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ABSTRACT
The projective equivalence relation for representations of symmetry 
groups in quantum mechanics is refined to a so-called gauge equivalence 
relation. An example is given where this leads to a physically more 
relevant classification of elementary quantum mechanical systems. It 
is indicated how this idea might be applied to projective bundle 
.representations.

1. GAUGE EQUIVALENCE
Elementary quantum mechanical systems in a space(time) X with (cover­

ing) symmetry group G correspond to irreducible semi-unitary multiplier repre­
sentations of G. The usual classification of such representations is based upon 
the projective equivalence relation

U1 (g) = v(g) S U(g) S-1 (1)
where v(g) is a phase factor and S is a semi-unitary transformation between the 
carrier Hilbert spaces. Obviously, this classification only depends on the ab­
stract group structure of G. It does not depend on the action of G as a group 
of transformations in X. Hence, the elementary q.m. systems in two space(time)s 
Xj and with isomorphic symmetry groups will be "isomorphically" classified.
This leads to a paradox in the case that X. and X~ have a different nature.

1 1 2An example of this situation is provided by the 2-dimensional Eucli­
dean space X̂  and the (1 +1)-dimensional Newton-Hooke spacetime X^* The corres­
ponding symmetry groups are isomorphic.Their isomorphism, however, is not com­
patible with their action as transformation group. Hence, it is a mathematical 
coincidence, which is physically irrelevant. So one can hardly expect any 
physical effect from that accidental group isomorphism. Nevertheless, its effect 
is that the elementary q.m. systems in X̂  and X^ have isomorphic classifications, 
based upon the projective equivalence relation.

This paradox is solved by the recognition that the projective equiva­
lence relation is too coars.e for quantum mechanical purposes.. There is1 too much 
freedom in the choice of the equivalence transformation S between the wave 
function spaces. One should allow only "trivial" transformations, from the q.m.
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point of view. This consideration leads to the gauge transformations. These are, 
indeed, trivial in the sense that they leave the local quantities (probability 
densities) invariant, whereas arbitrary unitary transformations do not have that 
property. Therefore we introduce a finer equivalence relation, called gauge equi­
valence . This also is given by equation (1) where, however, the semi-unitary S 
now shall be a gauge transformation, possibly combined with complex conjugation. 
A classification based upon this gauge equivalence relation does not only depend 
on the group structure of G but also on the space(time) X and its transforma­
tions under G. Hence, in different and ̂  with isomorphic symmetry groups one 
no longer automatically obtains "isomorphic" classifications.

In the above mentioned example the irreducible semi-unitary multiplier 
representations have been classified, both up to projective equivalence and up 
to gauge equivalence. The results of the latter approach turned out to be more 
satisfactory from a physical point of view*. So gauge equivalence seems to be 
a useful notion for group representations in Hilbert spaces. As a Hilbert, space 
is in fact a degenerate Hilbert bundle, a generalized notion of gauge equivalence 
might be introduced for group representations in Hilbert bundles.

2. PROJECTIVE BUNDLE REPRESENTATIONS
Hilbert bundles appear in quantum mechanics already on a very elementary 

level. The solutions of the wave equation for a particle in an external field 
form a bundle B over a base space F of fields f. Its fibres are (pre)Hilbert 
spaces Hf of wave functions. The quantum states correspond to rays rather than 
to vectors, so in fact the state space is a bundle B of ray (or: projective) 
spaces Hf. The symmetry group G operates on the state space by a homomorphism U 
into the group AUT(B) of automorphisms (= ray-product-preserving bundle opera­
tors) in B. This symmetry operation can be lifted from the ray bundle B to the

2Hilbert bundle B, as illustrated by the following diagram .

1 --> K --> G --> G --► 1
u j U J

1 -- > U(1 )(B) --» U/A(B) --> AUT(B) -- > 1

The first line means that G is a covering group of G, and the second line is 
the famous theorem of Wigner, here generalized to bundles. The group U/A(B) 
contains all bundle operators in B that act semi-unitarily between the fibres. 
Its subgroup U^(B) contains all such operators that act as a phase factor in 
each fibre. The homomorphism U is called a projective bundle representation and
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the almost-homomorphism U is called a multiplier bundle representation. The 
multiplier, i.e. the defect in the product rule of the operators U(g), is now 
an f-dependent phase factor, viz. an element of U^(B).

The projective equivalence relation (1) can be generalized to bundle 
representations, by considering all quantities as acting on a whole bundle. Let 
U and U' be two multiplier bundle representations in bundles B and B' with base 
spaces F and F* and with fibres and H'̂ ,. Then U and U' are called projecti- 
vely equivalent if equation (1) holds, where S : B B* is a bundle transforma­
tion acting semi-unitarily between the fibres, and v (g) belongs to U^(B').

Each bundle transformation induces a base space transformation (denoted 
by a small letter) and a set of fibre transformations (labeled by a subindex).
So S : B -* B' induces s : F -► F' and -► H^. Analogously U(g) and U* (g)
induce u(g) : F -* F, u' (g) : F' * Ff, U-(g) : H. + H , andr f u(g)f
U£, (g) : H£,  ̂Hut(g)f«# follows from (1) that u'(g)s = su(g) and

O' (g) = V , . .(g) S , .. U_(g) si* (2)sf su(g)f J u(g)f f J f
where vsu(g)f̂ 9̂  is a phase factor. These formulae manifestly display the two 
ingredients in the equivalence transformations. Firstly there is a "coordinate 
transformation on the base space" given by the bijection s : F *► F'. Secondly 
there is a "coordinate transformation on the fibres" given by the semi-unitary 
transformations Sf : Hf *♦■ acting between Hilbert spaces of wave functions.

The considerations in §1 suggest a refinement of this projective 
equivalence relation for muliplier bundle representations. The extra condition 
is that each semi-unitary S shall be a gauge transformation, possibly combined 
with complex conjugation. At least in elementary quantum mechanics this gauge 
equivalence may be expected to correspond to physical equivalence.
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