed and efficiency diagrams, 
thermal characteristics, and the torque bandwidth maps intro-
duced in [5]. Provided that a LaTeX installation is present on 
the user’s computer, the class can assemble the analyses into a 
PDF datasheet file summarizing the properties of the consid-
ered actuator. Algorithm 8 describes this procedure, reusing the 
joint class example created in the previous cases.

The method generateDataSheet executes routines to 
create and save the individual plots and generates and compiles 
a LaTeX file into a PDF document, exemplified in Figure 5 [24].

Simulink Library
The Compliant Joint Toolbox provides a Simulink library, 
cjt_library, located in the toolbox’s lib directory. The 
library comprises three sublibraries for models, observers, 
and controllers. All blocks are Simulink Real-Time compati-
ble, so they are suited for deployment on real, physical target 
hardware systems. The library blocks make use of the joint 
model classes generated by the joint builder. Their principal 
mask parameter is the user-specified joint object or joint class 
name. The blocks adapt their internal structure and behavior 
according to the dynamics and parameters specified in these 

derived joint classes. The following subsections detail each of 
the three sublibraries and report examples of their use in con-
nection with real-world experimental setups.

Joint Model Blocks
The joint model library contains three blocks—two for the 
electrical subsystem and one for the mechanical subsystem. A 
signal bus jointBus serves as a common data structure to 
share joint-state information among the blocks. The latter 
may, however, be used independently or in conjunction with 
user-defined blocks.

The Electrical Subsystem Blocks
These allow the user to include input delays, quantization, 
and measurement noise to account for nonideal system 
behavior or, if desired, to simulate ideal system dynamics. The 
basic block models the single-phase electrical dynamics, pro-
viding a single-phase armature voltage input in addition to 
the joint bus. The more advanced version models the two-
phase d–q plane electrical system and is suitable for vector 
control. For both, the block outputs are the winding currents 
and generated electromotive torque.

The Mechanical Subsystem Block
This block features a mask interface similar to the electrical 
subsystem blocks described previously, with a joint object or 
class name as the principal parameter. The user can enable 
input and/or output delays, noise, and quantization and can 
specify filter cutoff frequencies to realistically simulate 
velocity and torque readings from numerical differentiation. 
The mechanical subsystem is driven by the electrically gen-
erated torque. Depending on the chosen joint model struc-
ture, the second model input is a load torque or motion. The 
model output jointBus contains the joint states and out-
put torque. When used in combination with an electrical 
subsystem block, the bus is fed back to the corresponding 
input of the electrical subsystem block so that the back elec-
tromotive force from the motion can be computed correctly. 

Observers
In practice, the measurement of the entire actuator state is not 
always possible. For reasons of complexity and spatial, energy, 
and financial economy, developers typically seek to minimize 
the number of sensors used in an actuator. Dynamic effects, 
such as friction, external loads, and sensor imperfections, are 
difficult to model reliably and accurately. Redundancy and fault 
detection and isolation are crucial objectives in safety-critical 
robot operation, especially when operation occurs in the vicinity 
of humans. These aspects have led to the rigorous application of 
state and disturbance observers in compliant actuator control.

The Compliant Joint Toolbox features a Simulink blockset 
with four different observer implementations frequently found 
in the literature: the Luenberger observer, Kalman filter, gener-
alized momentum disturbance observer [6], and linear trans-
fer function disturbance observer [2], [7]. The inputs to all 
these blocks are the motor torque reference and 

Algorithm 7: The Transfer Function in Symbolic 
Form 

%% Convert joint to symbolic form
exJoint.makeSym();

% Get all transfer functions
exTF = exJoint.getTF();

% Look at the input current (col 
index 1)
% to torque output (row index 7).
% Pretty print the result:
pretty(exTF(7, 1))

%% Return object to numeric form
exJoint.makeNum();

Algorithm 8: Assembling the Analysis into a PDF 
Datasheet  

%% Generate a datasheet for the actu-
ator
% Instantiate a dataSheetGenerator 
for the example
dsg = dataSheetGenerator(exJoint);
% Invoke datasheet generation
fName = dsg.generateDataSheet(); % look 
at output
% Look at the result
open(fName)



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

9IEEE ROBOTICS & AUTOMATION MAGAZINE  •

the jointBus. As output, they provide either a disturbance 
estimate or a state and output estimate. These four blocks are 
the core components of some of the controllers outlined in the 
next section.

