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I. Summry 

Two dimensional steady viscous exterior flow is often treated as an elliptic 

Proble~within a finite region, bounded by a big circle. Solutions by means of Fourier 

expansions or discretisation on a polar grid will only give reliable results for low 

Reynolds numbers. In the present paper an example of a transformation is given, that 

maps the entire vorticity field onto a rectangle so that: (a) the vorticity equation 

can develop its parabolic character, (b) the wake in the far field comes out properly, 

and (c) the restriction to low Reynolds numbers is removed. For the elliptic stream- 

function equation the polar system is retained. 

This two coordinate systems description has been studied for a linearized version 

of the Navier-Stokes equations obtained by assuming a fixed velocity field z (°) in the 

convection term. The first results ~ and ~ are qualitatively so similar to the'final 

Solutions known from literature, that an iteration process, suggested by deriving a 

new velocity field v (I) from 4, can be expected to show rapid convergence. 

2. Mathematical formulation of the problem 

For steady two dimensional viscous flow the Navier-Stokes equations read: 

~ - ~Rv_.v~ = 0 

A~ = -~ 

where ~ is vorticity, v velocity, $ streamfunction (rot(0,0,,)--v_), and the Reynolds 

number R is based on the diameter. 
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For flow past a circular cylinder the boundary conditions, written in polar coordinates 

r and 8, are: 

s)mmletry: 8=o, ~ : ¢=o, ~=o 

infinity: r ÷ = " ~ ÷ O, ~ ~ r sin0 

cylinder: r=] : @=o and ~r~=O 

3. TWo couplings 

We first notice two apparent features in this formulation of the problem. 

a. Coupling in the partial differential equations: the vorticity is the right-hand 

side of the streamfunction equation a1~l the streamfunction is occuring - through its 

derivatives r in the convection term of the vorticity equation. The latter coupling 

makes the system even nonlinear, 

b. Coupling in the boundary conditions: even if the coupling in the partial differ- 

ential equations would be absent, we still should not be able to solve the vorticity 

or the streamfunctionproblem separately because both are ill-posed: the vorticity 

problem lacks one boundary condition while the streamfunctionproblemhas two. 

4. Restriction relation for polar coordinates 

As an analytic solution is out of the question the problem is taken up by numer- 

ical specialists who seem to be challenged mainly by the couplings mentioned in the 

previous section. Unfortunately the polar coordinate system that often is used in 

these calculations, is unfit to describe the vorticity in the far field, as can easily 

be seen from the asymptotic behaviour ~ I -,~-~ 

~ Q e-~Q2 Q2= Rr sin2~8 
r ' o I Q 

A picture of ~ vs Q shows that the main Qo 
4 

part of the wake is over at about ~-- 2. The corresponding value of @ is 0 -- 
o ~F 

With r fixed the function ~(r,@) is practically zero for o>@ o. For such a function 

the dominating coefficients in the expansion z bn(r ) sin no are those with index n 

in the neighbourhood of ~/0o' So when a separation of variables technique is used with 

N Fourier components, the reliability of the representation of the vorticity will be 

restricted by the relation N2 -~ ~ ~2 

In discretisation methods using a polar grid we meet the same relation when we think 

of @ as the angle of the first radial line: if N is the number of radial lines, then 
o 

@o=~/N. So for r satisfying the above relation the wake is almost confined within the 

first grid mesh, and the description of the wake further downstream will be very poor. 
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5. Creation of new difficulties 

As the polar system has certain advantages concerning geometry, orthogonality 

and the ease of progran~ing, one might accept the restriction relation and achieve 

accurate results for at least low Reynolds numbers, if there were no other problems. 

However, bounding the calculational domain by a big circle one rouses new difficulties, 

that will be mentioned here only briefly. First, one has the problem which boundary 

conditions should be imposed on the outer boundary; second, one will be tempted to 

solve this problem as an elliptic one, thus ignoring the parabolic character the 

vorticity has downstream; and third, in case the parameters are such that the parab- 

olic character is showing up within the calculational domain, the vorticity will not 

be inclined to satisfy outer boundary conditions unless by an unnatural change of 

behaviour. 

6. New coordinates for the vorticity equation 

In order to remove the restriction relation and to take into account the elliptic 

character of the vorticity near the cylinder and the parabolic character downstream 

we search for a coordinate system in which radial lines start from the cylinder as they 

do in the polar system, but gradually bend over to the wake to coincide asymptotically 

with curves Q=constant. An example of an orthogonal system covering these properties is 

e -sin2~ = a + ~ o < s < ] cylinder 
1-s ' 

tan2~ = tan2~t , o < t < 1 

~ere r and ~ are polar coordinates with 

respect to an origin 0 on the positive . - 
0 0 I 

x-axis, a is a constant and b is a parameter 

that controls the distribution of grid points. Notice that the entire flow region is 

mapped onto the unit circle in the s,t-plane. 

The only point with this transformation is that the curves s=constant are no 

exact circles. So we cannot do better than to choose the parameters 0O and a such 

that the curve s=o lies inside the cylinder and as close as possible (maximum deviation 

about I ~ % of the radius). When we want -to know about ~ at the cylinder itself, we have 

to interpolate, but as we retain the polar system for the ~-problem, we have to do a 

lot of interpolation anyway, so this is not a serious drawback. With respect to our 

first aim, i.e. to allow of a proper description of the vorticity in the middle and 

far field, the transformation is satisfactory as will be sh~,~% in the following sections. 

To test the usefulness of the transformation we solve a linearized version of 

the Navier-Stokes equations, i.e. we take v in the convection t4rm a given velocity 

field that coincides with the free stream velocity at infinity. In fact we have taken 
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v = o for r < r* 

* ~ = I, v ~ =o) v --v ~ for r > r (v x Y 

with r* obtained from a rough boundary layer consideration. 

7, Solution of the linearized problem 

a. As the new coordinate system is concentrated in the wake we shall not use it for 

the b-problem, because in a two dimensional Poisson equation the forcing term, although 

of local character, may have a wide influence. We retain essentially the polar system. 

We exchange the inhomogeneous condition at infinity for an inhomogeneous boundary 

condition at the cylinder by introducing 

-- ¢ - (r4) sin @ 

This ~ satisfies the well-posed problem ~ = -~ with boundary conditions: 

~ ( r , o )  = o - - * ( r , ~ )  , ~ r ( 1 , @ ) - - o  , ~ o  for  r + ~ .  

b. We n o t i c e  tha t  we can so lve  the v o r t i c i t y  problem as soon as a boundary cond i t ion  

(s=o) has been given.  Next we can so lve  the ~-problem formulated above. In p a r t i c u l a r  

we are interested in the resulting ~(r=l), that has a linear relationship with ~(s=o) 

because both partial differential equations are linear and all the remaining boundary 

conditions are homogeneous. So we can get an approximate solution to the linearized 

problem by solving the ~- and the G-problem several times starting with linearly 

independent functions ~k(S=O), and requiring a linear combination of the resulting 

functions ~k(r=1) to be in some sense a good approximation of -2 sin e, which corres- 

ponds to ~(r=I)=I, the only condition that has been left out till now. 

In fact we have taken ~k(S=O) = sin k~t , k = I,.. 5 . 

c. The t-equation is discretized by central differences for the viscous term and 

upstream differences for the convection term. In a calculatiog~l molecule the coup- 

ling with the do~mstream grid point vanishes as the molecule moves towards infinity 

(s=~), thus showing the resemblance to an implicit discretisation of a parabolic 

equation. 

For the ~-problem we first map the entire flow field onto the rectangle o<p <I, 

o<8<~, where p is defined by 
r=1 +b'°_~ ° 

I 
This transformation is suggested by the asymptotic behaviour ~ -- ~ . 

The discretisation is done by central differencing on an equally spaced grid in the 

0 ,@-rectangle. Also in the Neumann condition at the cylinder (p=o) central differences 

are used. 
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8. Results and discussion 

The algorithm described in sections 6 and 7 has been run for R=I00. The behaviour 

of the vorticity shown in fig.1 is in good accordance with the asymptotic expression 

given in section 4: for fixed s the shape is similar to the Q-~ picture, and for s ÷ I 

the whole vorticity distribution is decreasing linearly with s which corresponds with 

the factor ! in the asymptotic expression. 
r 

Fig. I The wake near infinity as a function of s and t, for R = 100 
calculated with a 16×16 grid 
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A picture of the vorticity in the fysical plane is given in fig.2. It was calcul- 

ated for R=20 in order to have some comparison with literature. Of course numerical 

agreement is out of the question because we only have solved the linearized equations; 

but some qualitative aspects are encouraging e.g. the shape of the curves of constant 

vorticity, the location of maxJlmml vorticity at the cylinder, and negative vorticity 

values for small values of @. (The last two features could not be represented in the 

picture. ) 

The streamfunction picture (fig. 3) is qualitatively still better, Recirculation 

is showing, and even the size of the recirculation area is in reasonable agreement 

with solutions of the full Navier-Stokes equations known from literature. We may say 

that the velocity field derived from this streamfunction solution will show a 

substantial improvement of the first guess for v (see section 6), So we would think 

that repeating the whole procedure with this new v could be the first step of a 
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rather fast converging iteration process. 

Fig. 2 Vorticity distribution for R=20, r =I. 8, 
calculated with a 10×20 grid (. = grid point) 
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Fig. 3 Streamfunction distribution for R=20 calculated with a IOx20 grid 
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