Controllers
The controllers in the Compliant Joint Toolbox are implement-
ed in discrete time. We provide an overview here. The simplest 
one provided is a pure desired-torque feedforward command 
that can be combined with an integral controller, as reported in 
[8]. As an alternative to integral action, [9] applied a linear dis-
turbance observer, with the nominal plant performing only as a 
rotating mass to compensate for disturbances like friction.

The most common torque controller class in the literature is 
the proportional derivative (PD) type. For example, a pure PD 
torque controller was cascaded with an outer-loop PD position 
controller in [10]. A controller discussed in [8] augmented the 
PD feedback loop with a desired torque feedforward action. 
The controller presented in [11] supplemented the PD loop 
with a disturbance observer based on nominal open-loop plant 
dynamics. In contrast to [9], the authors of [11] incorporated 
linear viscous friction in the nominal plant model of the distur-
bance observer and added a feedforward nonlinear friction-
compensation action. The authors of [3] proposed a disturbance 
observer based on a model of the nominal closed control loop, 
which augmented the PD torque controller. A disturbance 

Figure 5. A datasheet example, automatically generated for the Example_Joint class using the datasheetGenerator 
class. A PDF with this datasheet is available online [24].



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

10 •  IEEE ROBOTICS & AUTOMATION MAGAZINE

Table 1. The linear mechanical subsystem models.
Load-Inertia Models

Full Dynamics Rigid Gearbox qm /  qg

dm

kg kb

dgldmgIm Ig Il

dg dl

qm, m qg, g ql, l

kb

dgl

dmg + dg

Im + Ig Il

dl

qm, m ql, l

:
I

I
I

0
0

0

0

0
0I

m

g

l

> H D :
d d

d
d

d d d
d

d
d d0

0m mg

mg

mg

g mg gl

gl

gl

l gl

+

-

-

+ +

-

-

+

> H I :
I I

I0
0m g

l

+; E D :
d d d

d
d

d d
m g gl

gl

gl

l gl

+ +

-

-

+
= G

: q q qq m g l
T6 @

K :
k
k

k
k k

k
k

k0

0g

g

g

g b

b

b

b

-

-

+

-

-> H
q : q qm l

T6 @
K :

k
k

k
k

b

b

b

b-

-; E

:u m lq
Tx x6 @

B :
k
k

k
k k

k
k

k0

0g

g

g

g b

b

b

b

q -

-

+

-

-> H
u : m lq

Tx x6 @
B :

I I

I

0

0

0

0

1

0

0

1
g m

l

q

T

+

R

T

S
S
S
S

V

X

W
W
W
W

: I
k

I
k

I
k

I
k k

I
k

I
k

I
k

I
d d

I
d

I
d

I
d d d

I
d

I
d

I
d d

A

0
0
0

0

0
0
0

0
0
0

0

1
0
0

0

0
1
0

0
0
1

0

g

b

l

b

mg

l

gl

l

l gl

l

b

m

m mg

g

m

mg

g

mg g gl

g

gl

q m

g

g

g

m

g

g

b g

-

-
+

-

-
+

-
+ +

-
+

R

T

S
S
S
S
S
S
S
S
S
S
S

V

X

W
W
W
W
W
W
W
W
W
W
W

A : I I
k

I
k

I I
k

I
k

I I
d d d

I
d

I I
d

I
d d

0
0

0
0

1
0

0
1

g m

b

l

b

g m

b

l

b

g m

m g gl

l

gl

g m

gl

l

l gl

q -
+ +

-

-
+

+ +

+

-
+

R

T

S
S
S
S
S
SS

V

X

W
W
W
W
W
WW

Fixed-Output Models

Rigid qm /  qg /  ql                           Fixed-Output Full Dynamics                                                Rigid Gearbox qm /  qg

qm, m l,

IΣ
∗)

dΣ
∗∗)

dm

kbkg

dgldmgIm Ig

dg

qm, m qg, g ql
.

kb

dgl

dmg + dg

Im + Ig

qm, m ql
.

: II *
R 	 D: d**

R I:
I

I0
0m

g
; E	 D:

d d
d

d
d d d

m mg

mg

mg

g mg gl

+

-

-

+ +
= G I: I Im g+ D:  d d dm g gl+ +

q: qm 	 K:3
q: q qm l

T6 @ 	 K:
k
k

k
k k

g

g

g

g b-

-

+
= G q: q qm l

T6 @ K: kb

u :
m

l
q
x

x
; E	 B :

,

,
I I

0
1

0
1

* *
q

R R

> H u : q
m

l
q
x
o
; E	 B :

,

,

,

,

,

,

,

,

I

I
d

0

0

0

0

0

1

1

0

0
m

g

gl
q

TR

T

S
S
S
S

V

X

W
W
W
W

u : q
m

l
q
x
o
; E

B :
,

,

,

,

I I

I I
d

0

0

0

1

1
m g

m g

gl

T

q
+

+

R

T

S
S
S
SS

V

X

W
W
W
WW

A :
I
d

0

0

1

**

*
q -

R

R> H
A :

I
k

I
k

I
k

I
k k

I
k

I
d d

I
d

I
d

I
d d d

0
0
0

0
0
0

0
0
0

0

1
0
0

0
1
0

m

g

g

g

m

g

g

g b

g

b

m

m mg

g

mg

m

mg

g

g mg gl

q

-

-
+

-
+

-
+ +

R

T

S
S
S
S
S
S
S
SS

V

X

W
W
W
W
W
W
W
WW

A :

I I
k

I I
k

I I
d d d

0
0

0
0

1
0

m g

b

m g

b

m g

m g gl

q

-
+ +

-
+

+ +

R

T

S
S
S
SS

V

X

W
W
W
WW

* I I I Im g l= + +R ; ** d d d dm g l= + +R .



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

11IEEE ROBOTICS & AUTOMATION MAGAZINE  •

observer based on the closed control loop was adopted by [4] 
and [7] in the context of control for so-called reaction force 
series elastic actuators. The controller implemented this scheme 
based on a proportional–integral–derivative (PID) torque con-
trol loop with desired torque feedforward action. The controller 
in [12] also was a PID controller with a desired torque feedfor-
ward command, using the open-loop nominal plant model of a 
full-mass spring-damper system.

If full state information is available through measurement 
or reliable state observation, state feedback controllers, such 
as linear–quadratic regulator controllers, can be designed. 
The state feedback controller originally proposed in [13] was 
reformulated in a more general passivity-based torque and 
impedance control framework in [14]. During this process, 
the controller gains were redefined to yield a clear physical 
interpretation. In the context of the aforementioned 

controllers, the torque control part presented in [14] can be 
seen as a PD-type controller with positive direct torque feed-
back similar to [15]. The controller was augmented by a gen-
eralized momentum-based disturbance observer [6].

The blocks provided in the controller library implement, in 
discrete time, all the controllers just discussed. Controllers with 
an inner velocity- and/or position-control loop, such as report-
ed in [16], have not been implemented so far, but there is no 
technical barrier to doing so. A template block serves as a start-
ing point for users to develop new controllers.

Interfacing With Hardware
The Compliant Joint Toolbox was developed within the scope 
of [2], [5], and [17] and implemented on the WALK-MAN 
and TREE actuators. While it was initially developed for 
modeling and simulation, its rapid interfacing with real actua-

tor hardware was truly helpful for data 
recording, testing, debugging, and tun-
ing of joint torque controllers. The 
toolbox shrank the time and effort 
required to move from simulation to 
experiments. This became particularly 
useful when coping with different sizes 
and prototype stages of the actuators 
depicted in Figure 6. All of these actua-
tors feature an industrial EtherCAT 
interface. However, from the toolbox 
side, there is no requirement to use 
EtherCAT; the toolbox can be used 
with whatever interface is supported 
by the Mathworks Simulink Real-Time 
application.

Figure 7(a) presents an example of 
how to set up EtherCAT communica-
tion among the actuator, Simulink 
Real-Time target, and user console for 
a single actuator. A more detailed tuto-
rial on how to organize an EtherCAT 
network is presented in [18]. The basic 
scheme—to create a Simulink block 
diagram that controls the actuator—is 
shown in Figure 7(b). It uses a control-
ler block (blue) from the Compliant 
Joint Toolbox and the communication 
interface blocks (gray) provided by the 
Simulink Real-Time Toolbox.

Summary and Future Directions
This article presented the Compliant 
Joint Toolbox and introduced its main 
concepts. The basic use of the toolbox 
was demonstrated, and code examples 
and references to more-detailed infor-
mation were given.

We plan to extend the toolbox’s 
capabilities to capture more nonlinear 

(a)

(b)

Figure 6. (a) The WALK-MAN actuators and (b) the TREE actuators with which the 
authors interfaced the Compliant Joint Toolbox.

User
Console Simulink

Real-Time
Target

Power
Supply

Actuator

Ethernet Ethernet

Wiring
S

Controller

Reference

Measurements
Hardware

PDO
Transmit

PDO
Receive

EtherCAT EtherCAT

Block Interfacing

(b)

(a)

Figure 7. Examples for interfacing with actuator hardware on (a) the physical level and 
(b) the Simulink level. PDO: process data objects.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

dynamics effects, such as nonlinear stiffness curves, and more 
advanced friction models, including hysteresis with memory, 
as well as more usage examples. Furthermore, we aim to 
interface the Compliant Joint Toolbox with the Robotics Tool-
box [19]. This will allow researchers to model and simulate 
full torque-controlled robotic systems and rapidly reach 
experimental readiness.

We hope the Compliant Joint Toolbox can catalyze the 
ongoing discussion on compliant robot actuation, support 
academic education in the field, and contribute to community 
efforts toward common notions, metrics, and benchmarks 
that ease torque-controlled actuation design, comparison, and 
selection across diverse robotic applications.

Our final words here are a call to action. The Compliant 
Joint Toolbox is open source, and we are happy to receive con-
tributions from the community. Input is welcome in the form 
of code, feedback, discussion, bug reports, and feature requests.

Acknowledgments
We would like to thank Peter Corke of the Queensland Univer-
sity of Technology for his valuable and encouraging feedback. 
This work received financial support from European Research 
Council projects under the European Union’s Seventh Frame-
work Program grant 611832 (WALK-MAN) as well as under 
the Horizon 2020 research and innovation program, grants 
644839 (CENTAURO) and 644727 (CogIMon).

References
[1] L. Meirovitch, Fundamentals of Vibrations. Boston: McGraw-Hill, 
2001. 
[2] W. Roozing, J. Malzahn, D. G. Caldwell, and N. G. Tsagarakis, “Com-
parison of open-loop and closed-loop disturbance observers for series 
elastic actuators,” in Proc. IEEE/RSJ Int. Conf. Intelligent Robots and 
Systems, 2016, pp. 3842–3847. 
[3] K. Kong, J. Bae, and M. Tomizuka, “Control of rotary series elastic actu-
ator for ideal force-mode actuation in human-robot interaction applica-
tions,” IEEE/ASME Trans. Mechatronics, vol. 14, no. 1, pp. 105–118, 2009. 
[4] N. Paine et al., “Actuator control for the NASA-JSC Valkyrie 
humanoid robot,” J. Field Robot., vol. 32, no. 3, pp. 378–396, 2015.
[5] J. Malzahn, N. Kashiri, W. Roozing, N. Tsagarakis, and D. Caldwell, 
“What is the torque bandwidth of this actuator?” in Proc. IEEE/RSJ Int. 
Conf. Intelligent Robots and Systems (IROS), 2017, pp. 4762–4768. 
[6] L. Le Tien, A. Albu-Schäffer, A. De Luca, and G. Hirzinger, “Friction 
observer and compensation for control of robots with joint torque 
measurement,” in Proc. IEEE/RSJ Int. Conf. Intelligent Robots and Sys-
tems (IROS), 2008, pp. 3789–3795.
[7] N. Paine, S. Oh, and L. Sentis, “Design and control considerations 
for high-performance series elastic actuators,” IEEE/ASME Trans. 
Mechatronics, vol. 19, no. 3, pp. 1080–1091, 2014. 
[8] D. Vischer and O. Khatib, “Design and development of high-perfor-
mance torque-controlled joints,” IEEE Trans. Robot. Autom. vol. 11, no. 
4, pp. 537–544, 1995. 
[9] K. Kaneko, S. Kondo, and K. Ohnishi, “A motion control of f lexible 
joint based on velocity estimation,” in Proc. IEEE Annu. Conf. Industri-
al Electronics Society (IECON), 1990, pp. 279–284. 
[10] M. C. Readman, Flexible Joint Robots. Boca Raton, FL: CRC, 1994. 

[11] H. S. Lee and M. Tomizuka, “Robust motion controller design for 
high-accuracy positioning systems,” IEEE Trans. Ind. Electron., vol. 43, 
no. 1, pp. 48–55, 1996. 
[12] M. A. Hopkins, S. A. Ressler, D. F. Lahr, A. Leonessa, and D. W. 
Hong, “Embedded joint-space control of a series elastic humanoid,” in 
Proc. IEEE/RSJ Int. Conf. Intelligent Robots and Systems (IROS), 2015, 
pp. 3358–3365. 
[13] A. Albu-Schäffer and G. Hirzinger, “State feedback controller for 
flexible joint robots: A globally stable approach implemented on DLR’s 
light-weight robots,” in Proc. IEEE/RSJ Int. Conf. Intelligent Robots and 
Systems (IROS), vol. 2, 2000, pp. 1087–1093. 
[14] A. Albu-Schaffer, C. Ott, and G. Hirzinger, “A unified passivity-
based control framework for position, torque and impedance control 
of f lexible joint robots,” Int. J. Robot. Res., vol. 26, no. 1, pp. 23–39, 2007. 
[15] M. Hashimoto, T. Horiuchi, Y. Kiyosawa, and H. Hirabayashi, “The 
effects of joint f lexibility on robot motion control based on joint 
torque positive feedback,” in Proc. IEEE Int. Conf. Robotics and Auto-
mation, 1991, pp. 1220–1225. 
[16] G. Wyeth, “Control issues for velocity sourced series elastic actua-
tors,” in Proc. Australasian Conf. Robotics and Automation, Auckland, 
New Zealand, 2006.[Online]. Available: http://www.araa.asn.au/conferences/
acra-2006/table-of-contents/ 
[17] W. Roozing, J. Malzahn, N. Kashiri, D. G. Caldwell, and N. G. Tsag-
arakis, “On the stiffness selection for torque controlled series-elastic 
actuators,” IEEE Robot. Autom. Lett., vol. 2, no. 4, pp. 2255–2262, 2017. 
[18] K. Langlois et al., “EtherCAT tutorial: An introduction for real-
time hardware communication on Windows [Tutorial],” IEEE Robot. 
Autom. Mag., vol. 25, no. 1, pp. 22–122, 2018. 
[19] P. I. Corke, Robotics, Vision, and Control: Fundamental Algorithms 
in MATLAB, 2nd ed. (Springer Tracts in Advanced Robotics, no. 118). 
Cham, Switzerland: Springer-Verlag, 2017.
[20] J. Malzahn and W. Roozing, “Code capsule to try the compliant 
joint toolbox,” 2018. [Online]. Available: https://codeocean.
com/2018/08/02/compliant-joint-toolbox-capsule/code
[21] J. Malzahn and W. Roozing, “Compliant Joint Toolbox—Getting 
started,” Aug. 2, 2018. [Online]. Available: https://github.com/geez0x1/
CompliantJointToolbox/wiki/Getting-Started
[22] J. Malzahn and W. Roozing, “Technical documentation,” Nov. 22, 
2018. [Online]. Available: https://github.com/geez0x1/CompliantJointToolbox/ 
wiki/Technical-Documentation
[23] J. Malzahn and W. Roozing, “Compliant Joint Toolbox—Actuator 
analysis,” Nov. 16, 2018. [Online]. Available: https://github.com/ 
geez0x1/CompliantJointToolbox/wiki/Actuator-Analysis
[24] J. Malzahn and W. Roozing, “Compliant Joint Toolbox—Example data-
sheet,” [Online]. Available: https://github.com/geez0x1/CompliantJointToolbox/
files/2590377/Example_Joint_datasheet.pdf

Jörn Malzahn, Humanoids and Human-Centered Mechatron-
ics Lab, Istituto Italiano di Tecnologia, Genoa, Italy. Email: 
jorn.malzahn@iit.it.
Wesley Roozing, Robotics and Mechatronics, University of 
Twente, The Netherlands. Email: w.roozing at utwente.nl.

Nikos Tsagarakis, Humanoids and Human-Centered Mecha-
tronics Lab, Istituto Italiano di Tecnologia, Genoa, Italy. 
Email: nikos.tsagarakis@iit.it.�


